PMATH 345 Lecture 1: September 14, 2009

~pmat345

- \mathbb{Z} Integers $\{\ldots,-2,-1,0,1,2, \ldots\}$
- $C[0,1]$ all continuous functions $f:[0,1] \rightarrow \mathbb{R}$

In both cases:
can "add": $(f+g):[0,1] \rightarrow \mathbb{R}, x \mapsto f(x)+g(x)$
can "multiply": $(f g):[0,1] \rightarrow \mathbb{R}, x \mapsto f(x) g(x)$
both 0 and 1
figure: 0 function and 1 function

Definition: A ring R is a set with two distinguished elements, 0 and 1 , and two binary functions

$$
\begin{aligned}
& +: R^{2} \rightarrow R \\
& \times: R^{2} \rightarrow R
\end{aligned}
$$

i.e., given two elements x, y we can add them $x+y \in R$, we can multiply them $x y \in R^{1)}$ such that: for all $x, y, z \in R$,

1. Associativity of addition:

$$
(x+y)+z=x+(y+z)^{2)}
$$

2. Commutativity of addition:

$$
x+y=y+x
$$

3. Neutrality of zero:

$$
x+0=x^{3)}
$$

4. Existence of additive inverse:

For all $x \in R$ there is some $y \in R$ such that

$$
x+y=0^{4)}
$$

5. Associativity of multiplication:

$$
(x y) z=x(y z)^{5)}
$$

6. Neutrality of one:

$$
x 1=x=1 x
$$

7. Distributivity:

$$
\begin{aligned}
& (x+y) z=x z+y z \\
& z(x+y)=z x+z y
\end{aligned}
$$

Remarks:

1. WARNING: What we call a ring here is a "ring with identity" for some people.

For us rings always have 1.
Example: $2 \mathbb{Z}$ set of even integers
For Dummit and Foote this is a ring, for us it is not.
2. Notation: $x-y$ means $x+(-y)$

[^0]3. We don't ask \times to be commutative. Why?

Example: $M_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathbb{R}\right\}$

- $0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
- $1=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
- + matrix addition
- \times matrix multiplication

Check: This is a ring. \times is not commutative.
Why should + be commutative?
Because it is forced by the other axioms.

$$
\begin{aligned}
\left(\begin{array}{r}
1 \\
\left.1+\frac{y}{1}\right)(a \stackrel{z}{+} b)
\end{array}\right. & =1(a+b)+1(a+b) \\
& =(a+b)+(a+b) \\
\left(1+\frac{z}{+}\right)(\stackrel{x}{a}+\stackrel{y}{b}) & =(1+1) a+(1+1) b \\
& =(1 a+1 a)+(1 b+1 b) \\
& =(a+a)+(b+b) \\
(a+b)+(a+b) & =(a+a)+(b+b) \\
a+b+a+b & =a+a+b+b
\end{aligned}
$$

add $(-a)$ to both sides on the left

$$
b+a+b=a+b+b
$$

add $(-b)$ to both sides on the right

$$
b+a=a+b
$$

PMATH 345 Lecture 2: September 16, 2009

Definition: A ring R is commutative if for all $x, y \in R, x y=y x$.
Proposition: Let R be a ring.
(a) If $x+z=y+z$ then $x=y$.
(b) For all y there is a unique y such that $x+y=0$.
(We call y the additive inverse of x, denote it by $-x$).
(c) For all $x,-(-x)=x$.
(d) If $x \in R, 0 x=0=x 0$.
(e) $(-1) x=-x=x(-1)$.
(f) $(-x) y=-(x y)=x(-y)$
$(\mathrm{g})(-x)(-y)=x y$

Proof:

(a) $x+z=y+z$

Let u be such that $z+u=0$.

$$
\begin{gathered}
\Longrightarrow x+z+u=y+z+u \\
\Longrightarrow x+0=y+0 \\
\Longrightarrow x=y
\end{gathered}
$$

(b) By existence of additive inverses there is a $y \in R$ such that $x+y=0$. Suppose $x+y^{\prime}=0$ also.

$$
x+y=x+y^{\prime}
$$

By part (a) and commutativity

$$
y=y^{\prime}
$$

(c) $x+(-x)=0$ since $-x$ is the additive inverse of x. Therefore x must be the additive inverse of $(-x)$. i.e., $x=-(-x)$.
(d) $0+0 x={ }^{6)} 0 x={ }^{7}(0+0) x={ }^{8)} 0 x+0 x$

Therefore by (a), $0=0 x$.
Similarly $x 0=0$.
(e) $x+(-1) x={ }^{9)} 1 x+(-1) x={ }^{10)}(1+(-1)) x=0 x={ }^{11)} 0$

Therefore $(-1) x=-x$.
(f) $(-x) y={ }^{12)}((-1) x) y={ }^{13)}(-1)(x y)={ }^{14)}-(x y)$

Similarly for $x(-y)$.
(g) $(-x)(-y)={ }^{15)}-(x(-y))={ }^{16)}-(-(x y))={ }^{17)} x y$.

Examples:

$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
not a ring: positive integers; no additive inverse.
$C[0,1]$
Definition: Given any ring R and nonempty set X let $\operatorname{Fun}(X, R)$ be the set of all functions from X to R.
$(f+g)(x):=f(x)+g(x)$, here $f: X \rightarrow R, g: X \rightarrow R$
$(f g)(x):=f(x) g(x)$
$0(x)=0$ for all $x \in X$
$1(x)=1$ for all $x \in X$
Check: $\operatorname{Fun}(X, R)$ is a ring. Its commutative iff R is commutative.
not a ring: set of monotonic $f:[0,1] \rightarrow \mathbb{R}$ with usual,$+ \times$ on functions; not closed under \times
$M_{2}(\mathbb{R})$
Definition: Given any ring $R, n \geq 1, M_{n}(R)=$ set of all $n \times n$ matrices with entries in R
Usual matrix addition and multiplication formulas.
0 matrix.
1 matrix.
check: $M_{n}(R)$ is a ring. Even if R is commutative, this need not be.
not a ring: $\mathrm{GL}_{n}(\mathbb{R})=n \times n$ matrices with $\operatorname{det} \neq 0$; not preserved by matrix addition

[^1]Definition: Given rings R, S with $+_{R}, \times_{R}, 0_{R}, 1_{R}$ the ring structure on R and $+_{S}, \times_{S}, 0_{S}, 1_{S}$ the ring structure on S.

The direct product of R and S is:

$$
\begin{aligned}
& R \times S=\{(a, b): a \in R, b \in S\} \\
& \left.(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+{ }_{R} a^{\prime}, b+{ }_{S} b^{\prime}\right)^{18}\right) \\
& (a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a \times_{R} a^{\prime}, b \times_{S} b^{\prime}\right)^{19)} \\
& 0 \quad\left(0_{R}, 0_{S}\right) \\
& 1 \quad\left(1_{R}, 1_{S}\right)
\end{aligned}
$$

check: that $R \times S$ is a ring, commutative iff both R and S are.
Example: $\mathbb{Z}_{n} . n \geq 2$, residues modulo n
$a, b \in \mathbb{Z}$ are congruent modulo n if $n \mid(a-b), a \equiv b(\bmod n)$.
Congruence is an equivalence relation on \mathbb{Z}.
$a \in \mathbb{Z}$, let $\bar{a}=$ equivalence class of $a=\{b \in \mathbb{Z}: a \equiv b(\bmod n)\}=$: residue of $a(\bmod n)$
\mathbb{Z}_{n} is $\{\bar{a}: a \in \mathbb{Z}\}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$
Note: $\bar{a}=\bar{b} \Longleftrightarrow a \equiv b(\bmod n)$

$$
\begin{array}{r}
\bar{a}+\bar{b}:=\overline{a+b} \\
\bar{a} \bar{b}:=\overline{a b}
\end{array}
$$

Warning: Check this is well-defined!
i.e., if $\bar{a}=\overline{a^{\prime}}$ then need $\overline{a b}=\overline{a^{\prime} b^{\prime}}$
similarly for + .
zero is $\overline{0}$
one is $\overline{1}$
Check: This is a commutative ring.

PMATH 345 Lecture 3: September 18, 2009

Aside: Remark: R is a ring. Then 0,1 are unique.
a) If $a \in R$ such that $a+x=x$ for all x, then $a=0$
b) If $a \in R$ such that $a x=x$ for all x, then $a=1$

Proof:
a) $a+x=x \Longrightarrow a+0=0$

$$
\Longrightarrow a=0, \text { since } a+0=a
$$

b) $a x=x \Longrightarrow a 1=1$

$$
\Longrightarrow a=1
$$

Note: In fact, if $a+x=x$ for any x, then $a=0$ since $a+x=x=0+x$
$\Longrightarrow a=0$
Note: If R is such that $0=1$, then $R=\{0\}$
Proof: If $x \in R$, then

$$
\begin{aligned}
x & =1 x \\
& =0 x \\
& =0
\end{aligned}
$$

Therefore $x=0$.
$R=\{0\}$ is called the trivial ring.

[^2]For $\mathbb{Z}_{n}, n \geq 2$, given $a \in \mathbb{Z}$, then the residue of a,

$$
\begin{aligned}
\bar{a} & =\{b \in \mathbb{Z}: a \equiv b \quad(\bmod n)\} \\
& =\{a+r n: r \in \mathbb{Z}\} \subseteq \mathbb{Z}
\end{aligned}
$$

Note: $\bar{a} \cap \bar{b}=\emptyset$ or $\bar{a}=\bar{b}$
Note: For all $x \in \mathbb{Z}, x \in \bar{a}$ for some $a \in\{0, \ldots, n-1\}$

$$
\text { Therefore } \begin{aligned}
\mathbb{Z}_{n} & =\{\bar{a}: a \in \mathbb{Z}\} \text { is finite. } \\
& =\{\overline{0}, \ldots, \overline{n-1}\}
\end{aligned}
$$

Definition: Let R be a ring. A subring of R is a set $S \subseteq R$ which is preserved by + and \times and - and contains 0 and 1 .
i.e., if $a, b \in S \Longrightarrow a+b \in S$
and $a, b \in S \Longrightarrow a b \in S$, then S is a subring and $-a \in S$.

* different from textbook for us, $\{0\}$ is not a subring of R unless $R=\{0\}$.

Note: S is a ring, we call it the "induced ring".
Example: \mathbb{Z} is a subring of \mathbb{Q} which is a subring of \mathbb{R} which is a subring of \mathbb{C}.
Example: The Gaussian integers $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C}.
Units and Zero Divisors
Definition: Let R be a ring. An element of $a \in R$ is a unit if there exists $b \in R$ such that $a b=1$ and $b a=1$
Remark: b is unique
Proof: If $a c=1$ and $c a=1$,
therefore $a c=a b$
$\Longrightarrow c a c=c a b$
$\Longrightarrow 1 c=1 b \Longrightarrow c=b$
Such a b is called the multiplicative inverse of a and is denoted a^{-1}.
Definition: A field is a commutative ring where $0 \neq 1$ and every nonzero element is a unit.
Note: If $0 x=1$, then since $0 x=0$, we have $0=1$.
So, in a nontrivial ring, 0 is not a unit.
Example: \mathbb{Z} is not a field, \mathbb{Q} is a field.
Definition: Let R be a ring. An element $a \in R, a \neq 0$ is a zero divisor if there exists $b \in R, b \neq 0$ such that

$$
a b=0 \quad \text { or } \quad b a=0
$$

b is not necessarily unique.
Definition: An integral domain is a commutative ring with $0 \neq 1$ and there are no zero divisors.
Example: \mathbb{Z}, \mathbb{Q} are integral domains
$\mathbb{Z} \times \mathbb{Z}$ is not an integral domain, as $(a, 0) \cdot(0, a)=(0,0)$, so $(a, 0)$ is a zero divisor for $a \neq 0$.

PMATH 345 Lecture 4: September 21, 2009

Proposition: R ring, $a \in R, a \neq 0 a$ is not a zero divisor if and only if whenever

$$
\begin{gather*}
\text { if } a b=a c \text { for some } b, c \in R \text { then } b=c, \\
a n d \text { if } b a=c a \text { for some } b, c \in R \text { then } b=c \tag{*}
\end{gather*}
$$

Proof: Suppose a is not a zero divisor.
Suppose $a b=a c$.

$$
\begin{aligned}
& \Longrightarrow a b-a c=0 \\
& \Longrightarrow a(b-c)=0
\end{aligned}
$$

Since a is not a zero divisor and $a \neq 0$,

$$
\begin{aligned}
b-c & =0 \\
\Longrightarrow b & =c
\end{aligned}
$$

Similarly if $b a=c a$ then

$$
\begin{aligned}
b a-c a & =0 \\
\Longrightarrow(b-c) a & =0 \\
\Longrightarrow b-c & =0 \\
\Longrightarrow b & =c
\end{aligned}
$$

Conversely suppose $(*)$ is true of a.
If $a b=0=a 0$ then by $(*) b=0$.
If $b a=0=0 a$ by $(*) b=0$.
So a is not a zero divisor.
Corollary: Units are never zero divisors.
Proof: Suppose u is a unit in R.
If $u b=u c$ then multiply both sides by u^{-1}.

$$
\begin{aligned}
u^{-1} u b & =u^{-1} u c \\
\Longrightarrow 1 b & =1 c \\
\Longrightarrow b & =c
\end{aligned}
$$

Similarly $b u=c u, \Longrightarrow b=c$.
So by proposition, u is not a zero divisor.
Example: In the direct product $\mathbb{Z} \times \mathbb{Z},(1,2)$ is not a unit.

$$
\begin{aligned}
(1,2)(a, b) & =(1,1) \\
\Longrightarrow(a, 2 b) & =(1,1) \\
\Longrightarrow a & =1 \\
2 b & =1^{20)}
\end{aligned}
$$

Also not a zero divisor.

$$
\begin{aligned}
(1,2)(a, b) & =(0,0) \\
(a, 2 b) & =(0,0) \\
\Longrightarrow a & =0 \\
2 b & =0 \\
\Longrightarrow b & =0
\end{aligned}
$$

So $(a, b)=(0,0)$.
Corollary: Every field is an integral domain ${ }^{21)}$.
Example: \mathbb{Z} is an integral domain but not a field.
Theorem: If R is finite then every nonzero element is either a unit or a zero divisor.
Proof: Suppose $a \in R, a \neq 0$, is not a zero divisor. Consider the function

$$
\begin{aligned}
f_{a}: & R \rightarrow R \\
& b \mapsto a b
\end{aligned}
$$

By the proposition since a is not a zero divisor if $f_{a}(b)=f_{a}(c)$ then $a b=a c$ then $b=c$.
So f_{a} is injective.
R finite $\Longrightarrow f_{a}$ is also surjective.

[^3]So there is a $c \in R$ such that $f_{a}(c)=1$, i.e., $a c=1$.
Repeating the argument with

$$
\begin{aligned}
g_{a}: & R \rightarrow R \\
& b \mapsto b a
\end{aligned}
$$

we get a $c^{\prime} \in R$ such that $c^{\prime} a=1$.

$$
\begin{aligned}
c^{\prime}=c^{\prime} 1 & =c^{\prime}(a c) \\
& =\left(c^{\prime} a\right) c \\
& =1 c \\
& =c
\end{aligned}
$$

So $c=a^{-1}$ is the inverse, i.e., a is a unit.
\mathbb{Z}_{n} is a finite commutative ring (fixed $n \geq 2$).
Every residue by the theorem is either 0 , or zero divisor or a unit.
Which are which?
Recall: $a, b \in \mathbb{Z}, a \neq 0, b \neq 0$, are called coprime if $\operatorname{gcd}(a, b)=1$.
FACT: $\operatorname{gcd}(a, b)=1 \Longleftrightarrow$ there are x, y such that $a x+b y=1, a, b \in \mathbb{Z}$
Proposition: Suppose $a \in \mathbb{Z}, a \neq 0$.
\bar{a} is a unit in \mathbb{Z}_{n} iff $\operatorname{gcd}(a, n)=1$.
(So by the theorem the zero divisors are the \bar{b} where $\operatorname{gcd}(b, n) \neq 1$.)
Proof: Suppose $\operatorname{gcd}(a, n)=1$, so $a x+n y=1$ for some $x, y \in \mathbb{Z}$.

$$
\begin{array}{cl}
& \overline{a x+{ }^{22)} n y}=\overline{1} \\
& \overline{a x}+{ }^{23)} \overline{n y}=\overline{1} \\
& \overline{a x}+\overline{n y}=\overline{1} \\
n y \equiv 0 & (\bmod n) \Longrightarrow \overline{n y}=\overline{0} \\
& \Longrightarrow \overline{a x}=\overline{1}
\end{array}
$$

So $\bar{x}=\bar{a}^{-1}$ and \bar{a} is a unit.
Conversely, suppose $\bar{a} \in \mathbb{Z}_{n}$ is a unit.
Want: $\operatorname{gcd}(a, n)=1$.
Let $\bar{a}^{-1} \in \mathbb{Z}_{n}, \bar{a}^{-1}=\bar{x}$ for some $x \in \mathbb{Z}$.

$$
\begin{gathered}
\overline{a a}^{-1}=\overline{1} \\
\overline{a x}=\overline{1} \\
\overline{a x}=\overline{1} \\
a x \equiv 1 \quad(\bmod n)
\end{gathered}
$$

there there is a $y \in \mathbb{Z}$ such that

$$
\begin{gathered}
1-a x=n y \\
1=a x+n y \\
{ }^{24)} \operatorname{gcd}(a, d)=1
\end{gathered}
$$

Corollary: \mathbb{Z}_{n} is a field iff n is prime.
Proof: \mathbb{Z}_{n} is a field iff every nonzero \bar{a} is a unit iff every nonzero $a, \operatorname{gcd}(a, n)=1$ iff n is prime

[^4]Example: $\mathbb{Z}_{9}=\{\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{8}\}$
units: $\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}$
zero divisors: $\overline{3}, \overline{6}$
Let $\phi(n)=\#$ of units in $\mathbb{Z}_{n}, \phi(9)=6$.
When n is a prime, $\left.\phi(n)^{25}\right)=n-1$ By proposition

$$
\phi(n)=\# \text { of nonzero integers } 2 n \text { which are coprime to } n
$$

Application: Theorem: If $a \neq 0, a \in \mathbb{Z}, n \geq 2, \operatorname{gcd}(a, n)=1$ then $a^{\phi(n)} \equiv 1(\bmod n)$. So: $5^{6} \equiv 1(\bmod n), 8^{6} \equiv 1(\bmod n), n=9$

PMATH 345 Lecture 5: September 23, 2009

Euler's Theorem: $a \in \mathbb{Z}, a \neq 0, \operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$
$\phi(n)=\#$ of nonnegative integers $<n$ that are coprime with n
Need Lemma: R commutative ring, with a finite set of units, say m of them. Then if $a \in R$ is a unit then $a^{m 26)}=1$.

Proof: a a unit. Consider $f_{a}: R \rightarrow R$ by $b \mapsto a b$. Since a is not a zero divisor, f_{a} is injective.
Note that the product of units is a unit.
If $U=$ set of units in $R=\left\{u_{1}, u_{2}, \ldots, a_{m}\right\}$, then $f_{a}(U)=U$.
i.e., $\left.f_{a}\right|_{U}: U \rightarrow U$ injective, hence bijective since U is finite.
$U=\left\{u_{1}, \ldots, u_{m}\right\}$
$U=f_{a}(U)=\left\{a u_{1}, a u_{2}, \ldots, a u_{m}\right\}$
$\left\{u_{1}, \ldots, u_{m}\right\}=\left\{a u_{1}, \ldots, a u_{m}\right\}$, so

$$
\begin{aligned}
\prod_{i=1}^{m} u_{i}{ }^{27)}=\prod_{i=1}^{m} a u_{i} & =\left(a u_{1}\right)\left(a u_{2}\right) \cdots\left(a u_{m}\right) \\
& =a^{m}\left(u_{1} u_{2} \cdots u_{m}\right) \\
& =a^{m} \prod_{i=1}^{m} u_{i}
\end{aligned}
$$

Therefore $1 \prod_{i}=a^{m} \prod_{i} u_{i}$. Since $\prod_{i} u_{i}$ is also a unit it is not a zero divisor and hence we can cancel $\Longrightarrow 1=a^{m}$.

Proof of Euler's theorem:

$n \geq 2, a \neq 0, \operatorname{gcd}(a, n)=1$.
$R=\mathbb{Z}_{n}$.
$U=$ set of units in \mathbb{Z}_{n} has $\phi(n)$ many elements in it by the previous propositions.
\bar{b} is a unit in $\mathbb{Z}_{n} \Longleftrightarrow \operatorname{gcd}(b, n)=1$
$\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}=\#$ of units $=\phi(n)$
$\bar{a} \in \mathbb{Z}_{n}$ is a unit.
$\#$ of units in \mathbb{Z}_{n} is $\phi(n)$ so by the lemma

$$
\begin{aligned}
\bar{a}^{\phi(n)} & =\overline{1}^{28)} \\
\Longrightarrow \overline{a^{\phi(n)}} & =\overline{1} \\
\Longrightarrow a^{\phi(n)} & \equiv 1 \quad(\bmod n)
\end{aligned}
$$

What are the units/zero divisors in $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$?
zero divisors: none.

[^5]$\mathbb{Z}[i]$ is a subring of \mathbb{C} and \mathbb{C} have no zero divisors.
$(u, v \in \mathbb{C}, u v=0 \Longrightarrow u=0$ or $v=0$, i.e., \mathbb{C} is an integral domain)
units: units in \mathbb{C} are $\mathbb{C} \backslash\{0\}$ (i.e., \mathbb{C} is a field.)

* This does not mean that $\mathbb{Z}[i]$ is a field. Example: 2 is a unit in \mathbb{Q} but not in \mathbb{Z}.
units: $\pm 1, \pm i$
claim: these are the only units
Proof: $z \in \mathbb{Z}[i], z=a+b i$
$|z|=\sqrt{a^{2}+b^{2}}$
$N(z)=|z|^{2}=a^{2}+b^{2} \in \mathbb{Z}$
$z, w \in \mathbb{Z}, N(z w)=N(z) N(w)$
If z is a unit in $\mathbb{Z}[i]$, let $w=z^{-1} \in \mathbb{Z}[i]$,
$1=z w \Longrightarrow N(1)^{29)}=N(z w)=N(z) N(w)$
$N(w)=N(z)^{-1}$,
i.e., $N(z)$ is a unit in \mathbb{Z}.
$\Longrightarrow N(z)= \pm 1$
$\Longrightarrow a^{2}+b^{2}= \pm 1$
$\Longrightarrow a^{2}+b^{2}=1$
$\Longrightarrow a= \pm 1$ and $b=0$
or
$a=0$ and $b= \pm 1$
$z=1,-1, i,-i$
Exercise: $\operatorname{Fun}([0,1], \mathbb{R})$. What are the zero-divisors and the units?

Polynomials:

Definition: R commutative ring. Let x be an indeterminate (i.e., a variable), i.e., x is just a symbol.
A polynomial in x over R is a formal expression ${ }^{30)}$ of the form

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

where $a_{i} \mathrm{~S}$ are in R and all but finitely many of the $a_{i} \mathrm{~S}$ are 0.

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots=b_{0}+b_{1} x+b_{2} x^{2}+\cdots
$$

if and only if each $a_{i}=b_{i}$ in R.

Notational conventions:

1. We use series notation:

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots=: \sum_{i=0}^{\infty} a_{i} x^{i}
$$

2. We often drop the $a_{i} x^{i}$ if $a_{i}=0$.

So for example when $R=\mathbb{Z}$, we write:

$$
x^{2}-2 x^{4}+x^{6}
$$

rather than

$$
0+0 x+1 x^{2}+0 x^{3}+(-2) x^{4}+1 x^{6}+0 x^{7}+0 x^{8}+\cdots
$$

3. we also write $x^{2}-2 x^{4}$ instead of $x^{2}+(-2) x^{4}$

Let $R[x]$ denote the set of all polynomials in x over R.

