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Rings
A ring is a bunch of things you can add, subtract and multiply in a reasonable way.

Example: Z, R, Q, C, R[z] = {polynomials in x with real coeflicients}, R[x1,...,z,] = {polynomials in 1,
, &, with real coefficients}, M,,(Z) = {n x n matrices with Z coefficients}, Z/nZ, Z[i] = {a + bi : a,b €
7} = “Gaussian integers”

Definition: A ring is a set R with two functions +: R x R — R and -: R — R satisfying the following
properties for all a, b, ¢c € R:

(1) (a+d)+c=a+(b+¢)
2
3

at+b=b+a
There exists 0 € R such that a+0=a
4) There exists —a € R such that a + (—a) =0

(2)
3)
(4)
() (a-b)-c=a-(b-c)
(6) a
(7)
(8) a

6) a-b=>b-a <+ Not really a ring axiom
7) There exists a 1 € R such that 1-a =a -1 = a. Controversiall rng
8) a-(b+c)=a-b+a-c

(a+b)-c=a-c+b-c
Opaul = Opaul + ORingO = ORingo

Definition: Let R be a ring. A subring of R is a subset S C R which is a ring using the + and - of R.
Example: Q is a subring of C.
73] is a subring of C.

Theorem: (Subring Theorem) Let R be a ring. S C R a subset. Then S is a subring of R iff
(1)o,1€8
(2) Ifa, be S, thena—be S.
(3) Ifa, be S, thena-beS.
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Definition: A ring is a set R with 2 operations +: R X R — R, -: R X R — R satisfying for all a, b, c € R:

1
2

(1) (a+b)+c=a+(b+c)

(2) a+b=b+a

(3) Thereis 0 € R such that a+0=aVYa € R

(4) There is —a € R such that a + (—a) =0

(5) a-(b-c) = (a-b)-c

(6) a-b=b-a

(7) Thereis 1€ Rsuchthata-1=1-a=aforalla € R
(8) a

8) a-(b+c¢)=a-b+a-c
(a4+b)-c=a-c+b-c

Theorem: (Subring Theorem)
Let R be a ring. S C R any subset. Then S is a subring of R iff:



(1) 0,1€ 8
(2) fa,be Sthena—be S
(3) Ifa,be S thenabe S

Proof: Forwards is trivial.
Backwards: Assume S satisfies (1), (2), and (3) from the theorem. We need to check that + and - are well
defined from S x S — S, and we need to check (1)—(8).

(

The fact that - is from S x S — S is precisely (3). For +, first note that (1) means that 0, 1 € S. By (2), we
find 0 —1=—1€S. Thus, if a, b € S, then by (3), (—1)-b € S so since (—1) - b= —b, we get —b € S.

(1) -b+b=(=1+1)-b

=0-b
=0
follows from: 0-b= (0+0)-b
—0-b+0-b
— 0-b4+0-b=—0-b4+0-b+0-b
= 0=0-b

We want to show that a +b € S. Well, —b € S, s0a— (—=b) € S by (2),s0a+beS.

(1), (2), (5), (6), (8): Trivial for S

(3), (7): By (1)

(4): Already done a

Example: Prove Z[V17] = {a +bV/17 : a,b € Z} is a subring of R.
Solution: Z[y/17] C R clearly. By Subring Theorem:

(1) 0=0+0V17 € Z[V17]
1 =1+ 0V17 € Z[V17]

(2) a+bV17 € Z[V17]
c+dV17 € Z[V1T]
= (a+bV/17) = (c+dV1T7) = (a — ¢) + (b — d)V/17 € Z[V17]

(3) Similarly, (a + bv/17)(c 4 dv/17) = (ac + 17bd) + (ad + be)/17 € Z[/17] so we're done.
Definition: Let R be a ring, » € R any element. Then:

r is a zero divisor iff ra = 0 for some a € R, a # 0, provided r # 0. r is a unit iff there is an element 1/r € R
such that r(1/r) = 1.
r is nilpotent iff r™ = 0 for some positive integer n (r # 0).

Definition: A ring R is called an (integral) domain iff it contains no zero divisors.

A ring R is a field iff every nonzero element is a unit.
A ring R is reduced iff it contains no nilpotent elements.

