
PMATH 345 Lecture 1: September 14, 2009
~pmat345

• Z Integers {. . . ,−2,−1, 0, 1, 2, . . .}

• C[0, 1] all continuous functions f : [0, 1]→ R

In both cases:
can “add”: (f + g) : [0, 1]→ R, x 7→ f(x) + g(x)
can “multiply”: (fg) : [0, 1]→ R, x 7→ f(x)g(x)
both 0 and 1 figure: 0 function

and 1 function
Definition: A ring R is a set with two distinguished elements, 0 and 1, and two binary functions

+: R2 → R

× : R2 → R

i.e., given two elements x, y we can add them x+ y ∈ R, we can multiply them xy ∈ R1)

such that: for all x, y, z ∈ R,

1. Associativity of addition:
(x+ y) + z = x+ (y + z)2)

2. Commutativity of addition:
x+ y = y + x

3. Neutrality of zero:
x+ 0 = x3)

4. Existence of additive inverse:
For all x ∈ R there is some y ∈ R such that

x+ y = 04)

5. Associativity of multiplication:
(xy)z = x(yz)5)

6. Neutrality of one:
x1 = x = 1x

7. Distributivity:

(x+ y)z = xz + yz

z(x+ y) = zx+ zy

Remarks:

1. WARNING: What we call a ring here is a “ring with identity” for some people.
For us rings always have 1.
Example: 2Z set of even integers
For Dummit and Foote this is a ring, for us it is not.

2. Notation: x− y means x+ (−y)

1)Note: drop the × sometimes.
2)Note: so we just write x+ y + z
3)zero is also called “additive identity”
4)Note: We write −x for y here and call it the negative of x
5)we just write xyz
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3. We don’t ask × to be commutative. Why?
Example: M2(R) =

{
( a bc d ) : a, b, c, d ∈ R

}
• 0 = ( 0 0

0 0 )

• 1 = ( 1 0
0 1 )

• + matrix addition

• × matrix multiplication

Check: This is a ring. × is not commutative.

Why should + be commutative?
Because it is forced by the other axioms.

(
x
1 +

y

1)(
z

a+ b) = 1(a+ b) + 1(a+ b)

= (a+ b) + (a+ b)

(
z

1 + 1)(
x
a+

y

b) = (1 + 1)a+ (1 + 1)b

= (1a+ 1a) + (1b+ 1b)

= (a+ a) + (b+ b)

(a+ b) + (a+ b) = (a+ a) + (b+ b)

a+ b+ a+ b = a+ a+ b+ b

add (−a) to both sides on the left

b+ a+ b = a+ b+ b

add (−b) to both sides on the right

b+ a = a+ b

PMATH 345 Lecture 2: September 16, 2009
Definition: A ring R is commutative if for all x, y ∈ R, xy = yx.

Proposition: Let R be a ring.

(a) If x+ z = y + z then x = y.

(b) For all y there is a unique y such that x+ y = 0.
(We call y the additive inverse of x, denote it by −x).

(c) For all x, −(−x) = x.

(d) If x ∈ R, 0x = 0 = x0.

(e) (−1)x = −x = x(−1).

(f) (−x)y = −(xy) = x(−y)

(g) (−x)(−y) = xy

Proof:

(a) x+ z = y + z
Let u be such that z + u = 0.

=⇒ x+ z + u = y + z + u

=⇒ x+ 0 = y + 0

=⇒ x = y
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(b) By existence of additive inverses there is a y ∈ R such that x+ y = 0. Suppose x+ y′ = 0 also.

x+ y = x+ y′

By part (a) and commutativity
y = y′.

(c) x+ (−x) = 0 since −x is the additive inverse of x.
Therefore x must be the additive inverse of (−x).
i.e., x = −(−x).

(d) 0 + 0x =6) 0x =7) (0 + 0)x =8) 0x+ 0x
Therefore by (a), 0 = 0x.
Similarly x0 = 0.

(e) x+ (−1)x =9) 1x+ (−1)x =10) (1 + (−1))x = 0x =11) 0
Therefore (−1)x = −x.

(f) (−x)y =12) ((−1)x)y =13) (−1)(xy) =14) −(xy)
Similarly for x(−y).

(g) (−x)(−y) =15) −(x(−y)) =16) −(−(xy)) =17) xy.

Examples:

Z,Q,R,C

not a ring: positive integers; no additive inverse.

C[0, 1]
Definition: Given any ring R and nonempty set X let Fun(X,R) be the set of all functions from
X to R.

(f + g)(x) := f(x) + g(x), here f : X → R, g : X → R
(fg)(x) := f(x)g(x)
0(x) = 0 for all x ∈ X
1(x) = 1 for all x ∈ X
Check: Fun(X,R) is a ring. Its commutative iff R is commutative.

not a ring: set of monotonic f : [0, 1]→ R with usual +, × on functions; not closed under ×

M2(R)
Definition: Given any ring R, n ≥ 1, Mn(R) = set of all n× n matrices with entries in R

Usual matrix addition and multiplication formulas.
0 matrix.
1 matrix.

check: Mn(R) is a ring. Even if R is commutative, this need not be.

not a ring: GLn(R) = n× n matrices with det 6= 0; not preserved by matrix addition

6)neutrality of 0
7)since 0 = 0 + 0 by neutrality
8)distributitivity
9)neutrality of 1

10)distributivity
11)(d)
12)(e)
13)associativity
14)(e)
15)(f)
16)(f)
17)(c)
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Definition: Given rings R,S with +R,×R, 0R, 1R the ring structure on R and +S ,×S , 0S , 1S the ring
structure on S.

The direct product of R and S is:

R× S = { (a, b) : a ∈ R, b ∈ S }
(a, b) + (a′, b′) = (a+R a

′, b+S b
′)18)

(a, b)(a′, b′) = (a×R a′, b×S b′)19)

0 (0R, 0S)

1 (1R, 1S)

check: that R× S is a ring, commutative iff both R and S are.

Example: Zn. n ≥ 2, residues modulo n
a, b ∈ Z are congruent modulo n if n | (a− b), a ≡ b (mod n).
Congruence is an equivalence relation on Z.
a ∈ Z, let a = equivalence class of a = { b ∈ Z : a ≡ b (mod n) } =: residue of a (mod n)
Zn is { a : a ∈ Z } = {0, 1, . . . , n− 1}
Note: a = b ⇐⇒ a ≡ b (mod n)

a+ b := a+ b

ab := ab

Warning: Check this is well-defined !
i.e., if a = a′ then need ab = a′b′

similarly for +.
zero is 0
one is 1
Check: This is a commutative ring.

PMATH 345 Lecture 3: September 18, 2009
Aside: Remark: R is a ring. Then 0, 1 are unique.

a) If a ∈ R such that a+ x = x for all x, then a = 0

b) If a ∈ R such that ax = x for all x, then a = 1

Proof:

a) a+ x = x =⇒ a+ 0 = 0
=⇒ a = 0, since a+ 0 = a

b) ax = x =⇒ a1 = 1
=⇒ a = 1

Note: In fact, if a+ x = x for any x, then a = 0 since a+ x = x = 0 + x
=⇒ a = 0
Note: If R is such that 0 = 1, then R = {0}
Proof: If x ∈ R, then

x = 1x

= 0x

= 0

Therefore x = 0.
R = {0} is called the trivial ring.

18)“co-ordinate addition”
19)“co-ordinate multiplication”
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For Zn, n ≥ 2, given a ∈ Z, then the residue of a,

a = { b ∈ Z : a ≡ b (mod n) }
= { a+ rn : r ∈ Z } ⊆ Z

Note: a ∩ b = ∅ or a = b
Note: For all x ∈ Z, x ∈ a for some a ∈ {0, . . . , n− 1}

Therefore Zn = { a : a ∈ Z } is finite.

= {0, . . . , n− 1}

Definition: Let R be a ring. A subring of R is a set S ⊆ R which is preserved by + and × and − and
contains 0 and 1.
i.e., if a, b ∈ S =⇒ a+ b ∈ S
and a, b ∈ S =⇒ ab ∈ S, then S is a subring and −a ∈ S.
∗ different from textbook for us, {0} is not a subring of R unless R = {0}.
Note: S is a ring, we call it the “induced ring”.
Example: Z is a subring of Q which is a subring of R which is a subring of C.
Example: The Gaussian integers Z[i] = { a+ bi : a, b ∈ Z } is a subring of C.

Units and Zero Divisors
Definition: Let R be a ring. An element of a ∈ R is a unit if there exists b ∈ R such that ab = 1 and
ba = 1
Remark: b is unique
Proof: If ac = 1 and ca = 1,
therefore ac = ab
=⇒ cac = cab
=⇒ 1c = 1b =⇒ c = b
Such a b is called the multiplicative inverse of a and is denoted a−1.
Definition: A field is a commutative ring where 0 6= 1 and every nonzero element is a unit.
Note: If 0x = 1, then since 0x = 0, we have 0 = 1.
So, in a nontrivial ring, 0 is not a unit.
Example: Z is not a field, Q is a field.
Definition: Let R be a ring. An element a ∈ R, a 6= 0 is a zero divisor if there exists b ∈ R, b 6= 0
such that

ab = 0 or ba = 0

b is not necessarily unique.
Definition: An integral domain is a commutative ring with 0 6= 1 and there are no zero divisors.
Example: Z, Q are integral domains
Z× Z is not an integral domain, as (a, 0) · (0, a) = (0, 0), so (a, 0) is a zero divisor for a 6= 0.

PMATH 345 Lecture 4: September 21, 2009
Proposition: R ring, a ∈ R, a 6= 0 a is not a zero divisor if and only if whenever

if ab = ac for some b, c ∈ R then b = c,

and if ba = ca for some b, c ∈ R then b = c
(∗)

Proof: Suppose a is not a zero divisor.
Suppose ab = ac.

=⇒ ab− ac = 0

=⇒ a(b− c) = 0

Since a is not a zero divisor and a 6= 0,

b− c = 0

=⇒ b = c

5



Similarly if ba = ca then

ba− ca = 0

=⇒ (b− c)a = 0

=⇒ b− c = 0

=⇒ b = c

Conversely suppose (∗) is true of a.
If ab = 0 = a0 then by (∗) b = 0.
If ba = 0 = 0a by (∗) b = 0.
So a is not a zero divisor.

Corollary: Units are never zero divisors.
Proof: Suppose u is a unit in R.
If ub = uc then multiply both sides by u−1.

u−1ub = u−1uc

=⇒ 1b = 1c

=⇒ b = c

Similarly bu = cu, =⇒ b = c.
So by proposition, u is not a zero divisor.

Example: In the direct product Z× Z, (1, 2) is not a unit.

(1, 2)(a, b) = (1, 1)

=⇒ (a, 2b) = (1, 1)

=⇒ a = 1

2b = 120)

Also not a zero divisor.

(1, 2)(a, b) = (0, 0)

(a, 2b) = (0, 0)

=⇒ a = 0

2b = 0

=⇒ b = 0

So (a, b) = (0, 0).
Corollary: Every field is an integral domain21).

Example: Z is an integral domain but not a field.

Theorem: If R is finite then every nonzero element is either a unit or a zero divisor.

Proof: Suppose a ∈ R, a 6= 0, is not a zero divisor. Consider the function

fa : R→ R

b 7→ ab

By the proposition since a is not a zero divisor if fa(b) = fa(c) then ab = ac then b = c.
So fa is injective.
R finite =⇒ fa is also surjective.

20)contradiction
21)0 6= 1, commutative
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So there is a c ∈ R such that fa(c) = 1, i.e., ac = 1.
Repeating the argument with

ga : R→ R

b 7→ ba

we get a c′ ∈ R such that c′a = 1.

c′ = c′1 = c′(ac)

= (c′a)c

= 1c

= c

So c = a−1 is the inverse, i.e., a is a unit.

Zn is a finite commutative ring (fixed n ≥ 2).
Every residue by the theorem is either 0, or zero divisor or a unit.
Which are which?
Recall: a, b ∈ Z, a 6= 0, b 6= 0, are called coprime if gcd(a, b) = 1.
FACT: gcd(a, b) = 1 ⇐⇒ there are x, y such that ax+ by = 1, a, b ∈ Z

Proposition: Suppose a ∈ Z, a 6= 0.
a is a unit in Zn iff gcd(a, n) = 1.
(So by the theorem the zero divisors are the b where gcd(b, n) 6= 1.)

Proof: Suppose gcd(a, n) = 1, so ax+ ny = 1 for some x, y ∈ Z.

ax +22) ny = 1

ax +23) ny = 1

ax+ ny = 1

ny ≡ 0 (mod n) =⇒ ny = 0

=⇒ ax = 1

So x = a−1 and a is a unit.
Conversely, suppose a ∈ Zn is a unit.
Want: gcd(a, n) = 1.
Let a−1 ∈ Zn, a−1 = x for some x ∈ Z.

aa−1 = 1

ax = 1

ax = 1

ax ≡ 1 (mod n)

there there is a y ∈ Z such that

1− ax = ny

1 = ax+ ny

24) gcd(a, d) = 1

Corollary: Zn is a field iff n is prime.

Proof: Zn is a field iff every nonzero a is a unit iff every nonzero a, gcd(a, n) = 1 iff n is prime

22)in Z
23)in Zn
24)fact

7



Example: Z9 = {0, 1, 2, . . . , 8}
units: 1, 2, 4, 5, 7, 8
zero divisors: 3, 6

Let φ(n) = # of units in Zn, φ(9) = 6.
When n is a prime, φ(n)25) = n− 1 By proposition

φ(n) = # of nonzero integers 2n which are coprime to n

Application: Theorem: If a 6= 0, a ∈ Z, n ≥ 2, gcd(a, n) = 1 then aφ(n) ≡ 1 (mod n).
So: 56 ≡ 1 (mod n), 86 ≡ 1 (mod n), n = 9

PMATH 345 Lecture 5: September 23, 2009
Euler’s Theorem: a ∈ Z, a 6= 0, gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n)
φ(n) = # of nonnegative integers < n that are coprime with n

Need Lemma: R commutative ring, with a finite set of units, say m of them. Then if a ∈ R is a unit
then am26) = 1.

Proof: a a unit. Consider fa : R→ R by b 7→ ab. Since a is not a zero divisor, fa is injective.
Note that the product of units is a unit.
If U = set of units in R = {u1, u2, . . . , am}, then fa(U) = U .
i.e., fa|U : U → U injective, hence bijective since U is finite.
U = {u1, . . . , um}
U = fa(U) = {au1, au2, . . . , aum}
{u1, . . . , um} = {au1, . . . , aum}, so

m∏
i=1

ui
27) =

m∏
i=1

aui = (au1)(au2) · · · (aum)

= am(u1u2 · · ·um)

= am
m∏
i=1

ui

Therefore 1
∏
i = am

∏
i ui. Since

∏
i ui is also a unit it is not a zero divisor and hence we can cancel

=⇒ 1 = am.

Proof of Euler’s theorem:
n ≥ 2, a 6= 0, gcd(a, n) = 1.
R = Zn.
U = set of units in Zn has φ(n) many elements in it by the previous propositions.
b is a unit in Zn ⇐⇒ gcd(b, n) = 1
Zn = {0, 1, . . . , n− 1} = # of units = φ(n)
a ∈ Zn is a unit.
# of units in Zn is φ(n) so by the lemma

aφ(n) = 128)

=⇒ aφ(n) = 1

=⇒ aφ(n) ≡ 1 (mod n)

What are the units/zero divisors in Z[i] = { a+ bi : a, b ∈ Z }?
zero divisors: none.

25)Euler’s function
26)a · a · a · · · a︸ ︷︷ ︸

m times
27)u1u2 · · ·um
28)in Zn
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Z[i] is a subring of C and C have no zero divisors.
(u, v ∈ C, uv = 0 =⇒ u = 0 or v = 0, i.e., C is an integral domain)
units: units in C are C \ {0} (i.e., C is a field.)
∗ This does not mean that Z[i] is a field. Example: 2 is a unit in Q but not in Z.

units: ±1, ±i
claim: these are the only units
Proof: z ∈ Z[i], z = a+ bi
|z| =

√
a2 + b2

N(z) = |z|2 = a2 + b2 ∈ Z
z, w ∈ Z, N(zw) = N(z)N(w)
If z is a unit in Z[i], let w = z−1 ∈ Z[i],
1 = zw =⇒ N(1)29) = N(zw) = N(z)N(w)
N(w) = N(z)−1,
i.e., N(z) is a unit in Z.
=⇒ N(z) = ±1
=⇒ a2 + b2 = ±1
=⇒ a2 + b2 = 1
=⇒ a = ±1 and b = 0
or
a = 0 and b = ±1
z = 1,−1, i,−i

Exercise: Fun([0, 1],R). What are the zero-divisors and the units?

Polynomials:
Definition: R commutative ring. Let x be an indeterminate (i.e., a variable), i.e., x is just a symbol.
A polynomial in x over R is a formal expression30) of the form

a0 + a1x+ a2x
2 + a3x

3 + · · ·

where ais are in R and all but finitely many of the ais are 0.

a0 + a1x+ a2x
2 + · · · = b0 + b1x+ b2x

2 + · · ·

if and only if each ai = bi in R.

Notational conventions:

1. We use series notation:

a0 + a1x+ a2x
2 + · · · =:

∞∑
i=0

aix
i

2. We often drop the aix
i if ai = 0.

So for example when R = Z, we write:

x2 − 2x4 + x6

rather than
0 + 0x+ 1x2 + 0x3 + (−2)x4 + 1x6 + 0x7 + 0x8 + · · ·

3. we also write x2 − 2x4 instead of x2 + (−2)x4

Let R[x] denote the set of all polynomials in x over R.