[^6]Check: $R[x]$ is a ring with

$$
\begin{gathered}
0=\sum_{i=1}^{\infty} 0 x^{i} \\
1=1+0 x+0 x^{2}+\cdots \\
\left(\sum_{i} a_{i} x^{i}\right)+\left(\sum_{i} b_{i} x^{i}\right):=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right)^{31)} x^{i} \\
\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{i} b_{i} x^{i}\right):=\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty} a_{i-j}^{32)} b_{j}\right) x^{i}
\end{gathered}
$$

PMATH 345 Lecture 6: September 25, 2009

R commutative
$R[x]$ ring of polynomials
$P \in R[x], P=\sum_{i=0}^{\infty} a_{i} x^{i}$ formal expression

- $a_{i} \in R$
- all but finitely many are 0 .

$$
\begin{align*}
& \left(\sum_{i} a_{i} x^{i}\right)+\left(\sum_{i} b_{i} x^{i}\right)=\sum_{i}\left(a_{i}+b_{i}\right) x^{i} \in R[x] \tag{A}\\
& \left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{i} b_{i} x^{i}\right)=\sum_{i}\left(\sum_{j=0}^{i} a_{i-j} b_{j}\right) x^{i} \in R[x] \tag{B}
\end{align*}
$$

note: x is the usual "collecting terms" rule.
In $\mathbb{Z}[x]$,

$$
\begin{aligned}
P Q & =\left(x^{2}+2 x^{3}-7 x^{6}\right)\left(-x+x^{2}\right) \\
& =-x^{3}-2 x^{4}+7 x^{7}+x^{4}+2 x^{5}-7 x^{8} \\
& =-x^{3}-x^{4}+2 x^{5}+7 x^{7}-7 x^{8}
\end{aligned}
$$

Remark: Given $P \in R[x]$ it induces a function

$$
f_{P}: R \rightarrow R
$$

by "substitution".

$$
\begin{gathered}
P=\sum_{i} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
\left.f_{P}(r)=\sum_{i} a_{i} r^{i}=a_{0}+a_{1} r+a_{2} r^{2}+\cdots 33\right) \in R
\end{gathered}
$$

for any $r \in R$
Warning: Then maybe $P \neq Q$ in $R[x]$ such that as functions, $f_{P} \neq f_{Q}$.
So you cannot identify the polynomial with the function it induces.
Example: $\mathbb{Z}_{2}[x]$

$$
\begin{gathered}
P=0=\sum_{i} 0 x^{i} \in \mathbb{Z}_{2}[x] \\
Q=x+x^{2}=0+1 x+1 x^{2}+0 x^{3}+0 x^{4}+\cdots
\end{gathered}
$$

[^7]$P \neq Q$ but $0 \neq 1$ in \mathbb{Z}_{2}
$f_{P}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}, f_{P}(\overline{0})=f_{P}(\overline{1})=\overline{0}$
$\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$
$f_{Q}(\overline{0})=\overline{0}+\overline{0}^{2}=\overline{0}$
$f_{Q}(\overline{1})=\overline{1}+\overline{1}^{2}=\overline{1}+\overline{1}=\overline{2}=\overline{0}$
As functions $f_{P}=f_{Q}$.
Definition: R commutative ring.
The power series ring, $R[[x]]$ is the ring whose elements are formal expressions
$$
\sum_{i=0}^{\infty} a_{i} x^{i}, \quad \text { where } a_{i} \in R
$$
(maybe infinitely many nonzero $a_{i} \mathrm{~s}$)
where + and \times are given by the rules (A) and (B) (same as in $R[x]$).
Exercise: $R[x]$ is a subring of $R[[x]]$.
Definition: R commutative. $P \in R[x], P=\sum_{i=0}^{\infty} a_{i} x^{i}$
(a) For any $m \geq 0$, the coefficient of x^{m} in P is a_{m}.
(b) If $P \neq 0$ then the degree of P is the highest power of x that occurs with a nonzero coefficient.
$$
\operatorname{deg} P=\max \left\{m: a_{m} \neq 0\right\}
$$
[the 0 polynomial has no degree]
(c) If $P \neq 0$ then the leading coefficient of P is a_{n} where $n=\operatorname{deg} P$.
(d) If $P \neq 0$ then the leading term of P is $a_{n} x^{n}$ where $n=\operatorname{deg} P$.
(e) Each summand $a_{i} x^{i}$ is called a monomial of P.
(f) A term of P is a monomial $a_{i} x^{i}$ where $a_{i} \neq 0$ (polynomials have only finitely many terms) ${ }^{34)}$

Note: $\operatorname{deg} P=0 \Longrightarrow P=r+0 x+0 x^{2}+\cdots$ where $r \neq 0$.
So if $P \neq 0, P \in R[x]$, and $n=\operatorname{deg} P$ then we can write

$$
P=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

Remark: Every element of R can be viewed as a polynomial on R.

$$
r=r+0 x+0 x^{2}+\cdots
$$

Under this identification, R becomes a subring of $R[x]$.

$$
R=0 \cup\{\text { degree } 0 \text { polynomials of } R[x]\}
$$

Call these constant polynomial ${ }^{35)}$
Example: $Q=x+x^{2} \in \mathbb{Z}_{2}[x]$. $\operatorname{deg} Q=2, Q$ is not a constant polynomial.
But as a function $\mathbb{Z}_{2} \rightarrow \mathbb{Z}$ it is a constant function (it's th zero function).
Proposition: R commutative. $P, Q \in R[x] . P \neq 0, Q \neq 0$.

1. If $\operatorname{deg} P \neq \operatorname{deg} Q$ then $\operatorname{deg}(P+Q)=\max \{\operatorname{deg} P, \operatorname{deg} Q\}$
2. If $\operatorname{deg} P=\operatorname{deg} Q$ then $\operatorname{deg}(P+Q) \leq \operatorname{deg} P$
3. If $P Q \neq 0, \operatorname{deg}(P Q) \leq \operatorname{deg} P+\operatorname{deg} Q$

[^8]4. If R is an integral domain then so is $R[x]$ and $\operatorname{deg}(P Q)=\operatorname{deg} P+\operatorname{deg} Q$

Proof: 1, 2 exercises.
(3) $\operatorname{deg} P=n, \operatorname{deg} Q=m$

$$
\begin{array}{rlr}
P & =a_{0}+a_{1} x+\cdots+a_{n} x^{n} & a_{n} \neq 0 \\
Q & =b_{0}+b_{1} x+\cdots+b_{m} x^{m} & b_{m} \neq 0 \\
P Q & =\cdots+\cdots+a_{n} b_{m} x^{m+n} & \\
& \Longrightarrow \operatorname{deg}(P Q) \leq m+n &
\end{array}
$$

But maybe $a_{n} b_{m}=0$ so you don't in general get equality.
If R is an integral domain then $a_{n} b_{m} \neq 0$.
So $P Q \neq 0$. Hence $R[x]$ is also integral domain.
Moreover we have shown in this case that $\operatorname{deg}(P Q)=m+n$.

PMATH 345 Lecture 7: September 28, 2009

Definition: R commutative ring, $P \in R[x]$
Suppose S is an extension of R
Given that $s \in S$, we can substitute s for x
$P(s) \in S$ as follows:
if $P=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, n=\operatorname{deg} P$
then $P(s)=\underbrace{a_{0}+a_{1} s+a_{2} s^{2}+\cdots+a_{n} s^{n}}_{36)}$
each $a_{i} \in R \subseteq S$
$s \in S$
Another way of describing this is:
R is a subring of S
so $R[x]$ is a subring of $S[x]$ (check)
so $P \in S[x]$ and consider
$f_{P}: S \rightarrow S$
Then $P(s):=f_{P}(s)$
"P evaluated at s "

Homomorphisms

Definition: R, S rings. A homomorphism $\phi: R \rightarrow S$ is a function with

$$
\begin{aligned}
\phi(1) & =1^{37)} \\
{ }^{38)} \phi(a+b) & =\phi(a)+\phi(b) \\
\phi(a b) & =\phi(a) \phi(b)
\end{aligned}
$$

Remark: If ϕ is a homomorphism, then $\phi(0)=0$ and $\phi(a)=-\phi(a)$. Proof:

$$
\begin{aligned}
0+\phi(0) & =\phi(0+0)=\phi(0)+\phi(0) \\
\Longrightarrow 0 & =\phi(0) \\
\varphi(-a)+\varphi(a) & =\varphi(-a+a) \\
& =\varphi(0)=0 \\
\Longrightarrow \phi(-a) & =-\phi(a)
\end{aligned}
$$

The image of $\phi: R \rightarrow S$

$$
\phi(R)=\{\phi(a): a \in R\} \subseteq S
$$

[^9]Check: $\phi(R)$ is a subring of S.
The kernel of ϕ

$$
\operatorname{ker} \phi=\{a \in R: \varphi(a)=0\} \subseteq R
$$

Remark: $\operatorname{ker} \phi$ is a subring $\Longleftrightarrow \operatorname{ker} \phi=R \Longleftrightarrow S=\{0\}$.
As long as S is nontrivial, here it is not a subring. ${ }^{39)}$

Example:

(a) R is a subring of S and

$$
\begin{array}{rlrl}
\phi: & R \rightarrow S & & \text { is the inclusion } \\
& r \mapsto r & \phi \text { is a homomorphism }
\end{array}
$$

When $R=S$ we call this the identity homomorphism
(b)

$$
\begin{array}{rlrl}
\phi: & \mathbb{C} & \rightarrow \mathbb{C} & \text { homomorphisms } \\
z & \mapsto \bar{z} & \text { conjugation map }
\end{array}
$$

$z=r+s i, \bar{z}=r-s i$
(c)

$$
\text { res: } \begin{aligned}
\mathbb{Z} & \rightarrow \mathbb{Z}_{n}, \quad n \text { fixed } \geq 2 \\
& a \mapsto \bar{a}=\{b \in \mathbb{Z}: a \equiv b \quad(\bmod n)\}
\end{aligned}
$$

homomorphism

$$
\begin{aligned}
& \operatorname{res}(1)=\overline{1}=\text { identity in } \mathbb{Z}_{n} \\
& \quad \operatorname{res}(a b)=\overline{a b}=\bar{a} \bar{b} \\
& \operatorname{res}(a+b)=\overline{a+b}=\bar{a}+\bar{b}
\end{aligned}
$$

(d) What about homomorphisms from \mathbb{Z} to \mathbb{Z} ?

Suppose $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}$ was a homomorphism, then:

$$
\begin{aligned}
\phi(\overline{1}) & =1 \\
\phi(\overline{1}+\overline{1}) & =\phi(\overline{1})+\phi(\overline{1})=1+1=2 \\
& \vdots \\
0=\phi(\overline{0})=\phi(\bar{n})=\phi(\underbrace{\overline{1}+\overline{1}+\cdots+\overline{1}}_{n \text { times }}) & =n \quad \text { in } \mathbb{Z}^{40)}
\end{aligned}
$$

No homomorphisms from \mathbb{Z}_{n} to \mathbb{Z}.
(e) Fix any ring R, what are the homomorphisms from \mathbb{Z} to R ?

Consider $\phi: \mathbb{Z} \rightarrow R a>0$ in $\mathbb{Z}, \phi(a):=\overbrace{1_{R}+{ }_{R}+\cdots+{ }_{R} 1_{R}}^{a \text { times }}$
$a<0$ in $\mathbb{Z}, \phi(a)=-\phi(a)$
$\phi(0)=0$
check: ϕ is a homomorphism
This is the only possible since if $\psi: \mathbb{Z} \rightarrow R$ is any other my homomorphism.

[^10]then for $a>0$,
\[

$$
\begin{aligned}
\psi(a) & =\psi(\underbrace{1+\cdots+1}_{a \text { times }}) \\
& =\psi(1)+\cdots+\psi(1) \\
& =1_{R}+\cdots+1_{r}=\phi(a)
\end{aligned}
$$
\]

Hence $\psi=\phi$.
Point: For any R there is a unique homomorphism in \mathbb{Z} to R.
Definition: $\phi: R \rightarrow S$ a ring homomorphism

1. ϕ is injective if ϕ is 1-to-1.

Also called embedding, monomorphism
2. ϕ is a surjective homomorphism if

$$
\phi(R)=S
$$

Also called a epimorphism.
3. If $R=S$, then a homomorphism $\phi: R \rightarrow R$ is called endomorphism
4. An isomorphism is an injective and surjective homomorphism.
5. If $\phi: R \rightarrow R$ is an isomorphism we call it an automorphism.

Suppose $\phi: R \rightarrow R$ is a homomorphism.
Lemma: $\phi: R \rightarrow S$ is an endomorphism iff ker $\phi=\{0\}$.
Proof: If ϕ is an embedding and $\phi(a)=0=\phi(0) \Longrightarrow a=0$,
i.e., $\operatorname{ker} \phi=\{0\}$.

Conversely, suppose ker $\phi=\{0\}$.

$$
\begin{aligned}
\phi(a) & =\phi(b) \\
\phi(a)-\phi(b) & =0 \\
\phi(a)+-(\phi(b)) & =0 \\
\phi(a)+\phi(-b) & =0 \\
\phi(a+(-b)) & =0 \\
a+(-b) \in \operatorname{ker} \phi & =\{0\} \\
\Longrightarrow a+(-b) & =0 \\
\Longrightarrow a & =b
\end{aligned}
$$

Ideals and Quotients
Definition: An ideal I of a ring R is a nonempty subset such that

1. $a, b \in I,(a+b) \in I$
2. for any $r \in R$ and $a \in I, r a \in I$ and $a r \in I$ in R

Remark: $0 \in I$
let $a \in I,-a=(-1) a$
PMATH 345 Lecture 8: September 30, 2009

$$
\begin{aligned}
e & =(f+f) \\
(1+e)^{-1} & \stackrel{\times}{=}(1-f)^{41)} \\
& =(1-e f)
\end{aligned}
$$

[^11]Example: Any $R,(0)$ trivial ideal $=\{0\}$
Example: $\phi: R \rightarrow S$ homomorphism of rings
ker ϕ is an ideal of R.
Proof:

$$
\begin{aligned}
& \phi(a)=0 \\
& \phi(b)=0
\end{aligned} \Longrightarrow \phi(a+b)=\phi(a)+\phi(b)=0
$$

$\operatorname{ker} \phi \neq 0$ since $0 \in \operatorname{ker} \phi$
$a \in \operatorname{ker} \phi, r \in R, \phi(r a)=\phi(r) \phi(a)=\phi(r) 0=0$
Similarly $\phi(a r)=0 \longrightarrow a r, r a \in \operatorname{ker} \phi$
Example: What are the ideals of \mathbb{Z} ?
Suppose $I \neq(0)$ ideal in \mathbb{Z}.
$\Longrightarrow I$ has positive elements (since $a \in I \Longrightarrow-a \in I$)
Let c be the least positive integer in I.
Let $J=c \mathbb{Z}:=\{c a: a \in \mathbb{Z}\}=\{$ integers divisible by $c\}$
Check: J is an ideal "ideal generated by c "
$J \subseteq I$ since $c \in I$, all $c a \in I$
Claim: $J=I$.
Proof: Suppose not.
There is $a \in I \backslash J$.
If $-a \in J$ then $-(-a)=a \in J$.
But $a \notin J$, so $-a \notin J$.
But $-a \in I$. So $-a \in I \backslash J$.
$I \backslash J$ has a positive integer.
Let b be the least positive integer in $I \backslash J$.
$\Longrightarrow b=q c+r$ where $q \in \mathbb{Z}, 0<r<c$.
$r=b-q c=b+(-q) c \in I$ since $b, c \in I$, therefore $r \in I$.
Note $b \geq c$ by choice of c.
$\Longrightarrow r<c \leq b$, therefore $r<b$
And $0<r<c, c \nmid r \Longrightarrow r \notin J$.
Contradiction to minimal choice of b.
Every ideal in \mathbb{Z} is of the form $c \mathbb{Z}$ for some $c \geq 0$.
Definition: R commutative ring. A principal ideal is one of the form

$$
c R:=\{c a: a \in R\}
$$

where $c \in R$.
(Exercise: $c R$ is the smallest ideal containing c.)
R is a principal ideal domain (pid) if it is an integral domain and every ideal of R is principal. So \mathbb{Z} is a pid.
R commutative ring. I an ideal of R. $a \in R, \bar{a}:=a+I:=\{a+b: b \in I\} \subseteq R$.
residue $a \bmod I$
$R / I:=\{\bar{a}: a \in R\}$.

Quotient of R modulo I

Elements of R / I are called cosets of I.
Lemma: If $a, b \in R$, either $\bar{a}=\bar{b}$ or $\bar{a} \cap \bar{b}=\emptyset$.

[^12]Proof: Suppose $z \in \bar{a} \cap \bar{b}$.

$$
\begin{aligned}
& z=a+x \\
& z=b+y
\end{aligned} \quad \text { for some } x, y \in I
$$

$\Longrightarrow a=b+(y-x)$
Hence for any $u \in I$,

$$
\begin{aligned}
a+u & =b+\underbrace{(y-x)+u}_{\text {in } I} \\
& \in b+I=\bar{b}
\end{aligned}
$$

therefore $\bar{a} \subseteq \bar{b}$. Similarly $\bar{b} \subseteq \bar{a}$.
Note: If $a \in R$ then $a \in \bar{a}=a+I$
Hence R is partitioned into disjoint cosets of I.
figure: I subset
(Possibly infinite partitioning of R).
Proposition: R / I is a commutative ring with:

$$
\begin{aligned}
0 & =0+I \\
1 & =1+I \\
(a+I)+(b+I) & =(a+b)+I \\
(a+I)(b+I) & =(a b)+I
\end{aligned}
$$

Proof: Need to prove that + and \times on R / I are well-defined operations.
Note: A coset $a+I$ is not uniquely represented by this notation. In fact if $b \in a+I$ then $a+I=b+I$. (by the lemma)
(conversely $a+I=b+I \Longrightarrow b \in a+I$).
Every element of a coset represents that coset.

+ should depend only on the cosets not on the representatives.
need: If $a+I=a^{\prime}+I$
$b+I=b^{\prime}+I$
then $(a+b)+I=\left(a^{\prime}+b^{\prime}\right)+I$.

Proof:

$$
\begin{aligned}
a^{\prime}+I=a+I & \Longrightarrow a^{\prime} \in a+I \\
& \Longrightarrow a^{\prime}=a+x \text { for some } x \in I \\
b^{\prime}+I=b+I & \Longrightarrow b^{\prime} \in b+I \\
& \Longrightarrow b^{\prime}=b+y \text { for some } y \in I \\
\Longrightarrow\left(a^{\prime}+b^{\prime}\right) & =(a+b)+\underbrace{(x+y)}_{\text {in } I} \\
& \in(a+b)+I
\end{aligned}
$$

$$
\text { therefore }\left(a^{\prime}+b^{\prime}\right)+I=(a+b)+I
$$

Similarly check \times is well-defined.

Check: R / I is a commutative ring.

Example: Consider \mathbb{Z} and the ideal $n \mathbb{Z}=\{n a: a \in \mathbb{Z}\}, n \geq 2$
Check: $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$
$a \in \mathbb{Z} . \operatorname{res}(a)=a+n \mathbb{Z}$
\mathbb{Z}_{n} is the quotient of $\mathbb{Z} \bmod n \mathbb{Z}$
missing: $n=0, n=1,0 \mathbb{Z}=(0), \mathbb{Z} /(0)=\{a+(0)=\{a\}: a \in \mathbb{Z}\}$
$\mathbb{Z} / 1 \mathbb{Z}$ trivial ring
PMATH 345 Lecture 9: October 2, 2009
$n \geq 2, \mathbb{Z} / n \mathbb{Z}=\{a+n \mathbb{Z}: a \in \mathbb{Z}\}=\mathbb{Z}_{n}$
$\mathbb{Z} / \mathbb{Z}=0+1 \mathbb{Z}$ trivial
In general, R / R is the trivial ring.
$\mathbb{Z} / 0 \mathbb{Z}=\{a+(0): a \in \mathbb{Z}\}$

$$
a+(0)=\{a+0\}=\{a\}
$$

Exercise: $\mathbb{Z} / 0 \mathbb{Z} \approx \mathbb{Z}$ by $\mathbb{Z} / 0 \mathbb{Z} \rightarrow \mathbb{Z}, a+(0) \mapsto a$
In general, $R /(0) \approx R$ in the canonical way. That is

$$
\begin{aligned}
\phi: & R /(0) \rightarrow R \\
& a+(0) \mapsto a
\end{aligned}
$$

is a bijective homomorphism.
Example: $\mathbb{R}[x]$

$$
\begin{aligned}
I & =\left(x^{2}+1\right) \mathbb{R}[x] \\
& =\left\{\left(x^{2}+1\right) P: P \in \mathbb{R}[x]\right\}
\end{aligned}
$$

Consider $\mathbb{R}[x] / I$

$$
(x+I)^{2}=x^{2}+I
$$

since $x^{2}+1 \in I$

$$
x^{2}+I=-1+I=-(1+I)=-1_{R / I}
$$

In $\mathbb{R}[x] / I,(x+I)$ is a square root of -1 .
Lemma: R commutative ring, I ideal of R.

$$
\underbrace{a+I=b+I}_{\text {inside } R / I} \Longleftrightarrow a-b \in I .
$$

Proof: $a+I=b+I$, so

$$
\begin{aligned}
a \in b+I & \Longrightarrow a=b+x \quad \text { for some } x \in I \\
& \Longrightarrow a-b=x \in I
\end{aligned}
$$

If $a-b \in I$, so $a-b=x$, for some $x \in I$.

$$
\begin{gathered}
\Longrightarrow \\
\Longrightarrow a=b+x \in b+I \\
\Longrightarrow a \in a+I \\
\Longrightarrow \\
(a+I) \cap(b+I) \neq \emptyset \\
\Longrightarrow a+I=b+I .
\end{gathered}
$$

$$
\text { Also } \begin{aligned}
& \phi: \mathbb{R} \\
& r \mathbb{R}[x] / I \\
& r \mapsto r+I
\end{aligned}
$$

is an embedding.
Proof: Clearly a homomorphism,
Suppose $r+I=0_{R / I}$, i.e., $r \in \operatorname{ker}(\phi)$
$r+I=0+I$
$\Longrightarrow r \in I$
But in I the only constant polynomial is 0 . Therefore $r=0$.
Aside: The above argument works for any integral domain R. That is,

$$
\phi: R \rightarrow R[x] /\left(x^{2}+1\right) \mathbb{R}[x]
$$

is an embedding and in $R[x] / I,(x+I)^{2}=-1$.

Identify \mathbb{R} with its image in $\mathbb{R}[x]$.

Notation: In any ring R, by (a) we mean $a R$, the ideal generated by a in $R, a \in R$.
First isomorphism theorem: R, T commutative rings. $\phi: R \rightarrow T$ homomorphism. $\operatorname{Im}(\phi)$ is isomorphic to $R / \operatorname{Im}(\operatorname{ker} \phi)$.
$\operatorname{im} \phi:=\phi(R)$

Proof:

$$
\text { Define } \begin{array}{r}
\psi: R / \operatorname{ker} \phi \rightarrow \operatorname{Im} \phi \\
a+\operatorname{ker} \phi \mapsto \phi(a)
\end{array}
$$

Note if $b+\operatorname{ker} \phi=a+\operatorname{ker} \phi$ then by lemma $a-b \in \operatorname{ker} \phi$
$\phi(a-b)=0$
$\Longrightarrow \phi(a)-\phi(b)=0$
$\Longrightarrow \phi(a)=\phi(b)$
So ψ is well-defined.
Let's write $\bar{a}=a+\operatorname{ker} \phi$.

$$
\begin{aligned}
\psi(\bar{a}+\bar{b}) & =\psi(\overline{a+b}) \text { by definition of }+ \text { in } R / \operatorname{ker} \phi \\
& =\phi(a+b) \text { by definition of } \psi \\
& =\phi(a)+\phi(b)=\psi(\bar{a})+\psi(\bar{b})
\end{aligned}
$$

Similarly $\psi(\bar{a} \bar{b})=\psi(\bar{a}) \psi(\bar{b})$.
And $\phi(\overline{1})=\phi(1)=1$.
So ψ is a homomorphism.
Surjective: $x \in \operatorname{Im} \phi$

$$
\begin{aligned}
x & =\phi(a) \text { for some } a \in R \\
& =\psi(\bar{a}) \in \operatorname{Im} \psi
\end{aligned}
$$

therefore ψ is surjective
Injective: $x \in \operatorname{ker}(\psi) . \psi(x)=0$.
$x \in R / \operatorname{ker} \phi$ so $x=\bar{a}$ for some $a \in R$.
$\phi(a)=\psi(\bar{a})=0$
therefore $a \in \operatorname{ker} \phi$
Example: $\phi: \mathbb{R}[x] \rightarrow \mathbb{C}$
the "evaluation at i " map,
i.e., $\phi(P):=P(i) \in \mathbb{C}$

Check: ϕ is a homomorphism.
$\operatorname{ker} \phi=$?
Suppose $P \in \operatorname{ker} \phi$.
So $P(i)=0$.
That is i is a root of P.
In $\mathbb{C}[x],(x-i)$ is a factor, $(x+i)$ is a factor since P is actually real.
$\Longrightarrow(x+i)(x-i)=x^{2}+1$ is a factor
therefore $\left(x^{2}+1\right)$ is a factor of P in $\mathbb{R}[x]$.
i.e., $P \in\left(x^{2}+1\right)=\left(x^{2}+1\right) \mathbb{R}[x]$

[^13]Conversely if $Q \in\left(x^{2}+1\right)$
then $Q=\left(x^{2}+1\right) Q^{\prime}$
so $Q(i)=0 \cdot Q^{\prime}(i)=0$.
$\Longrightarrow Q \in \operatorname{ker} \phi$.
therefore $\operatorname{ker} \phi=\left(x^{2}+1\right)$.
What is $\operatorname{Im} \phi=$?
Let $a+b i \in \mathbb{C} . a, b \in \mathbb{R}$
$a+b i=P(i) \quad P=a+b x \in \mathbb{R}[x]$
therefore ϕ is surjective.
Hence $\mathbb{C} \approx \mathbb{R}[x] /\left(x^{2}+1\right)$.
Moreover this isomorphism is given by

$$
\begin{aligned}
\phi: \mathbb{R}[x] /\left(x^{2}+1\right) & \rightarrow \mathbb{C} \\
P+\left(x^{2}=1\right) & \mapsto P(i)
\end{aligned}
$$

PMATH 345 Lecture 10: October 5, 2009

$R / I \quad 0_{R / I}=0_{R}+I=I$
$a+I=b+I \Longleftrightarrow a-b \in I$
$I=R$
$0_{R / R}=R$
elements in R / R is $a+R$ some $a \in R$
$a \in R \Longrightarrow a+R=0+R=R=0_{R / R}$
R commutative ring, I an ideal
Quotient ring: R / I.
It's elements are called cosets of $I, a+I=\{a+b: b \in I\}$
Sometimes use \bar{a} to denote $a+I$

$$
\text { Quotient map is the function } \pi: \begin{aligned}
R & \rightarrow R / I \\
& a \mapsto a+I
\end{aligned}
$$

Note: π is a surjective ring homomorphism.
Proof: $\alpha \in R / I$,

$$
\begin{aligned}
\alpha & =a+I \text { for some } a \in R \\
& =\pi(a) \text { therefore } \pi \text { is onto } \\
\pi(a+b)=(a+b)+I & =(a+I)+(b+I) \\
& =\pi(a)+\pi(b) \\
\pi(a b) & =a b+I \\
& =(a+I)(b+I) \\
& =\pi(a) \pi(b) \\
\pi\left(1_{R}\right) & =1_{R}+I \\
& =1_{R / I} \\
\operatorname{ker}(\pi) & =I \\
\pi(a)=0_{R / I} & =0+I \\
& \Uparrow \\
a+I & =0+I \\
& \mathbb{\Downarrow} \\
a & \in I
\end{aligned}
$$

Suppose $\phi: R \rightarrow S$ ring homomorphism of commutative rings.
Then there is a commutative diagram ${ }^{44)}$ of homomorphism:

where π is the quotient map
and $\psi(a+\operatorname{ker} \phi):=\phi(a)$
In the proof of the 1st Isomorphism Theorem we saw that ψ is well-defined and a homomorphism and its image is $\phi(R)$.
Note: ψ is the unique homomorphism from $R / \operatorname{ker} \phi$ to S which makes the diagram commute.
Point: Every ring homomorphism $\phi: R \rightarrow S$ of commutative rings factors canonically through $\pi: R \rightarrow R /$ ker ϕ.
1st Isomorphism Theorem tells us more: ψ is an embedding whose image is $\phi(R)$. In part, if ϕ is surjective then ψ is an isomorphism.