Z/AZ is not reduced: 22 =0, 2 # 0
7./6Z is reduced, but not a domain: 2-3=10,2,3 40
Z/TZ is a field: every nonzero element is a unit: 1-1=1,2-4=1,3-5=1,6-6=1

Z is a domain that’s not a field.
Theorem: Let R be a ring, r € R any element. Then r cannot be both a zero divisor and a unit.
Proof: Say r is a unit. Then r- (1/r) = 1. If r is also a zero divisor, then ra = 0 for some a # 0, so:

ar(l/r) =a
= 0=a

Bad! O



Definition: Let R, S be rings. Their direct sum is the ring R ® .S. The elements of R & S are the elements
of R x S, and the 4+ and - are:

(r1,s1) + (r2,82) = (r1 + 12, 51+ $2)
(11, 51)(r2, 82) = (1172, 5152)

Theorem: R & S is a ring.
Proof: Dull.

(1,0) - (0,1) = (0,0)
If R, S are nonzero, then 0 # 1, so R ® S is not an integral domain.
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Definition: Let R be a ring. A subring of R is a set S C R such that S is a ring using the same operations
as Rand 1€ S.

Example: R =7Z/6Z

S =1{0,3}

S is a ring using + and - as R, but the multiplicative identity of S is not 1 € R.
S C R, S closed under +, -, —, and has z € S such that z +r =r forall r € S.
= 2=0V.

Theorem: Let n > 1 be an integer. Then Z/nZ is:
(1) A field iff n is prime
(2) Reduced iff n is squarefree

Proof:

(1) If n is prime, then every nonzero element of Z/nZ is represented by an integer coprime to n. Thus,
every nonzero element of Z/nZ is a unit, so Z/nZ is a field.

Conversely, if Z/nZ is a field, then every nonzero element is coprime to n, so n is prime.
(2) Assume p? | n, p > 1. Then n/p # 0, n/p € Z = n/p is well defined mod n, but
2 2
()= (oo
p p p
So Z/nZ is not reduced, since n/p is nilpotent.

Finally, assume that m is nilpotent mod n. We want to show that n is not squarefree. Well, m # 0 mod n,
— 21 ar

but m® = 0 mod m. As integers, write Z:p by 5 .. where, in principle, some of the a;, b; may be 0.
=pb1..pb

Since n 1 m, we get ntm, we get b; > a; for some i. Since n | m®, we get b; < aa;. Note b; > a; > 0,

and b; < aa;, so a; > 0. So b; > a; > 1, and so b; > 2. Thus, pf | n, and n is not squarefree. O

Homomorphisms
Definition: Let R, S be rings. A homomorphism from R to S is a function f: R — S satisfying:

(1) ) =1
(2) fla+0b)= f(a)+ f(b)
(3) f(ab) = f(a)f(b)



Example: f: C— C, f(a+bi)=a—1bi
Example: f: Z — Z/nZ

f(r) =rmodn

Example: f: Q[z] — Q

f(p(z)) = p(33)

fl@—17)=-33
F(a2 + 20 4 3) = 49428412 _ 89
f(6) =6

“Plugging in” homomorphism:
f:R[z1,...,z5] = T

where R is a ring, R C T, and:
flp(z1,...,xn)) =p(tr, ..., tn)

where t1, ..., t, € T are any fixed elements of T'.

Example: f: Z[i] — Z/5Z
fla+bi) =a+2bmod 5

(1) f(1)=1mod5 v

(2) flla+bi)+ (c+di)) = f(la+c)+ (b+d)i) =a+c+2(b+d) mod 5
fla+bi) + f(c+di) = a+2b+ ¢+ 2d mod 5. Same.

(3) Fla+bi)f(c+di) = (a+ 2b)(c+ 2d) = ac + 4bd + 2ad + 2bc mod 5
f((a+bi)(c+di)) = f(ac —bd + bci + adi) = ac — bd + 2(ad + bc) mod 5

These are the same, so [I.
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Z3 = 7,/3Z = “Integers mod 3”

Definition: Let R, S be rings, f: R — S a homomorphism. Then f is an isomorphism iff there is another
homomorphism g: S — R such that fog=id and go f =id.

Example: f: C — C, f(z) =z. This is an isomorphism; the inverse of f is f.

Im

To prove z = 4, we’d have to have some relationship between z, real numbers, and + and -:
apnz" + - +az+ap=0

where a; € R. Then:
apZ"+ -+ aZ+ap=0

So there’s no way to tell the difference between i and —i.
Definition: Let f: R — S be a homomorphism. The image of f is the set:
im(f) ={f(z):z e R}

= range of f



and the kernel of f:
ker(f)={xz€R: f(x)=0}

Theorem: Let f: R — S be a homomorphism. Then f is 1-1 iff ker(f) = {0}.