29)1
30)formal expression means it is just a string of symbols
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Check: R[x] is a ring with

0 =

∞∑
i=1

0xi

1 = 1 + 0x+ 0x2 + · · ·(∑
i

aix
i

)
+

(∑
i

bix
i

)
:=

∞∑
i=0

(ai + bi)
31)xi

(∑
i

aix
i

)(∑
i

bix
i

)
:=

∞∑
i=0

( ∞∑
j=0

ai−j
32)bj

)
xi

PMATH 345 Lecture 6: September 25, 2009
R commutative
R[x] ring of polynomials
P ∈ R[x], P =

∑∞
i=0 aix

i formal expression

• ai ∈ R

• all but finitely many are 0.(∑
i

aix
i

)
+

(∑
i

bix
i

)
=
∑
i

(
ai + bi

)
xi ∈ R[x] (A)

(∑
i

aix
i

)(∑
i

bix
i

)
=
∑
i

( i∑
j=0

ai−jbj

)
xi ∈ R[x] (B)

note: x is the usual “collecting terms” rule.
In Z[x],

PQ = (x2 + 2x3 − 7x6)(−x+ x2)

= −x3 − 2x4 + 7x7 + x4 + 2x5 − 7x8

= −x3 − x4 + 2x5 + 7x7 − 7x8

Remark: Given P ∈ R[x] it induces a function

fP : R→ R

by “substitution”.

P =
∑
i

aix
i = a0 + a1x+ a2x

2 + · · ·

fP (r) =
∑
i

air
i = a0 + a1r + a2r

2 + · · · 33) ∈ R

for any r ∈ R

Warning: Then maybe P 6= Q in R[x] such that as functions, fP 6= fQ.
So you cannot identify the polynomial with the function it induces.
Example: Z2[x]

P = 0 =
∑
i

0xi ∈ Z2[x]

Q = x+ x2 = 0 + 1x+ 1x2 + 0x3 + 0x4 + · · ·
31)in R
32)in R
33)finite sum
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P 6= Q but 0 6= 1 in Z2

fP : Z2 → Z2, fP (0) = fP (1) = 0
Z2 = {0, 1}
fQ(0) = 0 + 0

2
= 0

fQ(1) = 1 + 1
2

= 1 + 1 = 2 = 0
As functions fP = fQ.

Definition: R commutative ring.
The power series ring, R[[x]] is the ring whose elements are formal expressions

∞∑
i=0

aix
i, where ai ∈ R

(maybe infinitely many nonzero ais)
where + and × are given by the rules (A) and (B) (same as in R[x]).

Exercise: R[x] is a subring of R[[x]].

Definition: R commutative. P ∈ R[x], P =
∑∞
i=0 aix

i

(a) For any m ≥ 0, the coefficient of xm in P is am.

(b) If P 6= 0 then the degree of P is the highest power of x that occurs with a nonzero coefficient.

degP = max{m : am 6= 0 }

[the 0 polynomial has no degree]

(c) If P 6= 0 then the leading coefficient of P is an where n = degP .

(d) If P 6= 0 then the leading term of P is anx
n where n = degP .

(e) Each summand aix
i is called a monomial of P .

(f) A term of P is a monomial aix
i where ai 6= 0 (polynomials have only finitely many terms)34)

Note: degP = 0 =⇒ P = r + 0x+ 0x2 + · · · where r 6= 0.
So if P 6= 0, P ∈ R[x], and n = degP then we can write

P = a0 + a1x+ · · ·+ anx
n

Remark: Every element of R can be viewed as a polynomial on R.

r = r + 0x+ 0x2 + · · ·

Under this identification, R becomes a subring of R[x].

R = 0 ∪ {degree 0 polynomials of R[x]}

Call these constant polynomial35)

Example: Q = x+ x2 ∈ Z2[x]. degQ = 2, Q is not a constant polynomial.
But as a function Z2 → Z it is a constant function (it’s th zero function).

Proposition: R commutative. P,Q ∈ R[x]. P 6= 0, Q 6= 0.

1. If degP 6= degQ then deg(P +Q) = max{degP,degQ}

2. If degP = degQ then deg(P +Q) ≤ degP

3. If PQ 6= 0, deg(PQ) ≤ degP + degQ

34)not completely standard
35)a constant polynomial is the 0 polynomial or a polynomial of degree 0
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4. If R is an integral domain then so is R[x] and deg(PQ) = degP + degQ

Proof: 1, 2 exercises.

(3) degP = n, degQ = m

P = a0 + a1x+ · · ·+ anx
n an 6= 0

Q = b0 + b1x+ · · ·+ bmx
m bm 6= 0

PQ = · · ·+ · · ·+ anbmx
m+n

=⇒ deg(PQ) ≤ m+ n

But maybe anbm = 0 so you don’t in general get equality.
If R is an integral domain then anbm 6= 0.
So PQ 6= 0. Hence R[x] is also integral domain.
Moreover we have shown in this case that deg(PQ) = m+ n.

PMATH 345 Lecture 7: September 28, 2009
Definition: R commutative ring, P ∈ R[x]
Suppose S is an extension of R
Given that s ∈ S, we can substitute s for x

P (s) ∈ S as follows:
if P = a0 + a1x+ · · ·+ anx

n, n = degP
then P (s) = a0 + a1s+ a2s

2 + · · ·+ ans
n︸ ︷︷ ︸

36)

each ai ∈ R ⊆ S
s ∈ S

Another way of describing this is:
R is a subring of S
so R[x] is a subring of S[x] (check)
so P ∈ S[x] and consider
fP : S → S
Then P (s) := fP (s)
“P evaluated at s”

Homomorphisms
Definition: R, S rings. A homomorphism φ : R→ S is a function with

φ(1) = 137)

38)φ(a+ b) = φ(a) + φ(b)

φ(ab) = φ(a)φ(b)

Remark: If φ is a homomorphism, then φ(0) = 0 and φ(a) = −φ(a).
Proof:

0 + φ(0) = φ(0 + 0) = φ(0) + φ(0)

=⇒ 0 = φ(0)

ϕ(−a) + ϕ(a) = ϕ(−a+ a)

= ϕ(0) = 0

=⇒ φ(−a) = −φ(a)

The image of φ : R→ S
φ(R) = {φ(a) : a ∈ R } ⊆ S

36)+ and − are happening in S
37)∗ Different from text
38)a, b ∈ R
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Check: φ(R) is a subring of S.

The kernel of φ
kerφ = { a ∈ R : ϕ(a) = 0 } ⊆ R

Remark: kerφ is a subring ⇐⇒ kerφ = R ⇐⇒ S = {0}.
As long as S is nontrivial, here it is not a subring.39)

Example:

(a) R is a subring of S and

φ : R→ S is the inclusion

r 7→ r φ is a homomorphism

When R = S we call this the identity homomorphism

(b)

φ : C→ C homomorphisms

z 7→ z conjugation map

z = r + si, z = r − si

(c)

res : Z→ Zn, n fixed ≥ 2

a 7→ a = { b ∈ Z : a ≡ b (mod n) }

homomorphism

res(1) = 1 = identity in Zn
res(ab) = ab = ab

res(a+ b) = a+ b = a+ b

(d) What about homomorphisms from Z to Z?
Suppose φ : Zn → Z was a homomorphism, then:

φ(1) = 1

φ(1 + 1) = φ(1) + φ(1) = 1 + 1 = 2

...

0 = φ(0) = φ(n) = φ(1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

) = n in Z40)

No homomorphisms from Zn to Z.

(e) Fix any ring R, what are the homomorphisms from Z to R?

Consider φ : Z→ R a > 0 in Z, φ(a) :=

a times︷ ︸︸ ︷
1R +R + · · ·+R 1R

a < 0 in Z, φ(a) = −φ(a)
φ(0) = 0

check: φ is a homomorphism
This is the only possible since if ψ : Z→ R is any other my homomorphism.

39)(for us, different in DF)
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then for a > 0,

ψ(a) = ψ(1 + · · ·+ 1︸ ︷︷ ︸
a times

)

= ψ(1) + · · ·+ ψ(1)

= 1R + · · ·+ 1r = φ(a)

Hence ψ = φ.

Point: For any R there is a unique homomorphism in Z to R.

Definition: φ : R→ S a ring homomorphism

1. φ is injective if φ is 1-to-1.
Also called embedding, monomorphism

2. φ is a surjective homomorphism if
φ(R) = S

Also called a epimorphism.

3. If R = S, then a homomorphism φ : R→ R is called endomorphism

4. An isomorphism is an injective and surjective homomorphism.

5. If φ : R→ R is an isomorphism we call it an automorphism.

Suppose φ : R→ R is a homomorphism.
Lemma: φ : R→ S is an endomorphism iff kerφ = {0}.
Proof: If φ is an embedding and φ(a) = 0 = φ(0) =⇒ a = 0,
i.e., kerφ = {0}.
Conversely, suppose kerφ = {0}.

φ(a) = φ(b)

φ(a)− φ(b) = 0

φ(a) +−(φ(b)) = 0

φ(a) + φ(−b) = 0

φ(a+ (−b)) = 0

a+ (−b) ∈ kerφ = {0}
=⇒ a+ (−b) = 0

=⇒ a = b

Ideals and Quotients
Definition: An ideal I of a ring R is a nonempty subset such that

1. a, b ∈ I, (a+ b) ∈ I

2. for any r ∈ R and a ∈ I, ra ∈ I and ar ∈ I in R

Remark: 0 ∈ I
let a ∈ I, −a = (−1)a

PMATH 345 Lecture 8: September 30, 2009

e = (f + f)

(1 + e)−1 ×= (1− f)41)

= (1− ef)

40)contradiction
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Example: Any R, (0) trivial ideal = {0}

Example: φ : R→ S homomorphism of rings
kerφ is an ideal of R.

Proof:
φ(a) = 0

φ(b) = 0
=⇒ φ(a+ b) = φ(a) + φ(b) = 0

kerφ 6= 0 since 0 ∈ kerφ
a ∈ kerφ, r ∈ R, φ(ra) = φ(r)φ(a) = φ(r)0 = 0
Similarly φ(ar) = 0 −→ ar, ra ∈ kerφ

Example: What are the ideals of Z?
Suppose I 6= (0) ideal in Z.
=⇒ I has positive elements (since a ∈ I =⇒ −a ∈ I)
Let c be the least positive integer in I.
Let J = cZ := { ca : a ∈ Z } = {integers divisible by c}

Check: J is an ideal “ideal generated by c”
J ⊆ I since c ∈ I, all ca ∈ I

Claim: J = I.
Proof: Suppose not.
There is a ∈ I \ J .
If −a ∈ J then −(−a) = a ∈ J .
But a /∈ J , so −a /∈ J .
But −a ∈ I. So −a ∈ I \ J .
I \ J has a positive integer.
Let b be the least positive integer in I \ J .
=⇒ b = qc+ r where q ∈ Z, 0 < r < c.
r = b− qc = b+ (−q)c ∈ I since b, c ∈ I, therefore r ∈ I.
Note b ≥ c by choice of c.
=⇒ r < c ≤ b, therefore r < b
And 0 < r < c, c - r =⇒ r /∈ J .
Contradiction to minimal choice of b.

Every ideal in Z is of the form cZ for some c ≥ 0.

Definition: R commutative ring. A principal ideal is one of the form

cR := { ca : a ∈ R }

where c ∈ R.

(Exercise: cR is the smallest ideal containing c.)

R is a principal ideal domain (pid) if it is an integral domain and every ideal of R is principal.
So Z is a pid.

R commutative ring. I an ideal of R. a ∈ R, a := a+ I := { a+ b : b ∈ I } ⊆ R.

residue a mod I
R/I := { a : a ∈ R }.

Quotient of R modulo I
Elements of R/I are called cosets of I.

Lemma: If a, b ∈ R, either a = b or a ∩ b = ∅.
41)f is unique ⇐⇒ 2 = 1 + 1 is not a zero divisor

15



Proof: Suppose z ∈ a ∩ b.
z = a+ x

z = b+ y
for some x, y ∈ I

=⇒ a = b+ (y − x)
Hence for any u ∈ I,

a+ u = b+ (y − x) + u︸ ︷︷ ︸
in I

∈ b+ I = b

therefore a ⊆ b. Similarly b ⊆ a.

Note: If a ∈ R then a ∈ a = a+ I
Hence R is partitioned into disjoint cosets of I. figure: I subset

of R(Possibly infinite partitioning of R).

Proposition: R/I is a commutative ring with:

0 = 0 + I

1 = 1 + I

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)(b+ I) = (ab) + I

Proof: Need to prove that + and × on R/I are well-defined operations.

Note: A coset a+ I is not uniquely represented by this notation. In fact if b ∈ a+ I then a+ I = b+ I.
(by the lemma)
(conversely a+ I = b+ I =⇒ b ∈ a+ I).

Every element of a coset represents that coset.
+ should depend only on the cosets not on the representatives.
need: If a+ I = a′ + I
b+ I = b′ + I
then (a+ b) + I = (a′ + b′) + I.
Proof:

a′ + I = a+ I =⇒ a′ ∈ a+ I

=⇒ a′ = a+ x for some x ∈ I
b′ + I = b+ I =⇒ b′ ∈ b+ I

=⇒ b′ = b+ y for some y ∈ I
=⇒ (a′ + b′) = (a+ b) + (x+ y)︸ ︷︷ ︸

in I

∈ (a+ b) + I

therefore (a′ + b′) + I = (a+ b) + I

Similarly check × is well-defined.
Check: R/I is a commutative ring.

Example: Consider Z and the ideal nZ = {na : a ∈ Z }, n ≥ 2
Check: Z/nZ = Zn
a ∈ Z. res(a) = a+ nZ
Zn is the quotient of Z mod nZ
missing: n = 0, n = 1, 0Z = (0), Z/(0) = { a+ (0) = {a} : a ∈ Z }
Z/1Z trivial ring

PMATH 345 Lecture 9: October 2, 2009
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n ≥ 2, Z/nZ = { a+ nZ : a ∈ Z } = Zn
Z/1Z = 0 + 1Z trivial
In general, R/R is the trivial ring.
Z/0Z = { a+ (0) : a ∈ Z }

a+ (0) = {a+ 0} = {a}

Exercise: Z/0Z ≈ Z by Z/0Z→ Z, a+ (0) 7→ a
In general, R/(0) ≈ R in the canonical way. That is

φ : R/(0)→ R

a+ (0) 7→ a

is a bijective homomorphism.
Example: R[x]

I = (x2 + 1)R[x]

=
{

(x2 + 1)P : P ∈ R[x]
}

Consider R[x]/I
(x+ I)2 = x2 + I

since x2 + 1 ∈ I
x2 + I = −1 + I = −(1 + I) = −1R/I

In R[x]/I, (x+ I) is a square root of −1.

Lemma: R commutative ring, I ideal of R.

a+ I = b+ I︸ ︷︷ ︸
inside R/I

⇐⇒ a− b ∈ I.

Proof: a+ I = b+ I, so

a ∈ b+ I =⇒ a = b+ x for some x ∈ I
=⇒ a− b = x ∈ I

If a− b ∈ I, so a− b = x, for some x ∈ I.

=⇒ a = b+ x ∈ b+ I

=⇒ a ∈ a+ I

=⇒ (a+ I) ∩ (b+ I) 6= ∅
=⇒ a+ I = b+ I.

Also φ : R→ R[x]/I

r 7→ r + I

is an embedding.

Proof: Clearly a homomorphism,
Suppose r + I = 0R/I , i.e., r ∈ ker(φ)
r + I = 0 + I
=⇒ r ∈ I
But in I the only constant polynomial is 0. Therefore r = 0.

Aside: The above argument works for any integral domain R. That is,

φ : R→ R[x]/(x2 + 1)R[x]

is an embedding and in R[x]/I, (x+ I)2 = −1.

17



Identify R with its image in R[x].

C ≈42) R[x]/I43)

|
R

Notation: In any ring R, by (a) we mean aR, the ideal generated by a in R, a ∈ R.

First isomorphism theorem: R, T commutative rings. φ : R→ T homomorphism.
Im(φ) is isomorphic to R/ Im(kerφ). imφ := φ(R)

Proof:

Define ψ : R/ kerφ→ Imφ

a+ kerφ 7→ φ(a)

Note if b+ kerφ = a+ kerφ then by lemma a− b ∈ kerφ
φ(a− b) = 0
=⇒ φ(a)− φ(b) = 0
=⇒ φ(a) = φ(b)
So ψ is well-defined.
Let’s write a = a+ kerφ.