Definition: R ring, I an ideal.

1. I is a prime ideal if $I \neq R$ and for all

$$
a, b \in R, \quad \text { if } a b \in I \text { then either } a \in I \text { or } b \in I
$$

2. I is a maximal ideal if

- $I \neq R$
- If $J \subsetneq R$ is a proper ideal and $I \subseteq J$ then $I=J$. i.e., there is no ideal properly in between $I \subseteq R$.

Examples:

(a) R commutative ring

$$
(0) \text { is prime } \Longleftrightarrow R \text { integral domain }
$$

(b) $R=\mathbb{Z}$.

Ideals in \mathbb{Z} are all of the form $(n)=n \mathbb{Z}$ where $n \geq 0$.
(0) is prime by part (a)
(1) is neither prime nor maximal because $(1)=\mathbb{Z}$.
$n \geq 2$,
(n) is prime ideal $\Longleftrightarrow n$ is prime number
Proof: Suppose (n) prime ideal. Let p be a prime number.
Suppose $n=a b \in(n)$
$\Longrightarrow a \in(n)$ or $n \in(n)$
$n \mid a$ or $n \mid b$
$\Longrightarrow a=1$ or $b=1$
Consequently n prime number.

$$
\begin{aligned}
a b \in(n) & \Longleftrightarrow n \mid a b \\
& \Longleftrightarrow n \mid a \text { or } n \mid b \text { as } n \text { is prime } \\
& \Longleftrightarrow a \in(n) \text { or } b \in(n)
\end{aligned}
$$

(n) maximal $\Longleftrightarrow n$ is a prime number
${ }^{44)}$ i.e., for $a \in R$

$$
\phi(a)=\psi(\pi(a))
$$

Proof: $\psi(\pi(a))=\phi(a+\operatorname{ker} \phi)=\phi(a)$

Proof: $(\Longrightarrow)(0)$ not maximal

$$
(0) \subsetneq(2) \subsetneq \mathbb{Z}
$$

(\Longleftarrow) Suppose p is a prime number

$$
(p) \subseteq I^{45)} \subseteq \mathbb{Z}^{46)}
$$

$\Longrightarrow p \in(n) \Longrightarrow n \mid p \Longrightarrow n=1$ or $n=p$
$\Longrightarrow I=(p)$ or $I=\mathbb{Z}$.
Theorem: Let I be an ideal in a commutative ring R. Then:

1. I is prime $\Longleftrightarrow R / I$ is an integral domain
2. I is maximal $\Longleftrightarrow R / I$ is a field

In particular: maximal ideals are prime
(since ideals are integral domains)

PMATH 345 Lecture 11: October 7, 2009

Corrected:

1. Assume in (a), (b) that ϕ is surjective
(a) Just do maximal, not prime

Bonus: Counterexample to (b) if ϕ is not surjective
Counterexample to (a) for prime
Theorem: R commutative ring. I an ideal.
(a) I is prime $\Longleftrightarrow R / I$ is an integral domain
(b) I is maximal $\Longleftrightarrow R / I$ is a field

Proof:

(a) Suppose I is prime. $\bar{a}:=a+I$.

$$
\begin{array}{cc}
\bar{a}, \bar{b} \in R / I \quad & \bar{a} \neq 0_{R / I} \\
& \bar{b} \neq 0_{R / I} \\
\bar{a} \neq 0 \Longrightarrow & a \notin I \\
\bar{b} \neq 0 \Longrightarrow & b \notin I \\
\Longrightarrow & a b \notin I \text { as } I \text { is prime } \\
\Longrightarrow \overline{a b} \neq 0_{R / I} \\
\Longrightarrow \bar{a} \cdot \bar{b} \neq 0_{R / I}
\end{array}
$$

Therefore R / I is an integral domain.
(Note prime ideals are proper so R / I is not trivial.)
Suppose R / I is an integral domain.

$$
R / I \text { maximal } \Longrightarrow I \text { proper. }
$$

$a, b \in R$, suppose $a b \in I$.

$$
\begin{gathered}
\overline{a b}=0_{R / I} \\
\Longrightarrow \bar{a} \bar{b}=0_{R / I}
\end{gathered}
$$

\Longrightarrow either $\bar{a}=0$ or $\bar{b}=0$ in R / I

[^14]as R / I is an integral domain
$\Longrightarrow a \in I$ or $b \in I$.
(b) Suppose I is maximal.

Let $\bar{a} \neq \overline{0}$ in R / I. Need: \bar{a} is invertible in R / I.
Consider: $(a)+I$ in R.

$$
J:=(a)+I=\{a r+b: r \in R, b \in I\}
$$

Check: In any commutative ring S, given ideals A and B,

$$
\begin{gathered}
A+B:=\{a+b: a \in A, b \in B\} \\
A+B \text { is an ideal }{ }^{47)}
\end{gathered}
$$

Note: $I \subseteq(a)+I$. If $b \in I$, then $I \subseteq J$.
$b=a \cdot 0+b \in(a)+I$
I maximal $\Longrightarrow J=T$ or $J=R$.
But $a=a \cdot 1+0 \in J$ but $\bar{a} \neq \overline{0}$ so $a \notin I$.
Therefore $J=R$.
In particular there is $r \in R, b \in I$ such that $a r+b=1$

$$
\begin{gathered}
\Longrightarrow a r-1=-b \in I \\
\Longrightarrow \overline{a r}=\overline{1} \\
\Longrightarrow \overline{a r}=\overline{1}=1_{R / I}
\end{gathered}
$$

Therefore \bar{a} is invertible.
Therefore R / I is a field.
Suppose R / I is a field.
Suppose there exists an ideal J such that

$$
I \subsetneq J \subseteq R
$$

Let $a \in J \backslash I$.
$\bar{a} \neq \overline{0}$.
\Longrightarrow there is $\bar{b} \in R / I$ such that ${ }^{48)}$

$$
\bar{a} \cdot \bar{b}=\overline{1} \text { in } R / I
$$

$\Longrightarrow a b-1 \in I \subseteq J$
Also $a \in J \Longrightarrow a b \in J$ so

$$
1=\underbrace{-(a b-1)}_{\text {in } J}+\underbrace{a b}_{\text {in } J} \Longrightarrow 1 \in J
$$

For any $r \in R$,

$$
r=r \cdot 1 \in J
$$

i.e., $J=R$
i.e., I is maximal.

Corollary: All maximal ideals are prime.
Existence?

Zorn's Lemma

Definition: A partially ordered set is a nonempty set P with a binary relation, \leq, that is reflexive, transitive, anti-symmetric.
i.e.,

1. For all $a \in P, a \leq a$

[^15]2. If $a, b, c \in P$,
$$
a \leq b \text { and } b \leq c \Longrightarrow a \leq c
$$
3. If $a \leq b$ and $b \leq a \Longrightarrow a=b$

Typical example: X nonempty set,
Let $\emptyset \neq \mathcal{S}^{49)} \subseteq \mathcal{P}(X)$
(\mathcal{S}, \subseteq) is a poset.
Definition: Suppose (P, \leq) is a poset.
A chain in (P, \leq) (or a totally ordered subset) is a subset $C \subseteq P$ such that for all $a, b \in C$, either $a \leq b$ or $b \leq a$.
Zorn's lemma: Suppose (P, \leq) is a poset where $C \subseteq P$ is a chain, there exists $a \in P$ such that $a \geq b$ for all $b \in C$. (a is an upper bound for C).
Then (P, \leq) has a maximal element i.e., there exists $d \in P$ such that if $a \in P, d \leq a$, then $a=d$. (Nothing strictly bigger than d in P.)
We will assume this.
Theorem: Let R be a ring. I a proper ideal. Then I is contained in a maximal ideal.
Proof: Let $\mathcal{S}=$ set of all proper ideals in R containing I.

$$
\mathcal{S} \subseteq \mathcal{P}(R) \quad I \in \mathcal{S}
$$

So (\mathcal{S}, \subseteq) is a poset.
Let C be a chain in \mathcal{S}.
So $C=\left\{J_{i}: i \in \kappa\right\}$

$$
\text { Let } \begin{aligned}
J^{*} & =\bigcup C \\
& =\left\{a \in R: a \in J_{i} \text { for some } i \in \kappa\right\}
\end{aligned}
$$

Exercise: Show J^{*} is a proper ideal.

$$
J^{*}=R \Longleftrightarrow 1 \in J^{*} \Longleftrightarrow 1 \in J_{i} \text { for some } i \Longleftrightarrow J_{i}=R \text { for some } i
$$

Note $I \subseteq J^{*}$. So $J^{*} \in \mathcal{S}$.
Hence by Zorn's Lemma, (\mathcal{S}, \subseteq) has a maximal element, i.e., there exists a proper ideal M containing I such that if $M \subseteq J \subsetneq R$ where $J \neq R$ ideal containing I then $M=J$.
i.e., M is a maximal ideal.

PMATH 345 Lecture 12: October 9, 2009

My name is Collis Roberts. I'm a PhD student in Pure Math, and your PMath 345 TA.

Chinese Remainder Theorem

Recall: For a positive integer n, the Euler function $\phi(n)$, is the \# of positive integers $(\leq n)$ coprime to n (i.e., that have gcd $=1$ with n).

$$
\phi(n)=\# \text { of units in } \mathbb{Z}_{n}=\mathbb{Z} /(n)
$$

If p is prime then

$$
\begin{aligned}
\phi(p) & =p-1 \\
\phi\left(p^{e}\right) & =p^{e}-p^{e-1}=p^{e}\left(1-\frac{1}{p}\right)^{50)}
\end{aligned}
$$

Goal for today: Develop a "nice" formula for $\phi(n)$ when n has multiple prime factors.

[^16]Proposition: (Chinese Remainder Theorem)
For positive integers m, n : If $\operatorname{gcd}(m, n)=1$, then

$$
\mathbb{Z}_{m n} \simeq \mathbb{Z}_{m} \times \mathbb{Z}_{n}
$$

Proof: Let

$$
\begin{aligned}
\sigma_{m}: \mathbb{Z} & \rightarrow \mathbb{Z}_{m} & \sigma_{n}: \mathbb{Z} & \rightarrow \mathbb{Z}_{n} \\
k & \mapsto \bar{k} & k & \mapsto \bar{k}
\end{aligned}
$$

be the residue maps: these are homomorphisms.
Define:

$$
\begin{aligned}
\sigma: \mathbb{Z} & \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n} \\
k & \mapsto\left(\sigma_{m}(k), \sigma_{n}(k)\right)
\end{aligned}
$$

a homomorphism since σ_{m}, σ_{n} are.
1st Isomorphism Theorem: $\mathbb{Z} / \operatorname{ker} \sigma \simeq \operatorname{im} \sigma$.
So we're done if we can prove:

- $\operatorname{ker} \sigma=(m n)$
- $\operatorname{im} \sigma=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$

Proof that $\operatorname{ker} \sigma=(\boldsymbol{m n})$:
$((m n) \subseteq \operatorname{ker} \sigma): \sigma(m n)=\left(\sigma_{m}(m n), \sigma_{n}(m n)\right)=(\overline{0}, \overline{0})$ in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$
$(\operatorname{ker} \sigma \subseteq(m n)):$ Let $k \in \operatorname{ker} \sigma$ be arbitrary. $\Longleftrightarrow \sigma(k)=(\overline{0}, \overline{0}) . \Longrightarrow(\overline{0}, \overline{0})=\left(\sigma_{m}(k), \sigma_{n}(k)\right) \Longrightarrow m \mid$
k and $n \mid k$.
Since $\operatorname{gcd}(m, n)=1$, there exists integers u, v such that $1=u m+v n$.
Multiplying by k gives: $k=u m k+v n k$.
Since $m \mid k$ and $n \mid k, m n$ divides the RHS.
$\Longrightarrow m n \mid k \Longrightarrow k \in(m n)$. Therefore $(\operatorname{ker} \sigma=(m n))$.
Proof that $\operatorname{im} \sigma=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$:
By definition, $\operatorname{im} \sigma \subseteq \mathbb{Z}_{m} \times \mathbb{Z}_{n}$. We need to check the containment cannot be proper.
It's clear that $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ contains $m n$ elements.
1st Isomorphism Theorem now says: $\mathbb{Z}_{m n}=\mathbb{Z} /(m n) \simeq \operatorname{im} \sigma$.
This isomorphism guarantees $\operatorname{im} \sigma$ contains $m n$ elements.
$\Longrightarrow \operatorname{im} \sigma=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
So finally, $\mathbb{Z}_{m n}=\mathbb{Z} /(m n)=\mathbb{Z} / \operatorname{ker} \sigma \simeq \operatorname{im} \sigma=\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
Corollary: If $\operatorname{gcd}(m, n)=1$, then $\phi(m n)=\phi(m) \phi(n)$.
Proof: By previous proposition, $\mathbb{Z}_{m n} \simeq \mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
$\#$ of units in $\mathbb{Z}_{m n}$ is $\phi(m n) \Longrightarrow \#$ of units in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is $\phi(m n)$.
So we just need to count the units of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ another way.
An element (a, b) of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a unit \Longleftrightarrow

- a is a unit in $\mathbb{Z}_{m}(\phi(m)$ of these) AND
- b is a unit in $\mathbb{Z}_{n}(\phi(n)$ of these $)$

Therefore there are $\phi(m) \phi(n)$ units in $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
Example: Instead of using brute force, we can now compute

$$
\phi(637)=\phi(7 \cdot 91)=\phi(\underbrace{7^{2}}_{m} \cdot \underbrace{13}_{n})=\phi\left(7^{2}\right) \phi(13)=7^{2}\left(1-\frac{1}{7}\right)(12)=504
$$

Recall that every positive integer n has a unique factorization into distinct primes: $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$. We can now state our formula for $\phi(n)$.

Proposition: If the prime factorization for n is $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
$$

Proof: Since $p_{1}^{e_{1}}$ is coprime to $p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, previous corollary says:

$$
\phi(n)=\phi\left(p_{1}^{e_{1}}\right) \phi\left(p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)=p_{1}^{e_{1}}\left(1-\frac{1}{p_{1}}\right) \phi\left(p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)
$$

(Repeat the argument for $p_{2}^{e_{2}}$ to get)

$$
=p_{1}^{e_{1}}\left(1-\frac{1}{p_{1}}\right) p_{2}^{e_{2}}\left(1-\frac{1}{p_{2}}\right) \phi\left(p_{3}^{e_{3}} \cdots p_{k}^{e_{k}}\right)
$$

Continue until all prime factors are exhausted. Get

$$
\begin{aligned}
& =\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) \\
& =n\left(1-\frac{1}{p_{1}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
\end{aligned}
$$

Final Observation: Euler's Formula

Suppose $n=p^{e}$ for some prime p. Then:

$$
\begin{aligned}
n=p^{e} & =\left(p^{e}-p^{e-1}\right)+\left(p^{e-1}-p^{e-2}\right)+\cdots+\left(p^{1}-p^{0}\right)+1 \\
& =\phi\left(p^{e}\right)+\phi\left(p^{e-1}\right)+\cdots+\phi\left(p^{1}\right)+\phi(1) \\
& =\sum_{d \mid n, d>0} \phi(d)
\end{aligned}
$$

Remark: This holds when n has multiple prime factors also.
Sadly, we don't have time to prove it today.

PMATH 345 Lecture 13: October 14, 2009

In class midterm Monday Oct. 16.

Localizations and Function Fields

R commutative ring
$S \subseteq R$ subset such that

1. $1 \in S$
2. $a, b \in S \Longrightarrow a b \in S$ (S is multiplicatively closed)
3. S contains no zero divisors, or zero

Consider the Cartesian product $R \times S$ and define on it a relation as follows:
Definition: $(a, s) \sim(b, t)$ if $a t=b s$
Lemma: \sim is an equivalence relation on $R \times S$
Proof:

1. Reflexive: $a \in R, s \in S$,

$$
(a, s) \sim(a, s)
$$

2. Symmetric: $a, b \in R, s, t \in S$ If $(a, s) \sim(b, t)$ then $(b, t) \sim(a, s)$
3. Transitivity: $a, b, c \in R, s, t, u \in S$

Need: If $(a, s) \sim(b, t)$ and $(b, t) \sim(c, u)$ then $(a, s) \sim(c, u)$

$$
\begin{aligned}
& a t=b s \\
& b u=c t
\end{aligned} \Longrightarrow a t u=b s u=b u s=c t s
$$

$\Longrightarrow a u t=c s t, t$ is not a zero divisor and $t \neq 0$
$\Longrightarrow a u=c s$, i.e., $(a, s) \sim(c, u)$

So we can form the equivalence classes $a \in R, s \in S$.

$$
[(a, s)]:=\{(b, t): b \in R, t \in S,(b, t) \sim(a, s)\}
$$

Note: $[(a, s)]=[(b, t)] \Longleftrightarrow(a, s) \sim(b, t)$
Definition: The localization of R at S is

$$
R_{S}:=R \times S / \sim=\{[(a, s)]:(a, s) \in R \times S\}
$$

Notation: We often write an element $[(a, s)]$ as $\frac{a}{s}$.
Note: In $R_{S}, \frac{a}{t}=\frac{b}{s} \Longleftrightarrow a s=b t(*)$
Proposition: The following operations make R_{S} into a commutative ring:

$$
\begin{aligned}
& 0_{R_{S}}=\frac{0}{1} \quad 1_{R_{S}}=\frac{1}{1} \\
& \left(\begin{array}{rl}
\frac{0}{1}=[(0,1)] & =\{(b, t):(b, t) \sim(0,1)\} \\
& =\{(0, t): t \in S\}
\end{array}\right) \quad\left(\begin{array}{rl}
\frac{1}{1}=[(1,1)] & =\{(b, t):(b, t) \sim(1,1)\} \\
& =\{(t, t): t \in S\}
\end{array}\right) \\
& \frac{a}{s}+\frac{b}{t}:=\frac{a t+b s}{s t} \quad \frac{a}{s} \cdot \frac{b}{t}:=\frac{a b}{s t}
\end{aligned}
$$

(note $s t \in S$)
Proof: Well-defined.
Suppose $\frac{a}{s}=\frac{a^{\prime}}{s^{\prime}} \Longrightarrow a s^{\prime}=a^{\prime} s$
$a^{\prime}, b^{\prime} \in R, s^{\prime}, t^{\prime} \in S, \frac{b}{t}=\frac{b^{\prime}}{t^{\prime}} \Longrightarrow b t^{\prime}=b^{\prime} t$

$$
\begin{aligned}
\left(a^{\prime} t^{\prime}+b^{\prime} s^{\prime}\right) s t & =a^{\prime} t^{\prime} s t+b^{\prime} s^{\prime} s t \\
& =a s^{\prime} t^{\prime} t+b t^{\prime} s^{\prime} s \\
& =(a t+b s) s^{\prime} t^{\prime} \\
\frac{a^{\prime} t^{\prime}+b^{\prime} s^{\prime}}{s^{\prime} t^{\prime}} & =\frac{a t+b s}{s t} \quad \text { by }(*)
\end{aligned}
$$

Therefore $\frac{a^{\prime}}{s^{\prime}}+\frac{b^{\prime}}{t^{\prime}}=\frac{a}{s}+\frac{b}{t}$, so + is well defined.
$\left(a^{\prime} b^{\prime}\right)(s t)=a s^{\prime} b t^{\prime}=(a b)\left(s^{\prime} t^{\prime}\right)$
$\Longrightarrow \frac{a^{\prime} b^{\prime}}{s^{\prime} t^{\prime}}=\frac{a b}{s t}$
$\Longrightarrow\left(\frac{a^{\prime}}{s^{\prime}}\right)\left(\frac{b^{\prime}}{t^{\prime}}\right)=\left(\frac{a}{s}\right)\left(\frac{b}{t}\right)$
therefore - is well-defined.
Check that this makes R_{S} into a commutative ring.
Example: Existence of additive inverse:

$$
-\left(\frac{a}{s}\right)=\frac{-a}{s}
$$

Proof:

$$
\left(\frac{a}{s}\right)+\left(\frac{-a}{s}\right)=\frac{a s+(-a) s}{s^{2}}=\frac{a s-a s}{s^{2}}=\frac{0}{s^{2}}=\frac{0}{1}=0_{R_{S}}
$$

Point: R_{S} is the "smallest" extension of R in which every element of S is a unit.
Proposition: The function

$$
\begin{aligned}
R & \xrightarrow{\rho} R_{S} \\
a & \mapsto \frac{a}{1}
\end{aligned}
$$

is an embedding with the property that $\rho(s)$ is a unit in R_{S} for all $s \in S$.
If $\rho: R \rightarrow T$ is an embedding with the property that for all $s \in S, \rho(s)$ is a unit in T then there exists
a unique embedding $\psi: R_{S} \rightarrow T$ such that

Proof: $\rho(1)=\frac{1}{1}=1_{R_{S}}$

$$
\begin{gathered}
\rho(a+b)=\frac{a+b}{1}=\frac{a}{1}+\frac{b}{1}=\rho(a)+\rho(b) \\
\rho(a b)=\frac{a b}{1}=\left(\frac{a}{1}\right)\left(\frac{b}{1}\right)=\rho(a) \rho(b)
\end{gathered}
$$

$a \in \operatorname{ker} \rho \Longrightarrow \rho(a)=0_{R_{S}} \Longrightarrow \frac{a}{1}=\frac{0}{1}$
$\Longrightarrow a=0$, therefore ρ is an embedding.
Given $s \in S$,

$$
\frac{1}{s} \cdot \frac{s}{1}=\frac{s}{s}=\frac{1}{1}=1_{R_{S}}
$$

therefore $\frac{1}{s}$ is the inverse of $\rho(s)$ in R_{S}
$\Longrightarrow \rho(s)$ is a unit in R_{S}
Given $\phi: R \rightarrow T$ with these properties then define

$$
\psi: R_{S} \rightarrow T
$$

by

$$
\frac{a}{s} \mapsto \phi(a) \cdot \phi(s)^{-1}
$$

for $a \in R, s \in S$.

PMATH 345 Lecture 14: October 16, 2009

Proof that ψ is well-defined. Let $\frac{a}{s}=\frac{a^{\prime}}{s^{\prime}}$.

$$
\begin{aligned}
\Longrightarrow a s^{\prime} & =a^{\prime} s \\
\Longrightarrow \phi\left(a s^{\prime}\right) & =\phi\left(a^{\prime} s\right) \\
\Longrightarrow \phi(a) \phi\left(s^{\prime}\right) & =\phi\left(a^{\prime}\right) \phi(s) \\
\Longrightarrow \phi(a) \phi(s)^{-1} & =\phi\left(a^{\prime}\right) \phi\left(s^{\prime}\right)^{-1} \\
\Longrightarrow \psi\left(\frac{a}{s}\right) & =\psi\left(\frac{a^{\prime}}{s^{\prime}}\right), \text { so } \psi \text { is well-defined. }
\end{aligned}
$$

Check: ψ is a homomorphism
Now, show ψ in injective. Let $\frac{a}{s} \in \operatorname{ker} \psi$

$$
\begin{aligned}
\Longrightarrow \psi\left(\frac{a}{s}\right) & =0 \\
\Longrightarrow \phi(a) \phi(s)^{-1} & =0 \\
\Longrightarrow \phi(a) & =0, \text { since } \phi(s) \text { is a unit } \\
\Longrightarrow a & =0^{51)} \Longrightarrow \frac{a}{s}=0, \text { so } \psi \text { is an embeddding }
\end{aligned}
$$

Now, we will show $\psi(\phi(a))=\phi(a)$

$$
\begin{aligned}
\psi(\phi(a)) & =\psi\left(\frac{a}{1}\right) \\
& =\phi(a) \phi(1)^{-1} \\
& =\phi(a) 1^{-1} \\
& =\phi(a), \text { as required }
\end{aligned}
$$

[^17]Lastly, we will show ψ in unique.
Suppose $\psi^{\prime}: R_{S} \rightarrow T$ is an embedding such that $\psi^{\prime} \circ \rho=\phi$. Let $\frac{a}{s} \in R_{S}$.
Then, $\psi^{\prime}\left(\frac{a}{1}\right)=\psi^{\prime}(\rho(a))=\phi(a)$
And, $1=\psi^{\prime}(1)=\psi^{\prime}\left(\frac{s}{1} \cdot \frac{1}{s}\right)=\psi^{\prime}\left(\frac{s}{1}\right) \psi^{\prime}\left(\frac{1}{s}\right)=\phi(s) \psi^{\prime}\left(\frac{1}{s}\right)$, so $\psi^{\prime}\left(\frac{1}{s}\right)=\phi(s)^{-1}$
So, $\psi^{\prime}\left(\frac{a}{1}\right) \psi^{\prime}\left(\frac{1}{s}\right)=\phi(a) \phi(s)^{-1}$
$\Longrightarrow \psi^{\prime}\left(\frac{a}{1} \cdot \frac{1}{s}\right)=\phi(a) \phi(s)^{-1}$
$\Longrightarrow \psi^{\prime}\left(\frac{a}{s}\right)=\phi(a) \phi(s)^{-1}$
$\Longrightarrow \psi^{\prime}\left(\frac{a}{s}\right)=\psi\left(\frac{a}{s}\right)$. So ψ is unique.
Convention: We usually identify R with its image under ρ in R_{S}, i.e., we view R as a subring of R_{S}, with $a=\frac{a}{1}$
Definition: Suppose R is an integer domain, and let $S=R \backslash\{0\}$. Then R_{S} is called the field of fractions of R, and we will denote it by $Q(R)$.