Proof: Forwards is trivial, because f(0) = 0.

Backwards: Assume ker f = {0}. We want to show f is 1-1. If f(a) = f(b), then f(a —b) = 0, so
a—bekerf,soa—b=0 = a=0. O

Theorem: Let f: R — S be a homomorphism. Then:
(1) £(0) =0
(2) The composition of homomorphisms is a homomorphism
(3) If x is a unit, then so is f(x).

Theorem: Let f: R — S be a homomorphism. Then ker f is usually not a subring of R. In fact, ker f is a
subring of R iff ker f = R.

Definition: Let R be a ring. An ideal of R is a subset I C R satisfying:
(1) 0el
(2) Ifa,beIthena—-bel
(3) IfaecI,re€ R, then ar € I.
Theorem: Let f: R — S be a homomorphism. Then ker f is an ideal of R.
Proof:
(1) f(0)=0 = 0 € kerf.
(2) If a, b € ker f, then f(a) = f(b) =0. We want a — b € ker f, i.e., f(a —b) = 0. This is trivial.
(3) If a € ker f, r € R, then f(a) =0, so f(ra) = f(r)f(a) = f(r)-0=0. So ra € ker f. O

Example: What are the ideals of Z7

{0} is the trivial or zero ideal.

Z is the improper or unit ideal.

I = {even integers} is an ideal, often written 27Z.

In fact, {multiples of n} = nZ is an ideal of Z.

Better yet, every ideal of Z is of the form nZ for some n € Z.

Definition: Let R be a ring, a € R any element. The principal ideal of R generated by a is the set:
(a)=aR={aR:r€R}.

Theorem: (a) is an ideal of R.
Proof: Easy. O
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Claim: The ideals of Z are precisely the sets nZ = {nr :r € Z}.

Proof: First, nZ is an ideal by a quick check of the definition. It only remains to show that every ideal is of
the form nZ. Thus, say I C Z is an ideal. It could be that I = {0} = 0Z. Otherwise, I must contain some
nonzero integer, which we may assume is positive. Let n be the smallest positive element of I. We will show
that I = (n) = nZ. Clearly nZ C I, since n € I. Thus, x € I. We want to show = € nZ. After long division:

r=qn-+r

where ¢, r € Z, 0 <r <n. But r =2 — gn € I, so by minimality of n, we get r = 0, and hence x = gqn € nZ.
Thus, I = nZ. O



Definition: Let R be a ring, a1, ..., a, € R any elements. The ideal generated by aq, ..., a, is:
(a1y...,an) ={ria1+--+rpay :r1,...,7, E R}

It is easy to see that this is an ideal.
Example: (6,8) C Z

={6a+8:a,beZ}

={2Ba+4b):a,be Z}
so 2 € (6,8). This immediately means that (2) C (6, 8).
Conversely, 6, 8 € (2), so (6,8) C (2), and hence (2) = (6, 8).
Fact: Given an ideal I and elements ay, ..., a, € R, if a1, ..., ay, € I then (ay,...,a,) C I.
Example: (z,y) C Q[z,v]

(z,y) = {ap(z,y) + ya(z,y) : p,q € Qlz,y] }
={r(z,y):r(0,0)=0}

Definition: Let I, J be ideals. Then these are ideals:

I+J={a+b:aclbeJ}
and IJ ={a1by +---+anb,:a, €1,b; € J}

) m):(ala"'vaTL?bl""’bm)

(ala"'aan)+(bla" b
,bm) = (albl,albg, .. .,albm,agbl,. .. ,agbm, e ,anbl, .. .,anbm)

(al, “ee ,an)(bl, [SPEN
= (aibj) ic{1,...n}
je{l,....m}

Example: In Q[z,y]:

2 —ay,2y? — vt ay —wy,y — )

(9% (x—y,9° —y) = (
If R is a ring, then R* = group of units of R

Theorem: Let I be an ideal of a ring R. Then I = (1) = R iff I contains some unit of R.
Proof: Forwards is trivial. For backwards, assume u € I is a unit. Then 1 =wu=t € I = I = (1). O

Theorem: Let R be a ring, R # {0}. Then R is a field iff it has exactly two ideals, (0) and (1).
Proof: Forwards: Assume R is a field, I C R any ideal. If I = (0), we’re done. If not, I contains some z € R,
x # 0. Since R is a field, x is a unit, so I = (1).