ψ(a+ b) = ψ(a+ b) by definition of + in R/ kerφ

= φ(a+ b) by definition of ψ

= φ(a) + φ(b) = ψ(a) + ψ(b)

Similarly ψ(ab) = ψ(a)ψ(b).
And φ(1) = φ(1) = 1.
So ψ is a homomorphism.
Surjective: x ∈ Imφ

x = φ(a) for some a ∈ R
= ψ(a) ∈ Imψ

therefore ψ is surjective
Injective: x ∈ ker(ψ). ψ(x) = 0.
x ∈ R/ kerφ so x = a for some a ∈ R.
φ(a) = ψ(a) = 0
therefore a ∈ kerφ

Example: φ : R[x]→ C
the “evaluation at i” map,
i.e., φ(P ) := P (i) ∈ C
Check: φ is a homomorphism.

kerφ = ?
Suppose P ∈ kerφ.
So P (i) = 0.
That is i is a root of P .
In C[x], (x− i) is a factor, (x+ i) is a factor
since P is actually real.
=⇒ (x+ i)(x− i) = x2 + 1 is a factor
therefore (x2 + 1) is a factor of P in R[x].
i.e., P ∈ (x2 + 1) = (x2 + 1)R[x]

42)we will see this
43)in here −1 has a square

18



Conversely if Q ∈ (x2 + 1)
then Q = (x2 + 1)Q′

so Q(i) = 0 ·Q′(i) = 0.
=⇒ Q ∈ kerφ.
therefore kerφ = (x2 + 1).
What is Imφ =?
Let a+ bi ∈ C. a, b ∈ R
a+ bi = P (i) P = a+ bx ∈ R[x]
therefore φ is surjective.
Hence C ≈ R[x]/(x2 + 1).
Moreover this isomorphism is given by

φ : R[x]/(x2 + 1)→ C
P + (x2 = 1) 7→ P (i)

PMATH 345 Lecture 10: October 5, 2009
R/I 0R/I = 0R + I = I
a+ I = b+ I ⇐⇒ a− b ∈ I
I = R
0R/R = R
elements in R/R is a+R some a ∈ R
a ∈ R =⇒ a+R = 0 +R = R = 0R/R

R commutative ring, I an ideal

Quotient ring: R/I.
It’s elements are called cosets of I, a+ I = { a+ b : b ∈ I }
Sometimes use a to denote a+ I

Quotient map is the function π : R→ R/I

a 7→ a+ I

Note: π is a surjective ring homomorphism.
Proof: α ∈ R/I,

α = a+ I for some a ∈ R
= π(a) therefore π is onto

π(a+ b) = (a+ b) + I = (a+ I) + (b+ I)

= π(a) + π(b)

π(ab) = ab+ I

= (a+ I)(b+ I)

= π(a)π(b)

π(1R) = 1R + I

= 1R/I

ker(π) = I

π(a) = 0R/I = 0 + I

m
a+ I = 0 + I

m
a ∈ I
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Suppose φ : R→ S ring homomorphism of commutative rings.
Then there is a commutative diagram44) of homomorphism:

R
φ

//

π
##

S

R/ kerφ

ψ

;;

where π is the quotient map
and ψ(a+ kerφ) := φ(a)
In the proof of the 1st Isomorphism Theorem we saw that ψ is well-defined and a homomorphism and
its image is φ(R).
Note: ψ is the unique homomorphism from R/ kerφ to S which makes the diagram commute.
Point: Every ring homomorphism φ : R → S of commutative rings factors canonically through
π : R→ R/ kerφ.

1st Isomorphism Theorem tells us more: ψ is an embedding whose image is φ(R). In part, if φ is
surjective then ψ is an isomorphism.

Definition: R ring, I an ideal.

1. I is a prime ideal if I 6= R and for all

a, b ∈ R, if ab ∈ I then either a ∈ I or b ∈ I

2. I is a maximal ideal if

• I 6= R

• If J ( R is a proper ideal and I ⊆ J then I = J .
i.e., there is no ideal properly in between I ⊆ R.

Examples:

(a) R commutative ring
(0) is prime ⇐⇒ R integral domain

(b) R = Z.
Ideals in Z are all of the form (n) = nZ where n ≥ 0.
(0) is prime by part (a)
(1) is neither prime nor maximal because (1) = Z.
n ≥ 2,

(n) is prime ideal ⇐⇒ n is prime number

Proof: Suppose (n) prime ideal. Let p be a prime number.
Suppose n = ab ∈ (n)
=⇒ a ∈ (n) or n ∈ (n)
n | a or n | b
=⇒ a = 1 or b = 1
Consequently n prime number.

ab ∈ (n) ⇐⇒ n | ab
⇐⇒ n | a or n | b as n is prime

⇐⇒ a ∈ (n) or b ∈ (n)

(n) maximal ⇐⇒ n is a prime number

44)i.e., for a ∈ R
φ(a) = ψ(π(a))

Proof: ψ(π(a)) = φ(a+ kerφ) = φ(a)
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Proof: (=⇒) (0) not maximal
(0) ( (2) ( Z.

(⇐=) Suppose p is a prime number

(p) ⊆ I45) ⊆ Z46)

=⇒ p ∈ (n) =⇒ n | p =⇒ n = 1 or n = p
=⇒ I = (p) or I = Z.

Theorem: Let I be an ideal in a commutative ring R. Then:

1. I is prime ⇐⇒ R/I is an integral domain

2. I is maximal ⇐⇒ R/I is a field

In particular: maximal ideals are prime
(since ideals are integral domains)

PMATH 345 Lecture 11: October 7, 2009
Corrected:

1. Assume in (a), (b) that φ is surjective

(a) Just do maximal, not prime

Bonus: Counterexample to (b) if φ is not surjective

Counterexample to (a) for prime

Theorem: R commutative ring. I an ideal.

(a) I is prime ⇐⇒ R/I is an integral domain

(b) I is maximal ⇐⇒ R/I is a field

Proof:

(a) Suppose I is prime. a := a+ I.

a, b ∈ R/I
a 6= 0R/I

b 6= 0R/I

a 6= 0 =⇒ a /∈ I
b 6= 0 =⇒ b /∈ I

=⇒ ab /∈ I as I is prime

=⇒ ab 6= 0R/I

=⇒ a · b 6= 0R/I

Therefore R/I is an integral domain.
(Note prime ideals are proper so R/I is not trivial.)

Suppose R/I is an integral domain.

R/I maximal =⇒ I proper.

a, b ∈ R, suppose ab ∈ I.

ab = 0R/I

=⇒ ab = 0R/I

=⇒ either a = 0 or b = 0 in R/I

45)= (n)
46)uses next theorem

21



as R/I is an integral domain
=⇒ a ∈ I or b ∈ I.

(b) Suppose I is maximal.
Let a 6= 0 in R/I. Need: a is invertible in R/I.
Consider: (a) + I in R.

J := (a) + I = { ar + b : r ∈ R, b ∈ I }

Check: In any commutative ring S, given ideals A and B,

A+B := { a+ b : a ∈ A, b ∈ B }

A+B is an ideal47)

Note: I ⊆ (a) + I. If b ∈ I, then I ⊆ J .
b = a · 0 + b ∈ (a) + I
I maximal =⇒ ���J = I or J = R.
But a = a · 1 + 0 ∈ J but a 6= 0 so a /∈ I.
Therefore J = R.
In particular there is r ∈ R, b ∈ I such that ar + b = 1

=⇒ ar − 1 = −b ∈ I
=⇒ ar = 1

=⇒ ar = 1 = 1R/I

Therefore a is invertible.
Therefore R/I is a field.

Suppose R/I is a field.
Suppose there exists an ideal J such that

I ( J ⊆ R.

Let a ∈ J \ I.
a 6= 0.
=⇒ there is b ∈ R/I such that48)

a · b = 1 in R/I

=⇒ ab− 1 ∈ I ⊆ J
Also a ∈ J =⇒ ab ∈ J so

1 = −(ab− 1)︸ ︷︷ ︸
in J

+ ab︸︷︷︸
in J

=⇒ 1 ∈ J

For any r ∈ R,
r = r · 1 ∈ J

i.e., J = R
i.e., I is maximal.

Corollary: All maximal ideals are prime.

Existence?

Zorn’s Lemma
Definition: A partially ordered set is a nonempty set P with a binary relation, ≤, that is reflexive,
transitive, anti-symmetric.
i.e.,

1. For all a ∈ P , a ≤ a
47)Exercise: A+B is the smallest ideal containing A and B
48)R/I a field
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2. If a, b, c ∈ P ,
a ≤ b and b ≤ c =⇒ a ≤ c

3. If a ≤ b and b ≤ a =⇒ a = b

Typical example: X nonempty set,
Let ∅ 6= S49) ⊆ P(X)
(S,⊆) is a poset.

Definition: Suppose (P,≤) is a poset.
A chain in (P,≤) (or a totally ordered subset) is a subset C ⊆ P such that for all a, b ∈ C, either a ≤ b
or b ≤ a.

Zorn’s lemma: Suppose (P,≤) is a poset where C ⊆ P is a chain, there exists a ∈ P such that a ≥ b
for all b ∈ C. (a is an upper bound for C).
Then (P,≤) has a maximal element i.e., there exists d ∈ P such that if a ∈ P , d ≤ a, then a = d.
(Nothing strictly bigger than d in P .)
We will assume this.

Theorem: Let R be a ring. I a proper ideal. Then I is contained in a maximal ideal.

Proof: Let S = set of all proper ideals in R containing I.

S ⊆ P(R) I ∈ S

So (S,⊆) is a poset.
Let C be a chain in S.
So C = { Ji : i ∈ κ }

Let J∗ =
⋃
C

= { a ∈ R : a ∈ Ji for some i ∈ κ }

Exercise: Show J∗ is a proper ideal.

J∗ = R ⇐⇒ 1 ∈ J∗ ⇐⇒ 1 ∈ Ji for some i ⇐⇒ Ji = R for some i

Note I ⊆ J∗. So J∗ ∈ S.
Hence by Zorn’s Lemma, (S,⊆) has a maximal element, i.e., there exists a proper ideal M containing
I such that if M ⊆ J ( R where J 6= R ideal containing I then M = J .
i.e., M is a maximal ideal.

PMATH 345 Lecture 12: October 9, 2009
My name is Collis Roberts. I’m a PhD student in Pure Math, and your PMath 345 TA.

Chinese Remainder Theorem
Recall: For a positive integer n, the Euler function φ(n), is the # of positive integers (≤ n) coprime to
n (i.e., that have gcd = 1 with n).

φ(n) = # of units in Zn = Z/(n).

If p is prime then

φ(p) = p− 1

φ(pe) = pe − pe−1 = pe
(

1− 1
p

)
50)

Goal for today: Develop a “nice” formula for φ(n) when n has multiple prime factors.

49)a collection of subsets of X
50)(the only divisors of pe are powers of p)
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Proposition: (Chinese Remainder Theorem)
For positive integers m,n: If gcd(m,n) = 1, then

Zmn ' Zm × Zn.

Proof: Let

σm : Z→ Zm σn : Z→ Zn
k 7→ k k 7→ k

be the residue maps: these are homomorphisms.

Define:

σ : Z→ Zm × Zn
k 7→ (σm(k), σn(k))

a homomorphism since σm, σn are.

1st Isomorphism Theorem: Z/ kerσ ' imσ.

So we’re done if we can prove:

• kerσ = (mn)

• imσ = Zm × Zn
Proof that kerσ = (mn):
((mn) ⊆ kerσ): σ(mn) = (σm(mn), σn(mn)) = (0, 0) in Zm × Zn
(kerσ ⊆ (mn)): Let k ∈ kerσ be arbitrary. ⇐⇒ σ(k) = (0, 0). =⇒ (0, 0) = (σm(k), σn(k)) =⇒ m |
k and n | k.
Since gcd(m,n) = 1, there exists integers u, v such that 1 = um+ vn.
Multiplying by k gives: k = umk + vnk.
Since m | k and n | k, mn divides the RHS.
=⇒ mn | k =⇒ k ∈ (mn). Therefore (kerσ = (mn)).

Proof that imσ = ZZZm × ZZZn:
By definition, imσ ⊆ Zm × Zn. We need to check the containment cannot be proper.
It’s clear that Zm × Zn contains mn elements.
1st Isomorphism Theorem now says: Zmn = Z/(mn) ' imσ.
This isomorphism guarantees imσ contains mn elements.
=⇒ imσ = Zm × Zn.
So finally, Zmn = Z/(mn) = Z/ kerσ ' imσ = Zm × Zn.

Corollary: If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).
Proof: By previous proposition, Zmn ' Zm × Zn.
# of units in Zmn is φ(mn) =⇒ # of units in Zm × Zn is φ(mn).
So we just need to count the units of Zm × Zn another way.
An element (a, b) of Zm × Zn is a unit ⇐⇒

• a is a unit in Zm (φ(m) of these) AND

• b is a unit in Zn (φ(n) of these)

Therefore there are φ(m)φ(n) units in Zm × Zn.

Example: Instead of using brute force, we can now compute

φ(637) = φ(7 · 91) = φ( 72︸︷︷︸
m

· 13︸︷︷︸
n

) = φ(72)φ(13) = 72
(
1− 1

7

)
(12) = 504.

Recall that every positive integer n has a unique factorization into distinct primes: n = pe11 · · · p
ek
k . We

can now state our formula for φ(n).
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Proposition: If the prime factorization for n is n = pe11 · · · p
ek
k , then

φ(n) = n
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
Proof: Since pe11 is coprime to pe22 · · · p

ek
k , previous corollary says:

φ(n) = φ(pe11 )φ(pe22 · · · p
ek
k ) = pe11

(
1− 1

p1

)
φ(pe22 · · · p

ek
k )

(Repeat the argument for pe22 to get)

= pe11

(
1− 1

p1

)
pe22

(
1− 1

p2

)
φ(pe33 · · · p

ek
k )

Continue until all prime factors are exhausted. Get

= (pe11 p
e2
2 · · · p

ek
k )
(

1− 1
p1

)(
1− 1

p2

)
· · ·
(

1− 1
pk

)
= n

(
1− 1

p1

)
· · ·
(

1− 1
pk

)
Final Observation: Euler’s Formula
Suppose n = pe for some prime p. Then:

n = pe = (pe − pe−1) + (pe−1 − pe−2) + · · ·+ (p1 − p0) + 1

= φ(pe) + φ(pe−1) + · · ·+ φ(p1) + φ(1)

=
∑

d|n,d>0

φ(d)

Remark: This holds when n has multiple prime factors also.
Sadly, we don’t have time to prove it today.

PMATH 345 Lecture 13: October 14, 2009
In class midterm Monday Oct. 16.

Localizations and Function Fields

R commutative ring
S ⊆ R subset such that

1. 1 ∈ S

2. a, b ∈ S =⇒ ab ∈ S (S is multiplicatively closed)

3. S contains no zero divisors, or zero

Consider the Cartesian product R× S and define on it a relation as follows:
Definition: (a, s) ∼ (b, t) if at = bs

Lemma: ∼ is an equivalence relation on R× S
Proof:

1. Reflexive: a ∈ R, s ∈ S,
(a, s) ∼ (a, s)

2. Symmetric: a, b ∈ R, s, t ∈ S
If (a, s) ∼ (b, t) then (b, t) ∼ (a, s)

3. Transitivity: a, b, c ∈ R, s, t, u ∈ S
Need: If (a, s) ∼ (b, t) and (b, t) ∼ (c, u) then (a, s) ∼ (c, u)

at = bs

bu = ct
=⇒ atu = bsu = bus = cts

=⇒ aut = cst, t is not a zero divisor and t 6= 0
=⇒ au = cs, i.e., (a, s) ∼ (c, u)
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So we can form the equivalence classes a ∈ R, s ∈ S.

[(a, s)] := { (b, t) : b ∈ R, t ∈ S, (b, t) ∼ (a, s) }

Note: [(a, s)] = [(b, t)] ⇐⇒ (a, s) ∼ (b, t)

Definition: The localization of R at S is

RS := R× S/ ∼= { [(a, s)] : (a, s) ∈ R× S }.

Notation: We often write an element [(a, s)] as a
s .

Note: In RS , a
t = b

s ⇐⇒ as = bt (∗)

Proposition: The following operations make RS into a commutative ring:

0RS
= 0

1 1RS
= 1

1(
0
1 = [(0, 1)] = { (b, t) : (b, t) ∼ (0, 1) }

= { (0, t) : t ∈ S }

) (
1
1 = [(1, 1)] = { (b, t) : (b, t) ∼ (1, 1) }

= { (t, t) : t ∈ S }

)
a

s
+
b

t
:=

at+ bs

st

a

s
· b
t

:=
ab

st

(note st ∈ S)
Proof: Well-defined.
Suppose a

s = a′

s′ =⇒ as′ = a′s

a′, b′ ∈ R, s′, t′ ∈ S, b
t = b′

t′ =⇒ bt′ = b′t

(a′t′ + b′s′)st = a′t′st+ b′s′st

= as′t′t+ bt′s′s

= (at+ bs)s′t′

a′t′ + b′s′

s′t′
=
at+ bs

st
by (∗)

Therefore a′

s′ + b′

t′ = a
s + b

t , so + is well defined.
(a′b′)(st) = as′bt′ = (ab)(s′t′)

=⇒ a′b′

s′t′ = ab
st

=⇒
(
a′

s′

)(
b′

t′

)
=
(
a
s

)(
b
t

)
therefore · is well-defined.
Check that this makes RS into a commutative ring.
Example: Existence of additive inverse:

−
(a
s

)
=
−a
s

Proof: (a
s

)
+

(
−a
s

)
=
as+ (−a)s

s2
=
as− as
s2

=
0

s2
=

0

1
= 0RS

Point: RS is the “smallest” extension of R in which every element of S is a unit.
Proposition: The function

R
ρ→ RS

a 7→ a
1

is an embedding with the property that ρ(s) is a unit in RS for all s ∈ S.
If ρ : R→ T is an embedding with the property that for all s ∈ S, ρ(s) is a unit in T then there exists
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a unique embedding ψ : RS → T such that

R
φ

	

//

ρ
  

T

RS

ψ

>>

Proof: ρ(1) = 1
1 = 1RS

ρ(a+ b) = a+b
1 = a

1 + b
1 = ρ(a) + ρ(b)

ρ(ab) = ab
1 =

(
a
1

)(
b
1

)
= ρ(a)ρ(b)

a ∈ ker ρ =⇒ ρ(a) = 0RS
=⇒ a

1 = 0
1

=⇒ a = 0, therefore ρ is an embedding.

Given s ∈ S,
1
s ·

s
1 = s

s = 1
1 = 1RS

therefore 1
s is the inverse of ρ(s) in RS

=⇒ ρ(s) is a unit in RS

Given φ : R→ T with these properties then define

ψ : RS → T

by
a
s 7→ φ(a) · φ(s)−1

for a ∈ R, s ∈ S.
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Proof that ψ is well-defined. Let a

s = a′

s′ .

=⇒ as′ = a′s

=⇒ φ(as′) = φ(a′s)

=⇒ φ(a)φ(s′) = φ(a′)φ(s)

=⇒ φ(a)φ(s)−1 = φ(a′)φ(s′)−1

=⇒ ψ(as ) = ψ(a
′

s′ ), so ψ is well-defined.