The obvious example is $Q(\mathbb{Z})=\mathbb{Q}$.
Note: $Q(R)$ is a field.
Proof: Let $\frac{a}{b} \in Q(R) \Longrightarrow a \in R, b \neq 0 \in R$
If $\frac{a}{b} \neq 0$, then $a \neq 0$, then $\frac{b}{a} \in Q(R)$
And, $\frac{a}{b} \cdot \frac{b}{a}=\frac{a b}{b a}=\frac{1}{1}=1$
So $\frac{a}{b}$ is a unit. Therefore $Q(R)$ is a field.
Example: Let R be an integral domain.
$R[x]$ is an integral domain.

$$
\begin{aligned}
Q(R[x]) & =\{f / g: f, g \in R[x], g \neq 0\} \\
& :=R(x) \text { called rational functions on } R
\end{aligned}
$$

Perhaps later we will talk about $Q(R[[x]])$, called the set of Laurent series.
Proposition: Let R be a principal ideal domain, (respectively integral domain) and let $S \subseteq R$ satisfy the properties.
Then R_{S} is a principal ideal domain. (respectively integral domain)
Proof: R is not trivial $\Longrightarrow R_{S}$ is not trivial.
And, R_{S} is commutative.
Suppose $\frac{a}{s}, \frac{b}{t} \in R_{S}$

$$
\begin{aligned}
\frac{a b}{s t}=0=\frac{0}{1} & \Longrightarrow a b=0 \\
& \Longrightarrow a=0 \text { or } b=0, \text { since } R \text { is an integral domain } \\
& \Longrightarrow \frac{a}{s}=0 \text { or } \frac{b}{t}=0
\end{aligned}
$$

And, recall that principal ideal domains are all integral domains.
Let $I \subseteq R_{S}$ be an ideal in R_{S}.
Identify $R \subseteq R_{S}$, and let $I^{*}=I \cap R$.
Check: I^{*} is an ideal in R.
Thus, $I^{*}=c R$ for some $c \in R$
Suppose $\frac{a}{s} \in I$.
Then, $a=s\left(\frac{a}{s}\right) \in I \cap R=I^{*}$
$\Longrightarrow a=c r$ for some $r \in R$
$\Longrightarrow \frac{a}{s}=\frac{c r}{s}=c \frac{r}{s} \in c R$
$\Longrightarrow \stackrel{s}{I} \subseteq c R_{S}$
And, since $c \in I, c R_{S} \subseteq I$.
Therefore $I=c R_{S}$, so R_{S} is a principal ideal domain.
PMATH 345 Lecture 15: October 19, 2009

1. Preliminaries
2. Units/Zero Divisors
3. Polynomials
4. Homomorphisms
5. Ideals and Quotients
6. Localization and fields of fractions
7. Euclidean domains

Recall the division algorithm for \mathbb{Z}.
Given $a, b \in \mathbb{Z}, a \neq 0$ there exists $q, r \in \mathbb{Z}$ such that

$$
b=q a+r
$$

and

$$
|r|<|a|
$$

Definition: An integral domain R is an Euclidean domain if there exists a function $N: R \rightarrow \mathbb{N}$ with $N(0)=0^{52)}$, such that given $a, b \in R, a \neq 0$, there exists $q, r \in R$ with

$$
b=q a+r \quad \text { and } \quad N(r)<N(a)
$$

Example: $R=\mathbb{Z}, N(a)=|a|$.
Such an N is often referred to as a Euclidean norm for R.
Proposition: F a field. Given $f, g \in F[x], f \neq 0$. There exist $q, r \in F[x]$ such that $g=q f+r$ where either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(f)$.
Corollary: $F[x]$ is a Euclidean domain (F a field) with

$$
N:=\left\{\begin{array}{ll}
0 & \text { if } f=0 \\
\operatorname{deg}(f)+1 & \text { if } f \neq 0
\end{array} .\right.
$$

Proof: If $g=0$ then let $q=r=0$.
Assume $g \neq 0$.
If $\operatorname{deg}(g)<\operatorname{deg}(f)$ then let $q=0, r=g$.
Assume $\operatorname{deg}(g) \geq \operatorname{deg}(f)$.
Induction on $\operatorname{deg}(g)$.

$$
\operatorname{deg}(g)=0 \Longrightarrow \operatorname{deg}(f)=0
$$

Therefore $f, g \in F$, so units in F.

$$
g=\left(\frac{g}{f}\right) f+0
$$

$\operatorname{deg}(g)=n:$

$$
\begin{array}{lr}
g=b_{0}+b_{1} x+\cdots+b_{n} x^{n} & b_{n} \neq 0 \\
f=a_{0}+a_{1} x+\cdots+a_{m} x^{m} & a_{m} \neq 0
\end{array}
$$

$m \leq n$
Consider $g^{*}=g-\underbrace{f \cdot\left(\frac{b_{n}}{a_{m}} x^{n-m}\right)}$. OK since $a_{m} \neq 0$ in a field F.
The underbrace has leading term $\left(a_{m} x^{m}\right)\left(\frac{b_{n}}{a_{m}} x^{n-m}\right)=b_{n} x^{n}=$ leading term of g.
So $\operatorname{deg}\left(g^{*}\right)<\operatorname{deg}(g)=n$. By Induction Hypothesis,

$$
\begin{gathered}
g^{*}=q^{*} f+r \text { where either } r=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(f) . \\
g-f \cdot\left(\frac{b_{n}}{a_{m}} x^{n-m}\right)=q^{*} f+r
\end{gathered}
$$

Corollary: (Factor Theorem): F a field, $g \in F[x], \lambda \in F$
If $g(\lambda)=0$ (i.e., λ is a root of g)

[^18]then $(x-\lambda)$ is a factor of g.
(i.e., $g=(x-\lambda) f$, for some $f \in F[x]$)

The converse is true as well.
Proof: If $g=(x-\lambda) f, g(\lambda)=(\lambda-\lambda) f=0 f=0 \checkmark$
Conversely, suppose λ is a root of g.
By the proposition, there exists $f, r \in F[x]$ such that

$$
g=(x-\lambda) f+r
$$

(we are dividing g by $(x-\lambda)$)
with $N(r)<N(x-\lambda)=2$
$\Longrightarrow N(r)=0$ or 1 .
If $N(r)=1$ then $\operatorname{deg} r=0$ so $r=a_{0} \in F, a_{0} \neq 0$.

$$
\begin{gathered}
g=(x-\lambda) f+a_{0} \\
g(\lambda)=0 \cdot f+a_{0}=a_{0} \neq 0
\end{gathered}
$$

contradiction. Therefore $N(r)=0$, therefore $r=0$, therefore $g=(x-\lambda) f$.
Corollary: F field.
$g \in F[x], \operatorname{deg}(g)=n(g \neq 0)$
Then g has at most n roots.
Proof: Induction on n.
$n=0: g$ is nonzero constant polynomial $\Longrightarrow g$ has no roots
$n>0: \lambda_{1}, \ldots, \lambda_{l}$ be distinct roots of g.
Divide $\left(x-\lambda_{l}\right)$ into g to get
$g=\left(x-\lambda_{l}\right) q$ (by previous corollary)
But $\operatorname{deg}(q)=n-1$ (since F is an integral domain $\operatorname{deg}(P Q)=\operatorname{deg}(P)+\operatorname{deg}(Q))$
For each $i<l$,

$$
\begin{aligned}
0=g\left(\lambda_{i}\right) & =\underbrace{\left(\lambda_{i}-\lambda_{l}\right)}_{\text {since } \lambda_{i} \neq \lambda_{l}} q\left(\lambda_{i}\right) \\
& \neq 0
\end{aligned}
$$

By Induction Hypothesis, $l-1 \leq n-1 \Longrightarrow l \leq n$.

PMATH 345 Lecture 16: October 21, 2009

Theorem: Every Euclidean domain is a pid.
Proof: $I \subseteq R, R$ Euclidean domain $I \neq(0)$.
Let $N: R \rightarrow \mathbb{N}$ be a Euclidean norm on R.
Let $a \in I \backslash\{0\}$ be of least norm.
Show: $I=(a)$. Clearly $(a) \subseteq I$.
If not, let $b \in I \backslash(a)$.
Divide b by a to get

$$
\begin{gathered}
b=a q+r \quad q, r \in R \\
N(r)<N(a) \\
r=b-a q \in I
\end{gathered}
$$

By minimality of $N(a)$
$\Longrightarrow r=0$
$\Longrightarrow b=a q$
$\Longrightarrow b \in(a)$ Contradiction.
Therefore $I=(a)$.
Therefore R is a pid.
Corollary: $F[x]$ is a pid if F is a field.
Definition: R integral domain.
$a, b \in R, a \mid b$ mean a divides b which means there is $r \in R$ such that $b=a r$.
(Note: $a \mid b \Longleftrightarrow b \in(a) \Longleftrightarrow(b) \subseteq(a)$.)
(Note: units divide everything: take $r=\frac{b}{a}$. 0 divides only 0 .)
A nonzero and nonunit $a \in R$ is called prime if whenever $a \mid b c$, either $a \mid b$ or $a \mid c$.
A nonzero nonunit $a \in R$ is called irreducible if whenever $a=b c$, either $a \mid b$ or $a \mid c$.
Example: In \mathbb{Z}, prime $=$ irreducible $(=$ prime $\# \mathrm{~s})$
Note: prime \Longrightarrow irreducible
Example: (prime \neq irreducible)
F field. $F[x]$.
$R \subseteq F[x]$ be the subring of polynomials with no linear term.
i.e., coefficient of x is 0 .

Example: R is a subring of $F[x]$.
Consider x^{2}.
Claim: x^{2} is irreducible in R.
Proof: $x^{2}=f g, f, g \in R$
$2=\operatorname{deg} f+\operatorname{deg} g$.
Since $f, g \in R, \operatorname{deg} f \neq 1, \operatorname{deg} g \neq 1$
Without loss of generality, $f=a \in F \backslash\{0\}$
$g=\frac{1}{a} x^{2}$
$\Longrightarrow x^{2} \mid g$.
Claim: x^{2} is not prime in R.
Proof: $x^{2} \mid x^{4} \cdot x^{2}=x^{6}=x^{3} \cdot x^{3}$
but if $x^{2} \mid x^{3}$ then $x^{3}=x^{2} f$ for some $f \in R$
$\Longrightarrow \operatorname{deg} f=1$, contradiction. So $x^{2} \nmid x^{3}$.
Proposition: If R is a pid then prime $=$ irreducible .
Proof: Need irreducible \Longrightarrow prime.
$a \in R$ be irreducible. Suppose $a \mid b c$. Assume $a \nmid b$.
$I=(a)+(b)=\{a r+b s: r, s \in R\}=(a, b)$
R pid $\Longrightarrow I=(d)$, for some $d \in R$.
$d \mid a$ and $d \mid b$
\Downarrow
$a=d u$ for some $u \in R$
$a \nmid d$ (else $a \mid b$)
$\Longrightarrow a \mid u$ as a is irreducible
$\Longrightarrow u=a r$ for some $v \in R$
$\Longrightarrow a=$ ard $\Longrightarrow 1=v d \Longrightarrow d$ is a unit
therefore $I=R$
there exists $r, s \in R$

$$
\begin{gathered}
a r+b s=1 \\
a c r+c b s=c
\end{gathered}
$$

$a \mid c b s$ as $a \mid b c$
$a \mid a c r \checkmark$
$\Longrightarrow a \mid c \quad$ [end of midterm
Corollary: In $F[x]$, prime $=$ irreducible, F a field.
Definition: R integral domain is a Unique Factorization Domain (UFD) if every nonzero nonunit is a product of primes.

Definition: A ring R is Noetherian if there does not exist any infinite increasing sequence of ideals. i.e., cannot have $I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots$

Theorem: If R is a Noetherian integral domain then every nonzero nonunit is a product of irreducibles.
Corollary: A noetherian pid is a ufd.

Lemma: pids are always noetherian.
Corollary: pid \Longrightarrow ufd

PMATH 345 Lecture 17: October 23, 2009

Office Hours Today: 11:30-12, 1:15-2:25, 3:30-4:30
Definition: A commutative ring R is Noetherian if there does not exist an infinite increasing sequence of ideals

$$
I_{0} \subsetneq I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots
$$

Lemma: pid \Longrightarrow Noetherian
Proof: Suppose we have a sequence

$$
\left(a_{0}\right) \subseteq\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq \cdots
$$

Let $I=\bigcup_{i}\left(a_{i}\right)$.
Exercise: I is an ideal.
(Note: unions of ideals are not generally ideals.)

$$
\begin{aligned}
R \text { pid } & \Longrightarrow I=(b) \\
& \Longrightarrow \text { for some } i, b \in\left(a_{i}\right) \\
& \Longrightarrow I \subseteq\left(a_{i}\right) \\
& \Longrightarrow\left(a_{j}\right) \subseteq\left(a_{i}\right) \text { for all } j \geq i \\
& \Longrightarrow\left(a_{j}\right)=\left(a_{i}\right) \text { for all } j \geq i
\end{aligned}
$$

Therefore R is Noetharianity.
Proposition: R Noetharian integral domain.
Every nonzero nonunit is a finite product of irreducibles.
Proof: $a \in R, a \neq 0$, a not a unit.
We build tree starting with $a=a_{\emptyset}$
(We will index this tree by finite sequences of 0 s and 1 s, i.e., by elements of $2^{<\omega}$.)
If a is irreducible then \checkmark.
If not then $a=a_{0} \cdot a_{1}$ such that $a \nmid a_{0}$ and $a \nmid a_{1}$.

If a is irreducible, stop that branch. Otherwise write $a_{0}=a_{00} \cdot a_{01}$ where

$$
a_{0} \nmid a_{00} \quad \text { and } \quad a_{0} \nmid a_{01} .
$$

Continue in this way.
If the tree is finite, then a is the product of all the "leaves" of the tree and these elements are irreducible. So we are done.

If the tree is infinite there must exist an infinite branch (König's Lemma). So we have $\alpha \in 2^{\omega}$, an infinite sequence of 0 s and 1 s and for each i,

$$
\begin{gathered}
a_{\alpha \upharpoonright_{i+1}} \mid a_{\alpha \upharpoonright_{i}} \quad \text { but } \quad a_{\alpha \upharpoonright_{i}} \nmid a_{\alpha \upharpoonright_{i+1}} \\
\left(a_{\alpha \upharpoonright_{i}}\right) \subsetneq\left(a_{\alpha \upharpoonright_{i+1}}\right) \\
\left(a_{\emptyset}\right) \subsetneq\left(a_{\alpha \upharpoonright_{1}}\right) \subsetneq\left(a_{\alpha \upharpoonright_{2}}\right) \subsetneq \cdots
\end{gathered}
$$

Contradiction to Noetheranity.
Hence the tree $i s$ finite and a is a product of finitely many irreducibles.

Recall: An integral domain R is a Unique factorization domain if every nonzero nonunit is a product of primes.
Corollary: pid \Longrightarrow ufd
Proof: By the lemma pid is Noetharian. By a proposition last time in a pid irreducible $=$ prime. Hence pid \Longrightarrow ufd by the previous proposition.

$$
\text { fields } \subsetneq^{53)} \text { Euclidean domains } \subsetneq^{54)} \text { pids } \subsetneq^{55)} \text { ufds } \subsetneq^{56)} \text { integral domains }
$$

Lemma: R integral domain. $a, b \in R, u \in R$ a unit.
Then $a|b \Longleftrightarrow a| b u$.
Proof:

$$
\begin{aligned}
a \mid b & \Longleftrightarrow b=a x \text { for some } x \in R \\
& \Longleftrightarrow b u=a y \text { for some } y \in R
\end{aligned}
$$

for \Longrightarrow let $y=x u$
for \Longleftarrow let $x=y u^{-1}$
Lemma: R integral domain, a irreducible in R and u a unit in R. Then $a u$ is irreducible.
Proof: Suppose $a u=b c$
$\Longrightarrow a=b c u^{-1}=(b)\left(c u^{-1}\right)$
$\Longrightarrow a \mid b$ or $a \mid c u^{-1}$
$\stackrel{\text { Ex. }}{\Longrightarrow} a u \mid b$ or $a \mid c(\Longrightarrow a u \mid c)$.
Lemma+
Lemma: R integral domain, $a \in R$ irreducible, $b \mid a$ then either b is a unit or $b=a u$ for some unit u. (in particular in the second case, b is also irreducible by the previous lemma.)
Proof: $b \mid a \Longrightarrow a=b x$ for some $x \in R$.
Exercise: a irreducible \Longrightarrow either b is a unit of x is a unit.
Definition: R integral domain, $a, b \in R$ irreducibles. We say a and b are associate if $a=b u$ for some unit $u \in R$.

Theorem: R a unique factorization domain, $a \in R$ nonzero. Then up to associates and rearrangement there is a unique factorization of a,

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{l}^{e_{l}}
$$

where p_{1}, \ldots, p_{l} are distinct irreducibles and e_{1}, \ldots, e_{l} are positive integers.

PMATH 345 Lecture 18: October 28, 2009

$\begin{array}{ccc}\text { median } & 18.5 & 74 \% \\ \text { mean } & 17.5 & 70 \%\end{array}$
fields \subseteq euclidean domains \subseteq pids \subseteq ufds \subsetneq integral domains
Definition: $a, b \in R$ integral domain. a, b irreducibles. We say a and b are associate if $a=b u$ for some unit u.

Exercises:

1. Being associate is an equivalence relation among the irreducibles.
2. If a is irreducible/prime then $a u$ is irreducible/prime if u is a unit.
3. a is irreducible iff whenever $a=b c$ either b or c is a unit.
4. a, b irreducibles. a and b are associate $\Longleftrightarrow a \mid b$
[^19]Lemma: In a unique factorization domain, irreducible $=$ prime.
Proof: Recall R unique factorization domain means a is nonzero nonunit then a is a finite product of primes.

$$
\text { prime } \Longrightarrow \text { irreducible } \quad \checkmark
$$

Conversely let a be an irreducible. $a=p_{1} \cdots p_{n}$ where p_{i} are prime.
Each $p_{i} \mid a \Longrightarrow p_{i}=a u_{i}$ for some u_{i}.
Exercise: If a product of elements is a unit then so is each factor.
$a=p_{i} v, v$ is a unit

$$
\begin{aligned}
\text { cancellation } & \Longrightarrow v=p_{1} \cdots p_{i}^{57)} \cdots p_{n} \\
& \Longrightarrow{ }^{58)} n=1 \\
& \Longrightarrow a \text { is prime }
\end{aligned}
$$

Corollary: There are integral domains that are not unique factorization domains.
Proof: We have seen an example of an integral domain where irreducible \nRightarrow prime.
Theorem: (Unique factorization theorem):
R unique factorization domain. a nonzero nonunit.

$$
\begin{aligned}
& a=p_{1} \cdots p_{n} \\
& a=q_{1} \cdots q_{l}
\end{aligned} \quad \text { where the } p_{i} \text { s and } q_{j} \text { s are prime }
$$

Then $n=l$ and after re-indexing each p_{i} is associate to q_{i}.
Proof: By induction on n.
$n=1$:

$$
p_{1}=a=q_{1} \cdots q_{l}
$$

$\Longrightarrow l=1$ and $p_{1}=q_{1}$ as before
$p_{1} \mid q_{1} \Longrightarrow p_{1}=q_{1} u$

$$
q_{1} u=q_{1} q_{2} \cdots q_{l}
$$

$\Longrightarrow u=q_{2} \cdots q_{l}{ }^{59)} \Longrightarrow l=1 \checkmark$
$n>1$:

$$
p_{1} \mid \text { LHS } \Longrightarrow \begin{gathered}
p_{1} \cdots p_{n}=a=q_{1} \cdots q_{l} \\
p_{1} \mid q_{1} \\
\text { or } \\
p_{1} \mid\left(q_{2} \cdots q_{l}\right)
\end{gathered} \stackrel{p_{1}\left|q_{1}\right| q_{1}}{\Longrightarrow} \begin{gathered}
p_{1} \mid q_{2} \\
\text { or }
\end{gathered} \stackrel{p_{1} \mid\left(q_{3} \cdots q_{l}\right)}{\rightleftharpoons} \cdots
$$

$\Longrightarrow p_{1} \mid q_{i}$ for some $i=1, \ldots, l$.
After re-indexing without loss of generality let $i=1$.
$\Longrightarrow p_{1} \mid q_{1} \Longrightarrow q_{1}=p_{1} u$, u unit.

$$
\begin{gathered}
\not 1_{1} \cdots p_{n}=u \not \text { 1 }_{2} \cdots q_{l} \\
p_{2} \cdots p_{n}=u q_{2} \cdots q_{l}
\end{gathered}
$$

Replacing q_{2} by an associate (namely $u q_{2}$) we may assume without loss of generality

$$
p_{2} \cdots p_{n}=q_{2} \cdots q_{l}
$$

$\stackrel{\mathrm{IH}}{\Longrightarrow} n=l$ and after re-indexing p_{j} is associate to $q_{j} j=2, \ldots, n=l$.

[^20]Example: (non-ufd)
$\mathbb{Z}[2 i]$ subring of Gaussian integers

$$
\mathbb{Z}[2 i]=\{a+2 b i: a, b \in \mathbb{Z}\}
$$

$i=\sqrt{-1}$
Fails unique factorization:

$$
\begin{aligned}
& 4=2 \cdot 2 v \\
& 4=(-2 i) \cdot(2 i)
\end{aligned}
$$

$2,2 i \in \mathbb{Z}[i]$
Need:

1. $2,2 i$ are irreducibles
2. 2 and $2 i$ are not associate

This leads to two non-associate factorizations of 4 into irreducibles
$\Longrightarrow \mathbb{Z}[2 i]$ not unique factorization domain
Claim: 2 is irreducible
Proof:

$$
\begin{aligned}
2 & =(a+2 b i)(c+2 d i) \quad a, b, c, d \in \mathbb{Z} \\
& =(a c-4 b d)+2(a d+b c) i
\end{aligned}
$$

$\Longrightarrow(1) a d=-b c$ and
(2) $a c-4 b d=2$

Assume $b d \neq 0$. Then $a c \neq 0$.
$\Longrightarrow \operatorname{sgn}(a c)=$ positive $\Longrightarrow \operatorname{sgn}(b d)=$ negative by $(1) \Longrightarrow$ contradiction (2)
$\Longrightarrow \operatorname{sgn}(b d)=$ positive $\Longrightarrow \operatorname{sgn}(a c)=$ negative by $(1) \Longrightarrow$ contradiction (2)
Theorem: (Unique factorization theorem)
R ufd. a nonzero nonunit.
$\Longrightarrow 2$ is irreducible \checkmark
Similarly $2 i$ is irreducible \checkmark
Only units in $\mathbb{Z}[i]$ are $1,-1,-i^{60)}, i^{61)}$
Only units in $\mathbb{Z}[2 i]$ are $1,-1$
$\Longrightarrow 2,2 i$ are non-associates.

PMATH 345 Lecture 19: October 30, 2009

R ufd
Association is an equivalence relation on the set of primes in R.
We choose and fix once and for all, one prime from each class: P_{R} is the set of these primes.

- If $p \in R$ is a prime then p is associate to exactly one prime in P_{R}.
- Any two distinct primes $p, q \in P_{R}$ are non-associate.

Corollary: (of unique factorization). Given $a \in R$ nonzero nonunit, a can be written uniquely (up to rearrangements) as

$$
a=u p_{1}^{a_{1}} \cdots p_{l}^{a_{l}}
$$

where u is a unit, p_{1}, \ldots, p_{l} are distinct primes from $P_{R}, a_{1}, \ldots, a_{l}$ are positive integers.
Proof: Exercise.
Remark: Given $a, b \in R$ nonzero we can write

$$
\begin{aligned}
a & =u p_{1}^{a_{1}} \cdots p_{l}^{a_{l}} \\
b & =v p_{1}^{b_{1}} \cdots p_{l}^{b_{l}}
\end{aligned}
$$

[^21]where p_{1}, \ldots, p_{l} are distinct primes from P_{R}, u, v units, $a_{1}, \ldots, a_{l}, b_{1}, \ldots, b_{l}$ non-negative integers.

8. Factoring in polynomials rings.

Definition: R ufd, P_{R} as above, $a, b \in R$ nonzero nonunits

$$
\begin{aligned}
a & =u p_{1}^{a_{1}} \cdots p_{l}^{a_{l}} \quad a_{1}, \ldots, a_{l} \geq 0 \\
b & =v p_{1}^{b_{1}} \cdots p_{l}^{b_{l}} \quad b_{1}, \ldots, b_{l} \geq 0
\end{aligned}
$$

prime factorizations

The $\operatorname{gcd}(a, b):=p_{1}^{\min \left\{a_{1}, b_{1}\right\}} \cdot p_{2}^{\min \left\{a_{2}, b_{2}\right\}} \cdots p_{l}^{\min \left\{a_{l}, b_{l}\right\}}$ greatest common divisor.
Note: This depends on P_{R}.
Lemma: $d=u \operatorname{gcd}(a, b), u{\text { a } u^{2}}^{62)} \Longleftrightarrow d|a, d| b$ and whenever $e|a, e| b \Longrightarrow e \mid d$.
Note: RHS does not depend on P_{R}.
Proof: (\Longrightarrow) without loss of generality $d=\operatorname{gcd}(a, b)$.
$d|a, d| b$ by definition of gcd.
Suppose $e \mid a$ and $e \mid b$.
Write $e=w p_{1}^{e_{1}} \cdots p_{l}^{e_{l}}$: this is possible after increasing l.

$$
e \mid a \Longleftrightarrow a=e x \Longleftrightarrow u p_{1}^{a_{1}} \cdots p_{l}^{a_{l}}=w p_{1}^{e_{1}} \cdots p_{l}^{e_{l}} x \quad \text { for some } x \in R, x \neq 0
$$

Again increasing l if necessary, write $x=w^{\prime} p_{1}^{x_{1}} \cdots p_{l}^{x_{l}}, x_{1}, \ldots, x_{l} \geq 0$.

$$
\begin{aligned}
& \Longrightarrow u p_{1}^{a_{1}} \cdots p_{l}^{a_{l}}=\underbrace{w w^{\prime}}_{\text {unit }} p_{1}^{e_{1}+x_{1}} \cdots p_{l}^{e_{l}+x_{l}} \\
& \Longrightarrow a_{i}=e_{i}+x_{i} \quad \text { for all } i=1, \ldots, l \\
& \Longrightarrow \quad e_{i} \leq a_{i} \quad i=1, \ldots, l
\end{aligned}
$$

Similarly $e_{i} \leq b_{i}$ for all $i=1, \ldots, l$.
Therefore $e_{i} \leq \min \left\{a_{i}, b_{i}\right\}:=1, \ldots, l$
$e \frac{1}{w} p_{1}^{\min \left\{a_{1}, b_{1}\right\}-e_{1}} \cdots p_{l}^{\min \left\{a_{l}, b_{l}\right\}-e_{l}}=d$
$\Longrightarrow e \mid d$.
Conversely, let's prove (\Longleftarrow), assume RHS. $d|a, d| b$, and when $e \mid a$ and $e|b \Longrightarrow e| d$.
Let $e=\operatorname{gcd}(a, b)$
$\Longrightarrow \operatorname{gcd}(a, b) \mid d$.
On the other hand, from (\Longrightarrow) we know that $\operatorname{gcd}(a, b)$ satisfies RHS.
$\Longrightarrow d \mid \operatorname{gcd}(a, b)$
$x d=\operatorname{gcd}(a, b)=x y \operatorname{gcd}(a, b) \Longrightarrow x y=1 \Longrightarrow x$ is a unit.
Therefore $d=\frac{1}{x} \operatorname{gcd}(a, b)$.
Definition: R ufd, P_{R} as above.
Consider $R[x], f \in R[x], f \neq 0$.
Write $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where $n=\operatorname{deg}(f)$: so $a_{n} \neq 0$.
The content of f is

$$
G(f)=\operatorname{gcd}\left(a_{i}: i=0, \ldots, n, a_{i} \neq 0\right)
$$

Example: In $\mathbb{Z}[x], f=2+12 x+4 x^{3}$
$G(f)=\operatorname{gcd}(2,12,4)=2$.
Theorem: $f, g \in R[x]$ nonzero.

$$
G(f g)=G(f) G(g)
$$

Start with a lemma.
Lemma: If $G(f)=G(g)=1$ then $G(f g)=1$.