Backwards: Let € R be any nonzero element. We want to show € R*. Well, (z) C R is an ideal with
(z) # (0), so by assumption (z) # (1). This means 1 € (z) = {zr:r € R}

— 1 =rx for somer € R

so z € R* and R is a field. O

Quotient rings
Let R be aring, I C R an ideal. (e.g., R=2Z, I = (n))
We want to build a ring R/I and a homomorphism ¢: R — R/I such that kerq = I.

If we had such a thing, then ¢(z) = ¢q(y) <= = —y € kerqg=1.

Thus, elements of R/I ought to be equivalence classes of elements of R under the equivalence relation

r=ymodl iff z—yel.
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Theorem: A homomorphism f: R — S is an isomorphism iff it’s 1-1 and onto.
Proof: Forwards is trivial.
Backwards: Assume f is 1-1 and onto. We want to show that f~': S — R is a homomorphism.

First, f~1(1) = 1 because f(1) = 1. Next, let a, b € S be any elements. We want to show that
fHa+b)=f"a) + f71(b).

Since f is 1-1 and onto, we can find A, B, C' € R such that f(A) =a, f(B) =0, and f(C) = a+b. Then:
fLA Y+ f(B)=f(A+B)=a+b

= A+B=f"'a+b)
But C = f~!(a + b) by definition of C
= A+ B=C
= [Ha)+ 71 (0) = fH(a+D)

as desired.
Proving f~!(a)f~1(b) = f~1(ab) is exactly similar. O

We've got: aring R, an ideal I C R
We want: a ring R/I = “R mod I” an onto homomorphism ¢: R — R/I with kerq = I.

R/I = {equivalence classes of elements of R}
where 11 =ro mod I iff 1y —ro €1
={r4+IV:7€R}

Addition: (ri + 1)+ (re+1)=(r1+12)+1
Multiplication: (ry + I)(re +I) = (rira + 1)

One: 1+ 171

We need to check that these definitions are well defined.

If 11 =7} mod I and r9 = r}, mod I, we must check that r; + ro =} + 5 mod I and {7}y = r1ry mod I.

Ifay=r1—r] €1,a3 =ry—1h €I, then

(r14mr2) = (ry+ry) =(r1—7) +(ra—1y) €1

and ry7ry — rirh = rirg — (r1 — ay)(rs — a2)

= Tire—"T1iT2 + a172 + a1 — a1as
el

Checking that R/I is a ring is tedious but straight forward.

It’s clear from the construction that the map

q¢: R— R/I
given by ¢(r) = r mod T
=r+4+1

is a surjective homomorphism. The map ¢ is called the “reduction mod I” homomorphism.

D) “coset of 17
r+I={r+a:a€cl}



Example: R=7Z,I = (n)

Then R/I = Z/nZ = Z,,.

Example: C[z]/(z) should be isomorphic to C.
Example: R[z]/(2? + 1) should be isomorphic to C.?)

Clz,y, 2]/ (2® — x4 3yz, 2%z + 4y)

Theorem: (Universal Property of Quotients)
Let R, S be rings, I C R an ideal, f: R — S a homomorphism, ¢: R — R/I the “reduce mod I” homomor-
phism.

There exists a homomorphism f: R/I — S with foq=fiff I Ckerf.
Remark: This theorem says that if you can find a homomorphism f: R — S with I C ker f, then f “makes

sense mod I”.
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Theorem: (UPQ) Let R, S be rings, I C R an ideal, f: R — S a homomorphism, ¢: R/I the quotient
homomorphism

R ! S

R
X Ty

R/I

Then there exists a homomorphism f: R/I — S with f = foqiff I Ckerf.

Example: Find an isomorphism from Clz]/(z) to C.

Clz]?/(x)® to C

/
o

f(p(x)) = p(0)
This is a homomorphism, and x € ker f, so () C ker f, so by the UPQ, f “makes sense” as a homomorphism
from C[z]/(z) — C. That is, f induces a homomorphism f: C[z]/(z) — C.

f(p(z) mod I) = p(0).

It’s onto because f(z) = z for any z € C, so we just need to check 1-1. To do this, we show that
ker f = (0) <= ker f = (2).
We already know (z) C ker f, so let p(z) € ker f. Then f(p(z)) = p(0) =0, so x | p(x), and so p(z) € (z) and

we're done.