Check: ψ is a homomorphism
Now, show ψ in injective. Let a

s ∈ kerψ

=⇒ ψ(as ) = 0

=⇒ φ(a)φ(s)−1 = 0

=⇒ φ(a) = 0, since φ(s) is a unit

=⇒ a = 051) =⇒ a
s = 0, so ψ is an embeddding

Now, we will show ψ(φ(a)) = φ(a)

ψ(φ(a)) = ψ(a1 )

= φ(a)φ(1)−1

= φ(a)1−1

= φ(a), as required

51)since φ is an embedding
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Lastly, we will show ψ in unique.
Suppose ψ′ : RS → T is an embedding such that ψ′ ◦ ρ = φ. Let a

s ∈ RS .
Then, ψ′(a1 ) = ψ′(ρ(a)) = φ(a)
And, 1 = ψ′(1) = ψ′( s1 ·

1
s ) = ψ′( s1 )ψ′( 1

s ) = φ(s)ψ′( 1
s ), so ψ′( 1

s ) = φ(s)−1

So, ψ′(a1 )ψ′( 1
s ) = φ(a)φ(s)−1

=⇒ ψ′(a1 ·
1
s ) = φ(a)φ(s)−1

=⇒ ψ′(as ) = φ(a)φ(s)−1

=⇒ ψ′(as ) = ψ(as ). So ψ is unique.

Convention: We usually identify R with its image under ρ in RS , i.e., we view R as a subring of RS ,
with a = a

1
Definition: Suppose R is an integer domain, and let S = R \ {0}. Then RS is called the field of
fractions of R, and we will denote it by Q(R).

The obvious example is Q(Z) = Q.
Note: Q(R) is a field.
Proof: Let a

b ∈ Q(R) =⇒ a ∈ R, b 6= 0 ∈ R
If a

b 6= 0, then a 6= 0, then b
a ∈ Q(R)

And, a
b ·

b
a = ab

ba = 1
1 = 1

So a
b is a unit. Therefore Q(R) is a field.

Example: Let R be an integral domain.
R[x] is an integral domain.

Q(R[x]) = { f/g : f, g ∈ R[x], g 6= 0 }
:= R(x) called rational functions on R

Perhaps later we will talk about Q(R[[x]]), called the set of Laurent series.
Proposition: Let R be a principal ideal domain, (respectively integral domain) and let S ⊆ R satisfy
the properties.
Then RS is a principal ideal domain. (respectively integral domain)
Proof: R is not trivial =⇒ RS is not trivial.
And, RS is commutative.
Suppose a

s ,
b
t ∈ RS

ab

st
= 0 =

0

1
=⇒ ab = 0

=⇒ a = 0 or b = 0, since R is an integral domain

=⇒ a
s = 0 or b

t = 0

And, recall that principal ideal domains are all integral domains.
Let I ⊆ RS be an ideal in RS .
Identify R ⊆ RS , and let I∗ = I ∩R.
Check: I∗ is an ideal in R.
Thus, I∗ = cR for some c ∈ R
Suppose a

s ∈ I.
Then, a = s(as ) ∈ I ∩R = I∗

=⇒ a = cr for some r ∈ R
=⇒ a

s = cr
s = c rs ∈ cR

=⇒ I ⊆ cRS
And, since c ∈ I, cRS ⊆ I.
Therefore I = cRS , so RS is a principal ideal domain.
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1. Preliminaries

2. Units/Zero Divisors

3. Polynomials
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4. Homomorphisms

5. Ideals and Quotients

6. Localization and fields of fractions

7. Euclidean domains

Recall the division algorithm for Z.
Given a, b ∈ Z, a 6= 0 there exists q, r ∈ Z such that

b = qa+ r

and
|r| < |a|.

Definition: An integral domain R is an Euclidean domain if there exists a function N : R→ N with
N(0) = 052), such that given a, b ∈ R, a 6= 0, there exists q, r ∈ R with

b = qa+ r and N(r) < N(a).

Example: R = Z, N(a) = |a|.
Such an N is often referred to as a Euclidean norm for R.

Proposition: F a field. Given f, g ∈ F [x], f 6= 0. There exist q, r ∈ F [x] such that g = qf + r where
either r = 0 or deg(r) < deg(f).
Corollary: F [x] is a Euclidean domain (F a field) with

N :=

{
0 if f = 0

deg(f) + 1 if f 6= 0
.

Proof: If g = 0 then let q = r = 0. X
Assume g 6= 0.
If deg(g) < deg(f) then let q = 0, r = g. X
Assume deg(g) ≥ deg(f).
Induction on deg(g).

deg(g) = 0 =⇒ deg(f) = 0.

Therefore f, g ∈ F , so units in F .

g =

(
g

f

)
f + 0 X

deg(g) = n:

g = b0 + b1x+ · · ·+ bnx
n bn 6= 0

f = a0 + a1x+ · · ·+ amx
m am 6= 0

m ≤ n
Consider g∗ = g − f ·

(
bn
am

xn−m
)

︸ ︷︷ ︸. OK since am 6= 0 in a field F .

The underbrace has leading term (amx
m)( bnamx

n−m) = bnx
n = leading term of g.

So deg(g∗) < deg(g) = n. By Induction Hypothesis,

g∗ = q∗f + r where either r = 0 or deg(r) < deg(f).

g − f ·
(
bn
am

xn−m
)

= q∗f + r

Corollary: (Factor Theorem): F a field, g ∈ F [x], λ ∈ F
If g(λ) = 0 (i.e., λ is a root of g)

52)for convenience
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then (x− λ) is a factor of g.
(i.e., g = (x− λ)f , for some f ∈ F [x])
The converse is true as well.

Proof: If g = (x− λ)f , g(λ) = (λ− λ)f = 0f = 0 X
Conversely, suppose λ is a root of g.
By the proposition, there exists f, r ∈ F [x] such that

g = (x− λ)f + r

(we are dividing g by (x− λ))
with N(r) < N(x− λ) = 2
=⇒ N(r) = 0 or 1.

If N(r) = 1 then deg r = 0 so r = a0 ∈ F , a0 6= 0.

g = (x− λ)f + a0

g(λ) = 0 · f + a0 = a0 6= 0

contradiction. Therefore N(r) = 0, therefore r = 0, therefore g = (x− λ)f .
Corollary: F field.
g ∈ F [x], deg(g) = n (g 6= 0)
Then g has at most n roots.

Proof: Induction on n.
n = 0: g is nonzero constant polynomial =⇒ g has no roots
n > 0: λ1, . . . , λl be distinct roots of g.
Divide (x− λl) into g to get
g = (x− λl)q (by previous corollary)
But deg(q) = n− 1 (since F is an integral domain deg(PQ) = deg(P ) + deg(Q))
For each i < l,

0 = g(λi) = (λi − λl)︸ ︷︷ ︸
6= 0 since λi 6= λl

q(λi)

By Induction Hypothesis, l − 1 ≤ n− 1 =⇒ l ≤ n.
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Theorem: Every Euclidean domain is a pid.
Proof: I ⊆ R, R Euclidean domain I 6= (0).
Let N : R→ N be a Euclidean norm on R.
Let a ∈ I \ {0} be of least norm.
Show: I = (a). Clearly (a) ⊆ I.
If not, let b ∈ I \ (a).
Divide b by a to get

b = aq + r q, r ∈ R
N(r) < N(a)

r = b− aq ∈ I

By minimality of N(a)
=⇒ r = 0
=⇒ b = aq
=⇒ b ∈ (a) Contradiction.
Therefore I = (a).
Therefore R is a pid.
Corollary: F [x] is a pid if F is a field.

Definition: R integral domain.
a, b ∈ R, a | b mean a divides b which means there is r ∈ R such that b = ar.
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(Note: a | b ⇐⇒ b ∈ (a) ⇐⇒ (b) ⊆ (a).)
(Note: units divide everything: take r = b

a . 0 divides only 0.)
A nonzero and nonunit a ∈ R is called prime if whenever a | bc, either a | b or a | c.
A nonzero nonunit a ∈ R is called irreducible if whenever a = bc, either a | b or a | c.
Example: In Z, prime = irreducible (= prime #s)

Note: prime =⇒ irreducible
Example: (prime 6= irreducible)
F field. F [x].
R ⊆ F [x] be the subring of polynomials with no linear term.
i.e., coefficient of x is 0.

Example: R is a subring of F [x].
Consider x2.
Claim: x2 is irreducible in R.
Proof: x2 = fg, f, g ∈ R
2 = deg f + deg g.
Since f, g ∈ R, deg f 6= 1, deg g 6= 1
Without loss of generality, f = a ∈ F \ {0}
g = 1

ax
2

=⇒ x2 | g.

Claim: x2 is not prime in R.
Proof: x2 | x4 · x2 = x6 = x3 · x3

but if x2 | x3 then x3 = x2f for some f ∈ R
=⇒ deg f = 1, contradiction. So x2 - x3.

Proposition: If R is a pid then prime = irreducible.
Proof: Need irreducible =⇒ prime.
a ∈ R be irreducible. Suppose a | bc. Assume a - b.
I = (a) + (b) = { ar + bs : r, s ∈ R } = (a, b)
R pid =⇒ I = (d), for some d ∈ R.
d | a and d | b
⇓
a = du for some u ∈ R
a - d (else a | b)
=⇒ a | u as a is irreducible
=⇒ u = ar for some v ∈ R
=⇒ a = ard =⇒ 1 = vd =⇒ d is a unit
therefore I = R
there exists r, s ∈ R

ar + bs = 1

acr + cbs = c

a | cbs as a | bc
a | acr X
=⇒ a | c [end of midterm

material]
Corollary: In F [x], prime = irreducible, F a field.

Definition: R integral domain is a Unique Factorization Domain (UFD) if every nonzero nonunit is a
product of primes.

Definition: A ring R is Noetherian if there does not exist any infinite increasing sequence of ideals.
i.e., cannot have I1 ( I2 ( I3 ( · · ·

Theorem: If R is a Noetherian integral domain then every nonzero nonunit is a product of irreducibles.

Corollary: A noetherian pid is a ufd.
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Lemma: pids are always noetherian.

Corollary: pid =⇒ ufd

PMATH 345 Lecture 17: October 23, 2009
Office Hours Today: 11:30–12, 1:15–2:25, 3:30–4:30

Definition: A commutative ring R is Noetherian if there does not exist an infinite increasing sequence
of ideals

I0 ( I1 ( I2 ( I3 ( · · · .

Lemma: pid =⇒ Noetherian
Proof: Suppose we have a sequence

(a0) ⊆ (a1) ⊆ (a2) ⊆ · · · .

Let I =
⋃
i(ai).

Exercise: I is an ideal.
(Note: unions of ideals are not generally ideals.)

R pid =⇒ I = (b)

=⇒ for some i, b ∈ (ai)

=⇒ I ⊆ (ai)

=⇒ (aj) ⊆ (ai) for all j ≥ i
=⇒ (aj) = (ai) for all j ≥ i

Therefore R is Noetharianity.

Proposition: R Noetharian integral domain.
Every nonzero nonunit is a finite product of irreducibles.
Proof: a ∈ R, a 6= 0, a not a unit.
We build tree starting with a = a∅
(We will index this tree by finite sequences of 0s and 1s, i.e., by elements of 2<ω.)
If a is irreducible then X.
If not then a = a0 · a1 such that a - a0 and a - a1.

a∅

a0 a1

If a is irreducible, stop that branch. Otherwise write a0 = a00 · a01 where

a0 - a00 and a0 - a01.

Continue in this way.
If the tree is finite, then a is the product of all the “leaves” of the tree and these elements are irreducible.
So we are done.

If the tree is infinite there must exist an infinite branch (König’s Lemma). So we have α ∈ 2ω, an
infinite sequence of 0s and 1s and for each i,

aα�i+1
| aα�i but aα�i - aα�i+1

(aα�i) ( (aα�i+1)

(a∅) ( (aα�1) ( (aα�2) ( · · ·

Contradiction to Noetheranity.
Hence the tree is finite and a is a product of finitely many irreducibles.
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Recall: An integral domain R is a Unique factorization domain if every nonzero nonunit is a product
of primes.
Corollary: pid =⇒ ufd
Proof: By the lemma pid is Noetharian. By a proposition last time in a pid irreducible = prime.
Hence pid =⇒ ufd by the previous proposition.

fields (53) Euclidean domains (54) pids (55) ufds (56) integral domains

Lemma: R integral domain. a, b ∈ R, u ∈ R a unit.
Then a | b ⇐⇒ a | bu.
Proof:

a | b ⇐⇒ b = ax for some x ∈ R
⇐⇒ bu = ay for some y ∈ R

for =⇒ let y = xu
for ⇐= let x = yu−1

Lemma: R integral domain, a irreducible in R and u a unit in R. Then au is irreducible.
Proof: Suppose au = bc
=⇒ a = bcu−1 = (b)(cu−1)
=⇒ a | b or a | cu−1

Ex.
=⇒ au | b or a | c ( =⇒ au | c).
Lemma+

Lemma: R integral domain, a ∈ R irreducible, b | a then either b is a unit or b = au for some unit u.
(in particular in the second case, b is also irreducible by the previous lemma.)
Proof: b | a =⇒ a = bx for some x ∈ R.
Exercise: a irreducible =⇒ either b is a unit of x is a unit.

Definition: R integral domain, a, b ∈ R irreducibles. We say a and b are associate if a = bu for some
unit u ∈ R.

Theorem: R a unique factorization domain, a ∈ R nonzero. Then up to associates and rearrangement
there is a unique factorization of a,

a = pe11 p
e2
2 · · · p

el
l

where p1, . . . , pl are distinct irreducibles and e1, . . . , el are positive integers.
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median 18.5 74%
mean 17.5 70%

fields ⊆ euclidean domains ⊆ pids ⊆ ufds ( integral domains

Definition: a, b ∈ R integral domain. a, b irreducibles. We say a and b are associate if a = bu for some
unit u.

Exercises:

1. Being associate is an equivalence relation among the irreducibles.

2. If a is irreducible/prime then au is irreducible/prime if u is a unit.

3. a is irreducible iff whenever a = bc either b or c is a unit.

4. a, b irreducibles. a and b are associate ⇐⇒ a | b
53)Z
54)example?
55)example: Z[x], why?
56)?
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Lemma: In a unique factorization domain, irreducible = prime.
Proof: Recall R unique factorization domain means a is nonzero nonunit then a is a finite product of
primes.

prime =⇒ irreducible X

Conversely let a be an irreducible. a = p1 · · · pn where pi are prime.
Each pi | a =⇒ pi = aui for some ui.
Exercise: If a product of elements is a unit then so is each factor.

a = piv, v is a unit

cancellation =⇒ v = p1 · · ·��pi57) · · · pn
=⇒58) n = 1

=⇒ a is prime

Corollary: There are integral domains that are not unique factorization domains.
Proof: We have seen an example of an integral domain where irreducible 6=⇒ prime.
Theorem: (Unique factorization theorem):
R unique factorization domain. a nonzero nonunit.

a = p1 · · · pn
a = q1 · · · ql

where the pis and qjs are prime

Then n = l and after re-indexing each pi is associate to qi.
Proof: By induction on n.
n = 1:

p1 = a = q1 · · · ql
=⇒ l = 1 and p1 = q1 as before
p1 | q1 =⇒ p1 = q1u

q1u = q1q2 · · · ql
=⇒ u = q2 · · · ql59) =⇒ l = 1 X

n > 1:
p1 · · · pn = a = q1 · · · ql

p1 | LHS =⇒
p1 | q1

or

p1 | (q2 · · · ql)

p1-q1
=⇒

p1 | q2

or

p1 | (q3 · · · ql)

p1-q2
=⇒ · · ·

=⇒ p1 | qi for some i = 1, . . . , l.
After re-indexing without loss of generality let i = 1.
=⇒ p1 | q1 =⇒ q1 = p1u, u unit.

��p1 · · · pn = u��p1q2 · · · ql
p2 · · · pn = uq2 · · · ql

Replacing q2 by an associate (namely uq2) we may assume without loss of generality

p2 · · · pn = q2 · · · ql

IH
=⇒ n = l and after re-indexing pj is associate to qj j = 2, . . . , n = l.

57)remove pi
58)by previous exercise
59)contradiction
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Example: (non-ufd)
Z[2i] subring of Gaussian integers

Z[2i] = { a+ 2bi : a, b ∈ Z }

i =
√
−1

Fails unique factorization:

4 = 2 · 2v
4 = (−2i) · (2i)

2, 2i ∈ Z[i]
Need:

1. 2, 2i are irreducibles

2. 2 and 2i are not associate

This leads to two non-associate factorizations of 4 into irreducibles
=⇒ Z[2i] not unique factorization domain
Claim: 2 is irreducible
Proof:

2 = (a+ 2bi)(c+ 2di) a, b, c, d ∈ Z
= (ac− 4bd) + 2(ad+ bc)i

=⇒ (1) ad = −bc and
(2) ac− 4bd = 2
Assume bd 6= 0. Then ac 6= 0.
=⇒ sgn(ac) = positive =⇒ sgn(bd) = negative by (1) =⇒ contradiction (2)
=⇒ sgn(bd) = positive =⇒ sgn(ac) = negative by (1) =⇒ contradiction (2)

Theorem: (Unique factorization theorem)
R ufd. a nonzero nonunit.
=⇒ 2 is irreducible X
Similarly 2i is irreducible X
Only units in Z[i] are 1,−1,−i60), i61)

Only units in Z[2i] are 1,−1
=⇒ 2, 2i are non-associates.
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R ufd
Association is an equivalence relation on the set of primes in R.
We choose and fix once and for all, one prime from each class: PR is the set of these primes.

• If p ∈ R is a prime then p is associate to exactly one prime in PR.