Proof of theorem from Lemma

Given any $f \in R[x], f \neq 0$,

$$
f=G(f) \cdot \hat{f}
$$

[^22]where $\hat{f} \in R[x]$ has content $1 . \rightarrow$ Exercise.
\[

$$
\begin{aligned}
f g & =G(f) \hat{f} \cdot G(g) \cdot \hat{g} \\
f g & =G(f) G(g) \cdot \hat{f} \hat{g} \\
G(f g) & =G(G(f) G(g) \hat{f} \hat{g}) \\
& \left.=G(f) G(g) \cdot G(\hat{f} \hat{g})={ }^{63}\right) G(g) G(f)
\end{aligned}
$$
\]

Example: for any $c P \in R[x], c \in R, c \neq 0$,

$$
G(c P)=c G(P)
$$

PMATH 345 Lecture 20: November 2, 2009

(corrected exercise)
Claim: R ufd, $0 \neq P \in R[x], r \in R$,
$G(r P)=u r G(P)$ for some unit u
Proof: $P=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, n=\operatorname{deg} P$ write $a_{i}=u_{i} p_{1}^{a_{i 1}} p_{2}^{a_{i 2}} \ldots p_{l}^{a_{i l}}$
p_{1}, \ldots, p_{n} distinct primes in P_{R}
$a_{i 1}, \ldots, a_{i l}$ non-negative integers
$r R=r a_{0}+r a_{1} x+\cdots+r a_{n} x^{n}$
write $r=w p_{1}^{r_{1}} \cdots p_{l}^{r_{l}}$

$$
\begin{aligned}
& G(r P)=\operatorname{gcd}\left\{r a_{i}: i=1, \ldots, l, a_{i} \neq 0\right\} \\
& =p_{1}^{\min \left\{a_{i 1}+r_{1}: i=1, \ldots, l, a_{i} \neq 0\right\}} \cdots p_{l}^{\min \left\{a_{l i}+r_{l}: i=1, \ldots, l, a_{i} \neq 0\right\}} \\
& =p_{1}^{e_{1}} \cdots p_{l}^{e_{l}} \\
& e_{j}=\min \left\{a_{i j}+r_{j}: i=1, \ldots, l, a_{i} \neq 0\right\} \\
& =r_{j}+\min \left\{a_{i j}: i=1, \ldots, l, a_{i} \neq 0\right\} \\
& \Longrightarrow G(r P)=p_{1}^{r_{1}} \cdots p_{l}^{r_{l}} \cdot \operatorname{gcd}\left\{a_{i}: i=1, \ldots, l, a_{i} \neq 0\right\} \\
& =\frac{1}{w} r \cdot G(P)
\end{aligned}
$$

Lemma: R ufd, $f, g \in R[x] \backslash\{0\}$.

$$
G(f)=G(g)=1 \quad \text { then } \quad G(f g)=1
$$

Proof: Suppose $G(f g) \neq 1$, let $p \in P_{R}$ such that $p \mid G(f g)$
i.e., p appears in the factorization of $G(f g)$ with a positive exponent.

$$
\begin{array}{ll}
f=a_{0}+\cdots+a_{n} x^{n} & n=\operatorname{deg} f \\
g=b_{0}+\cdots+b_{n} x^{m} & m=\operatorname{deg} g
\end{array}
$$

$p \nmid G(f) \Longrightarrow$ there is a least $r \geq 0$ such that $p \nmid a_{r}$. $p \nmid G(g) \Longrightarrow$ there is a least $s \geq 0$ such that $p \nmid b_{s}$.
Consider the coefficient of x^{r+s} in $f g$:

$$
\sum_{i=1}^{r+s} a_{r+s-i} b_{i}
$$

If $i<s \Longrightarrow p\left|b_{i} \Longrightarrow p\right| a_{r+s-i} b_{i}$
If $i>s \Longrightarrow r+s-i<r \Longrightarrow p\left|a_{r+s-i} \Longrightarrow p\right| a_{r+s-i} b_{i}$

[^23]If $i=s \Longrightarrow p \nmid a_{r}, p \nmid a_{s} \underset{\text { prime }}{\Longrightarrow} p \nmid a_{r} a_{s}$.
Since

$$
\sum_{i=1}^{r+s} a_{r+s-i} b_{i}-\underbrace{\left(\sum_{\substack{i=1 \\ i \neq s}}^{r+s} a_{r+s-i} b_{i}\right)}_{p \text { divides }}=\underbrace{a_{r} b_{s}}_{p \text { does not divide }}
$$

Therefore $p \nmid$ coefficients of x^{r+s} in $f g$. Contradiction.
Theorem: R ufd, $f, g \in R[x] \backslash\{0\}$.
$G(f g)=G(f) G(g)$
Proof: First, need to show (exercise):

$$
\begin{array}{ll}
f=G(f) \cdot \hat{f} & G(\hat{f})=1 \\
g=G(g) \cdot \hat{g} & G(\hat{g})=1
\end{array}
$$

$$
\begin{aligned}
f g & =G(f) G(g) \hat{f} \hat{g} \\
G(f g) & =G(\underbrace{G(f) G(g)}_{r} \underbrace{\hat{f} \hat{g}}_{p}) \stackrel{\text { correcting lemma }}{ } \\
G(f g) & =p_{1}^{e_{1}} \cdots p_{l}^{e_{l}}
\end{aligned}
$$

p_{i} s in $P_{R}, e_{i} \geq 0$
Similarly for $G(f)$ and $G(g)$.
Hence for $G(f) G(g)$.
Therefore $u=1$.
R ufd.

$$
R[x] \stackrel{\text { subring }}{\subseteq} F[x] \quad F=Q(R) \text { factor field }
$$

Lemma: R ufd, $F=Q(R), f \in F[x]$. There exist $a, b \in R, \operatorname{gcd}(a, b)=1$, and $\hat{f} \in R[x], G(\hat{f})=1$ such that $f=\frac{a}{b} \hat{f}$
Proof: $c=$ product of all denominators appearing in the nonzero coefficients of f $f=a_{0}+\cdots+a_{n} x^{n} \quad n=\operatorname{deg} f, a_{i} \in F=Q(R)$
write each $a_{i}=\frac{b_{i}}{c_{i}}, b_{i}, c_{i} \in R$

$$
\prod_{\substack{i=0 \\ b_{i} \neq 0}}^{n} c_{i}=: c \neq 0
$$

In $R[x]$
$\Longrightarrow c f \in R[x]$. Write $c f=G(c f) \cdot \hat{f}$ where $\hat{f} \in R[x], G(\hat{f})=1$
In $F[x]$,

$$
f=\frac{G(c f)}{c} \hat{f}
$$

Let $r=\operatorname{gcd}(G(c f), c)$.
$G(c f)=r \cdot a$ for some $a \in R$
$c=r \cdot b$ for some $b \in R$
$\Longrightarrow \operatorname{gcd}(a, b)=1$

$$
\frac{G(c f)}{c}=\frac{a}{b}
$$

Example:

$$
\begin{gathered}
\frac{5}{6}+\frac{25}{4} x+\frac{5}{8} x^{3} \in \mathbb{Q}[x] \\
=\frac{5}{24}(\underbrace{4+5 x+3 x^{3}}_{\text {in } \mathbb{Z}[x]})
\end{gathered}
$$

PMATH 345 Lecture 21: November 4, 2009

R ufd, $F=Q(R)$, everything today.
Lemma: If $\alpha \in F[x]$ then $\alpha \frac{a}{b} f$ where $f \in R[x], G(f)=1, a, b \in R, \operatorname{gcd}(a, b)=1$
Gauss' Lemma: $f, g \in R[x], G(f)=1 . f \mid g$ in $F[x] \Longrightarrow f \mid g$ in $R[x]$
Proof: $g=f \alpha$ for some $a \in F[x]$. Write $\alpha=\frac{a}{b} h, h \in R[x], G(h)=1, \operatorname{gcd}(a, b)=1$
$\Longrightarrow g=\frac{a}{b} f h \Longrightarrow b g=a f h$ in $R[x]$
$\Longrightarrow G(b g)=G(a f h) \Longrightarrow u b G(g)=v a \overbrace{G(f h)}^{=1}=v a$ in R, u, v units
$\Longrightarrow b|v a \Longrightarrow b| a$ in $R \Longrightarrow \frac{a}{b} \in R \Longrightarrow \alpha \in R[x]$.
Note: $2 x\left(\frac{1}{2} x\right)=x^{2}$ in $\mathbb{Q}[x]$
$2 x \mid x^{2}$ in $\mathbb{Q}[x]$ not in $\mathbb{Z}[x]$
Definition: $g \in \mathbb{R}[x]$, $\operatorname{deg} g>0, g$ factors properly if $g=h_{1} h_{2}$ where $h_{i} \in R[x]$, $\operatorname{deg} h_{i}>0$
$2+2 x=2(1+x)$ factors in $\mathbb{Z}[x]$ but not properly
Proposition: $g \in R[x], \operatorname{deg} g>0$
If g does not factor properly in $R[x]$ then g is irreducible in $F[x]$.
Proof: Contrapositive. Suppose $g=\alpha_{1} \alpha_{2}$ in $F[x]$, such that neither α_{1} nor α_{2} is a unit in $F[x]$
$\Longrightarrow \operatorname{deg} \alpha_{i}>0$.
Write $\alpha_{i}=\frac{a_{i}}{b_{i}} f_{i}, \operatorname{gcd}\left(a_{i}, b_{i}\right)=1, f_{i} \in R[x], G\left(f_{i}\right)=1, i=1,2$.

$$
\begin{align*}
g & =\frac{a_{1} a_{2}}{b_{1} b_{2}} f_{1} f_{2} \\
\Longrightarrow b_{1} b_{2} g & =a_{1} a_{2} f_{1} f_{2} \tag{*}\\
\Longrightarrow u b_{1} b_{2} G(g) & =v a_{1} a_{2} G\left(f_{1} f_{2}\right) \\
& =v a_{1} a_{2} \quad \text { in } R
\end{align*}
$$

u, v units
$\Longrightarrow b_{1} b_{2} \mid a_{1} a_{2}$
$b_{1} b_{2}=w p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{l}^{e_{l}}$ prime factorization, p_{1}, \ldots, p_{l} distinct primes in $P_{R} a_{1}=w_{1} p_{1}^{f_{1}} \cdots p_{l}^{f_{l}}$ $a_{2}=w_{2} p_{1}^{g_{1}} \cdots p_{l}^{g_{l}}$
Since $b_{1} b_{2} \mid a_{1} a_{2}, e_{i} \leq f_{i}+g_{i}$ for $i=1, \ldots, l . \ldots$
Claim: Since $b_{1} b_{2} \mid a_{1} a_{2}$ there exists $b_{1}^{\prime}, b_{2}^{\prime}$ such that $b_{1} b_{2}=b_{1}^{\prime} b_{2}^{\prime}, b_{1}^{\prime}\left|a_{1}, b_{2}^{\prime}\right| a_{2}$ in R.
Proof: next time.
By the claim,

$$
\begin{aligned}
& b_{1}^{\prime} b_{2}^{\prime} g=b_{1} b_{2} g \stackrel{(*)}{=} a_{1} a_{2} f_{1} f_{2} \\
& \Longrightarrow g=\left(\frac{a_{1}}{b_{1}^{\prime}} f_{1}\right)\left(\frac{a_{2}}{b_{2}^{\prime}} f_{2}\right)
\end{aligned}
$$

Since $b_{i}^{\prime} \mid a_{i}$ in R,

$$
\begin{gathered}
\frac{a_{i}}{b_{i}^{\prime}} \in R \Longrightarrow\left(\frac{a_{i}}{b_{i}^{\prime}} f_{i}\right) \in R[x] \\
g=\left(\frac{a_{1}}{b_{1}^{\prime}} f_{1}\right)\left(\frac{a_{2}}{b_{2}^{\prime}} f_{2}\right) \text { in } R[x] \\
\quad \operatorname{deg} f_{i}>0 \quad i=1,2
\end{gathered}
$$

$\Longrightarrow g$ factors properly.
Corollary: $f \in R[x], \operatorname{deg} f>0$. If f does not factor properly in $R[x]$ and $G(f)=1$, then f is prime in $R[x]$.
Proof: By previous proposition, f is irreducible in $F[x]$, hence prime ($F[x]$ is a pid)
R ufd, $F=Q(R)$
Suppose $f \mid g h$ in $R[x], g, h \in R[x]$
$\Longrightarrow f \mid g h$ in $F[x]$

Theorem: R ufd $\Longrightarrow R[x]$ ufd
Proof: $f \in R[x], f \neq 0$, non-unit
want to write f as a product of primes in $R[x]$.
Case 1: $\operatorname{deg} f=0, f \in R$
R ufd $\Longrightarrow f=p_{1} \cdots p_{l}$ where p_{i} s are primes in R
Exercise: primes of R are primes in $R[x]$
Case 2: $\operatorname{deg} f>0$
Suppose there exists a polynomial in $R[x]$ of positive degree that is not a product of primes. Let f be of least positive degree. Let f be of least positive degree. Seek a contradiction. If f factors properly then
$f=g h, \operatorname{deg} g>0, \operatorname{deg} h>0$
$\Longrightarrow \operatorname{deg} g<\operatorname{deg} f, \operatorname{deg} h<\operatorname{deg} f$
\Longrightarrow each of g, h must factor into primes, contradiction.
We may assume that f does not factor properly.
Write $f=G(f) \cdot \hat{f}, G(\hat{f})=1$
Then \hat{f} also does not factor properly.
$\Longrightarrow f$ is prime in $R[x]$
and $G(f) \in R$ so by case 1 ,
$G(f)$ is a product of primes in $R[x]$
therefore f is a product of primes in $R[x]$
Contradiction.

PMATH 345 Lecture 22: November 6, 2009

Claim: Let R be a ufd. Let $a_{1}, a_{2}, b_{1}, b_{2} \in R$ and $b_{1} b_{2} \mid a_{1} a_{2}$. Then there exists $b_{1}^{\prime}, b_{2}^{\prime}$ such that $b_{1} b_{2}=b_{1}^{\prime} b_{2}^{\prime}$, and $b_{1}^{\prime} \mid a_{1}$ and $b_{2}^{\prime} \mid a_{2}$.
Proof: Fix P_{R} for R. Factorize.

$$
\begin{array}{rll}
b_{1}=u p_{1}^{e_{1}} \cdots p_{l}^{e_{l}} & \text { and } & b_{2}=v p_{1}^{f_{1}} \cdots p_{l}^{f_{l}} \\
a_{1}=w p_{1}^{g_{1}} \cdots p_{l}^{g_{l}} & \text { and } & a_{2}=x p_{1}^{h_{1}} \cdots p_{l}^{h_{l}}
\end{array}
$$

Then $b_{1} b_{2}\left|a_{1} a_{2} \Longrightarrow u v p_{1}^{e_{1}+f_{1}} \cdots p_{l}^{e_{l}+f_{l}}\right| w x p_{1}^{g_{1}+h_{1}} \cdots p_{l}^{g_{l}+h_{l}}$
So, $e_{i}+f_{i} \leq g_{i}+h_{i}$
So, let e_{i}^{\prime} and f_{i}^{\prime} be such that $e_{i}^{\prime}+f_{i}^{\prime}=e_{i}+f_{i}$ and $e_{i}^{\prime} \leq g_{i}$ and $f_{i}^{\prime} \leq h_{i}$
Then, let $b_{1}^{\prime}=u p_{1}^{e_{1}^{\prime}} \cdots p_{l}^{e_{l}^{\prime}}$ and $b_{2}=v p_{1}^{f_{1}} \cdots p_{l}^{f_{l}^{\prime}}$
Then, it is clear that $b_{1}^{\prime} \mid a_{1}$ and $b_{2}^{\prime} \mid a_{2}$, and also that $b_{1}^{\prime} b_{2}^{\prime}=b_{1} b_{2}$
So, from theorem, R ufd $\Longrightarrow R[x]$ ufd.
Examples: $\mathbb{Z}[x]$ is a ufd
$F[x]$ is a ufd for any field F.
But recall that $\mathbb{Z}[x]$ is not a pid, since $(2, x)$ has no principal ideal. Thus, pids \subsetneq ufds
Observe: R pid $\nRightarrow R[x]$ pid
R Euclidean domain $\nRightarrow R[x]$ Euclidean domain
Definition: Let R be a commutative ring. The polynomial ring in variables x_{1}, \ldots, x_{n} denoted by $R\left[x_{1}, \ldots, x_{n}\right]$ is the following ring:
Elements are formal expressions of

$$
\sum_{\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}} a_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}
$$

where $a_{\alpha} \in R$, and all but finitely many a_{α} s are zero.
If we relax the requirement that all but finitely many are zero, then we get $R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$, the power series in n variables.

Multiindex Notation: $\bar{x}=\left(x_{1}, \ldots, x_{n}\right), \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$
Then, $\bar{x}^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$

$$
\begin{aligned}
|\alpha| & :=\alpha_{1}+\cdots+\alpha_{n} \\
\alpha+\beta & :=\left(\alpha_{1}+\beta_{1}, \ldots, \alpha_{n}+\beta_{n}\right)
\end{aligned}
$$

Then, in this ring,

$$
\begin{aligned}
0 & =\sum_{\alpha} 0 \bar{x}^{\alpha} \\
1 & =1 x_{1}^{0} \cdots x_{n}^{0}+\sum_{\alpha \neq(0,0, \ldots, 0)} 0 \bar{x}^{\alpha} \\
\left(\sum_{\alpha} \bar{x}^{\alpha}\right)+\left(\sum_{\alpha} b_{\alpha} \bar{x}^{\alpha}\right) & =\sum_{\alpha}\left(a_{\alpha}+b_{\alpha}\right) \bar{x}^{\alpha} \\
\left(\sum_{\alpha} a_{\alpha} \bar{x}^{\alpha}\right)\left(\sum_{\alpha} b_{\alpha} \bar{x}^{\alpha}\right) & =\sum_{\alpha}\left(\sum_{\substack{\gamma, \delta \in \mathbb{N}^{n} \\
\gamma+\delta=\alpha}} a_{\gamma} b_{\delta}\right) \bar{x}^{\alpha}
\end{aligned}
$$

Check: $R\left[x_{1}, \ldots, x_{n}\right]$ is a commutative ring and it is a subring of the commutative ring $R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$

Example:

a) $R\left[x_{1}, \ldots, x_{n}\right]$ is isomorhpic to $\underbrace{R\left[x_{1}\right]}\left[x_{2}\right] \cdots\left[x_{n}\right]$

b) R embeds in $R\left[x_{1}, \ldots, x_{n}\right]$

Corollary: R ufd $\Longrightarrow R\left[x_{1}, \ldots, x_{n}\right]$ is a ufd
Theorem: R ufd. The irreducibles of $R[x]$ are
i) irreducibles of R
ii) $f \in R[x]$, $\operatorname{deg} f>0, G(f)=1$ and f is irreducible in $F[x], F=Q(R)$

Proof: If $f \in R$ irreducible in $R \Longrightarrow f$ irreducible in $R[x]$
If f is of type $2, f$ does not factor properly in $R[x] \Longrightarrow f$ irreducible in $R[x]$
So, i) and ii) are both irreducible. Now, we will show these are the only irreducibles.
Suppose $f \in R[x]$ is irreducible, and $f \notin R$
therefore $\operatorname{deg} f>0$. So, $f=G(f) \hat{f}$, where $G(\hat{f})=1$.
Since $\operatorname{deg} \hat{f}=\operatorname{deg} f>0, \hat{f}$ is not a unit in $R[x]$
$\Longrightarrow G(f)$ is a unit in \hat{f}, since f is irreducible.
But $G(f)=p_{1}^{e_{1}} \cdots p_{l}^{e_{l}}, \Longrightarrow e_{1}=e_{2}=\cdots=e_{l}=0$.

$$
\begin{equation*}
\Longrightarrow G(f)=1 \tag{1}
\end{equation*}
$$

Also, since f is irreducible, f does not factor properly in $R[x]$.

$$
\begin{equation*}
\Longrightarrow f \text { is irreducible in } F[x] \tag{2}
\end{equation*}
$$

By (1) and (2), f is in category ii)
Theorem: (Eisenstein Criterion)
Let R be a ufd, $f \in R[x]$

$$
f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \quad n=\operatorname{deg} f>0
$$

Suppose there exists an irreducible $p \in R$ such that
i) $p \nmid a_{n}$
ii) $p \mid a_{i}, i=0, \ldots, n-1$
iii) $p^{2} \nmid a_{0}$

Then, f is irreducible in $F[x], F=Q(R)$
Hence, if $G(f)=1$, then f is irreducible in $R[x]$.
Proof: It suffices to prove that f does not factor properly in $R[x]$.
Suppose $f=g h$ with $\operatorname{deg} g, \operatorname{deg} h>0$
Then,

$$
\begin{array}{lll}
g=b_{0}+\cdots+b_{m} x^{m} & 0<m<n \\
n=c_{0}+\cdots+c_{l} x^{l} & 0<l<n & \text { and } m+l=n
\end{array}
$$

Then, $a_{n}=b_{m} c_{l}$, so since $p \nmid a_{n}$, then $p \nmid b_{m}$ and $p \nmid c_{l}$.
$p\left|a_{0} \Longrightarrow p\right| b_{0} c_{0} \Longrightarrow p \mid b_{0}$ or $p \mid c_{0}$
And, since $p^{2} \nmid b_{0} c_{0}$, then p does not divide both.
Then, without loss of generality assume $p \mid b_{0}$ and $p \nmid c_{0}$.
Let k be least integer such that $p \nmid b_{k}, 0<k \leq m$

$$
\text { Consider } \begin{aligned}
{\left[x^{k}\right] f } & =a_{k} \\
& =b_{k} c_{0}+b_{k-1} c_{1}+\cdots+b_{1} c_{k-1}+b_{0} c_{k}
\end{aligned}
$$

Since k is minimal, $p\left|b_{k-1} c_{1}, \ldots, p\right| b_{0} c_{k}$
And, we know $p \mid a_{k}$, since $k<n$
Therefore $p \mid b_{k} c_{0}$. But $p \nmid b_{k}$ and $p \nmid c_{0}$, contradiction.

PMATH 345 Lecture 23: November 9, 2009

Examples: R is a ufd, working in $R[x]$
a) $a+x^{n}$, where a is a product of distinct primes is irreducible in $R[x]$ as long as the factors of a are all distinct (because $8+x^{3}$ can be factored in $\mathbb{Z}[x]$)
b) Let p be a prime number $\in \mathbb{Z}$

Then $f=1+x+x^{2}+\cdots+x^{p-1}$ is irreducible in $\mathbb{Q}[x]$
Proof: By Einsenstein, $g=p+\binom{p}{2} x+\binom{p}{3} x^{2}+\cdots+\binom{p}{p-2} x^{p-3}+p x^{p-2}+x^{p-1}$ is irreducible, since $p \left\lvert\,\binom{ p}{i}\right., p \nmid 1$, and $p^{2} \nmid p$

$$
\text { Consider } \begin{aligned}
\sigma: \mathbb{Q}[x] & \rightarrow \mathbb{Q}[x] \\
& h \mapsto h(x+1)
\end{aligned}
$$

[We showed this in an assignment. We can use $R[x]$ to send any extension of R, called S, to S. In this case, $S=R[x]$.]
So if $h=a_{0}+\cdots+a_{n} x^{n}, a_{n} \neq 0$, then

$$
\sigma(h)=a_{0}+a_{1}(x+1)+\cdots+a_{n}(x+1)^{n}
$$

Note that the leading term is still $a_{n} x^{n}$
Thus, $\operatorname{ker} \sigma=\{0\}^{64)}$ and σ perserves degree.
Also, σ is surjective, since given h,

$$
\sigma\left(a_{0}+a_{1}(x-1)+a_{2}(x-1)^{2}+\cdots+a_{n}(x-1)^{n}\right)=h
$$

So, σ is an automorphism that preserves degree.
Exercise: Given any automorphism, if h is irreducible, then σh is irreducible.
\rightarrow This is true for all automorphisms on integral domains.