Proof of UPQ: Forwards: We have foq = f, so if r € I, we compute f(r) = f(q(r)) = f(0) = 0, so
r € ker f.

2) Aside: Show: R[z]/(z%2 —1) *R @R
S)R
4)[
5)9



Backwards: Assume I C ker f. We want f: R/I — S such that fog="f
Define

f(rmod I)= f(r)

To check that this is well defined, we check that if 7, = ro mod I, then f(ry mod I) = f(ry mod I). That is,
we check that f(r1) = f(r2).

Well, f(r1) — f(r2) = f(r1 —r2) = 0 since r1 —ro € I C ker f.
We check that f is a homomorphism:

fAmodI)=f(1)=1 vV
fla+bdbmod I) = f(a+b) = fla) + f(b) = flamod I) + f(bmod I) v

fabmod I) = f(ab) = f(a)f(b) = f(amod I)f(bmod I) v [
Facts: kerf = ker f mod I
imf =im f

Theorem: (First Isomorphism Theorem) Let f: R — S be a homomorphism. Then im f =6 R/ ker f.
Proof: Straight from UPQ. O

Theorem: Let f: R — S be a homomorphism, I C R an ideal, J C S an ideal. Then:
(1) f7Y(J)={r € R: f(r) € J} = preimage of J is an ideal of R

(2) If f is onto, then
f)y={f(r):rel}
is an ideal of S.
Proof:

(1) 0 € f~1(J) because f(0) =0 € J. If a, b€ f~1(J), then f(a), f(b) € J, s0o f(a—0b) = f(a) — f(b) € J,
and hence a — b € f~1(J).

Finally, if a € f~1(J), r € R, then f(ra) = f(r)f(a) € J, so ra € f~1(J).

(2) 0 € f(I)because f(0) =0. If a, b e f(I). Thena= f(r), b= f(s) forr,sel,soa—b= f(r)— f(s) =
f(r—s),s0a—>be f(I).

Finally, let a € f(I), r € S. Since f is onto, we write r = f(t) and a = f(u) for t € R, uw € I.
Then tu € I and f(tu) = ra, so ra € f(I). O

Definition: Let R be a ring, I C R an ideal. Then [ is prime iff I # R and for all a, b € R, if ab € I then
eithera € T or b € I.
I is maximal iff the only ideal J with I C Jis J = R and I # R.
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Zs|x]: polynomials in 2 whose coefficients lie in Zs.
Fact: If a € Zs, then a® = a.
Fact: In Zs[x], 2% and x are different polynomials that define the same function Zs — Zs.

=2 =V32=4vV2= -2

T =2#4V2

Definition: Let R be a ring, I C R an ideal. Then [ is prime iff every a, b € R with ab € I satisfies a € |
orbel,and I # R.
Furthermore, I is maximal iff I # R and the only ideal J C R with I C J is J = R.

6) «ig isomorphic to”




Example: What are the prime and maximal ideals of Z?
Well, any ideal of Z is of the form (n) for n € Z.
If n is composite, then n = ab for a, b € Z, a, b # £1. In that case:

(n) S (a) # (1)
so (n) is not a maximal ideal. Also, a ¢ (n) and b ¢ (n), but ab € (n), so (n) isn’t prime.

(0) is prime but not maximal. If n is prime, then we can call it p. The ideal (p) is maximal and prime. The
ideal (p) is prime because p | ab = p|a or p | b, and (p) is maximal because if (p) C (n), then n | p, so

=

n = £p (not possible since (p) # (n)) or n = %1, in which case (n) = (1). Hence (p) is maximal.
Theorem: Let R be a ring. I an ideal of R. Then:

(1) I is prime iff R/I is a domain

(2) I is maximal iff R/I is a field
Proof:

(1) Forwards: I is prime. Let a, b € R be any elements with ab = 0 mod I. We want to show either a =0
or b=0. Since ab= 0, we get ab € I, so eitheracTorbel = a=0o0rb=0.

Backwards: Similar.
(2) Forwards: I is maximal. This means only two ideals of R contain I, namely, I and R.
Now let J be any ideal of R/I, q: R — R/I the quotient homomorphism. Then
¢ '(J)={reR:q(r)eJ}
is an ideal of R that contains I.
Sog 'J=Tor R,soJ=(0)or (1). Thus, R/I has exactly 2 ideals, and so must be a field.
Backwards: Similar. O

Corollary: Every maximal ideal is prime.
Proof: Every field is a domain. O

Example: Is (z — 1) a prime ideal of Q[z]? How about Z[z]?