• Any two distinct primes p, q ∈ PR are non-associate.

Corollary: (of unique factorization). Given a ∈ R nonzero nonunit, a can be written uniquely (up to
rearrangements) as

a = upa11 · · · p
al
l

where u is a unit, p1, . . . , pl are distinct primes from PR, a1, . . . , al are positive integers.
Proof: Exercise.
Remark: Given a, b ∈ R nonzero we can write

a = upa11 · · · p
al
l

b = vpb11 · · · p
bl
l

60)not in R
61)not in R
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where p1, . . . , pl are distinct primes from PR, u, v units, a1, . . . , al, b1, . . . , bl non-negative integers.

8. Factoring in polynomials rings.

Definition: R ufd, PR as above, a, b ∈ R nonzero nonunits

a = upa11 · · · p
al
l a1, . . . , al ≥ 0

b = vpb11 · · · p
bl
l b1, . . . , bl ≥ 0

prime factorizations

The gcd(a, b) := p
min{a1,b1}
1 · pmin{a2,b2}

2 · · · pmin{al,bl}
l greatest common divisor.

Note: This depends on PR.

Lemma: d = u gcd(a, b), u a unit62) ⇐⇒ d | a, d | b and whenever e | a, e | b =⇒ e | d.

Note: RHS does not depend on PR.
Proof: (=⇒) without loss of generality d = gcd(a, b).
d | a, d | b by definition of gcd.
Suppose e | a and e | b.
Write e = wpe11 · · · p

el
l : this is possible after increasing l.

e | a ⇐⇒ a = ex ⇐⇒ upa11 · · · p
al
l = wpe11 · · · p

el
l x for some x ∈ R, x 6= 0

Again increasing l if necessary, write x = w′px1
1 · · · p

xl

l , x1, . . . , xl ≥ 0.

=⇒ upa11 · · · p
al
l = ww′︸︷︷︸

unit

pe1+x1
1 · · · pel+xl

l

=⇒ ai = ei + xi for all i = 1, . . . , l

=⇒ ei ≤ ai i = 1, . . . , l

Similarly ei ≤ bi for all i = 1, . . . , l.
Therefore ei ≤ min{ai, bi} := 1, . . . , l

e 1
wp

min{a1,b1}−e1
1 · · · pmin{al,bl}−el

l = d
=⇒ e | d.
Conversely, let’s prove (⇐=), assume RHS. d | a, d | b, and when e | a and e | b =⇒ e | d.
Let e = gcd(a, b)
=⇒ gcd(a, b) | d.
On the other hand, from (=⇒) we know that gcd(a, b) satisfies RHS.
=⇒ d | gcd(a, b)
xd = gcd(a, b) = xy gcd(a, b) =⇒ xy = 1 =⇒ x is a unit.
Therefore d = 1

x gcd(a, b).

Definition: R ufd, PR as above.
Consider R[x], f ∈ R[x], f 6= 0.
Write f = a0 + a1x+ · · ·+ anx

n where n = deg(f): so an 6= 0.
The content of f is

G(f) = gcd(ai : i = 0, . . . , n, ai 6= 0)

Example: In Z[x], f = 2 + 12x+ 4x3

G(f) = gcd(2, 12, 4) = 2.

Theorem: f, g ∈ R[x] nonzero.
G(fg) = G(f)G(g)

Start with a lemma.
Lemma: If G(f) = G(g) = 1 then G(fg) = 1.

Proof of theorem from Lemma
Given any f ∈ R[x], f 6= 0,

f = G(f) · f̂
62)i.e., there is a unit u such that d = u gcd(a, b)

36



where f̂ ∈ R[x] has content 1. → Exercise.

fg = G(f)f̂ ·G(g) · ĝ

fg = G(f)G(g) · f̂ ĝ

G(fg) = G(G(f)G(g)f̂ ĝ)

= G(f)G(g) ·G(f̂ ĝ) =63) G(g)G(f)

Example: for any cP ∈ R[x], c ∈ R, c 6= 0,

G(cP ) = cG(P )

PMATH 345 Lecture 20: November 2, 2009
(corrected exercise)
Claim: R ufd, 0 6= P ∈ R[x], r ∈ R,
G(rP ) = urG(P ) for some unit u
Proof: P = a0 + a1x+ · · ·+ anx

n, n = degP
write ai = uip

ai1
1 pai22 . . . paill

p1, . . . , pn distinct primes in PR
ai1, . . . , ail non-negative integers
rR = ra0 + ra1x+ · · ·+ ranx

n

write r = wpr11 · · · p
rl
l

G(rP ) = gcd{ rai : i = 1, . . . , l, ai 6= 0 }

= p
min{ ai1+r1:i=1,...,l,ai 6=0 }
1 · · · pmin{ ali+rl:i=1,...,l,ai 6=0 }

l

= pe11 · · · p
el
l

ej = min{ aij + rj : i = 1, . . . , l, ai 6= 0 }
= rj + min{ aij : i = 1, . . . , l, ai 6= 0 }

=⇒ G(rP ) = pr11 · · · p
rl
l · gcd{ ai : i = 1, . . . , l, ai 6= 0 }

= 1
w r ·G(P )

Lemma: R ufd, f, g ∈ R[x] \ {0}.

G(f) = G(g) = 1 then G(fg) = 1.

Proof: Suppose G(fg) 6= 1, let p ∈ PR such that p | G(fg)
i.e., p appears in the factorization of G(fg) with a positive exponent.

f = a0 + · · ·+ anx
n n = deg f

g = b0 + · · ·+ bnx
m m = deg g

p - G(f) =⇒ there is a least r ≥ 0 such that p - ar.
p - G(g) =⇒ there is a least s ≥ 0 such that p - bs.
Consider the coefficient of xr+s in fg:

r+s∑
i=1

ar+s−ibi

If i < s =⇒ p | bi =⇒ p | ar+s−ibi
If i > s =⇒ r + s− i < r =⇒ p | ar+s−i =⇒ p | ar+s−ibi
63)Lemma
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If i = s =⇒ p - ar, p - as =⇒
prime

p - aras.
Since

r+s∑
i=1

ar+s−ibi −

(
r+s∑
i=1
i 6=s

ar+s−ibi

)
︸ ︷︷ ︸

p divides

= arbs︸︷︷︸
p does not divide

Therefore p - coefficients of xr+s in fg. Contradiction.

Theorem: R ufd, f, g ∈ R[x] \ {0}.
G(fg) = G(f)G(g)
Proof: First, need to show (exercise):

f = G(f) · f̂ G(f̂) = 1

g = G(g) · ĝ G(ĝ) = 1

fg = G(f)G(g)f̂ ĝ

G(fg) = G(G(f)G(g)︸ ︷︷ ︸
r

f̂ ĝ︸︷︷︸
p

)
exercise

correcting lemma
=⇒ G(fg) = urG(r̂ĝ) = ur = uG(f)G(g)

G(fg) = pe11 · · · p
el
l

pis in PR, ei ≥ 0
Similarly for G(f) and G(g).
Hence for G(f)G(g).
Therefore u = 1.

R ufd.

R[x]
subring

⊆ F [x] F = Q(R) factor field

Lemma: R ufd, F = Q(R), f ∈ F [x]. There exist a, b ∈ R, gcd(a, b) = 1, and f̂ ∈ R[x], G(f̂) = 1 such

that f = a
b f̂

Proof: c = product of all denominators appearing in the nonzero coefficients of f
f = a0 + · · ·+ anx

n n = deg f , ai ∈ F = Q(R)
write each ai = bi

ci
, bi, ci ∈ R

n∏
i=0
bi 6=0

ci =: c 6= 0

In R[x]

=⇒ cf ∈ R[x]. Write cf = G(cf) · f̂ where f̂ ∈ R[x], G(f̂) = 1
In F [x],

f =
G(cf)

c
f̂

Let r = gcd(G(cf), c).
G(cf) = r · a for some a ∈ R
c = r · b for some b ∈ R
=⇒ gcd(a, b) = 1

G(cf)

c
=
a

b

Example:
5
6 + 25

4 x+ 5
8x

3 ∈ Q[x]

= 5
24 (4 + 5x+ 3x3︸ ︷︷ ︸

in Z[x]

)
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PMATH 345 Lecture 21: November 4, 2009
R ufd, F = Q(R), everything today.

Lemma: If α ∈ F [x] then αab f where f ∈ R[x], G(f) = 1, a, b ∈ R, gcd(a, b) = 1
Gauss’ Lemma: f, g ∈ R[x], G(f) = 1. f | g in F [x] =⇒ f | g in R[x]
Proof: g = fα for some a ∈ F [x]. Write α = a

bh, h ∈ R[x], G(h) = 1, gcd(a, b) = 1
=⇒ g = a

b fh =⇒ bg = afh in R[x]

=⇒ G(bg) = G(afh) =⇒ ubG(g) = va

=1︷ ︸︸ ︷
G(fh) = va in R, u, v units

=⇒ b | va =⇒ b | a in R =⇒ a
b ∈ R =⇒ α ∈ R[x].

Note: 2x( 1
2x) = x2 in Q[x]

2x | x2 in Q[x] not in Z[x]

Definition: g ∈ R[x], deg g > 0, g factors properly if g = h1h2 where hi ∈ R[x], deg hi > 0

2 + 2x = 2(1 + x) factors in Z[x] but not properly
Proposition: g ∈ R[x], deg g > 0
If g does not factor properly in R[x] then g is irreducible in F [x].
Proof: Contrapositive. Suppose g = α1α2 in F [x], such that neither α1 nor α2 is a unit in F [x]
=⇒ degαi > 0.
Write αi = ai

bi
fi, gcd(ai, bi) = 1, fi ∈ R[x], G(fi) = 1, i = 1, 2.

g =
a1a2

b1b2
f1f2

=⇒ b1b2g = a1a2f1f2 (∗)
=⇒ ub1b2G(g) = va1a2G(f1f2)

= va1a2 in R

u, v units
=⇒ b1b2 | a1a2

b1b2 = wpe11 p
e2
2 · · · p

el
l prime factorization, p1, . . . , pl distinct primes in PR a1 = w1p

f1
1 · · · p

fl
l

a2 = w2p
g1
1 · · · p

gl
l

Since b1b2 | a1a2, ei ≤ fi + gi for i = 1, . . . , l. . . .

Claim: Since b1b2 | a1a2 there exists b′1, b
′
2 such that b1b2 = b′1b

′
2, b′1 | a1, b′2 | a2 in R.

Proof: next time.

By the claim,

b′1b
′
2g = b1b2g

(∗)
= a1a2f1f2

=⇒ g =

(
a1

b′1
f1

)(
a2

b′2
f2

)
Since b′i | ai in R,

ai
b′i
∈ R =⇒

(
ai
b′i
fi

)
∈ R[x]

g =

(
a1

b′1
f1

)(
a2

b′2
f2

)
in R[x]

deg fi > 0 i = 1, 2

=⇒ g factors properly.

Corollary: f ∈ R[x], deg f > 0. If f does not factor properly in R[x] and G(f) = 1, then f is prime
in R[x].
Proof: By previous proposition, f is irreducible in F [x], hence prime (F [x] is a pid)
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R ufd, F = Q(R)
Suppose f | gh in R[x], g, h ∈ R[x]
=⇒ f | gh in F [x]

=⇒
f | g in F [x]

or

f | h in F [x]

=⇒
Gauss’ Lemma

f | g in R[x]

or

f | h in R[x]

Theorem: R ufd =⇒ R[x] ufd
Proof: f ∈ R[x], f 6= 0, non-unit
want to write f as a product of primes in R[x].
Case 1: deg f = 0, f ∈ R
R ufd =⇒ f = p1 · · · pl where pis are primes in R
Exercise: primes of R are primes in R[x]
Case 2: deg f > 0
Suppose there exists a polynomial in R[x] of positive degree that is not a product of primes. Let f be of
least positive degree. Let f be of least positive degree. Seek a contradiction. If f factors properly then
f = gh, deg g > 0, deg h > 0
=⇒ deg g < deg f , deg h < deg f
=⇒ each of g, h must factor into primes, contradiction.

We may assume that f does not factor properly.
Write f = G(f) · f̂ , G(f̂) = 1

Then f̂ also does not factor properly.
=⇒ f̂ is prime in R[x]
and G(f) ∈ R so by case 1,
G(f) is a product of primes in R[x]
therefore f is a product of primes in R[x]
Contradiction.

PMATH 345 Lecture 22: November 6, 2009
Claim: Let R be a ufd. Let a1, a2, b1, b2 ∈ R and b1b2 | a1a2. Then there exists b′1, b′2 such that
b1b2 = b′1b

′
2, and b′1 | a1 and b′2 | a2.

Proof: Fix PR for R. Factorize.

b1 = upe11 · · · p
el
l and b2 = vpf11 · · · p

fl
l

a1 = wpg11 · · · p
gl
l and a2 = xph1

1 · · · p
hl

l

Then b1b2 | a1a2 =⇒ uvpe1+f1
1 · · · pel+fll | wxpg1+h1

1 · · · pgl+hl

l

So, ei + fi ≤ gi + hi
So, let e′i and f ′i be such that e′i + f ′i = ei + fi and e′i ≤ gi and f ′i ≤ hi
Then, let b′1 = up

e′1
1 · · · p

e′l
l and b2 = vpf11 · · · p

f ′l
l

Then, it is clear that b′1 | a1 and b′2 | a2, and also that b′1b
′
2 = b1b2

So, from theorem, R ufd =⇒ R[x] ufd.
Examples: Z[x] is a ufd
F [x] is a ufd for any field F .
But recall that Z[x] is not a pid, since (2, x) has no principal ideal. Thus, pids ( ufds

Observe: R pid 6=⇒ R[x] pid
R Euclidean domain 6=⇒ R[x] Euclidean domain

Definition: Let R be a commutative ring. The polynomial ring in variables x1, . . . , xn denoted by
R[x1, . . . , xn] is the following ring:
Elements are formal expressions of ∑

α=(α1,...,αn)∈Nn

aαx
α1
1 · · ·xαn

n
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where aα ∈ R, and all but finitely many aαs are zero.
If we relax the requirement that all but finitely many are zero, then we get R[[x1, . . . , xn]], the power
series in n variables.

Multiindex Notation: x = (x1, . . . , xn), α = (α1, . . . , αn) ∈ Nn

Then, xα := xα1
1 · · ·xαn

n

|α| := α1 + · · ·+ αn

α+ β := (α1 + β1, . . . , αn + βn)

Then, in this ring,

0 =
∑
α

0xα

1 = 1x0
1 · · ·x0

n +
∑

α6=(0,0,...,0)

0xα

(∑
α

xα
)

+
(∑

α

bαx
α
)

=
∑
α

(aα + bα)xα

(∑
α

aαx
α
)(∑

α

bαx
α
)

=
∑
α

( ∑
γ,δ∈Nn

γ+δ=α

aγbδ

)
xα

Check: R[x1, . . . , xn] is a commutative ring and it is a subring of the commutative ring R[[x1, . . . , xn]]
Example:

a) R[x1, . . . , xn] is isomorhpic to R[x1]︸ ︷︷ ︸[x2]︸ ︷︷ ︸ · · · [xn]

︸ ︷︷ ︸
These are all rings

b) R embeds in R[x1, . . . , xn]

Corollary: R ufd =⇒ R[x1, . . . , xn] is a ufd

Theorem: R ufd. The irreducibles of R[x] are

i) irreducibles of R

ii) f ∈ R[x], deg f > 0, G(f) = 1 and f is irreducible in F [x], F = Q(R)

Proof: If f ∈ R irreducible in R =⇒ f irreducible in R[x]
If f is of type 2, f does not factor properly in R[x] =⇒ f irreducible in R[x]
So, i) and ii) are both irreducible. Now, we will show these are the only irreducibles.
Suppose f ∈ R[x] is irreducible, and f /∈ R
therefore deg f > 0. So, f = G(f)f̂ , where G(f̂) = 1.

Since deg f̂ = deg f > 0, f̂ is not a unit in R[x]

=⇒ G(f) is a unit in f̂ , since f is irreducible.
But G(f) = pe11 · · · p

el
l , =⇒ e1 = e2 = · · · = el = 0.

=⇒ G(f) = 1 (1)

Also, since f is irreducible, f does not factor properly in R[x].

=⇒ f is irreducible in F [x] (2)

By (1) and (2), f is in category ii)

Theorem: (Eisenstein Criterion)
Let R be a ufd, f ∈ R[x]

f = a0 + a1x+ · · ·+ anx
n, n = deg f > 0

Suppose there exists an irreducible p ∈ R such that
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i) p - an
ii) p | ai, i = 0, . . . , n− 1

iii) p2 - a0

Then, f is irreducible in F [x], F = Q(R)
Hence, if G(f) = 1, then f is irreducible in R[x].
Proof: It suffices to prove that f does not factor properly in R[x].
Suppose f = gh with deg g,deg h > 0
Then,

g = b0 + · · ·+ bmx
m 0 < m < n

n = c0 + · · ·+ clx
l 0 < l < n

and m+ l = n

Then, an = bmcl, so since p - an, then p - bm and p - cl.
p | a0 =⇒ p | b0c0 =⇒ p | b0 or p | c0
And, since p2 - b0c0, then p does not divide both.
Then, without loss of generality assume p | b0 and p - c0.
Let k be least integer such that p - bk, 0 < k ≤ m

Consider [xk]f = ak

= bkc0 + bk−1c1 + · · ·+ b1ck−1 + b0ck

Since k is minimal, p | bk−1c1, . . . , p | b0ck
And, we know p | ak, since k < n
Therefore p | bkc0. But p - bk and p - c0, contradiction.