[^24]Claim: $\sigma(f)=g$
$(-1+x)\left(1+x+\cdots+x^{p-1}\right)=\left(-1+x^{p}\right)$

$$
\text { Thus, } \begin{aligned}
\sigma\left((-1+x)\left(1+\cdots+x^{p-1}\right)\right) & =\sigma\left(-1+x^{p}\right) \\
\Longrightarrow \sigma(-1+x) \sigma\left(1+\cdots+x^{p-1}\right) & =\sigma\left(-1+x^{p}\right) \\
x \sigma\left(1+\cdots+x^{p-1}\right) & =-1+(x+1)^{p} \\
& =p x+\binom{p}{2} x^{2}+\binom{p}{3} x^{3}+\cdots+\binom{p}{p-2} x^{p-2}+p x^{p-1}+x^{p} \\
\Longrightarrow \sigma\left(1+\cdots+x^{p-1}\right) & =p+\binom{p}{2} x+\cdots+\binom{p}{p-2} x^{p-3}+p x^{p-2}+x^{p-1} \\
\Longrightarrow \sigma(f) & =g
\end{aligned}
$$

So f is irreducible, since g is.
Fields
Let R be an integral domain. Then, there is a unique homomorphism

$$
\begin{aligned}
\phi: \mathbb{Z} & \rightarrow R \\
n & \mapsto \underbrace{1+\cdots+1}_{n} \quad n \geq 0 \\
-n & \mapsto-\phi(n)
\end{aligned}
$$

Recall: R integral domain $\Longrightarrow \operatorname{ker} \phi$ is a prime ideal.
$\Longrightarrow \operatorname{ker}(\phi)=(0)$ or $\operatorname{ker}(\phi)=(p), p$ is prime
Definition: If, as above, $\operatorname{ker} \phi=(0)$, then we say R is at characteristic 0 . $(\Longleftrightarrow \underbrace{1+1+\cdots+1}_{n} \neq 0$
in R for all $n \in \mathbb{Z})$
If ker $\phi=(p)$, we say characteristic of R is $p .(\Longleftrightarrow \underbrace{1+1+\cdots+1}_{p}=0$ in $R)$
Remark: If $R=F$ is a field then,
a) $\operatorname{char} F=0 \Longrightarrow \phi$ extends to an embedding of \mathbb{Q} in F

$$
\begin{aligned}
\hat{\phi}: \mathbb{Q} & \rightarrow F \\
\frac{n}{m} & \mapsto \phi(n) \phi(m)^{-1}
\end{aligned}
$$

b) char $F=p \Longrightarrow$ we have an embedding

$$
\text { also an embedding }\left\{\begin{array}{c}
\hat{\phi}: \mathbb{Z}_{p}=\mathbb{Z} /(p) \rightarrow F \\
n+(p) \mapsto \underbrace{1+\ldots+1}_{n}
\end{array}\right.
$$

(by 1st isomorphism theorem, oy by showing directly)

Definition: A subfield of a field is a subring that is a field.
Therefore every field has a subfield isomorphic to $\mathbb{Q}(\operatorname{char} F=0)$ or $\mathbb{Z}_{p}(\operatorname{char} F=p)$
Convention: Idenitify \mathbb{Q} and \mathbb{Z}_{p} with their images in F.
So $\mathbb{Q}=\left\{\phi(n) \phi(m)^{-1}: n, m \in \mathbb{Z}, m \neq 0\right\} \subseteq F$ for char $F=0$ and $\mathbb{Z}_{p}=\{0,1,1+1, \ldots, \underbrace{1+1+\cdots+1}_{p-1}\} \subseteq$
F for char $F=p$
Definition: The set above is the prime subfield of F.
Exercise: The prime subfield of F is the unique smallest subfield of F.
Notation: \mathbb{F} is the prime subfield of F.

PMATH 345 Lecture 24: November 11, 2009

$F \subseteq L$ field extension: F is a subfield of L. Call F the base field.
We can view L as an F-vector space.
zero vector: $0 \in L$
vector sum: +
$r \in F$, scalar multiplication by r : given $a \in L, r \cdot a=r a$.
Linear Algebra $\Longrightarrow L$ has an F-basis: $B \subseteq L$ such that every $a \in L$ is of the form

$$
a=r_{1} b_{1}+r_{2} b_{2}+\cdots+r_{l} b_{l}
$$

where $r_{1}, \ldots, r_{l} \in F, b_{1}, \ldots, b_{l} \in B$.
Moreover this is a unique representation of a.
Also Fact: $B \subseteq L$ is a basis $\Longleftrightarrow B$ is a maximal F-linearly independent set $\Longleftrightarrow B$ is F-linearly independent and

$$
L=\operatorname{span}_{F}(B)=\left\{r_{1} b_{1}+\cdots+r_{l} b_{l}: b_{1}, \ldots, b_{l} \in B, r_{1}, \ldots, r_{l} \in F\right\}
$$

Fact 2: Any two bases for L over F are of the same cardinality, called the dimension. That is, there exists a bijection between any two bases.

Definition: $F \subseteq L$ field extension.
The degree of L over F is the dimension of L as an F-vector space, denoted $[L: F]$
When $[L: F] \in \mathbb{N}$ we say that L is a finite extension.
Example: $\mathbb{R} \subseteq \mathbb{C}$ finite extension, $[\mathbb{C}: \mathbb{R}]=2$
Remark: $[L: F]=1 \Longleftrightarrow L=F$
Lemma: $n, m \in \mathbb{N}$, field extensions $[L: K]=n,[K: F]=m$

$$
\underbrace{L^{\operatorname{deg} n} K^{\operatorname{deg} m} \supseteq}_{\operatorname{deg} n m}
$$

Then $[L: F]=n m$.
Proof: Let $\left\{u_{1}, \ldots, u_{m}\right\} \subseteq K$ be an F-basis for K
Let $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq L$ be an K-basis for L
Let $B=\left\{u_{i} v_{j}: i=1, \ldots, m, j=1, \ldots, n\right\}$
$|B|=n m$. We claim B is an F-basis for L.
$\operatorname{span}_{F}(B)=L \checkmark$
Let $a \in L$ we can write

$$
a=\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n}
$$

where $\lambda_{1}, \ldots, \lambda_{n} \in K$.
Write each

$$
\lambda_{i}=\alpha_{i, 1} u_{1}+\alpha_{i, 2} u_{2}+\cdots+\alpha_{i, m} u_{m}
$$

where $\alpha_{i, j} \in F$

$$
\begin{aligned}
a & =\sum_{i=1}^{n} \lambda_{i} v_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} \alpha_{i, j} u_{j}\right) v_{i} \\
a & =\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i, j} u_{j} v_{i} \in \operatorname{span}_{F}(B)
\end{aligned}
$$

B is linearly independent over F
Suppose $\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i, j} u_{j} v_{i}=0$ where $\alpha_{i, j} \in F$

$$
\Longrightarrow \sum_{i=1}^{n} \underbrace{\left(\sum_{j=1}^{m} \alpha_{i, j} u_{j}\right)} v_{i}=0
$$

since $u_{j} \in K, \alpha_{i, j} \in F$, the underbrace $\Longrightarrow \sum_{j=1}^{m} \alpha_{i, j} u_{j} \in K$
Since $\left\{v_{1}, \ldots, v_{n}\right\}$ are K-linearly independent
$\Longrightarrow \sum_{j=1}^{m} \alpha_{i, j} u_{j}=0$ for all $i=1, \ldots, n$.
Definition: $F \subseteq L$ field extension, $a \in L$.
a is algebraic over F if there exists a polynomial $f \in F[x]$ which is nonzero and such that $f(a)=0$. If every $a \in L$ is algebraic over F then we say that $F \subseteq L$ is an algebraic extension.
If $a \in L$ is not algebraic over F then we say it is transcendental over F.

Example:

(a) If $a \in F$ then a is F-algebraic, take $f=-a+x \in F[x]$
(b) $\mathbb{Q} \subseteq \mathbb{C}, i$ is algebraic over \mathbb{Q} since $f=1+x^{2} \in \mathbb{Q}[x]$ vanishes at i
(c) In fact $\mathbb{R} \subseteq \mathbb{C}$ is an algebraic extension.
$\rightarrow a+b i, a, b \in \mathbb{R}$, is a root of

$$
f=(x-a)^{2}+b^{2} \in \mathbb{R}[x]
$$

(d) Let F be any field.

Let $L=F(x)=$ fraction field of $F[x]$

$$
\underbrace{F \subseteq F[x] \subseteq F(x)=L}_{\text {field extension }}
$$

$a=x \in L$ is transcendental over F
\rightarrow Suppose $f \in F[x]$, such that $f(a)=0^{65)}$
$f(a)=f(x)$, i.e., $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$
$f(a)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0$ in $F[x]$
So f is the zero polynomial.
Theorem: Every finite extension of fields is an algebraic extension.

PMATH 345 Lecture 25: November 13, 2009

Proposition: Every finite field extension is algebraic.
Proof: $F \subseteq L,[L: F]=n$
Let $a \in L$.
Consider $\left\{a^{0}=1, a, a^{2}, \ldots, a^{n}\right\}=X \subseteq L$
case 1: some $a^{i}=a^{j}, i \neq j, 0 \leq i<j \leq n$
$\Longrightarrow 1=a^{j-1}$
$\Longrightarrow-1+a^{j-i}=0$
$\Longrightarrow f(a)=0$ where $f^{66)}=-1+x^{j-i} \in F[x]$
Therefore a is algebraic over F. \checkmark
(in fact a is algebraic over \mathbb{F}.)
case 2: otherwise X has $n+1$ many elements in it $\Longrightarrow X$ is F-linearly dependent Therefore there exist $a_{0}, \ldots, a_{n+1} \in F$ not all zero such that

$$
a_{0} \cdot 1+a_{1} \cdot a+a_{2} \cdot a^{2}+\cdots+a_{n} \cdot a^{n}=0
$$

Let $g=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]$
Then $g \neq 0$ but $g(a)=0$.
Therefore a is algebraic over F.
Definition: A monic polynomial is a polynomial with leading coefficient $=1$.

[^25]Proposition/Definition: $F \subseteq L$ field extension, $a \in L$ algebraic over F. There exists a unique monic polynomial $h \in F[x]$ of minimal degree such that $h(a)=0$. This h is called the minimal polynomial of a over F.
Proof: Note since a is algebraic over F, there exists $g \neq 0, g(a)=0, g \in F[x]$.
Let $c=$ leading coefficient of $g \neq 0, c \in F$ and let $g^{\prime}=\frac{1}{c} g$.
Then g^{\prime} is monic, and $g^{\prime} \neq 0$, and $g^{\prime}(a)=\frac{1}{c} g(a)=0$.
Hence there exists a monic polynomial $h \in F[x]$ of minimal degree, say n, such that $h(a)=0$.
Uniqueness: Suppose $f \in F[x]$ monic also of degree n, also $f(a)=0$.
By the division algorithm (i.e., $F[x]$ is a Euclidean domain) we can write

$$
f=h q+r \quad q, r \in F[x]
$$

and either $r=0$ or $\operatorname{deg} r<\operatorname{deg} h=n^{67)}$.

$$
\text { But } \begin{aligned}
r(a) & =f(a)-h q(a) \\
& =f(a)^{68)}-h(a)^{69)} q(a)=0
\end{aligned}
$$

Therefore $r=0$. So $f=h q$

$$
\begin{aligned}
n=\operatorname{deg} f & =\operatorname{deg} h+\operatorname{deg} q \\
& =n+\operatorname{deg} q \\
\Longrightarrow \operatorname{deg} q & =0 \\
\Longrightarrow q & \in F \backslash\{0\}
\end{aligned}
$$

leading coefficient $(h)^{70)}=$ leading coefficient $(f)^{71)} \cdot q$
Therefore $q=1$, therefore $f=h$.
Proposition: $F \subseteq L$ field extension, $a \in L$ algebraic over $F, h=$ minimal polynomial of a over $F \in$ $F[x]$. Then:
(a) h is irreducible
(b) If $g \in F[x]$ and $g(a)=0$ then $h \mid g$. (Hence a polynomial vanishes at $a \Longleftrightarrow h$ divides it.)
(c) If $g \in F[x]$, monic and irreducible and $g(a)=0$ then $g=h$.

Proof:

(a) Suppose $h=f g . h(a)=0 \Longrightarrow f(a) g(a)=0$

$$
\Longrightarrow f(a)=0^{72)} \Longrightarrow \operatorname{deg} f=\operatorname{deg} h \text { by minimality }{ }^{73)} \Longrightarrow \operatorname{deg} g=0^{74)} \Longrightarrow g \text { is a unit }^{75)}
$$

But $\operatorname{deg} f \leq \operatorname{deg} h, \operatorname{deg} g \leq \operatorname{deg} h$.
Therefore h is irreducible.
(b) Suppose $g(a)=0, g \neq 0$

$$
g=h q+r \quad q, r \in F[x]
$$

either $r=0$ or $\operatorname{deg} r<\operatorname{deg} h$.
Again by minimality of $\operatorname{deg} h$, and as $r(a)=0$

$$
\begin{aligned}
& \Longrightarrow r=0 \\
& \Longrightarrow g-h q \Longrightarrow h \mid g \quad \checkmark
\end{aligned}
$$

[^26](c) $g \in F[x]$, monic, irreducible, $g(a)=0$.

By (b), $h \mid g \Longrightarrow g=h f$ for some $f \in F[x]$. g irreducible $\Longrightarrow h$ or f is a unit
Since $h(a)=0, h$ is not a nonzero constant polynomial
$\Longrightarrow h$ is not a unit
$\Longrightarrow f$ is a unit, $\operatorname{deg} f=0, f \in F$. Since

$$
\begin{aligned}
1 & =\text { leading coefficient of } g \\
& =\text { leading coefficient of } h \\
\Longrightarrow f & =1
\end{aligned}
$$

Therefore $g=h$.
Remark: $a \in L \supseteq F, F$-algebraic

$$
I=\left\{f \in F[x]: f(a)^{76)}=0\right\} \text { ideal in } F[x]
$$

(b) says $I=(h)$
where $h=$ minimal polynomial of a over F.
Example: $\mathbb{Q} \subseteq \mathbb{R}, \sqrt{2}$
$x^{2}-2$ vanishes at $\sqrt{2}$ and monic, is irreducible in $\mathbb{Q}[x]$ by Eisenstein $\Longrightarrow x^{2}-2$ is the minimal polynomial of $\sqrt{2}$.

Definition: $L \supseteq F, a \in L$ algebraic over F.

$$
\operatorname{deg}(a / F)^{77)}=\text { degree of the minimal polynomial }
$$

Corollary: $F \subseteq K \subseteq L, a \in L$ algebraic over F.

$$
\operatorname{deg}(a / F) \geq \operatorname{deg}(a / K)
$$

Proof:

$h_{1}=$ minimal polynomial of a over $F \in F[x]$
$h_{2}=$ minimal polynomial of a over $K \in K[x]$

$$
\begin{gathered}
h_{1} \in K[x], h_{1}(a)=0 \stackrel{(\mathrm{~b})}{\Longrightarrow} h_{2} \mid h_{1} \\
\Longrightarrow \operatorname{deg}{h_{2}}^{78)} \leq \operatorname{deg}{h_{1}}^{79)}
\end{gathered}
$$

PMATH 345 Lecture 26: November 16, 2009

[^27]Definition: $F \subseteq L$ field extension.
Let $R \subseteq F$ subring of F such that
$F=Q(R)$ (special case: $R=F)$
$a_{1}, \ldots, a_{n} \in L$

$$
\begin{aligned}
R\left[a_{1}, \ldots, a_{n}\right] & =\text { The subring of } L \text { generated by } a_{1}, \ldots, a_{n} \text { over } \mathbb{R} \\
& =\text { intersection of all subrings of } L \text { that contain } R \text { and } a_{1}, \ldots, a_{n} \\
F\left(a_{1}, \ldots, a_{n}\right) & =\text { the subfield of } L \text { generated by } a_{1}, \ldots, a_{n} \text { over } F \\
& =\text { fraction field of } R\left[a_{1}, \ldots, a_{n}\right] \\
& L-F\left(a_{1}, \ldots, a_{n}\right)-R\left[a_{1}, \ldots, a_{n}\right]-R
\end{aligned}
$$

Exercises:

(a) $R\left[a_{1}, \ldots, a_{n}\right]$ is a subring of L
(b) $F\left(a_{1}, \ldots, a_{n}\right)$ is the intersection of all subfields of L with respect to a_{1}, \ldots, a_{n} and F.
(c) $R\left[a_{1}, \ldots, a_{n}\right]=\left\{f\left(a_{1}, \ldots, a_{n}\right): f \in R\left[a_{1}, \ldots, a_{n}\right]^{80)}\right\} \subseteq L$

Need:

- Show \supseteq
- Show RHS is a subring of L and contains R, a_{1}, \ldots, a_{n}
(d)

$$
F\left(a_{1}, \ldots, a_{n}\right)=\left\{\frac{f\left(a_{1}, \ldots, a_{n}\right)}{g\left(a_{1}, \ldots, a_{n}\right)}: f, g \in F\left[x_{1}, \ldots, x_{n}\right], g\left(a_{1}, \ldots, a_{n}\right) \neq 0\right\}
$$

Theorem: $F \subseteq L$ field extension, $a \in L, F$-algebraic, $h=$ minimal polynomial of a over F

$$
F[x] /(h) \simeq F[a]=F(a)
$$

and $[F(a): F]=\operatorname{deg} h$
Proof: Consider

$$
\begin{gathered}
\phi: F[x] \rightarrow F[a] \\
f \mapsto f(a)
\end{gathered}
$$

"evaluation at a map" ring homomorphism
By exercise (c), ϕ is surjective

$$
\xlongequal{\text { 1st iso. thm }} F[x] / \operatorname{ker} \phi \simeq F[a]
$$

If $h \mid f$ then $f=h g$

$$
\begin{aligned}
& \Longrightarrow f(a)=h(a) g(a)=0 \\
& \Longrightarrow f \in \operatorname{ker} \phi
\end{aligned}
$$

We have proved the reverse: if $f(a)=0$ then $h \mid f$.
Therefore $\operatorname{ker} \phi=(h)$, therefore $F[x] /(h) \simeq F[a]$

$$
\begin{aligned}
h \text { irreducible nonzero } & \Longrightarrow(h) \neq(0) \text { is prime in } F[x], F[x] \text { pid } \\
& \Longrightarrow(h) \text { is maximal } \\
& \Longrightarrow F[a] \text { is a field } \\
& \Longrightarrow F[a]=F(a)
\end{aligned}
$$

[^28]$[$ Why? $(h) \subseteq(f) \subseteq F[x]$
$\Longrightarrow h=f g$ for some g
$\Longrightarrow f$ is a unit $\Longrightarrow(f)=F[x]$
or
g is a unit $\Longrightarrow f=g^{-1} h \Longrightarrow f \in(h) \Longrightarrow(f)=(h)$
$h=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$
$m=\operatorname{deg} h, a_{m} \neq 0$
$B=\left\{1, a, a^{2}, \ldots, a^{m-1}\right\} \subseteq F(a)$

Claim: B is F-linearly independent
Proof: $r_{0} \cdot 1+r_{1} \cdot a+\cdots+r_{m-1} a^{m-1}=0, r_{i} \in F$
$\Longrightarrow f(a)=0$ where $f=r_{0}+r_{1} x+\cdots+r_{m-1} x^{m-1}$
$m=$ smallest degree of a nonzero polynomial vanishing at a
$\Longrightarrow f=0 \Longrightarrow r_{i}=0$: Claim 1
Claim 2: $\operatorname{span}_{F}(B)=F(a)$
Proof: $b \in F(a)=F[a]$
$\Longrightarrow b=f(a)$ for some $f \in F[x]$
$f=r_{0}+r_{1} x+\cdots+r_{n} x^{n}$
$n=\operatorname{deg} f \quad r_{n} \neq 0$
Show $f(a) \in \operatorname{span}_{F}(B)$ by induction on n.
$n<m: f(a)=r_{0}+r_{1} a+\cdots+r_{n} a^{n} \in \operatorname{span}_{F}(B)$
since $1, a, \cdots, a^{n} \in B \checkmark$
$n=m: b=f(a)=r_{0}+\cdots+r_{m} a^{m}$

$$
\Longrightarrow a_{m}=-\left(\frac{r_{0}}{r_{m}}+\frac{r_{1}}{r_{m}} a+\cdots+\frac{r_{m-1}}{r_{m}} a^{m-1}\right) \in \operatorname{span}_{F}(B)
$$

Therefore 1, $a, \ldots, a^{m} \in \operatorname{span}_{F}(B)$
$\Longrightarrow b=r_{0}+r_{1} a+\cdots+r_{m} a^{m} \in \operatorname{span}_{F}(B)$
$n>m$: Induction Hypothesis: $1, a, \ldots, a^{n-1} \in \operatorname{span}_{B}(F)$

$$
\begin{aligned}
a^{n}=a\left(a^{n-1}\right) & =a\left(s_{0}+s_{1} a+\cdots+s_{m-1} a^{m-1}\right) \\
& =s_{0} a+s_{1} a^{2}+\cdots+s_{m-1} a^{m} \\
& \in \operatorname{span}_{F}\left\{a, a^{2}, \ldots, a^{m}\right\} \subseteq \operatorname{span}_{F}(B)
\end{aligned}
$$

since $B=\left\{1, \ldots, a^{m-1}\right\}$ and $a^{m} \in \operatorname{span}_{F}(B)$ by case $m=n$ $b=f(a)=r_{0}+r_{1} a+\cdots+r_{n} a^{n} \in \operatorname{span}_{F}(B):$ Claim 2

$$
[F(a): F]=|B|=m=\operatorname{deg} h
$$

Corollary: The above proof shows more:
$F \subseteq L$ field extension, $a \in L$ algebraic over $F, \operatorname{deg}(a / F)=m$ then $\left\{1, a, \ldots, a^{m-1}\right\}$ is an F-basis for $F(a)$.

PMATH 345 Lecture 27: November 18, 2009

Last time: $F \subseteq L, a \in L, F$-algebraic. $\operatorname{deg}(a / F)=m$.
$\{1, a\}$ is an F-basis for $F(a)$.
Example:

$$
\begin{gathered}
\underset{\mathbb{Q}(i)}{ } \begin{array}{c}
\operatorname{deg}(i / \mathbb{Q})=2 \\
\mathbb{Q} \quad\{1, i\} \\
\text { is a } \mathbb{Q} \text {-basis }
\end{array} x^{2}+1 \\
\mathbb{Q}(i)^{81)}=\{a+b i: a, b \in \mathbb{Q}\} \\
\mathbb{Q}(\sqrt{2})^{82)} \\
\mid\}^{2} \quad \text { Basis: }\{1, \sqrt{2}\} \\
\mathbb{Q} \\
\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} \stackrel{\text { def/ex }}{=}\{f(\sqrt{2}): f \in \mathbb{Q}[x]\} \\
\mathbb{Q}(\sqrt[3]{2}) \\
\mid\} 3 \\
\mathbb{Q}
\end{gathered} \begin{aligned}
& \mathbb{Q} \text {-basis: }\left\{1,2^{1 / 3}, 2^{2 / 3}\right\} \quad x^{3}-2
\end{aligned}
$$

Corollary: $F \subseteq K$ algebraic extension of fields
$K \subseteq L$ algebraic extension of fields
Then L is algebraic over F.
Proof: $a \in L, a$ is algebraic over K
$\Longrightarrow h(a)=0$ for some $h=b_{0}+{ }_{1} x+\cdots+b_{n} x^{n} \in K[x], b_{n} \neq 0$
${ }_{K}^{\text {alg }}$
K
| alg
b_{i} s are in K hence algebraic over F.

$$
\begin{gathered}
F\left(b_{0}\right)\left(b_{1}\right)\left(b_{2}\right) \cdots\left(b_{n}\right) \underset{\mathrm{Ex}}{=} F\left(b_{0}, \ldots, b_{n}\right) \\
\vdots \\
F\left(b_{0}\right)\left(b_{1}\right) \\
\text { finite } \mid \\
F\left(b_{0}\right) \\
\mathbb{N} \ni \operatorname{deg}\left(b_{0} / F\right) \mid \\
F
\end{gathered}
$$

Therefore $\left[F\left(b_{0}, \ldots, b_{n}\right): F\right] \in \mathbb{N}$.

$$
\begin{gathered}
F\left(b_{0}, \ldots, b_{n}\right)(a) \\
\| \\
F\left(b_{0}, \ldots, b_{n}, a\right) \\
\mid \text { finite } \\
F\left(b_{0}, \ldots, b_{n}\right) \\
\mid \text { finite } \\
F
\end{gathered}
$$

a is algebraic over $F\left(b_{0}, \ldots, b_{n}\right)$ since $h \in F\left(b_{0}, \ldots, b_{n}\right)[x], h(a)=0$
Therefore $\left[F\left(b_{0}, \ldots, b_{n}, a\right): F\right] \in \mathbb{N}$
$\Longrightarrow F\left(b_{0}, \ldots, b_{n}, a\right)$ is algebraic over F
$\Longrightarrow a$ is algebraic over F.