Qla] d Q

Qlal/(z — 1)

f(p(x)) = p(1). By UPQ, this induces f:Ql]/(x—1)—>Q because f(z —1)=1—-1=0.
We see that f is onto, since f(c) = c for all ¢ € Q. Moreover, f is 1-1 because f(p(r)) =0 <= p(1) =
0 <= z—1]|p(x) <= p(x) € (x—1). Thatis, ker f = (z — 1) <= ker f = (0).

Since Q[z]/(z — 1) = Q (via f), we see that (z — 1) is prime and maximal.
Z|x):
Z[x] 2 Z f(p(x)) =p(1)

Zla] /(z — 1)

Not too hard to show f is 1-1 and onto. Since Z is a domain but not a field, (x — 1) is prime but not maximal
in Z[z].

10



Let R be any ring. There is exactly one homomorphism ¢: Z — R, given by ¢(n) = n, called the characteristic
homomorphism. Since ker ¢ is an ideal of Z, we have ker¢ = (n) for some n > 0. This n is called the
characteristic of R, and is written char R.

Z/nZ has characteristic n.
char R = first positive integer n such that n =0 in R
If none, then char R = 0.

Example: char Q = charZ = 0.
Fact: R is a domain = char R is 0 or prime.
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Let R be a ring, ¢: Z — R the characteristic homomorphism char R = n, where ker ¢ = (n). Every ring of
characteristic n > 0 has a subring isomorphic to Z/nZ, namely, im ¢.

Every ring of characteristic 0 has a subring isomorphic to Z, namely im ¢.

Theorem: Let D be a domain. Then char D = 0 or char D is prime.
Proof: Say char D > 0 and char D = ab for integers a, b. We want to show a =1 or b = 1.

Well, ab =0 in D. Since D is a domain, this means a = 0 or b = 0; without loss of generality, say a = 0. Then
by definition of char D, a > ab, so b < 1. Since b€ Z, b > 0, we get b = 1. O

Fraction fields
Let D be a domain. We will construct a field that contains D.

Definition: Let D be a domain. Define the fraction field K (D) by:

K(D):{%:a,beD,b;«éo}/N

where § ~ & iff ad = bc, and:

Need to show:
(1) e~ then 84S~ ® 4 Sand &S =2.
(2) K(D) with all these operations is a field.

I do not deign to do so.

Note that there is a natural homomorphism ¢: D < K(D), ¢(d) = %. Typically, we identify D with ¢(D),
and say that D C K(D).

Example: K(Z) = Q.
Example: K(F[z]) = F(x) if F is a field

Fia) = {88 g e Flal g 20}
Example: Z[i]={a+bi:a,bcZ}
a+bi

K(Z[i]):{ :a,b,c,dGZ,c+di7é0}

c+ di

a+bi  (a+bi)(c—di)
c+di 2 + d?

- () + ()

€eQl)={a+bi:a,bcQ}

But
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So K(Z[i]) = Q(i)"

Theorem: (Universal Property of Fraction Fields) Let F' be a field, and D a domain, ¢: D < F an injective
homomorphism. Then ¢ extends to an injective homomorphism ¢: K(D) — F.

Proof: Define (Z)(%) = 2%; This is well defined because ¢(b) # 0 (since b # 0 and ¢ is 1-1). Checking that
this is an injective homomorphism is straightforward. O
Theorem: Let ¢: F — E be a homomorphism of fields £ and F'. Then ¢ is 1-1.

Proof: Counsider ker ¢. It’s an ideal of F', so ker ¢ = (0) or (1). Since ¢(1) = 1, we get ker ¢ = (0), and so ¢
is 1-1. O

PMATH 345 Lecture 10: May 26, 2010

http://cumc.math.ca/
July 6-July 10

Definition: Let D be a domain, x € D any element, z # 0, x ¢ D*. Recall: D* = {units of D}. Then z is
prime iff (z) is a prime ideal. Also, x is irreducible iff when 2 = ab for a, b € D, we have a € D* or b € D*.

Example: Prime elements of Z are prime numbers. Irreducible elements of Z are prime numbers.
Example: D = Z[/10], z = 2. Showing that « is irreducible is not easy, but can be done.

But x is not prime. We will prove this by showing (2) is not a prime ideal, by showing that Z[+/10]/(2) is not
a domain.