PMATH 345 Lecture 23: November 9, 2009
Examples: R is a ufd, working in R[x]

a) a+ xn, where a is a product of distinct primes is irreducible in R[x]
as long as the factors of a are all distinct (because 8 + x3 can be factored in Z[x])

b) Let p be a prime number ∈ Z
Then f = 1 + x+ x2 + · · ·+ xp−1 is irreducible in Q[x]
Proof: By Einsenstein, g = p +

(
p
2

)
x +

(
p
3

)
x2 + · · · +

(
p
p−2

)
xp−3 + pxp−2 + xp−1 is irreducible,

since p |
(
p
i

)
, p - 1, and p2 - p

Consider σ : Q[x]→ Q[x]

h 7→ h(x+ 1)

[We showed this in an assignment. We can use R[x] to send any extension of R, called S, to S. In this
case, S = R[x].]
So if h = a0 + · · ·+ anx

n, an 6= 0, then

σ(h) = a0 + a1(x+ 1) + · · ·+ an(x+ 1)n

Note that the leading term is still anx
n

Thus, kerσ = {0}64) and σ perserves degree.
Also, σ is surjective, since given h,

σ(a0 + a1(x− 1) + a2(x− 1)2 + · · ·+ an(x− 1)n) = h

So, σ is an automorphism that preserves degree.

Exercise: Given any automorphism, if h is irreducible, then σh is irreducible.
→ This is true for all automorphisms on integral domains.

64) =⇒ σ is injective
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Claim: σ(f) = g
(−1 + x)(1 + x+ · · ·+ xp−1) = (−1 + xp)

Thus, σ((−1 + x)(1 + · · ·+ xp−1)) = σ(−1 + xp)

=⇒ σ(−1 + x)σ(1 + · · ·+ xp−1) = σ(−1 + xp)

xσ(1 + · · ·+ xp−1) = −1 + (x+ 1)p

= px+
(
p
2

)
x2 +

(
p
3

)
x3 + · · ·+

(
p
p−2

)
xp−2 + pxp−1 + xp

=⇒ σ(1 + · · ·+ xp−1) = p+
(
p
2

)
x+ · · ·+

(
p
p−2

)
xp−3 + pxp−2 + xp−1

=⇒ σ(f) = g

So f is irreducible, since g is.

Fields
Let R be an integral domain. Then, there is a unique homomorphism

φ : Z→ R

n 7→ 1 + · · ·+ 1︸ ︷︷ ︸
n

n ≥ 0

−n 7→ −φ(n)

Recall: R integral domain =⇒ kerφ is a prime ideal.
=⇒ ker(φ) = (0) or ker(φ) = (p), p is prime

Definition: If, as above, kerφ = (0), then we say R is at characteristic 0. (⇐⇒ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

6= 0
in R for all n ∈ Z)
If kerφ = (p), we say characteristic of R is p. (⇐⇒ 1 + 1 + · · ·+ 1︸ ︷︷ ︸

p

= 0 in R)

Remark: If R = F is a field then,

a) charF = 0 =⇒ φ extends to an embedding of Q in F (by the universal
property, or by
showing directly)φ̂ : Q→ F

n
m 7→ φ(n)φ(m)−1

b) charF = p =⇒ we have an embedding (by 1st
isomorphism
theorem, oy by
showing directly)

also an embedding


φ̂ : Zp = Z/(p)→ F

n+ (p) 7→ 1 + . . .+ 1︸ ︷︷ ︸
n

Definition: A subfield of a field is a subring that is a field.
Therefore every field has a subfield isomorphic to Q (charF = 0) or Zp (charF = p)

Convention: Idenitify Q and Zp with their images in F .
So Q =

{
φ(n)φ(m)−1 : n,m ∈ Z, m 6= 0

}
⊆ F for charF = 0 and Zp = {0, 1, 1+1, . . . , 1 + 1 + · · ·+ 1︸ ︷︷ ︸

p−1

} ⊆
F for charF = p

Definition: The set above is the prime subfield of F .
Exercise: The prime subfield of F is the unique smallest subfield of F .
Notation: F is the prime subfield of F .

PMATH 345 Lecture 24: November 11, 2009
F ⊆ L field extension: F is a subfield of L. Call F the base field.
We can view L as an F -vector space.
zero vector: 0 ∈ L
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vector sum: +
r ∈ F , scalar multiplication by r: given a ∈ L, r · a = ra.

Linear Algebra =⇒ L has an F -basis: B ⊆ L such that every a ∈ L is of the form

a = r1b1 + r2b2 + · · ·+ rlbl

where r1, . . . , rl ∈ F , b1, . . . , bl ∈ B.
Moreover this is a unique representation of a.

Also Fact: B ⊆ L is a basis ⇐⇒ B is a maximal F -linearly independent set ⇐⇒ B is F -linearly
independent and

L = spanF (B) = { r1b1 + · · ·+ rlbl : b1, . . . , bl ∈ B, r1, . . . , rl ∈ F }

Fact 2: Any two bases for L over F are of the same cardinality, called the dimension. That is, there
exists a bijection between any two bases.

Definition: F ⊆ L field extension.
The degree of L over F is the dimension of L as an F -vector space, denoted [L : F ]
When [L : F ] ∈ N we say that L is a finite extension.
Example: R ⊆ C finite extension, [C : R] = 2

Remark: [L : F ] = 1 ⇐⇒ L = F

Lemma: n,m ∈ N, field extensions [L : K] = n, [K : F ] = m

L
degn

⊇ K
degm

⊇ F︸ ︷︷ ︸
degnm

Then [L : F ] = nm.
Proof: Let {u1, . . . , um} ⊆ K be an F -basis for K
Let {v1, . . . , vn} ⊆ L be an K-basis for L
Let B = {uivj : i = 1, . . . ,m, j = 1, . . . , n }
|B| = nm. We claim B is an F -basis for L.
spanF (B) = L X
Let a ∈ L we can write

a = λ1v1 + · · ·+ λnvn

where λ1, . . . , λn ∈ K.
Write each

λi = αi,1u1 + αi,2u2 + · · ·+ αi,mum

where αi,j ∈ F

a =

n∑
i=1

λivi

=

n∑
i=1

( m∑
j=1

αi,juj

)
vi

a =

n∑
i=1

m∑
j=1

αi,jujvi ∈ spanF (B)

B is linearly independent over F
Suppose

∑n
i=1

∑m
j=1 αi,jujvi = 0 where αi,j ∈ F

=⇒
n∑
i=1

( m∑
j=1

αi,juj

)
︸ ︷︷ ︸ vi = 0
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since uj ∈ K, αi,j ∈ F , the underbrace =⇒
∑m
j=1 αi,juj ∈ K

Since {v1, . . . , vn} are K-linearly independent
=⇒

∑m
j=1 αi,juj = 0 for all i = 1, . . . , n.

Definition: F ⊆ L field extension, a ∈ L.
a is algebraic over F if there exists a polynomial f ∈ F [x] which is nonzero and such that f(a) = 0. If
every a ∈ L is algebraic over F then we say that F ⊆ L is an algebraic extension.
If a ∈ L is not algebraic over F then we say it is transcendental over F .

Example:

(a) If a ∈ F then a is F -algebraic, take f = −a+ x ∈ F [x]

(b) Q ⊆ C, i is algebraic over Q since f = 1 + x2 ∈ Q[x] vanishes at i

(c) In fact R ⊆ C is an algebraic extension.

→ a+ bi, a, b ∈ R, is a root of
f = (x− a)2 + b2 ∈ R[x]

(d) Let F be any field.
Let L = F (x) = fraction field of F [x]

F ⊆ F [x] ⊆ F (x) = L︸ ︷︷ ︸
field extension

a = x ∈ L is transcendental over F

→ Suppose f ∈ F [x], such that f(a) = 065)

f(a) = f(x), i.e., f = a0 + a1x+ · · ·+ anx
n

f(a) = a0 + a1x+ · · ·+ anx
n = 0 in F [x]

So f is the zero polynomial.

Theorem: Every finite extension of fields is an algebraic extension.
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Proposition: Every finite field extension is algebraic.
Proof: F ⊆ L, [L : F ] = n
Let a ∈ L.
Consider {a0 = 1, a, a2, . . . , an} = X ⊆ L

case 1: some ai = aj , i 6= j, 0 ≤ i < j ≤ n
=⇒ 1 = aj−1

=⇒ −1 + aj−i = 0
=⇒ f(a) = 0 where f66) = −1 + xj−i ∈ F [x]
Therefore a is algebraic over F . X
(in fact a is algebraic over F.)

case 2: otherwise X has n+ 1 many elements in it =⇒ X is F -linearly dependent
Therefore there exist a0, . . . , an+1 ∈ F not all zero such that

a0 · 1 + a1 · a+ a2 · a2 + · · ·+ an · an = 0

Let g = a0 + a1x+ · · ·+ anx
n ∈ F [x]

Then g 6= 0 but g(a) = 0.
Therefore a is algebraic over F .

Definition: A monic polynomial is a polynomial with leading coefficient = 1.

65)in L
66) 6= 0
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Proposition/Definition: F ⊆ L field extension, a ∈ L algebraic over F . There exists a unique monic
polynomial h ∈ F [x] of minimal degree such that h(a) = 0. This h is called the minimal polynomial of
a over F .
Proof: Note since a is algebraic over F , there exists g 6= 0, g(a) = 0, g ∈ F [x].
Let c = leading coefficient of g 6= 0, c ∈ F and let g′ = 1

cg.
Then g′ is monic, and g′ 6= 0, and g′(a) = 1

cg(a) = 0.
Hence there exists a monic polynomial h ∈ F [x] of minimal degree, say n, such that h(a) = 0.
Uniqueness: Suppose f ∈ F [x] monic also of degree n, also f(a) = 0.
By the division algorithm (i.e., F [x] is a Euclidean domain) we can write

f = hq + r q, r ∈ F [x]

and either r = 0 or deg r < deg h = n67).

But r(a) = f(a)− hq(a)

= f(a)68) − h(a)69)q(a) = 0

Therefore r = 0. So f = hq

n = deg f = deg h+ deg q

= n+ deg q

=⇒ deg q = 0

=⇒ q ∈ F \ {0}

leading coefficient(h)70) = leading coefficient(f)71) · q
Therefore q = 1, therefore f = h.

Proposition: F ⊆ L field extension, a ∈ L algebraic over F , h = minimal polynomial of a over F ∈
F [x]. Then:

(a) h is irreducible

(b) If g ∈ F [x] and g(a) = 0 then h | g. (Hence a polynomial vanishes at a ⇐⇒ h divides it.)

(c) If g ∈ F [x], monic and irreducible and g(a) = 0 then g = h.

Proof:

(a) Suppose h = fg. h(a) = 0 =⇒ f(a)g(a) = 0

=⇒ f(a) = 072) =⇒ deg f = deg h by minimality73) =⇒ deg g = 074) =⇒ g is a unit75)

But deg f ≤ deg h, deg g ≤ deg h.
Therefore h is irreducible.

(b) Suppose g(a) = 0, g 6= 0
g = hq + r q, r ∈ F [x]

either r = 0 or deg r < deg h.
Again by minimality of deg h, and as r(a) = 0

=⇒ r = 0

=⇒ g − hq =⇒ h | g X

67)By minimality of n this can’t happen
68)= 0
69)= 0
70)= 1
71)= 1
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(c) g ∈ F [x], monic, irreducible, g(a) = 0.
By (b), h | g =⇒ g = hf for some f ∈ F [x].
g irreducible =⇒ h or f is a unit
Since h(a) = 0, h is not a nonzero constant polynomial
=⇒ h is not a unit
=⇒ f is a unit, deg f = 0, f ∈ F . Since

1 = leading coefficient of g

= leading coefficient of h

=⇒ f = 1

Therefore g = h.

Remark: a ∈ L ⊇ F , F -algebraic

I =
{
f ∈ F [x] : f(a)76) = 0

}
ideal in F [x]

(b) says I = (h)
where h = minimal polynomial of a over F .

Example: Q ⊆ R,
√

2
x2 − 2 vanishes at

√
2 and monic, is irreducible in Q[x] by Eisenstein

=⇒ x2 − 2 is the minimal polynomial of
√

2.

Definition: L ⊇ F , a ∈ L algebraic over F .

deg(a/F )77) = degree of the minimal polynomial

Corollary: F ⊆ K ⊆ L, a ∈ L algebraic over F .

deg(a/F ) ≥ deg(a/K)

Proof:
L

|
K

|
F

h1 = minimal polynomial of a over F ∈ F [x]

h2 = minimal polynomial of a over K ∈ K[x]

h1 ∈ K[x], h1(a) = 0
(b)
=⇒ h2 | h1

=⇒ deg h2
78) ≤ deg h1

79)

PMATH 345 Lecture 26: November 16, 2009
72)or g(a) = 0
73)or deg g = deg h by minimality
74)or deg f = 0
75)or f is a unit
76)I(a/F )
77)degree of a over F
78)= deg(a/K)
79)= deg(a/F )
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Definition: F ⊆ L field extension.
Let R ⊆ F subring of F such that
F = Q(R) (special case: R = F )
a1, . . . , an ∈ L

R[a1, . . . , an] = The subring of L generated by a1, . . . , an over R
= intersection of all subrings of L that contain R and a1, . . . , an

F (a1, . . . , an) = the subfield of L generated by a1, . . . , an over F

= fraction field of R[a1, . . . , an]

L F (a1, . . . , an) R[a1, . . . , an] R

F

Exercises:

(a) R[a1, . . . , an] is a subring of L

(b) F (a1, . . . , an) is the intersection of all subfields of L with respect to a1, . . . , an and F .

(c) R[a1, . . . , an] =
{
f(a1, . . . , an) : f ∈ R[a1, . . . , an]80)

}
⊆ L

Need:

• Show ⊇

• Show RHS is a subring of L and contains R, a1, . . . , an

(d)

F (a1, . . . , an) =

{
f(a1, . . . , an)

g(a1, . . . , an)
: f, g ∈ F [x1, . . . , xn], g(a1, . . . , an) 6= 0

}
Theorem: F ⊆ L field extension, a ∈ L, F -algebraic, h = minimal polynomial of a over F

F [x]/(h) ' F [a] = F (a)

and [F (a) : F ] = deg h
Proof: Consider

φ : F [x]→ F [a]

f 7→ f(a)

“evaluation at a map” ring homomorphism
By exercise (c), φ is surjective

1st iso. thm.
=======⇒ F [x]/ kerφ ' F [a]

If h | f then f = hg

=⇒ f(a) = h(a)g(a) = 0

=⇒ f ∈ kerφ

We have proved the reverse: if f(a) = 0 then h | f .
Therefore kerφ = (h), therefore F [x]/(h) ' F [a]

h irreducible nonzero =⇒ (h) 6= (0) is prime in F [x], F [x] pid

=⇒ (h) is maximal

=⇒ F [a] is a field

=⇒ F [a] = F (a)

80)polynomial ring
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[Why? (h) ⊆ (f) ⊆ F [x]
=⇒ h = fg for some g
=⇒ f is a unit =⇒ (f) = F [x]

or
g is a unit =⇒ f = g−1h =⇒ f ∈ (h) =⇒ (f) = (h)

h = a0 + a1x+ · · ·+ amx
m

m = deg h, am 6= 0
B = {1, a, a2, . . . , am−1} ⊆ F (a)

L F (a) F

Claim: B is F -linearly independent
Proof: r0 · 1 + r1 · a+ · · ·+ rm−1a

m−1 = 0, ri ∈ F
=⇒ f(a) = 0 where f = r0 + r1x+ · · ·+ rm−1x

m−1

m = smallest degree of a nonzero polynomial vanishing at a
=⇒ f = 0 =⇒ ri = 0: Claim 1

Claim 2: spanF (B) = F (a)
Proof: b ∈ F (a) = F [a]
=⇒ b = f(a) for some f ∈ F [x]
f = r0 + r1x+ · · ·+ rnx

n

n = deg f rn 6= 0
Show f(a) ∈ spanF (B) by induction on n.

n < m: f(a) = r0 + r1a+ · · ·+ rna
n ∈ spanF (B)

since 1, a, · · · , an ∈ B X

n = m: b = f(a) = r0 + · · ·+ rma
m

=⇒ am = −
(
r0

rm
+
r1

rm
a+ · · ·+ rm−1

rm
am−1

)
∈ spanF (B)

Therefore 1, a, . . . , am ∈ spanF (B)
=⇒ b = r0 + r1a+ · · ·+ rma

m ∈ spanF (B)

n > m: Induction Hypothesis: 1, a, . . . , an−1 ∈ spanB(F )

an = a(an−1) = a(s0 + s1a+ · · ·+ sm−1a
m−1)

= s0a+ s1a
2 + · · ·+ sm−1a

m

∈ spanF {a, a2, . . . , am} ⊆ spanF (B)

since B = {1, . . . , am−1} and am ∈ spanF (B) by case m = n
b = f(a) = r0 + r1a+ · · ·+ rna

n ∈ spanF (B): Claim 2

[F (a) : F ] = |B| = m = deg h

Corollary: The above proof shows more:
F ⊆ L field extension, a ∈ L algebraic over F , deg(a/F ) = m then {1, a, . . . , am−1} is an F -basis for
F (a).

a ∈ L

F
deg=deg(a/F )

F (a)

PMATH 345 Lecture 27: November 18, 2009
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Last time: F ⊆ L, a ∈ L, F -algebraic. deg(a/F ) = m.
{1, a} is an F -basis for F (a).
Example:

Q(i)
|
Q

deg(i/Q) = 2

{1, i} is a Q-basis
x2 + 1

Q(i)81) = { a+ bi : a, b ∈ Q }
Q(
√

2)82)

| }2
Q

Basis: {1,
√

2}

Q(
√

2) =
{
a+ b

√
2 : a, b ∈ Q

}
def/ex

=
{
f(
√

2) : f ∈ Q[x]
}

Q( 3
√

2)
| }3
Q

Q-basis: {1, 21/3, 22/3} x3 − 2

Corollary: F ⊆ K algebraic extension of fields
K ⊆ L algebraic extension of fields
Then L is algebraic over F .