Example:

[^29]\[

$$
\begin{gathered}
x^{2}-2=\text { minimal polynomial of } \sqrt{2} \text { over } \mathbb{Q} \\
x^{2}-3=\text { minimal polynomial of } \sqrt{3} \text { over } \mathbb{Q} \\
\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3}) \\
{[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})]=\operatorname{deg}(\sqrt{3} / \mathbb{Q}(\sqrt{2})) \leq \operatorname{deg}(\sqrt{3} / \mathbb{Q})=2}
\end{gathered}
$$
\]

If $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})]=1 \Longrightarrow \mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2})$
$\Longrightarrow \sqrt{3} \in \mathbb{Q}(\sqrt{2}) \Longrightarrow \sqrt{3}=a+b \sqrt{2}, a, b \in \mathbb{Q}$
$\Longrightarrow 3=a^{2}+2 a b \sqrt{2}+2 b^{2} \Longrightarrow a b=0 \Longrightarrow 3=2 b^{2}$ or $3=a^{2}$, contradiction
Therefore $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})]=2$
Therefore $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$
Example: Suppose $F \subseteq L$ field extension $a, b \in L, F$-algebraic

$$
\begin{aligned}
\operatorname{deg}(a / F) & =m \quad \operatorname{gcd}(m, n)=1 \\
\operatorname{deg}(b / F) & =n \quad
\end{aligned}
$$

Then: $[F(a, b): F]=n m$

n and m must divide $[F(a, b): F]$
$\Longrightarrow n m \mid[F(a, b): F] \Longrightarrow F[F(a, b): F] \geq n m$

$$
\begin{aligned}
{[F(a, b): F] } & =[F(a, b): F(a)] \cdot[F(a): F] \\
& =\operatorname{deg}(b / F(a)) \cdot \operatorname{deg}(a / F) \\
& \leq n \cdot m
\end{aligned}
$$

F field. $g \in F[x]$ irreducible
(g) is a nonzero prime ideal in the pid $F[x]$
$\Longrightarrow(g)$ is maximal ideal
$L:=F[x] /(g)$ is a field

$$
\begin{aligned}
\phi: & F \rightarrow L \\
& r \mapsto r+(g) \quad \text { homomorphism }
\end{aligned}
$$

Claim: ϕ is en embedding Proof:

$$
\begin{aligned}
r \in F, r \neq 0, \phi(r)=0 & \Longrightarrow r+(g)=0 \text { in } L \\
& \Longrightarrow r \in(g) \Longrightarrow(g)=F[x] \text { contradiction }
\end{aligned}
$$

Identify F with $\phi(F)$ and we have a field extension

$$
L=F[x] /(g)
$$

Proposition: F field, $g \in F[x]$ irreducible. $L=F[x] /(g)$
Then $[L: F]=\operatorname{deg} g$
Proof:

$$
\text { Let } \begin{aligned}
a & :=x+(g) \quad \text { Call }(g)=I . \\
& =x+I \in L
\end{aligned}
$$

Claim: $L=F(a)$
Proof: Let $\alpha \in L . \alpha=f+I$ for some $f \in F[x]$
While $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \mathrm{~s} \in F$.

$$
\begin{aligned}
\alpha=f+I & =\left(a_{0}+\cdots+a_{n} x^{n}\right)+I \quad \text { in } L \\
& =a_{0}+a_{1}(x+I)+a_{2}(x+I)^{2}+\cdots+a_{n}(x+I)^{n} \\
& =f(a)
\end{aligned}
$$

Therefore $L=F[a]=F(a)$.
Claim 2: $g(a)=0$ in L
Proof:

$$
\begin{aligned}
g & =b_{0}+b_{1} x+\cdots+b_{m} x^{m} \quad m=\operatorname{deg} g \\
g(a) & =b_{0}+b_{1} a+\cdots+b_{m} a^{m} \\
& =b_{0}+\left(b_{1} x+I\right)+\cdots+\left(b_{m} x^{m}+I\right) \\
& =\left(b_{0}+b_{1} x+\cdots+b_{m} x^{m}\right)+I \\
& =g+I=g+(g) \\
& =0 \text { in } L
\end{aligned}
$$

Therefore $\min (a / F)=\frac{1}{b m} \cdot g$

$$
\text { Therefore } \begin{aligned}
{[L: F] } & =\operatorname{deg}\left(\frac{1}{b m} g\right) \\
& =\operatorname{deg} g
\end{aligned}
$$

PMATH 345 Lecture 28: November 20, 2009

Kronecker's Theorem: F field, $f \in F[x], \operatorname{deg} f>0$.
There exists a field extension $L \supseteq F$ in which f has a root, and $[L: F] \leq \operatorname{deg} f$.
Proof: Let $g \in F[x]$ be irreducible and $g \mid f$

$$
\begin{gathered}
L=F[x] /(g) \\
\mid \\
F
\end{gathered}
$$

By the previous proposition, $[L: F]=\operatorname{deg} g \leq \operatorname{deg} f$ and if

$$
a:=x+(g) \in L
$$

then $g(a)=0$
$\Longrightarrow f(a)=0$.
Corollary: F field, $f \in F[x]$ monic, $\operatorname{deg} f=n>0$. There exists a field extension $L \supseteq F$ such that
(i) $f=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$ in $L[x]$ where $a_{1}, \ldots, a_{n} \in L$
(ii) $[L: F] \leq n$!

Proof: Apply Kronecker's to f get $\underset{F}{\mid}$ in which f has a root, say a_{1}. By factor theorem, $f=\left(x-a_{1}\right) f_{1}$ in $L_{1}[x]$

$$
f_{1} \in L_{1}[x] \quad \operatorname{deg} f_{1}=n-1
$$

Iterate, $n-1$ times to get

$$
f=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right) f_{n-1}
$$

where $a_{i} \in L_{i}, f_{n-1} \in L_{n-1}[x]$

$\Longrightarrow \operatorname{deg} f_{n-1}=1$ and monic
$\Longrightarrow f_{n-1}=\left(x-a_{n}\right)$ for some $a_{n} \in L_{n-1}$

$$
\left[L_{i+1}: L_{i}\right] \leq \operatorname{deg} f_{i}=n-i
$$

$L:=L_{n-1}$ then $[L: F]=n$! and L works.
Definition: F field, $f \in F[x], \operatorname{deg} f>0$, a splitting field of f over F is a minimal field extension $L \supseteq F$ over which $f=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right), c, a_{1}, \ldots, a_{n} \in L$ (i.e., f factors into a product of linear polynomials.)

Example:

(i) Suppose $L \supseteq F$ and in $L[x], f=c\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)$ then $F\left(a_{1}, \ldots, a_{n}\right)$ is a splitting field
(ii) If $L \supseteq F$ is the splitting field of f over F then, $L=F\left(a_{1}, \ldots, a_{n}\right)$ where $a_{1}, \ldots, a_{n} \in L$ are the roots of f.

Note:

- The roots may repeat
- As $L[x]$ is a ufd, this factorization is unique

Definition: $f \in F[x]$ has repeated roots if in some extension $L \supseteq F, f=(x-a)^{2} g$ for some $a \in L$, $g \in L[x]$.
Example: f has repeated roots if and only if it has a repeated root in a splitting field.
Theorem: F field, $f \in F[x], \operatorname{deg} f>0$.
f has repeated roots if and only if $\operatorname{gcd}\left(f, f^{\prime}\right)=1^{83)}$ where f^{\prime} is the formal derivative of f with respect to x. So

$$
\begin{aligned}
f & =a_{0}+a_{1} x+\cdots+a_{n} x^{n} \quad n=\operatorname{deg} f \\
f^{\prime} & :=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1} \quad \text { in } L[x]
\end{aligned}
$$

Remark: A natural choice of representatives of association classes of primes in $F[x]$ is the set of monic irreducible polynomials: \mathcal{P}.
Proof: Let L be a splitting field for f over F.
If $f=(x-a)^{2} g, g \in L[x], a \in g$
then $f^{\prime}=2(x-a) g+(x-a)^{2} g^{\prime} \rightarrow$ exercise
$f^{\prime}(a)=0$ also.
Let $I=\left(f, f^{\prime}\right)$ in $F[x]$.
Since $f(a)=f^{\prime}(a)=0^{84)} \Longrightarrow$ for all $h \in I, h(a)=0^{85)} \Longrightarrow 1 \notin I \Longrightarrow I \subsetneq L[x]$.
$F[x]$ is a pid $\Longrightarrow I=(h)$ for some nonzero nonunit h.
$f, f^{\prime} \in(h)$
$\Longrightarrow h \mid f$ and $h \mid f^{\prime}$
8 83) in $F[x]$
84) in L
85) in L
$\Longrightarrow \operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$
Conversely, suppose $a_{1}, \ldots, a_{n} \in L$, roots of f, are all distinct

$$
\begin{aligned}
f & =c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) \quad \text { in } L[x] \\
f^{\prime} & =\sum_{i=1}^{n} \frac{f}{\left(x-a_{i}\right)} \\
& =c\left(\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)+\left(x-a_{1}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)+\cdots\left(x-a_{1}\right) \cdots\left(x-a_{n-1}\right)\right)
\end{aligned}
$$

Since $a_{i} \neq a_{j}$ for all $i \neq j$,

$$
f^{\prime}\left(a_{i}\right) \neq 0 \quad \text { for any } \quad i=1, \ldots, n
$$

In fact, $f^{\prime} \neq 0$.
$\operatorname{gcd}\left(f, f^{\prime}\right)=?$
Suppose $g \mid f$ and $g \mid f^{\prime}$.
$g \in F[x], g$ not a unit
$g \in L[x]$, and $\operatorname{deg} g>0$

there is $L^{\prime} \supseteq L$ with a roots of g in L^{\prime}, say b.
$\Longrightarrow f(b)=0=f^{\prime}(b)$
But $f(b)=0 \Longrightarrow b=a_{i}$ for some $i=1, \ldots, n$.
Contradiction: $f^{\prime}\left(a_{i}\right) \neq 0$ for any $i=1, \ldots, n$.

PMATH 345 Lecture 29: November 23, 2009

Definition: F field, $f \in F[x]$ irreducible is separable if it has no repeated roots.
Corollary: $f \in F[x]$ irreducible, f separable $\Longleftrightarrow f^{\prime} \neq 0$
Proof: f separable $\Longrightarrow f^{\prime} \neq 0$ by the previous theorem
(in fact we showed $f^{\prime}(a) \neq 0$ for any root a of f in a splitting field of f.)
Suppose $f^{\prime} \neq 0$ and f has repeated roots.
$\xrightarrow{\text { thm }} \operatorname{gcd}\left(f, f^{\prime}\right) \neq 1$. Since f is irreducible, the prime factorization of f is $f=c g$ where $c \in F \backslash\{0\}$, $g \in F[x]$ monic irreducible
$\operatorname{gcd}\left(f, f^{\prime}\right) \neq 1 \Longrightarrow g\left|f^{\prime} \Longrightarrow f\right| f^{\prime}$. But $\operatorname{deg} f^{\prime} \leq \operatorname{deg} f-1<\operatorname{deg} f$.
Corollary: $\operatorname{char}(F)=0, f \in F[x]$ irreducible, then f is separable.
Proof: $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, n=\operatorname{deg} f, a_{n} \neq 0, n>0$
$f^{\prime}=a_{1}+2 a_{2}+\cdots+n a_{n}^{n-1}$
$n \neq 0$ in F since \mathbb{Z} embeds in F
(i.e., $\underbrace{1+1+\cdots+1}_{n \text { times }} \neq 0$ in $F, n a_{n}=(1+\cdots+1) a_{n})$
$\Longrightarrow n a_{n} \neq 0 \Longrightarrow f^{\prime} \neq 0$.
Example: \mathbb{Z}_{2}, t indeterminant

$$
\begin{gathered}
L=\mathbb{Z}_{2}(t) \\
\mid \\
F=\mathbb{Z}_{2}\left(t^{2}\right)
\end{gathered}
$$

$f \in F[x]$
$f=-t^{2}+x^{2}$
Since $t \notin F$ it's not hard to check that t^{2} is prime in F. Apply Eisenstein $\Longrightarrow f$ is irreducible $F[x]$

In L,

$$
\begin{aligned}
f=x^{2}-t^{2} & =(x-t)(x+t) \\
& =(x-t)^{2} \quad \text { since } 1=-1 \text { in } L
\end{aligned}
$$

$\Longrightarrow f$ not separable.
Note:

- $f^{\prime}=2 x=0$ in F
- $f=$ minimal polynomial of f over F

10. Finite fields

F finite field
$\Longrightarrow \mathbb{Q} \subsetneq F$
$\Longrightarrow \operatorname{char}(F) \neq 0$
$\Longrightarrow \operatorname{char}(F)=p, p$ prime
$\mathbb{Z}_{p} \subseteq F$
Since F is finite $\Longrightarrow\left[F: \mathbb{Z}_{p}\right] \in \mathbb{N}$
$\Longrightarrow F$ is an algebraic extension of \mathbb{Z}_{p}
F finite dimensional over \mathbb{Z}_{p}, say $\operatorname{dim}=n$
\Longrightarrow As vector spaces $F \approx\left(\mathbb{Z}_{p}\right)^{n}$
$\Longrightarrow|F|=p^{n}$
Proposition: F finite field then $\operatorname{char}(F)=p, p$ a prime
F is a finite extension of \mathbb{Z}_{p}, and cardinality of F is a power of p.
Suppose $|F|=p^{n}=q$.
If $a \in F \backslash\{0\}$,

$$
\left\{1, a, a^{2}, \ldots, a^{q-1}\right\} \subseteq F \backslash\{0\}
$$

$\Longrightarrow a^{i}=a^{j}$ for some $0 \leq i<j \leq q-1$.
$\Longrightarrow a^{j-i}=1,0<j-i<q$
Definition: F finite field, $a \in F \backslash\{0\}$
The order of $a, o(a)$, is the least positive integer m such that $a^{m}=1$.
\rightarrow Always exists by previous remarks, and $o(a) \leq q-1$

$$
q=p^{n}=|F|
$$

Lemma: $|F|=p^{n}=q . a, b \in F \backslash\{0\}, k>0$
(a) $a^{k}=1 \Longrightarrow o(a) \mid k$
(b) $o\left(a^{k}\right)=\frac{o(a)}{\operatorname{gcd}(k, o(a))}$
(c) If $\operatorname{gcd}(o(a), o(b))=1$ then $o(a b)=o(a) \cdot o(b)$.

Proof:
(a) $k=q o(a)+r, 0 \leq r<o(a)$

$$
1=a^{k}=\left(a^{o(a)}\right)^{q} \cdot a^{r}=a^{r}
$$

$\Longrightarrow r=0 \checkmark$
(b) $d=\operatorname{gcd}(k, o(a))$

$$
\left(a^{k}\right)^{o(a) / d}=a^{k o(a) / d}=\left(a^{o(a)}\right)^{k / d}=1
$$

$\xlongequal{(\mathrm{a})} o\left(a^{k}\right) \left\lvert\, \frac{o(a)}{d}\right.$
On the other hand,

$$
a^{k \cdot o\left(a^{k}\right)}=\left(a^{k}\right)^{o\left(a^{k}\right)}=1
$$

$\underset{(\mathrm{a})}{\Longrightarrow} o(a) \mid k \cdot o\left(a^{k}\right)$
$\left.\Longrightarrow \frac{o(a)}{d} \right\rvert\, \frac{k}{d} \cdot o\left(a^{k}\right)$
since $\operatorname{gcd}\left(\frac{o(a)}{d}, \frac{k}{d}\right)=1$
$\left.\Longrightarrow \frac{o(a)}{d} \right\rvert\, o\left(a^{k}\right)$
Therefore $o\left(a^{k}\right)=\frac{o(a)}{d}$
(c)

$$
\begin{aligned}
(a b)^{o(a) \cdot o(b)} & =a^{o(a) \cdot o(b)} \cdot b^{o(a) \cdot o(b)} \\
& =1
\end{aligned}
$$

$\xrightarrow{(\mathrm{a})} o(a b) \mid o(a) o(b)$

$$
\begin{aligned}
a^{o(a b) \cdot o(b)} & =a^{o(a b) \cdot o(b)} \cdot b^{o(a b) \cdot o(b)} \\
& =(a b)^{o(a b) o(b)}=1
\end{aligned}
$$

$\Longrightarrow o(a)|o(a b) \cdot o(b) \Longrightarrow o(a)| o(a b)$
Similarly $o(b) \mid o(a b)$.
Since $\operatorname{gcd}(o(a), o(b))=1$
Therefore $o(a) o(b) \mid o(a b)$
Therefore $o(a b)=o(a) o(b)$
Theorem: $|F|=p^{n}=q$
(a) There exists $a \in F \backslash\{0\}$ such that $o(a)=q-1=|F|-1$.
(b) Every element of F is a root of $x^{q}-x \in F[x]$

Corollary: $a \in F \backslash\{0\} \Longrightarrow o(a) \mid q-1$.
Proof: Theorem (b) $\Longrightarrow a^{q}=a \Longrightarrow a^{q-1}=1$
$\xrightarrow{\text { Lemma }}{ }^{\mathrm{a})} o(a) \mid q-1$.
Definition: $a \in F$ is an primitive element if $o(a)=|F|-1$
Remark: If a is primitive in F, then

$$
\left\{1, a, a^{2}, \ldots, a^{q-2}\right\}=F \backslash\{0\} \quad q=|F|
$$

PMATH 345 Lecture 30: November 25, 2009

Theorem: $|F|=p^{n}=q$ field
(a) There exists: $a \in F \backslash\{0\}, o(a)=q-1$
$\hookrightarrow a$ is called a primitive element
(b) Every element of F is a root of $x^{q}-x$

Remark: If $F=\mathbb{Z}_{p}$ then (b) is Fermat's little theorem
Proof: Since every element of $F \backslash\{0\}$ has finite order $\leq q-1$ there exists $m>0$ such that $u^{m}=1$ for all $u \in F \backslash\{0\}$

$$
\hookrightarrow \quad m=\prod_{a \in F \backslash\{0\}} o(a)
$$

Let N be least such $N \leq \prod_{a \in F \backslash\{0\}} o(a)$
But $x^{N}-1$ has at most N roots in $F, 0$ is not such a root
$\Longrightarrow q-1 \leq N$
Suppose $N=1$
$\Longrightarrow F=\mathbb{Z}_{2}$
\Longrightarrow (a) is true with $a=1$
(b) is true as $F=\{0,1\}$

We may assume $N>1$
$N=p_{1}^{k_{1}} \cdots p_{l}^{k_{l}}$ prime factorization
Claim: For any $j=1, \ldots, l$, there is an element $a_{j} \in F \backslash\{0\}, o\left(a_{j}\right)=p_{j}^{k_{j}}$
Proof: Fix $j .0<\frac{N}{p_{j}}<N$
\Longrightarrow there is $b_{j} \in F \backslash\{0\}$

$$
b_{j}^{N / p_{j}} \neq 1
$$

let $a_{j}=b_{j}$

$$
\begin{aligned}
a_{j}^{p_{j}^{k_{j}}} & =b_{j}^{\left(N / p_{j}^{k_{j}}\right) p_{j}^{k_{j}}}=b_{j}^{N}=1 \xlongequal{\text { prev. prop }} o\left(a_{j}\right) \mid p_{j}^{k_{j}} \\
a_{j}^{p_{j}^{k_{j}-1}} & =b_{j}^{\left(N / p_{j}^{k_{j}}\right) p_{j}^{k_{j}-1}}=b_{j}^{N / p_{j}} \neq 1 \Longrightarrow o\left(a_{j}\right) \nmid p_{j}^{k_{j}-1}
\end{aligned}
$$

Therefore $o\left(a_{j}\right)=p_{j}^{k_{j}}$: claim.
Since $o\left(a_{i}\right)$ is coprime with $o\left(a_{j}\right)$ for all $i \neq j$

$$
\begin{aligned}
\stackrel{\text { prev. prop }(\mathrm{c})}{ } o\left(a_{1} \cdots a_{l}\right) & =o\left(a_{1}\right) \cdots o\left(a_{l}\right) \\
& =p_{1}^{k_{1}} \cdots p_{l}^{k_{l}}=N
\end{aligned}
$$

Let $a=a_{1} \cdots a_{l} . \quad N=o(a) \leq q-1$
Therefore $N=q-1$ and a is a prime element.
By choice, $u^{N}=1$ for all $u \in F \backslash\{0\}$.
$\Longrightarrow u$ is a root of $x^{N}-1=x^{q-1}-1$ for all $u \in F \backslash\{0\}$.
$\Longrightarrow u$ is a root of $x^{q}-x$ for all $u \in F$.
Corollary: $f \in \mathbb{Z}_{p}[x]$ irreducible $\operatorname{deg} f=n$
$\Longrightarrow f \mid x^{p^{n}}-x$
Proof: Consider

$$
\begin{aligned}
& F:=\mathbb{Z}_{p}[x] /(f) \\
& \mid \\
& \mathbb{Z}_{p}
\end{aligned}
$$

We know that $F=\mathbb{Z}_{p}(a)$ where $a:=x+(f)$ and a is algebraic over \mathbb{Z}_{p} and $f=$ minimal polynomial of a over \mathbb{Z}_{p}.
$\Longrightarrow\left[F: \mathbb{Z}_{p}\right]=n$
$\Longrightarrow|F|=p^{n}$
By Theorem (b) every element of F is a root of $x^{p^{n}}-x$.
$\Longrightarrow a^{p^{n}}-a=0$
$\Longrightarrow f \mid x^{p^{n}}-x$
Proposition: $|F|=q=p^{n}$ field.
There are $\phi(q-1)$ primitive elements in F.
$\hookrightarrow \phi$ Euler-phi function
Proof: Choose a primitive.

$$
F \backslash\{0\}=\left\{1, a, a^{2}, \ldots, a^{q-2}\right\}
$$

We want to know how many of the a^{k} s are primitive. a^{k} primitive if and only if

$$
\begin{aligned}
& o\left(a^{k}\right)=q-1 \Longleftrightarrow \\
& \frac{o(a)}{\operatorname{gcd}(k, o(k))}=q-1 \Longleftrightarrow \frac{q-1}{\operatorname{gcd}(k, q-1)}=q-1 \\
& \Longleftrightarrow \operatorname{gcd}(k, q-1)=1
\end{aligned}
$$

By definition there are $\phi(q-1)$ many such $k<q-1$.
Proposition: Every finite field is a simple algebraic extension of its prime subfield. That is, $F=\mathbb{Z}_{p}(a)$ where $a \in F$ is algebraic.
Proof: Let $a \in F$ be primitive.

$$
\begin{aligned}
F & =\left\{\stackrel{0}{0}, \stackrel{1}{1}, \stackrel{x}{a}, x^{2}, \ldots, a^{2}, \ldots-2\right. \\
& \Longrightarrow F \subseteq \mathbb{Z}_{p}(a) \Longrightarrow F=\mathbb{Z}_{p}(a)
\end{aligned}
$$

Theorem: Let p be a prime, $n>0$.
(a) There exists a field of size p^{n}.
(b) Any two fields of size p^{n} are isomorphic

Proof: $f=x^{p^{n}}-x \in \mathbb{Z}_{p}[x]$.
L
Let | be a splitting field of f over \mathbb{Z}_{p}.
\mathbb{Z}_{p}
Let $F \subseteq L$ be the set of roots of f in L.
Since $f^{\prime}=p^{n} x^{p^{n}-1}=-1$
$\operatorname{gcd}\left(f, f^{\prime}\right)=1$
$\Longrightarrow f$ has no repeated roots in L
$\Longrightarrow|F|=p^{n}$
We show F is a subfield of L

- $0^{p^{n}}-0=0 \Longrightarrow 0 \in F$
- $1^{p^{n}}-1=0 \Longrightarrow 1 \in F$
-

$$
\begin{aligned}
(-1)^{p^{n}} & = \begin{cases}1 & \text { if } p=2 \\
-1 & \text { otherwise }\end{cases} \\
& =-1 \Longrightarrow-1 \in F
\end{aligned}
$$

- $a, b \in F \Longrightarrow(a b)^{p^{n}}=a^{p^{n}} b^{p^{n}}=a b \Longrightarrow a b \in F$
- $a \in F \Longrightarrow-a=(-1) a \in F$
- $a, b \in F \Longrightarrow(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}+\binom{p^{n}}{1} a^{p^{n}-1} b+\cdots$ since $\operatorname{char}(L)=p$
all the other binomial coefficients being divisible by p are equal to 0 .
$\Longrightarrow(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}=a+b$
$\Longrightarrow a+b \in F$
- $a \in F \backslash\{0\} \Longrightarrow \exists b \in L, b=a^{-1}$

$$
\begin{aligned}
a b & =1 \\
(a b)^{p^{n}} & =1 \\
a^{p^{n}} b^{p^{n}} & =1
\end{aligned}
$$

$$
\Longrightarrow b^{p^{n}}=\left(a^{p^{n}}\right)^{-1}=a^{-1}=b \Longrightarrow b \in F .
$$

This proves part (a).
PMATH 345 Lecture 31: November 27, 2009

Theorem: p prime, $n>0$.
(a) There exists a field of size p^{n}.
(b) Any two fields are isomorphic.

Proof (b): $x^{p^{n}}-x \in \mathbb{Z}_{p}[x]$

$$
\begin{gathered}
L=\text { splitting field of } x^{p^{n}}-x \\
F=\left\{a \in L: a^{p^{n}}=a\right\}=\text { roots of } x^{p^{n}}-x \text { in } L
\end{gathered}
$$

We proved:

- F is a subfield of L
- $|F|=p^{n}$

We show that if K a field, $|K|=p^{n}$ then $K \simeq F$. We know $K=\mathbb{Z}_{p}(a)$ for some $a \in K$,

$$
\begin{gathered}
\operatorname{deg}\left(a / \mathbb{Z}_{p}\right)=n \\
\text { So } K \simeq \mathbb{Z}_{p}[x] /(g)
\end{gathered}
$$

where $g=$ minimal polynomial of a / \mathbb{Z}_{p}.
We show $\mathbb{Z}_{p}[x] /(g) \simeq F$.
g is irreducible of degree n in $\mathbb{Z}_{p}[x]$

$$
\Longrightarrow g \mid x^{p^{n}-x} \quad \text { previous corollary }
$$

Hence g has a root in L, say $b \in L$.
$\Longrightarrow b^{p^{n}}=b \Longrightarrow b \in F$.

$$
\begin{gathered}
\phi: \mathbb{Z}_{p}[x] \rightarrow F \\
h \mapsto h(b)
\end{gathered}
$$

evaluation at b ring homomorphism.
Since $g(b)=0 \Longrightarrow g \in \operatorname{ker}(\phi)$
g irreducible, $\mathbb{Z}_{p}[x]$ pid $\Longrightarrow(g)$ is maximal
$\Longrightarrow(g)=\operatorname{ker}(\phi)$
1st isomorphism theorem $\Longrightarrow \mathbb{Z}_{p}[x] /(g)$ is isomorphism to a subfield of F.
Both of size $p^{n} \Longrightarrow$ this subfield is all of F.
Therefore $K \simeq \mathbb{Z}_{p}[x] /(g) \simeq F$.
Definition: $\mathbb{F}_{p^{n}}$ is the unique (up to isomorphism) field of size p^{n}.

$$
\rightarrow \mathbb{F}_{p}=\mathbb{Z}_{p}
$$

Corollary: p prime, $n>0$
(a) There exists an irreducible polynomial of degree n in $\mathbb{Z}_{p}[x]$
(b) Given $g, h \in \mathbb{Z}_{p}[x]$ irreducible of degree n, then

$$
\mathbb{Z}_{p}[x] /(g) \simeq \mathbb{Z}_{p}[x] /(n)
$$

Proof: $\mathbb{F}_{p^{n}}$ is a simple algebraic extension of \mathbb{Z}_{p} of degree n.
$\Longrightarrow \mathbb{F}_{p^{n}}=\mathbb{Z}_{p}(a) \simeq \mathbb{Z}_{p}[x] /(g)$ where $g=$ minimal polynomial of a over \mathbb{Z}_{p}
$\Longrightarrow g$ is irreducible, $\operatorname{deg} g=n$.
(b) Follows by previous theorem part (b) as both $\mathbb{Z}_{p} /(g)$ and $\mathbb{Z}_{p} /(h)$ are degree n extensions of \mathbb{Z}_{p} and hence of size p^{n}.