Well, Z[v10] = {a+bv10: a,b € Z}. Z[/10]/(2) has 4 elements, represented by 0, 1, v/10, 1 + +/10. To
prove this, note that those 4 elements are all different mod 2, and any a + bv/10 is congruent to one of these 4
mod 2.

Notice that /10 2 0 mod 2, but (v/10)? = 0 mod 2, so 2 is not prime.

Definition: A domain D is a Principal Ideal Domain (PID) iff every ideal of D is principal; i.e., every ideal
is of the form (z) for some = € D.

Definition: A domain D is a Unique Factorization Domain (UFD) iff every x € D, x # 0, can be factored

into irreducible elements of py, ..., p, € D:

T =pPipP2 - Pn

and this factorization is unique up to multiplication by units and reordering the p;s.

We will show that every PID is a UFD. However, Q|z,y] is a UFD, but not a PID because (x,y) is not
principal.

Theorem: Every prime element of a domain D is irreducible.
Proof: Let x € D be prime, and assume x = ab, a, b € D. We want to show either a € D* or b € D*. Since
x is prime, ab € (r) = a € (z) or b € (x); without loss of generality a € ().

So a = zd for some d € D:
T = xdb.

Since x # 0, we get 1 = db, and so b € D*. O
Theorem: Let D be a PID. Then every irreducible element of D is prime.

Note: This theorem is not true if D is not a PID! (E.g., D = Z[v/10].)
Proof: Say a € D, a # 0, a ¢ D*. Assume q is irreducible. Then (a) is a maximal ideal:

If (a) C I for some ideal I, then I = (x) for some « € D. Then a = zd for some d € D. Since a is irreducible,
we get € D* or d € D*. If x € D* then I = (1). If d € D* then I = (a). So (a) is a maximal ideal. Which
means (a) is a prime ideal. So a is prime. O

7) Aside: Qi) = {a+bi:a,beQ}
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Theorem: Let D be a PID, I; C I C Is C - -+ be an ascending chain of ideals I,, of D. Then for some m,
I, = I,, for all n > m.
Proof: Consider I =J,, I,. Then I is an ideal of D:

(1) oen, CI

(2) If a, b € I, then a € I,, and b € I; for some n, [. Without loss of generality, n > [, in which case I; C I,
soa,bel,. Soa—-bel, Cl. Vv
(3) Similarly, ifd € D,a€ I, thenacl, = dacl,CIV

Since D is a PID, we get I = () for some z € D. But z € I, for some n, so I = (x) C I, C I, and so
I1=1,. O

PMATH 345 Lecture 11: May 28, 2010

Theorem: Every PID is a UFD.

Proof: Recall from last time:

Theorem: Every irreducible element of a PID is prime.

Theorem: Let Iy C Is C --- be a chain of ideals in a PID. Then for some n, I,, = I,, for all m > n.

Digression: Every irreducible element of a UFD is prime.
Proof: Say x is irreducible in a UFD D. We will show that (z) is a prime ideal, so x is prime.

So, assume ab € (). Then ab = xc for some ¢ € D. Factoring both sides into irreducibles gives:
(pr--pn) (@1 gm) = (r1--11)
\W_/\‘b,_/ ——
a c
By uniqueness of factorization, we get x = up; or x = ug; for some u € D* and index 3.
So either a € (x) (if x = up;) or b € (x) (if x = ug;). Hence () is a prime ideal and z is prime, as desired. O

We will now show that if D is a PID, then D is a UFD. To do this, we will show that any element a € D,
a # 0, a ¢ D*, can be factored uniquely into a product of irreducibles.

Thus, choose any a € D, a # 0, a ¢ D*. We want to find some irreducible element p € D such that p | a.
Well, if a is irreducible, then we may choose p = a. If a is not irreducible, then we may write a = bc for
b,ce€ D, b, c ¢ D*. If b or c are irreducible, we win. Otherwise, we get (a) C (b) with (b) # (1). Write a; = b.
Write a1 = agby for ag, by ¢ D*. Write ay = agbs for ag ¢ D*, and continue writing a,, = ap41bp4+1 with
ant+1 ¢ D*, and b, 1 ¢ D* whenever a,, is reducible. We have an ascending chain of ideals: (a) C (a1) C

(ag) C ---. By ACC for PIDs, there is an n such that (a,,) = (ay,) for all m > n. In particular, (a,) = (an+1),
where a,, = ay4+1b,+1. This means b,11 € D*, so a,, is irreducible, with a,, | a.