L
| alg
K
| alg
F

Proof: a ∈ L, a is algebraic over K
=⇒ h(a) = 0 for some h = b0 +1 x+ · · ·+ bnx

n ∈ K[x], bn 6= 0
bis are in K hence algebraic over F .

F (b0)(b1)(b2) · · · (bn) =
Ex
F (b0, . . . , bn)

...
F (b0)(b1)
finite |
F (b0)

N3deg(b0/F ) |
F

Therefore [F (b0, . . . , bn) : F ] ∈ N.
F (b0, . . . , bn)(a)

=

F (b0, . . . , bn, a)
| finite

F (b0, . . . , bn)
| finite

F

a is algebraic over F (b0, . . . , bn) since h ∈ F (b0, . . . , bn)[x], h(a) = 0
Therefore [F (b0, . . . , bn, a) : F ] ∈ N
=⇒ F (b0, . . . , bn, a) is algebraic over F
=⇒ a is algebraic over F .

Example:

Q(
√

2,
√

3)

4

�? 2

Q(
√

3) Q(
√

2)

Q
2 2

81)= fraction field of Z[i] = Gaussian integers
82)⊆ R
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x2 − 2 = minimal polynomial of
√

2 over Q

x2 − 3 = minimal polynomial of
√

3 over Q

Q(
√

2,
√

3) = Q(
√

2)(
√

3)

[Q(
√

2,
√

3) : Q(
√

2)] = deg(
√

3/Q(
√

2)) ≤ deg(
√

3/Q) = 2

If [Q(
√

2,
√

3) : Q(
√

2)] = 1 =⇒ Q(
√

2,
√

3) = Q(
√

2)
=⇒

√
3 ∈ Q(

√
2) =⇒

√
3 = a+ b

√
2, a, b ∈ Q

=⇒ 3 = a2 + 2ab
√

2 + 2b2 =⇒ ab = 0 =⇒ 3 = 2b2 or 3 = a2, contradiction
Therefore [Q(

√
2,
√

3) : Q(
√

2)] = 2
Therefore [Q(

√
2,
√

3) : Q] = 4

Example: Suppose F ⊆ L field extension
a, b ∈ L, F -algebraic

deg(a/F ) = m

deg(b/F ) = n
gcd(m,n) = 1

Then: [F (a, b) : F ] = nm

F (a, b) = F (a)(b)

F (b) F (a)

F

n m

n and m must divide [F (a, b) : F ]
=⇒ nm | [F (a, b) : F ] =⇒ F [F (a, b) : F ] ≥ nm

[F (a, b) : F ] = [F (a, b) : F (a)] · [F (a) : F ]

= deg(b/F (a)) · deg(a/F )

≤ n ·m

F field. g ∈ F [x] irreducible
(g) is a nonzero prime ideal in the pid F [x]
=⇒ (g) is maximal ideal
L := F [x]/(g) is a field

φ : F → L

r 7→ r + (g)
homomorphism

Claim: φ is en embedding
Proof:

r ∈ F , r 6= 0, φ(r) = 0 =⇒ r + (g) = 0 in L

=⇒ r ∈ (g) =⇒ (g) = F [x] contradiction

Identify F with φ(F ) and we have a field extension

L = F [x]/(g)
|
F

Proposition: F field, g ∈ F [x] irreducible. L = F [x]/(g)
Then [L : F ] = deg g
Proof:
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Let a := x+ (g) Call (g) = I.

= x+ I ∈ L

Claim: L = F (a)
Proof: Let α ∈ L. α = f + I for some f ∈ F [x]
While f = a0 + a1x+ · · ·+ anx

n, ais ∈ F .

α = f + I = (a0 + · · ·+ anx
n) + I in L

= a0 + a1(x+ I) + a2(x+ I)2 + · · ·+ an(x+ I)n

= f(a)

Therefore L = F [a] = F (a).

Claim 2: g(a) = 0 in L
Proof:

g = b0 + b1x+ · · ·+ bmx
m m = deg g

g(a) = b0 + b1a+ · · ·+ bma
m

= b0 + (b1x+ I) + · · ·+ (bmx
m + I)

= (b0 + b1x+ · · ·+ bmx
m) + I

= g + I = g + (g)

= 0 in L

Therefore min(a/F ) = 1
bm · g

Therefore [L : F ] = deg( 1
bmg)

= deg g

PMATH 345 Lecture 28: November 20, 2009
Kronecker’s Theorem: F field, f ∈ F [x], deg f > 0.
There exists a field extension L ⊇ F in which f has a root, and [L : F ] ≤ deg f .
Proof: Let g ∈ F [x] be irreducible and g | f

L = F [x]/(g)

|
F

By the previous proposition, [L : F ] = deg g ≤ deg f and if

a := x+ (g) ∈ L

then g(a) = 0
=⇒ f(a) = 0.

Corollary: F field, f ∈ F [x] monic, deg f = n > 0. There exists a field extension L ⊇ F such that

(i) f = (x− a1)(x− a2) · · · (x− an) in L[x] where a1, . . . , an ∈ L

(ii) [L : F ] ≤ n!

Proof: Apply Kronecker’s to f get
L1∣∣
F

in which f has a root, say a1. By factor theorem, f = (x− a1)f1

in L1[x]
f1 ∈ L1[x] deg f1 = n− 1.

Iterate, n− 1 times to get
f = (x− a1)(x− a2) · · · (x− an−1)fn−1
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where ai ∈ Li, fn−1 ∈ Ln−1[x]

Ln−1

...

n−1 {L2

|
n {L1

|
F

=⇒ deg fn−1 = 1 and monic
=⇒ fn−1 = (x− an) for some an ∈ Ln−1

[Li+1 : Li] ≤ deg fi = n− i

L := Ln−1 then [L : F ] = n! and L works.

Definition: F field, f ∈ F [x], deg f > 0, a splitting field of f over F is a minimal field extension
L ⊇ F over which f = c(x− a1)(x− a2) · · · (x− an), c, a1, . . . , an ∈ L
(i.e., f factors into a product of linear polynomials.)

Example:

(i) Suppose L ⊇ F and in L[x], f = c(x− a1) · · · (x− an) then F (a1, . . . , an) is a splitting field

(ii) If L ⊇ F is the splitting field of f over F then, L = F (a1, . . . , an) where a1, . . . , an ∈ L are the
roots of f .

Note:

• The roots may repeat

• As L[x] is a ufd, this factorization is unique

Definition: f ∈ F [x] has repeated roots if in some extension L ⊇ F , f = (x − a)2g for some a ∈ L,
g ∈ L[x].
Example: f has repeated roots if and only if it has a repeated root in a splitting field.
Theorem: F field, f ∈ F [x], deg f > 0.
f has repeated roots if and only if gcd(f, f ′) = 183) where f ′ is the formal derivative of f with respect
to x. So

f = a0 + a1x+ · · ·+ anx
n n = deg f

f ′ := a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 in L[x]

Remark: A natural choice of representatives of association classes of primes in F [x] is the set of monic
irreducible polynomials: P.
Proof: Let L be a splitting field for f over F .
If f = (x− a)2g, g ∈ L[x], a ∈ g
then f ′ = 2(x− a)g + (x− a)2g′ → exercise
f ′(a) = 0 also.
Let I = (f, f ′) in F [x].
Since f(a) = f ′(a) = 084) =⇒ for all h ∈ I, h(a) = 085) =⇒ 1 /∈ I =⇒ I ( L[x].
F [x] is a pid =⇒ I = (h) for some nonzero nonunit h.
f, f ′ ∈ (h)
=⇒ h | f and h | f ′

83)in F [x]
84)in L
85)in L
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=⇒ gcd(f, f ′) 6= 1
Conversely, suppose a1, . . . , an ∈ L, roots of f , are all distinct

f = c(x− a1)(x− a2) · · · (x− an) in L[x]

f ′ =

n∑
i=1

f

(x− ai)

= c
(
(x− a2)(x− a3) · · · (x− an) + (x− a1)(x− a3) · · · (x− an) + · · · (x− a1) · · · (x− an−1)

)
Since ai 6= aj for all i 6= j,

f ′(ai) 6= 0 for any i = 1, . . . , n.

In fact, f ′ 6= 0.
gcd(f, f ′) = ?
Suppose g | f and g | f ′.
g ∈ F [x], g not a unit
g ∈ L[x], and deg g > 0

L′

|
L

|
F

there is L′ ⊇ L with a roots of g in L′, say b.
=⇒ f(b) = 0 = f ′(b)
But f(b) = 0 =⇒ b = ai for some i = 1, . . . , n.
Contradiction: f ′(ai) 6= 0 for any i = 1, . . . , n.

PMATH 345 Lecture 29: November 23, 2009
Definition: F field, f ∈ F [x] irreducible is separable if it has no repeated roots.
Corollary: f ∈ F [x] irreducible, f separable ⇐⇒ f ′ 6= 0
Proof: f separable =⇒ f ′ 6= 0 by the previous theorem
(in fact we showed f ′(a) 6= 0 for any root a of f in a splitting field of f .)
Suppose f ′ 6= 0 and f has repeated roots.
thm
=⇒ gcd(f, f ′) 6= 1. Since f is irreducible, the prime factorization of f is f = cg where c ∈ F \ {0},
g ∈ F [x] monic irreducible
gcd(f, f ′) 6= 1 =⇒ g | f ′ =⇒ f | f ′. But deg f ′ ≤ deg f − 1 < deg f .
Corollary: char(F ) = 0, f ∈ F [x] irreducible, then f is separable.
Proof: f = a0 + a1x+ · · ·+ anx

n, n = deg f , an 6= 0, n > 0
f ′ = a1 + 2a2 + · · ·+ nan−1

n

n 6= 0 in F since Z embeds in F
(i.e., 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

6= 0 in F , nan = (1 + · · ·+ 1)an)

=⇒ nan 6= 0 =⇒ f ′ 6= 0.
Example: Z2, t indeterminant

L = Z2(t)

|
F = Z2(t2)

f ∈ F [x]
f = −t2 + x2

Since t /∈ F it’s not hard to check that t2 is prime in F . Apply Eisenstein =⇒ f is irreducible F [x]
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In L,

f = x2 − t2 = (x− t)(x+ t)

= (x− t)2 since 1 = −1 in L

=⇒ f not separable.
Note:

• f ′ = 2x = 0 in F

• f = minimal polynomial of f over F

10. Finite fields
F finite field
=⇒ Q ( F
=⇒ char(F ) 6= 0
=⇒ char(F ) = p, p prime
Zp ⊆ F
Since F is finite =⇒ [F : Zp] ∈ N
=⇒ F is an algebraic extension of Zp
F finite dimensional over Zp, say dim = n
=⇒ As vector spaces F ≈ (Zp)n
=⇒ |F | = pn

Proposition: F finite field then char(F ) = p, p a prime
F is a finite extension of Zp, and cardinality of F is a power of p.

Suppose |F | = pn = q.
If a ∈ F \ {0},

{1, a, a2, . . . , aq−1} ⊆ F \ {0}

=⇒ ai = aj for some 0 ≤ i < j ≤ q − 1.
=⇒ aj−i = 1, 0 < j − i < q

Definition: F finite field, a ∈ F \ {0}
The order of a, o(a), is the least positive integer m such that am = 1.

→ Always exists by previous remarks, and o(a) ≤ q − 1

q = pn = |F |

Lemma: |F | = pn = q. a, b ∈ F \ {0}, k > 0

(a) ak = 1 =⇒ o(a) | k

(b) o(ak) = o(a)
gcd(k,o(a))

(c) If gcd(o(a), o(b)) = 1 then o(ab) = o(a) · o(b).

Proof:

(a) k = qo(a) + r, 0 ≤ r < o(a)
1 = ak = (ao(a))q · ar = ar

=⇒ r = 0 X

(b) d = gcd(k, o(a))
(ak)o(a)/d = ako(a)/d = (ao(a))k/d = 1

(a)
=⇒ o(ak) | o(a)

d
On the other hand,

ak·o(a
k) = (ak)o(a

k) = 1
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=⇒
(a)

o(a) | k · o(ak)

=⇒ o(a)
d |

k
d · o(a

k)

since gcd( o(a)
d , kd ) = 1

=⇒ o(a)
d | o(a

k)

Therefore o(ak) = o(a)
d

(c)

(ab)o(a)·o(b) = ao(a)·o(b) · bo(a)·o(b)

= 1

(a)
=⇒ o(ab) | o(a)o(b)

ao(ab)·o(b) = ao(ab)·o(b) · bo(ab)·o(b)

= (ab)o(ab)o(b) = 1

=⇒ o(a) | o(ab) · o(b) =⇒ o(a) | o(ab)
Similarly o(b) | o(ab).
Since gcd(o(a), o(b)) = 1
Therefore o(a)o(b) | o(ab)
Therefore o(ab) = o(a)o(b)

Theorem: |F | = pn = q

(a) There exists a ∈ F \ {0} such that o(a) = q − 1 = |F | − 1.

(b) Every element of F is a root of xq − x ∈ F [x]

Corollary: a ∈ F \ {0} =⇒ o(a) | q − 1.
Proof: Theorem (b) =⇒ aq = a =⇒ aq−1 = 1
Lemma (a)

=⇒ o(a) | q − 1.
Definition: a ∈ F is an primitive element if o(a) = |F | − 1
Remark: If a is primitive in F , then

{1, a, a2, . . . , aq−2} = F \ {0} q = |F |
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Theorem: |F | = pn = q field

(a) There exists: a ∈ F \ {0}, o(a) = q − 1

↪→ a is called a primitive element

(b) Every element of F is a root of xq − x

Remark: If F = Zp then (b) is Fermat’s little theorem
Proof: Since every element of F \ {0} has finite order ≤ q − 1 there exists m > 0 such that um = 1 for
all u ∈ F \ {0}

↪→ m =
∏

a∈F\{0}

o(a)

Let N be least such N ≤
∏
a∈F\{0} o(a)

But xN − 1 has at most N roots in F , 0 is not such a root
=⇒ q − 1 ≤ N
Suppose N = 1
=⇒ F = Z2
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=⇒ (a) is true with a = 1

(b) is true as F = {0, 1}

We may assume N > 1
N = pk11 · · · p

kl
l prime factorization

Claim: For any j = 1, . . . , l, there is an element aj ∈ F \ {0}, o(aj) = p
kj
j

Proof: Fix j. 0 < N
pj
< N

=⇒ there is bj ∈ F \ {0}
b
N/pj
j 6= 1

let aj = bj

a
p
kj
j

j = b
(N/p

kj
j )p

kj
j

j = bNj = 1
prev. prop
======⇒ o(aj) | p

kj
j

a
p
kj−1

j

j = b
(N/p

kj
j )p

kj−1

j

j = b
N/pj
j 6= 1 =⇒ o(aj) - p

kj−1
j

Therefore o(aj) = p
kj
j : claim.

Since o(ai) is coprime with o(aj) for all i 6= j

prev. prop (c)
========⇒ o(a1 · · · al) = o(a1) · · · o(al)

= pk11 · · · p
kl
l = N

Let a = a1 · · · al. N = o(a) ≤ q − 1
Therefore N = q − 1 and a is a prime element.
By choice, uN = 1 for all u ∈ F \ {0}.
=⇒ u is a root of xN − 1 = xq−1 − 1 for all u ∈ F \ {0}.
=⇒ u is a root of xq − x for all u ∈ F .

Corollary: f ∈ Zp[x] irreducible deg f = n
=⇒ f | xpn − x
Proof: Consider

F := Zp[x]/(f)

|
Zp

We know that F = Zp(a) where a := x+ (f) and a is algebraic over Zp and f = minimal polynomial of
a over Zp.
=⇒ [F : Zp] = n
=⇒ |F | = pn

By Theorem (b) every element of F is a root of xp
n − x.

=⇒ ap
n − a = 0

=⇒ f | xpn − x

Proposition: |F | = q = pn field.
There are φ(q − 1) primitive elements in F .

↪→ φ Euler-phi function

Proof: Choose a primitive.
F \ {0} = {1, a, a2, . . . , aq−2}

We want to know how many of the aks are primitive. ak primitive if and only if

o(ak) = q − 1 ⇐⇒
o(a)

gcd(k, o(k))
= q − 1 ⇐⇒ q − 1

gcd(k, q − 1)
= q − 1

⇐⇒ gcd(k, q − 1) = 1
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By definition there are φ(q − 1) many such k < q − 1.

Proposition: Every finite field is a simple algebraic extension of its prime subfield. That is, F = Zp(a)
where a ∈ F is algebraic.
Proof: Let a ∈ F be primitive.

F = {
0
0,

1
1,
x
a,
x2

a2, . . . ,
xq−2

aq−2} q = |F |
=⇒ F ⊆ Zp(a) =⇒ F = Zp(a)

Theorem: Let p be a prime, n > 0.

(a) There exists a field of size pn.

(b) Any two fields of size pn are isomorphic

Proof: f = xp
n − x ∈ Zp[x].

Let

L

|
Zp

be a splitting field of f over Zp.

Let F ⊆ L be the set of roots of f in L.
Since f ′ = pnxp

n−1 = −1
gcd(f, f ′) = 1
=⇒ f has no repeated roots in L
=⇒ |F | = pn

We show F is a subfield of L

• 0p
n − 0 = 0 =⇒ 0 ∈ F

• 1p
n − 1 = 0 =⇒ 1 ∈ F

•

(−1)p
n

=

{
1 if p = 2

−1 otherwise

= −1 =⇒ −1 ∈ F

• a, b ∈ F =⇒ (ab)p
n

= ap
n

bp
n

= ab =⇒ ab ∈ F

• a ∈ F =⇒ −a = (−1)a ∈ F

• a, b ∈ F =⇒ (a+ b)p
n

= ap
n

+ bp
n

+
(
pn

1

)
ap

n−1b+ · · ·
since char(L) = p
all the other binomial coefficients being divisible by p are equal to 0.
=⇒ (a+ b)p

n

= ap
n

+ bp
n

= a+ b
=⇒ a+ b ∈ F

• a ∈ F \ {0} =⇒ ∃b ∈ L, b = a−1

ab = 1

(ab)p
n

= 1

ap
n

bp
n

= 1

=⇒ bp
n

= (ap
n

)−1 = a−1 = b =⇒ b ∈ F .