Theorem: p prime, $m>0, n>0$

$$
\mathbb{F}_{p^{m}} \subseteq{ }^{86)} \mathbb{F}_{p^{n}} \Longleftrightarrow m \mid n
$$

$\mathbb{F}_{p^{2}} \underset{\mathbb{F}_{p^{3}}}{\mathbb{Z}}$ but
$\mathbb{F}_{p^{2}} \subseteq \mathbb{F}_{p^{4}}$

Proof: $\mathbb{F}_{p^{m}} \subseteq \mathbb{F}_{p^{n}}$

$$
\begin{gathered}
\mathbb{F}_{p^{n}} \simeq\left(\mathbb{F}_{p^{m}}\right)^{d} \\
\left|\mathbb{F}_{p^{n}}\right|=\left|\left(\mathbb{F}_{p^{m}}\right)^{d}\right| \\
p^{n}=\left(p^{m}\right)^{d}=p^{m d} \\
\Longrightarrow n=m d \Longrightarrow m \mid n
\end{gathered}
$$

Conversely suppose $m \mid n$.
say $n=m d$
L is splitting field of $x^{p^{m}}-x$ over $\mathbb{F}_{p^{n}}$
$x^{p^{m}}-x \in \mathbb{F}_{p^{n}}[x]$ Let $a \in F, a^{p^{m}}=a$

$$
\begin{aligned}
a^{p^{n}} & =a^{\left(p^{m}\right)^{d}} \\
& \left.=\left(\cdots\left(\left(a^{p^{m}}\right)^{p^{m}}\right)^{p^{m}} \cdots\right)^{p^{m}} 87\right) \\
& =a
\end{aligned}
$$

$\Longrightarrow a$ is a root of $x^{p^{n}}-x$.
But $\mathbb{F}_{p^{n}} \subseteq L$ is the set of all roots of $x^{p^{n}}-x$ since they are roots and there are p^{n}.
Therefore $a \in \mathbb{F}_{p^{n}}$
Therefore $F^{88)} \subseteq \mathbb{F}_{p^{n}}$
Remark: p prime $n>0$,

$$
\mathbb{F}_{p^{n}}=\text { splitting field of } x^{p^{n}}-x \text { over } \mathbb{Z}_{p}
$$

PMATH 345 Lecture 32: November 30, 2009

Addendum to §9: Fields

Notation: $\alpha: R \rightarrow R^{\prime}$ isomorphism of rings induces an isomorphism

$$
\begin{aligned}
\alpha: & R[x] \rightarrow R^{\prime}[x] \\
& a_{0}+\cdots+a_{n} x^{n} \mapsto \alpha\left(a_{0}\right)+\alpha\left(a_{1}\right) x+\cdots+\alpha\left(a_{n}\right) x^{n}
\end{aligned}
$$

Lemma: $\alpha: F \rightarrow F^{\prime}$ isomorphism of fields, two simple algebraic extensions

[^30]with $f=$ minimal polynomial of a over $F \in F[x]$, such that $\alpha(f)=$ minimal polynomial of b over $F^{\prime} \in F^{\prime}[x]$.
(i.e., α takes minimal polynomial of a / F to minimal polynomial of b / F^{\prime})

Then, α extends to an isomorphism

$$
\beta: F(a) \rightarrow F^{\prime}(b)
$$

with $\beta(a)=b$.
That is:

- $\left.\beta\right|_{F}=\alpha$
- $\beta(a)=b$

Example: converse is also true
Proof: Let $f^{\prime}=\alpha(f)=$ minimal polynomial of b over F^{\prime}

α is an isomorphism

$$
\alpha^{-1}\left(f^{\prime} \cdot F^{\prime}[x]\right)=f \cdot F[x]
$$

Then α induces

$$
\begin{array}{r}
\bar{\alpha}: f[x] /(f) \xrightarrow{\simeq} F^{\prime}[x] /\left(f^{\prime}\right) \\
\quad h+(f) \mapsto \alpha(h)+\left(f^{\prime}\right)
\end{array}
$$

check that $\bar{\alpha}$ is indeed an isomorphism.

is an isomorphism.
Given $c \in F$,

$$
\begin{aligned}
\beta(c) & =\phi^{\prime} \circ \bar{\alpha} \circ \phi^{-1}(c) \\
& =\phi^{\prime} \circ \bar{\alpha}(c+(f)) \\
& =\phi^{\prime}\left(\alpha(c)+\left(f^{\prime}\right)\right) \quad \alpha(c) \in F^{\prime} \\
& =\alpha(c)
\end{aligned}
$$

Therefore $\left.\beta\right|_{F}=\alpha$.

$$
\begin{aligned}
\beta(a) & =\phi^{\prime} \circ \bar{\alpha} \circ \phi^{-1}(a) \\
& =\phi^{\prime} \circ \bar{\alpha}(x+(f)) \\
& =\phi^{\prime}\left(x+\left(f^{\prime}\right)\right) \\
& =b
\end{aligned}
$$

Proposition: $\alpha: F \rightarrow F^{\prime}$ isomorphism $f \in F[x], \operatorname{deg} f>0$.

Let K be a splitting field of f over F
Let K^{\prime} be a splitting filed of $\alpha(f)$ over F^{\prime}

Then α extends to an isomorphism $\beta: K \rightarrow K^{\prime}$.
So $\left.\beta\right|_{F}=\alpha$.
Remark: When $F=F^{\prime}$ and $\alpha=$ id this proposition says that any two splitting fields of f over F are isomorphic over F.
That is, $\left.\beta\right|_{F}=\mathrm{id}$.

(Definition: S and S^{\prime} extensions of a ring R, are isomorphic over R if there is an isomorphism $\beta: S \rightarrow S^{\prime}$ such that $\left.\beta\right|_{R}=\mathrm{id}$.)
Proof: Induction on $[K: F]=n$.
$n=1: K=F \Longrightarrow f$ factors completely into linear factors in $F[x]$
$\Longrightarrow \alpha(f)$ factors into linear factors in $F^{\prime}[x]$
$\Longrightarrow K^{\prime}=F^{\prime}$
So $\beta=\alpha$ works. \checkmark
$n>1: f$ must have an irreducible factor $g \in F[x]$ which is not linear. $\Longrightarrow \operatorname{deg} g>1$
Let $a \in K$ be a root of g.
(exists since $g \mid f$ and $K=$ splitting field of f over F)
Let $g^{\prime}=\alpha(g) \in F^{\prime}[x]$.
So $g^{\prime} \mid \alpha(f) \Longrightarrow g^{\prime}$ has a root $b \in K^{\prime}$.

Lemma \Longrightarrow Can extend α to an isomorphism $\beta: F(a) \rightarrow F^{\prime}(b)$ which extends α But K is still the splitting field of f over $F(a)$
And K^{\prime} is a splitting field of $\alpha(f)$ over $F^{\prime}(b)$. Note $\beta(f)=\alpha(f)$

$$
[K: F(a)]=\frac{n}{\operatorname{deg} g}<n
$$

By Induction Hypothesis β extends to a $\hat{\beta}: K \rightarrow K^{\prime}$.

$$
\left.\hat{\beta}\right|_{F}=\left.\beta\right|_{F}=\alpha
$$

So $\hat{\beta}$ works.
§10:
Corollary: K, L finite fields, $|K|=|L|=p^{n}$.

Suppose K, L are both extensions of a finite field F.

Then K and L are isomorphic over F.
Proof: K and L are both splitting fields of $x^{p^{n}}-x$ over \mathbb{Z}_{p}, hence also over F.
Apply proposition (in fact the Remark).

PMATH 345 Lecture 33: December 2, 2009

§11 Algebraically Closed Fields

Definition: F field is algebraically closed if every polynomial $f \in F[x]$ of $\operatorname{deg} f>0$ has a root in F. If $F \subseteq L, L$ is an algebraic closure of F if L is an algebraic extension of F and L is algebraically closed.

Proposition: The following are equivalent: F field
(i) F is closed.
(ii) In $F[x]$ every irreducible polynomial is of degree 1.
(iii) F has no proper algebraic extensions.

Proof (i) \Longrightarrow (ii):
$f \in F[x]$ irreducible
$a \in F, f(a)=0$
$\Longrightarrow(x-a) \mid f$
f irreducible $\Longrightarrow f=c(x-a)$, since $c \in F$
(ii) \Longrightarrow (iii):

Suppose $L \supseteq F$ is an algebraic extension, $a \in L . f=$ minimal polynomial of $a / F \in F[x]$
$\xrightarrow{(\mathrm{ii)}} \operatorname{deg} f=1$ But $[F(a): F]=\operatorname{deg} f$
$\Longrightarrow a \in F \Longrightarrow L=F$
(iii) \Longrightarrow (i):

To show F is algebraically closed it suffices to show that every irreducible polynomial over F has a root in F.
$f \in F[x]$ irreducible

$$
\begin{aligned}
& L=F[x] /(f) \\
& \mid \quad \text { algebraic extension, }[L: F]=\operatorname{deg} f \\
& F
\end{aligned}
$$

(iii) $\Longrightarrow L=F \Longrightarrow \operatorname{deg} f=1$
$f=a^{89)} x+b$ so $b / a \in F$ is a root of f.

Examples:

(a) \mathbb{C} is algebraically closed by the Fundamental Theorem of Algebra

Since $[\mathbb{C}: \mathbb{R}]=2$
$\Longrightarrow \mathbb{C}$ is an algebraic closure of \mathbb{R}.
(b) Let $\overline{\mathbb{Q}}=\{a \in \mathbb{C}: a$ is \mathbb{Q}-algebraic $\}$

[^31]Exercise: $\overline{\mathbb{Q}}$ is a subfield of \mathbb{C}.
point: $a, b \in \overline{\mathbb{Q}}$,

Claim: $\overline{\mathbb{Q}}$ algebraically closed
Proof: $f \in \overline{\mathbb{Q}}[x] \subseteq \mathbb{C}[x], \operatorname{deg} f>0$.
$\Longrightarrow a \in \mathbb{C}, f(a)=0$.
$\Longrightarrow a$ is $\overline{\mathbb{Q}}$-algebraic

$$
\left.\begin{array}{c}
\overline{\mathbb{Q}}(a) \\
\mid \text { alg } \\
\overline{\mathbb{Q}} \\
\mid \text { alg } \\
\mathbb{Q}
\end{array}\right\} \text { alg } \quad \Longrightarrow a \text { is } \mathbb{Q} \text {-algebraic }
$$

$\overline{\mathbb{Q}}$ is an algebraic extension of \mathbb{Q}.
(c)

$$
\begin{gathered}
\mathbb{F}_{p} \subseteq \mathbb{F}_{p^{2}} \subseteq{ }^{90)} \mathbb{F}_{p^{6}} \subseteq \cdots \subseteq \mathbb{F}_{p^{n!}} \subseteq^{91)} \mathbb{F}_{p^{(n+1)!}} \subseteq \cdots \subseteq L \\
L=\bigcup_{n} \mathbb{F}_{p^{n!}}
\end{gathered}
$$

Example: L is a field as $n \mid n!$, every $\mathbb{F}_{p^{n}} \subseteq \mathbb{F}_{p^{n}} \subseteq L$
Therefore every finite field of characteristic p is a subfield of L.
Claim: L is algebraically closed and an algebraic closure of \mathbb{Z}_{p}
Proof: $f \in L[x], \operatorname{deg} f>0$, irreducible
For some $n>0, f \in \mathbb{F}_{p^{n!}}[x]$ irreducible
Hence $K=\mathbb{F}_{p^{n!}}[x] /(f)$ is a finite field, extending $\mathbb{F}_{p^{n!}}$, say $|K|=p^{N}$ with $n!\mid N$

f has a root in K, namely $a=x+(f)$
$\Longrightarrow \alpha(f)^{92)}$ has a root in $\mathbb{F}_{p^{N}} \subseteq L$.
Theorem: F field
(a) F has an algebraic closure
(b) Any two algebraic closures of F are isomorphic over F.

Proof:

(a) Let \mathcal{P} be the set of all algebraic extensions of F. Given $K, L \in \mathcal{P}$,

$$
K \leq L \stackrel{\text { def }}{\Longleftrightarrow} K \text { is a subfield of } L
$$

Then (\mathcal{P}, \leq) is a partially ordered set
Claim: Every chain in (\mathcal{P}, \leq) is bounded.

[^32]Proof: $K_{0} \subseteq K_{1} \subseteq K_{2} \subseteq \ldots$
all algebraic extensions of F.
Let $L=\bigcup_{i} K_{i}$ a field extending F.
Given $a \in L \Longrightarrow a \in K_{i}$ for some i
$\Longrightarrow a$ is F-algebraic.
$\Longrightarrow L \in \mathcal{P}$ and each $K_{i} \subseteq L \dashv$ claim.
By Zorn's Lemma, \mathcal{P} has a maximal element, $L \in \mathcal{P}$.
By maximality, L has no proper algebraic extension, since any such would be in \mathcal{P}.
Therefore L is algebraically closed and algebraic over F.
(b)

$\mathcal{P} \neq \emptyset$ since $(F, F, \mathrm{id}) \in \mathcal{P}$
$\left(K, K^{\prime}, \alpha\right) \leq\left(M, M^{\prime}, \beta\right)$ in \mathcal{P}
if $K \subseteq M, K^{\prime} \subseteq M^{\prime}$
such that

Example: Check (\mathcal{P}, \leq) is a partially ordered set.
Claim 1: Every chain is bounded in \mathcal{P}.
Proof: Take "unions". Exercise. \dashv Claim 1.
Apply Zorn's Lemma \Longrightarrow There exists $\left(k, k^{\prime}, \alpha\right) \in \mathcal{P}$ which is maximal.
Claim 2: $K=L$.
Proof sketch: $a \in L$

$$
f=\text { minimal polynomial of } a / K \in K[x]
$$

Let $f^{\prime}=\alpha(f) \in K^{\prime}[x] \subseteq L^{\prime}[x]$
As L^{\prime} is algebraically closed, there is $b \in L^{\prime}, f^{\prime}(b)=0$.
$f^{\prime}=$ minimal polynomial at b over K^{\prime}
since f^{\prime} is monic and irreducible
By Lemma last time there is $\beta: K(a) \rightarrow K(b)$ extending α.

$$
\left(K, K^{\prime}, \alpha\right) \leq\left(K(a), K^{\prime}(b), \beta\right) \text { in } \mathcal{P}
$$

$\Longrightarrow K(a)=K \Longrightarrow a \in K . \dashv$ Claim.
Example: $K^{\prime}=L^{\prime}$
point:

$$
K \subseteq \alpha(L)^{93) 94)} \subseteq L^{\prime}
$$

PMATH 345 Lecture 34: December 4, 2009

Classical algebraic geometry is the study of simultaneous solutions to systems of polynomial equations.
K algebraically closed field.
$S \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ a set of polynomials

$$
V(S)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in K^{n}: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all } f \in S\right\}
$$

affine variety in K^{n} defined by S
Note: $V(S)=V\left(S \cdot K\left[x_{1}, \ldots, x_{n}\right]\right)$ where

$$
\begin{aligned}
S \cdot K\left[x_{1}, \ldots, x_{n}\right] & =\text { ideal generated by } S \\
& =\left\{g_{1} f_{1}+\cdots+g_{l} f_{l}: f_{1}, \ldots, f_{l} \in S, g_{1}, \ldots, g_{l} \in K\left[x_{1}, \ldots, x_{n}\right]\right\}
\end{aligned}
$$

Therefore all affine varieties are of the form $V(I)$.

Hilbert's Basis Theorem:

R commutative Noetharian ring $\Longrightarrow R[x]$ is also.
Hence $K\left[x_{1}, \ldots, x_{n}\right]$ is Noetharian.
\Longrightarrow every ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated.

$$
\text { Therefore } \begin{aligned}
V(S) & =V\left(S \cdot K\left[x_{1}, \ldots, x_{n}\right]\right) \\
& =V\left(f_{1}, \ldots, f_{l}\right)
\end{aligned}
$$

where $S \cdot K\left[x_{1}, \ldots, x_{n}\right]=\left(f_{1}, \ldots, f_{l}\right)$.
Every affine variety is defined by a finite set of polynomials.
Definition: Given any subset $X \subseteq K^{n}$

$$
I(X)=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right]: f\left(a_{1}, \ldots, a_{n}\right)=0 \text { for all }\left(a_{1}, \ldots, x_{n}\right) \in X\right\}
$$

This is an ideal, the ideal of X.
Remarks: $S, T \subseteq K\left[x_{1}, \ldots, x_{n}\right] \quad X, Y \subseteq K^{n}$
(a) $S \subseteq T \Longrightarrow V(T) \subseteq V(S)$ $X \subseteq Y \Longrightarrow I(Y) \subseteq T(X)$
(b) $S \subseteq I(V(S))$
$X \subseteq V(I(X))$
(c) $V(S)=V(I(V(S)))$ $I(X)=I(V(I(X)))$
\rightarrow exercise

[^33]
Hilbert's Nullstellensatz

If $S \cdot K\left[x_{1}, \ldots, x_{n}\right]$ is a proper ideal then $V(S) \neq \emptyset$.
case $\boldsymbol{n}=\mathbf{1}: K[x]$ is a pid.
$S \cdot K[x]=(f) \quad f$ if not a unit in $K[x]$ since the ideal is proper.
$\Longrightarrow V(S)=V(f)$

$$
\begin{gathered}
f=0 \Longrightarrow V(S)=K \\
\Longrightarrow \quad \text { or } \\
\operatorname{deg} f>0 \Longrightarrow \text { since } K \text { algebraically closed }
\end{gathered}
$$

f has a root, $a \in K$
$\Longrightarrow a \in V(S)$.
Note $V\left(K\left[x_{1}, \ldots, x_{n}\right]\right)=\emptyset$
Is $J=I(V(J))$ for all ideals J ?
No.
$f \in K\left[x_{1}, \ldots, x_{n}\right] \quad J=\left(f^{2}\right)$
f^{2} vanishes on $V(J)$
$\Longrightarrow f$ vanishes on $V(J)$
$\Longrightarrow f \in I(V(J)) \backslash J$
This is the only problem:
Theorem: If J is an ideal in $K\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\begin{aligned}
I(V(J)) & =\left\{f \in K\left[x_{1}, \ldots, x_{n}\right]: f^{n} \in J \text { for some } n>0\right\} \\
& =\operatorname{Rad} J
\end{aligned}
$$

Proof: \supseteq is clear.

$$
\begin{aligned}
f^{n} \in J & \Longrightarrow f^{n} \text { vanishes on } V(J) \\
& \Longrightarrow f \text { vanishes on } V(J) \\
& \Longrightarrow f \in I(V(J))
\end{aligned}
$$

Conversely, $f \in I(V(J))$
Want: $f \in \operatorname{Rad} J$
We may assume $f \neq 0$
$\mathrm{HBT} \Longrightarrow J=\left(f_{1}, \ldots, f_{l}\right)$
Consider $K\left[x_{1}, \ldots, x_{n}, y\right]$

$$
J^{\prime}=\left(f_{1}, \ldots, f_{l}, y \cdot f-1\right)
$$

Suppose $\left(a_{1}, \ldots, a_{n+1}\right) \in V\left(J^{\prime}\right)$
$\Longrightarrow\left(a_{1}, \ldots, a_{n} \in V(J)\right)$

$$
\begin{aligned}
0 & =(y \cdot f-1)\left(a_{1}, \ldots, a_{n+1}\right) \\
& =a_{n+1} \cdot \underbrace{f\left(a_{1}, \ldots, a_{n}\right)}_{=0}-1 \\
& =-1
\end{aligned}
$$

Contradiction; therefore $V\left(J^{\prime}\right)=\emptyset$
$\mathrm{HN} \Longrightarrow J^{\prime}=K\left[x_{1}, \ldots, x_{n}, y\right]$

$$
\begin{gather*}
1=g_{1} f_{1}+\cdots+g_{l} f_{l}+h(y f-1) \text { where } g_{1}, \ldots, g_{l}, h \in K\left[x_{1}, \ldots, x_{n}, y\right] \tag{*}\\
K\left[x_{1}, \ldots, x_{n}, y\right] \xrightarrow{\phi} K\left(x_{1}, \ldots, x_{n}\right) \\
g \mapsto g\left(x_{1}, \ldots, x_{n}, 1 / f\right)
\end{gather*}
$$

Apply ϕ to both sides of $(*)$

$$
\begin{gathered}
1=g_{1}\left(x_{1}, \ldots, x_{n}, 1 / f\right) f_{1}+\cdots+g_{l}\left(x_{1}, \ldots, x_{n}, 1 / f\right) f_{l}+h\left(x_{1}, \ldots, x_{n}, 1 / f\right) \cdot 0 \\
\Longrightarrow 1=g_{1}\left(x_{1}, \ldots, x_{n}, 1 / f\right) f_{1}+\cdots+g_{l}\left(x_{1}, \ldots, x_{n}, 1 / f\right) f_{l}
\end{gathered}
$$

in $K\left(x_{1}, \ldots, x_{n}\right)$
clear denominators to get $N>0$, such that

$$
f^{N}=\overbrace{f^{N} g_{1}\left(x_{1}, \ldots, x_{n}, 1 / f\right)}^{95)} f_{1}+\cdots+f^{N} g_{l}\left(x_{1}, \ldots, x_{n}, 1 / f\right)^{96)} f_{l}
$$

in $K\left[x_{1}, \ldots, x_{n}\right]$
each $f^{N} g_{i}\left(x_{1}, \ldots, x_{n}, 1 / f\right) \in K\left[x_{1}, \ldots, x_{n}\right]$
$\Longrightarrow f^{N} \in\left(f_{1}, \ldots, f_{l}\right)=J$
$\Longrightarrow f \in \operatorname{Rad} J$
An ideal J is radical if $J=\operatorname{Rad} J$.
We get a $1-1$, onto correspondence

> Radical ideals in $K\left[x_{1}, \ldots, x_{n}\right] \longleftrightarrow$ affine varieties in K^{n}
> $J \longmapsto V(J)$
> $I(W) \longleftrightarrow W$
\rightarrow exercises

[^34]
[^0]: ${ }^{1)}$ Note: drop the \times sometimes.
 ${ }^{2)}$ Note: so we just write $x+y+z$
 ${ }^{3)}$ zero is also called "additive identity"
 ${ }^{4)}$ Note: We write $-x$ for y here and call it the negative of x
 ${ }^{5)}$ we just write $x y z$

[^1]: ${ }^{6)}$ neutrality of 0
 ${ }^{7)}$ since $0=0+0$ by neutrality
 ${ }^{8)}$ distributitivity
 ${ }^{9)}$ neutrality of 1
 ${ }^{10)}$ distributivity
 11) (d)
 12) (e)
 13) associativity
 14) (e)
 ${ }^{15)}$ (f)
 16) (f)
 17) (c)

[^2]: 18) "co-ordinate addition"
 19) "co-ordinate multiplication"
[^3]: ${ }^{20)}$ contradiction
 ${ }^{21)} 0 \neq 1$, commutative

[^4]: 22) in \mathbb{Z}
 23) in \mathbb{Z}_{n}
 24) fact
[^5]: ${ }^{25)}$ Euler's function
 26) $\underbrace{a \cdot a \cdot a \cdots a}$
 m times
 ${ }^{27)} u_{1} u_{2} \cdots u_{m}$
 28) in \mathbb{Z}_{n}

[^6]: 29) 1
 ${ }^{30)}$ formal expression means it is just a string of symbols
[^7]: 31) in R
 ${ }^{32)}$ in R
 ${ }^{33)}$ finite sum
[^8]: ${ }^{34)}$ not completely standard
 ${ }^{35)}$ a constant polynomial is the 0 polynomial or a polynomial of degree 0

[^9]: ${ }^{36)}+$ and - are happening in S
 37) * Different from text
 38) $a, b \in R$

[^10]: ${ }^{39)}$ (for us, different in DF)

[^11]: ${ }^{40)}$ contradiction

[^12]: ${ }^{41)} f$ is unique $\Longleftrightarrow 2=1+1$ is not a zero divisor

[^13]: ${ }^{42)}$ we will see this
 ${ }^{43)}$ in here -1 has a square

[^14]: ${ }^{45)}=(n)$
 ${ }^{46)}$ uses next theorem

[^15]: ${ }^{47)}$ Exercise: $A+B$ is the smallest ideal containing A and B
 ${ }^{48)} R / I$ a field

[^16]: ${ }^{49)}$ a collection of subsets of X
 ${ }^{50)}$ (the only divisors of p^{e} are powers of p)

[^17]: ${ }^{51)}$ since ϕ is an embedding

[^18]: ${ }^{52)}$ for convenience

[^19]: 53) \mathbb{Z}
 ${ }^{54)}$ example?
 ${ }^{55)}$ example: $\mathbb{Z}[x]$, why?
 56)?
[^20]: ${ }^{57)}$ remove p_{i}
 ${ }^{58)}$ by previous exercise
 59) contradiction

[^21]: ${ }^{60)}$ not in R
 ${ }^{61)}$ not in R

[^22]: ${ }^{62)}$ i.e., there is a unit u such that $d=u \operatorname{gcd}(a, b)$

[^23]: ${ }^{63)}$ Lemma

[^24]: ${ }^{64)} \Longrightarrow \sigma$ is injective

[^25]: ${ }^{65)}$ in L
 ${ }^{66)} \neq 0$

[^26]: ${ }^{67)}$ By minimality of n this can't happen
 68) $=0$
 69) $=0$
 70) $=1$
 ${ }^{71)}=1$

[^27]: ${ }^{72)}$ or $g(a)=0$
 ${ }^{73)}$ or $\operatorname{deg} g=\operatorname{deg} h$ by minimality
 ${ }^{74)}$ or $\operatorname{deg} f=0$
 ${ }^{75)}$ or f is a unit
 ${ }^{76)} I(a / F)$
 77) degree of a over F
 ${ }^{78)}=\operatorname{deg}(a / K)$
 79) $=\operatorname{deg}(a / F)$

[^28]: ${ }^{80)}$ polynomial ring

[^29]: ${ }^{81)}=$ fraction field of $\mathbb{Z}[i]=$ Gaussian integers
 ${ }^{82)} \subseteq \mathbb{R}$

[^30]: ${ }^{\text {86) }}$ actually: $\mathbb{F}_{p^{m}}$ embeds in $\mathbb{F}_{p^{n}}$
 ${ }^{87)} d$ times
 ${ }^{88)} \simeq \mathbb{F}_{p^{m}}$

[^31]: ${ }^{89)} a \neq 0$

[^32]: 90) $2 \mid 6$
 ${ }^{91)} n!\mid(n+1)$!
 ${ }^{92)}=f$
[^33]: ${ }^{93)} a$ is algebraically closed
 ${ }^{94)}=K^{\prime}$

[^34]: ${ }^{95)}$ in $K\left[x_{1}, \ldots, x_{n}\right]$
 96) in $K\left[x_{1}, \ldots, x_{n}\right]$