This proves part (a).
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Theorem: p prime, n > 0.

(a) There exists a field of size pn.

(b) Any two fields are isomorphic.

Proof (b): xp
n − x ∈ Zp[x]

L = splitting field of xp
n

− x
|
Zp

F =
{
a ∈ L : ap

n

= a
}

= roots of xp
n

− x in L

We proved:

• F is a subfield of L

• |F | = pn

We show that if K a field, |K| = pn then K ' F . We know K = Zp(a) for some a ∈ K,

deg(a/Zp) = n

So K ' Zp[x]/(g)

where g = minimal polynomial of a/Zp.
We show Zp[x]/(g) ' F .
g is irreducible of degree n in Zp[x]

=⇒ g | xp
n−x previous corollary

Hence g has a root in L, say b ∈ L.
=⇒ bp

n

= b =⇒ b ∈ F .

φ : Zp[x]→ F

h 7→ h(b)

evaluation at b ring homomorphism.
Since g(b) = 0 =⇒ g ∈ ker(φ)
g irreducible, Zp[x] pid =⇒ (g) is maximal
=⇒ (g) = ker(φ)
1st isomorphism theorem =⇒ Zp[x]/(g) is isomorphism to a subfield of F .
Both of size pn =⇒ this subfield is all of F .
Therefore K ' Zp[x]/(g) ' F .

Definition: Fpn is the unique (up to isomorphism) field of size pn.

→ Fp = Zp
Corollary: p prime, n > 0

(a) There exists an irreducible polynomial of degree n in Zp[x]

(b) Given g, h ∈ Zp[x] irreducible of degree n, then

Zp[x]/(g) ' Zp[x]/(n).

Proof: Fpn is a simple algebraic extension of Zp of degree n.
=⇒ Fpn = Zp(a) ' Zp[x]/(g) where g = minimal polynomial of a over Zp
=⇒ g is irreducible, deg g = n.
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(b) Follows by previous theorem part (b) as both Zp/(g) and Zp/(h) are degree n extensions of Zp and
hence of size pn.

Fp2 Fp3 Fp4 · · ·

Fp

Theorem: p prime, m > 0, n > 0 Fp2 6⊆ Fp3 but
Fp2 ⊆ Fp4

Fpm ⊆86) Fpn ⇐⇒ m | n

Proof: Fpm ⊆ Fpn
Fpn is an Fpm-vector space of finite dimensional, say dimension d.

Fpn ' (Fpm)d

|Fpn | = |(Fpm)d|

pn = (pm)d = pmd

=⇒ n = md =⇒ m | n X

Conversely suppose m | n.
say n = md
L is splitting field of xp

m − x over Fpn
L

|
Fpn

xp
m − x ∈ Fpn [x] Let a ∈ F , ap

m

= a

ap
n

= a(pm)d

=

(
· · ·
((

ap
m
)pm)pm

· · ·

)pm
87)

= a

=⇒ a is a root of xp
n − x.

But Fpn ⊆ L is the set of all roots of xp
n − x since they are roots and there are pn.

Therefore a ∈ Fpn
Therefore F 88) ⊆ Fpn
Remark: p prime n > 0,

Fpn = splitting field of xp
n

− x over Zp

PMATH 345 Lecture 32: November 30, 2009
Addendum to §9: Fields
Notation: α : R→ R′ isomorphism of rings induces an isomorphism

α : R[x]→ R′[x]

a0 + · · ·+ anx
n 7→ α(a0) + α(a1)x+ · · ·+ α(an)xn

Lemma: α : F → F ′ isomorphism of fields,
two simple algebraic extensions

F (a)
β
// F ′(b)

F
α

'
// F ′

86)actually: Fpm embeds in Fpn

87)d times
88)' Fpm
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with f = minimal polynomial of a over F ∈ F [x], such that
α(f) = minimal polynomial of b over F ′ ∈ F ′[x].
(i.e., α takes minimal polynomial of a/F to minimal polynomial of b/F ′)
Then, α extends to an isomorphism

β : F (a)→ F ′(b)

with β(a) = b.
That is:

• β|F = α

• β(a) = b

Example: converse is also true
Proof: Let f ′ = α(f) = minimal polynomial of b over F ′

F [x]
α

'
// F ′[x]

F
α

'
// F ′

α is an isomorphism
α−1(f ′ · F ′[x]) = f · F [x]

Then α induces

α : f [x]/(f)
'→ F ′[x]/(f ′)

h+ (f) 7→ α(h) + (f ′)

check that α is indeed an isomorphism.

F (a)

β

��

F [x]/(f)
φ

'oo '
α
// F ′[x]/(f ′)

φ′

' // F ′(b)

h(a) h+ (f)�oo h′ + (f ′) � // h′(b)

β := φ′ ◦ α ◦ φ−1 : F (a)→ F ′(b)

is an isomorphism.
Given c ∈ F ,

β(c) = φ′ ◦ α ◦ φ−1(c)

= φ′ ◦ α(c+ (f))

= φ′(α(c) + (f ′)) α(c) ∈ F ′

= α(c)

Therefore β|F = α.

β(a) = φ′ ◦ α ◦ φ−1(a)

= φ′ ◦ α(x+ (f))

= φ′(x+ (f ′))

= b

Proposition: α : F → F ′ isomorphism
f ∈ F [x], deg f > 0.
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Let K be a splitting field of f over F
Let K ′ be a splitting filed of α(f) over F ′

K
β
// K ′

F
α

'
// F ′

f ′ = α(f)

Then α extends to an isomorphism β : K → K ′.
So β|F = α.
Remark: When F = F ′ and α = id this proposition says that any two splitting fields of f over F are
isomorphic over F .
That is, β|F = id.

K // K ′

F

(Definition: S and S′ extensions of a ring R, are isomorphic over R if there is an isomorphism
β : S → S′ such that β|R = id.)
Proof: Induction on [K : F ] = n.
n = 1: K = F =⇒ f factors completely into linear factors in F [x]
=⇒ α(f) factors into linear factors in F ′[x]
=⇒ K ′ = F ′

So β = α works. X
n > 1: f must have an irreducible factor g ∈ F [x] which is not linear. =⇒ deg g > 1
Let a ∈ K be a root of g.
(exists since g | f and K = splitting field of f over F )
Let g′ = α(g) ∈ F ′[x].
So g′ | α(f) =⇒ g′ has a root b ∈ K ′.

K
β
// K ′

F (a)
β
//

minimal polynomial is g

F ′(b)

minimal polynomial g′ = α(g)

F
α

'
// F ′

Lemma =⇒ Can extend α to an isomorphism β : F (a)→ F ′(b) which extends α
But K is still the splitting field of f over F (a)
And K ′ is a splitting field of α(f) over F ′(b). Note β(f) = α(f)

[K : F (a)] =
n

deg g
< n

By Induction Hypothesis β extends to a β̂ : K → K ′.

β̂|F = β|F = α

So β̂ works.

§10:
Corollary: K,L finite fields, |K| = |L| = pn.
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Suppose K,L are both extensions of a finite field F .

K
' // L

F

Zp

Then K and L are isomorphic over F .
Proof: K and L are both splitting fields of xp

n − x over Zp, hence also over F .
Apply proposition (in fact the Remark).
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§11 Algebraically Closed Fields
Definition: F field is algebraically closed if every polynomial f ∈ F [x] of deg f > 0 has a root in F .
If F ⊆ L, L is an algebraic closure of F if L is an algebraic extension of F and L is algebraically closed.

Proposition: The following are equivalent: F field

(i) F is closed.

(ii) In F [x] every irreducible polynomial is of degree 1.

(iii) F has no proper algebraic extensions.

Proof (i) =⇒ (ii):
f ∈ F [x] irreducible
a ∈ F , f(a) = 0
=⇒ (x− a) | f
f irreducible =⇒ f = c(x− a), since c ∈ F
(ii) =⇒ (iii):
Suppose L ⊇ F is an algebraic extension, a ∈ L. f = minimal polynomial of a/F ∈ F [x]
(ii)
=⇒ deg f = 1 But [F (a) : F ] = deg f
=⇒ a ∈ F =⇒ L = F
(iii) =⇒ (i):
To show F is algebraically closed it suffices to show that every irreducible polynomial over F has a
root in F .
f ∈ F [x] irreducible

L = F [x]/(f)

|
F

algebraic extension, [L : F ] = deg f

(iii) =⇒ L = F =⇒ deg f = 1
f = a89)x+ b so b/a ∈ F is a root of f .

Examples:

(a) C is algebraically closed by the Fundamental Theorem of Algebra
Since [C : R] = 2
=⇒ C is an algebraic closure of R.

(b) Let Q = { a ∈ C : a is Q-algebraic }
89)a 6= 0
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Exercise: Q is a subfield of C.
point: a, b ∈ Q,

Q(a, b)

Q
alg.

Q(a)

Claim: Q algebraically closed
Proof: f ∈ Q[x] ⊆ C[x], deg f > 0.
=⇒ a ∈ C, f(a) = 0.
=⇒ a is Q-algebraic

Q(a)

| alg

Q
| alg

Q


alg

=⇒ a is Q-algebraic

=⇒ a ∈ Q

Q is an algebraic extension of Q.

(c)
Fp ⊆ Fp2 ⊆90) Fp6 ⊆ · · · ⊆ Fpn! ⊆91) Fp(n+1)! ⊆ · · · ⊆ L

L =
⋃
n

Fpn!

Example: L is a field as n | n!, every Fpn ⊆ Fpn! ⊆ L
Therefore every finite field of characteristic p is a subfield of L.
Claim: L is algebraically closed and an algebraic closure of Zp
Proof: f ∈ L[x], deg f > 0, irreducible
For some n > 0, f ∈ Fpn! [x] irreducible
Hence K = Fpn! [x]/(f) is a finite field, extending Fpn! , say |K| = pN with n! | N

Fpn! [x]/(f) = K
α

' FpN

Fpn!

deg f

α|F
pn!

= id

f has a root in K, namely a = x+ (f)
=⇒ α(f)92) has a root in FpN ⊆ L.

Theorem: F field

(a) F has an algebraic closure

(b) Any two algebraic closures of F are isomorphic over F .

Proof:

(a) Let P be the set of all algebraic extensions of F . Given K, L ∈ P,

K ≤ L def⇐⇒ K is a subfield of L

Then (P,≤) is a partially ordered set
Claim: Every chain in (P,≤) is bounded.

90)2 | 6
91)n! | (n+ 1)!
92)= f
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Proof: K0 ⊆ K1 ⊆ K2 ⊆ · · ·
all algebraic extensions of F .
Let L =

⋃
iKi a field extending F .

Given a ∈ L =⇒ a ∈ Ki for some i
=⇒ a is F -algebraic.
=⇒ L ∈ P and each Ki ⊆ L a claim.
By Zorn’s Lemma, P has a maximal element, L ∈ P.
By maximality, L has no proper algebraic extension, since any such would be in P.
Therefore L is algebraically closed and algebraic over F .

(b)

L L′

F

algebraic closures of f

P =

 (K,K ′, α) :

F ⊆ K ⊆ L intermediate field extension

F ⊆ K ′ ⊆ L′ intermediate field extension

α : K → K ′ is an isomorphism over F


P 6= ∅ since (F, F, id) ∈ P
(K,K ′, α) ≤ (M,M ′, β) in P
if K ⊆M , K ′ ⊆M ′

such that M
β

M ′

K
α

K ′

F

βK = α

Example: Check (P,≤) is a partially ordered set.
Claim 1: Every chain is bounded in P.
Proof: Take “unions”. Exercise. a Claim 1.
Apply Zorn’s Lemma =⇒ There exists (k, k′, α) ∈ P which is maximal.
Claim 2: K = L.
Proof sketch: a ∈ L

f = minimal polynomial of a/K ∈ K[x]

L L′

K(a)
'
β

K(b)

K
'
α

K ′

F

Let f ′ = α(f) ∈ K ′[x] ⊆ L′[x]
As L′ is algebraically closed, there is b ∈ L′, f ′(b) = 0.
f ′ = minimal polynomial at b over K ′
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since f ′ is monic and irreducible
By Lemma last time there is β : K(a)→ K(b) extending α.

(K,K ′, α) ≤ (K(a),K ′(b), β) in P

=⇒ K(a) = K =⇒ a ∈ K. a Claim.
Example: K ′ = L′

point:
K ⊆ α(L)93)94) ⊆ L′
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Classical algebraic geometry is the study of simultaneous solutions to systems of polynomial equations.

K algebraically closed field.
S ⊆ K[x1, . . . , xn] a set of polynomials

V (S) = { (a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 for all f ∈ S }

affine variety in Kn defined by S

Note: V (S) = V (S ·K[x1, . . . , xn]) where

S ·K[x1, . . . , xn] = ideal generated by S

= { g1f1 + · · ·+ glfl : f1, . . . , fl ∈ S, g1, . . . , gl ∈ K[x1, . . . , xn] }

Therefore all affine varieties are of the form V (I).

Hilbert’s Basis Theorem:
R commutative Noetharian ring =⇒ R[x] is also.

Hence K[x1, . . . , xn] is Noetharian.
=⇒ every ideal in K[x1, . . . , xn] is finitely generated.

Therefore V (S) = V (S ·K[x1, . . . , xn])

= V (f1, . . . , fl)

where S ·K[x1, . . . , xn] = (f1, . . . , fl).
Every affine variety is defined by a finite set of polynomials.

Definition: Given any subset X ⊆ Kn

I(X) = { f ∈ K[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , xn) ∈ X }

This is an ideal, the ideal of X.

Remarks: S, T ⊆ K[x1, . . . , xn] X, Y ⊆ Kn

(a) S ⊆ T =⇒ V (T ) ⊆ V (S)
X ⊆ Y =⇒ I(Y ) ⊆ T (X)

(b) S ⊆ I(V (S))
X ⊆ V (I(X))

(c) V (S) = V (I(V (S)))
I(X) = I(V (I(X)))

→ exercise

93)a is algebraically closed
94)= K′
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Hilbert’s Nullstellensatz
If S ·K[x1, . . . , xn] is a proper ideal then V (S) 6= ∅.

case n = 1: K[x] is a pid.
S ·K[x] = (f) f if not a unit in K[x] since the ideal is proper.
=⇒ V (S) = V (f)

=⇒
f = 0 =⇒ V (S) = K

or

deg f > 0 =⇒ since K algebraically closed

f has a root, a ∈ K
=⇒ a ∈ V (S).
Note V (K[x1, . . . , xn]) = ∅

Is J = I(V (J)) for all ideals J?
No.
f ∈ K[x1, . . . , xn] J = (f2)
f2 vanishes on V (J)
=⇒ f vanishes on V (J)
=⇒ f ∈ I(V (J)) \ J
This is the only problem:
Theorem: If J is an ideal in K[x1, . . . , xn], then

I(V (J)) = { f ∈ K[x1, . . . , xn] : fn ∈ J for some n > 0 }
= Rad J

Proof: ⊇ is clear.

fn ∈ J =⇒ fn vanishes on V (J)

=⇒ f vanishes on V (J)

=⇒ f ∈ I(V (J))

Conversely, f ∈ I(V (J))
Want: f ∈ Rad J
We may assume f 6= 0
HBT =⇒ J = (f1, . . . , fl)
Consider K[x1, . . . , xn, y]

J ′ = (f1, . . . , fl, y · f − 1)

Suppose (a1, . . . , an+1) ∈ V (J ′)
=⇒ (a1, . . . , an ∈ V (J))

0 = (y · f − 1)(a1, . . . , an+1)

= an+1 · f(a1, . . . , an)︸ ︷︷ ︸
=0 since (a1,...,an)∈V (J)

−1

= −1

Contradiction; therefore V (J ′) = ∅
HN =⇒ J ′ = K[x1, . . . , xn, y]

1 = g1f1 + · · ·+ glfl + h(yf − 1) where g1, . . . , gl, h ∈ K[x1, . . . , xn, y] (∗)

K[x1, . . . , xn, y]
φ→ K(x1, . . . , xn)

g 7→ g(x1, . . . , xn, 1/f)
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Apply φ to both sides of (∗)

1 = g1(x1, . . . , xn, 1/f)f1 + · · ·+ gl(x1, . . . , xn, 1/f)fl + h(x1, . . . , xn, 1/f) · 0

=⇒ 1 = g1(x1, . . . , xn, 1/f)f1 + · · ·+ gl(x1, . . . , xn, 1/f)fl

in K(x1, . . . , xn)
clear denominators to get N > 0, such that

fN =

95)︷ ︸︸ ︷
fNg1(x1, . . . , xn, 1/f) f1 + · · ·+ fNgl(x1, . . . , xn, 1/f)96)fl

in K[x1, . . . , xn]
each fNgi(x1, . . . , xn, 1/f) ∈ K[x1, . . . , xn]
=⇒ fN ∈ (f1, . . . , fl) = J
=⇒ f ∈ Rad J

An ideal J is radical if J = Rad J .

We get a 1–1, onto correspondence

Radical ideals in K[x1, . . . , xn]←→ affine varieties in Kn

J 7−→ V (J)

I(W ) 7−→W

→ exercises

95)in K[x1, . . . , xn]
96)in K[x1, . . . , xn]

68