Now we’ll show that a can be factored completely into irreducibles. Write a = p1a; for irreducible p; € D.
Write a = pypaas for irreducible py € D (unless a1 € D*). Keep going until a,, € D*, at which point:
a = p1paps - - (anpn)
—_— —
all irreducible

To show that a,, € D* for some n, note that (a) C (a1) C (az) C --- is an ascending chain of ideals. By ACC,
this means (a,,) = (a,+1) for some n, with a,, = pp11a,41; this is impossible! So a,, must have been a unit,
and so a has been factored completely into irreducibles.

Finally, we show that this factorization is unique. Say
Aa=p1-Ppn=0q1 " qGm (*)

for irreducibles py1, ..., Pn, @1, -.., @m € D. First, note that py, ..., pn, q1, ..., ¢m are all prime, so
p1]qi - ¢gm = p1|q for some i. Then ¢; = p1z for some z € D and = € D* because p; ¢ D* and ¢; is
irreducible. So we cancel p; from both sides of (x):

P2 P =qur i g
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where the hat means g; is not present. Keep doing this for each p; in turn until either the p;s run out or
the ¢;s do. If the two sets don’t run out at the same step, then a nonempty product of primes would be
a unit, which is impossible. So n = m, and so the two factorizations are the same up to permutation and
multiplication by units. O

PMATH 345 Lecture 12: May 31, 2010

Definition: Let D be a UFD, p(z) € D[z| any nonzero polynomial. The content of p(x) is the greatest
common factor of the coefficients of p(x). A polynomial p(z) is primitive iff its content is 1.

Theorem: (Gauss’s Lemma)

The product of primitive polynomials is primitive. More precisely, let D be a UFD, p(x), ¢(x) € D[z] primitive
polynomials. Then p(z)g(z) is primitive.

Proof: Assume p(z)g(x) is not primitive. Then there is some prime ! which divides all the coefficients of
pq. Reducing mod ! gives p(z)g(x) = 0 mod I, so since [ is prime, D/l is a domain, so (D/l)[z] is a domain,
so either p(z) = 0 mod [ or ¢(x) = 0 mod [. In other words, either [ divides the content of p or [ divides the
content of q. Both are impossible by primitivity of p(z) and g(z). O
Theorem: (Gauss’s Lemma)

Let D be a UFD, p(x) € D[z] a nonzero polynomial. Then p(x) = a(z)b(z) in K(D)[z] iff p(x) = A(x)B(x)
in D[z], where A(z) = aa(z) and B(x) = fb(z) for some «, § € K (D). In particular, p(z) is irreducible in
K(D)lz] #f it’s irreducible in D[z] (except possibly for constant factors).

Proof: Backwards is trivial.
Forwards: Say p(z) = a(z)b(z) with a, b € K(D)[z]. Write

afp(z) = [aa(z)][Bb(z)]

where aa, 8b lie in D[z]. Factoring out the contents of ca and b gives

csafp’(z) = cr(d'a(x))e2 ('Y (2))
~—— N——
primitive primitive
Cancelling gives:
dp'(z) = [o'd’(2)][8'0' ()]
where d € D and p/, &/a’, and 'V are all primitive. By Gauss’s Lemma, dp’(z) is primitive, so d € D* and
so p/(z) = [@/d™1ad (2)][8'V (z)]. Since p(x) = c3p’(z), we get:

p(x) = [esa’d ™ a' (2)][B'Y (x)]
= A(x)B(x)
as desired. O]

Example: Consider 222 — 5 € (Z[/10])[z]. The polynomial is irreducible. However:

23:2—5:2(1‘2—%)

2o B) (e

= 2(e~ ) e+ 4P)

-5

[\el[S3

So Gauss’s Lemma does not apply to (Z+v/10)[x].

Example: Prove that 22 + x + 1 is irreducible in Q[z].

Solution: Reducing mod 2 gives 2 + 2 + 1, which has no roots: 02 +0+1#0, 124+ 1+1#0

So 2 + 2 + 1 can’t factor in Zo[z]. If 2% + 2 + 1 factored in Z[z], then the factorization could be reduced
mod 2. So 22 + z + 1 is irreducible in Z[x]. By Gauss’s Lemma, x? + x + 1 is irreducible in Q[z].

PMATH 345 Lecture 13: June 2, 2010
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Long division and Euclidean algorithm
Divide # — 1 by 2% + 22 — 3 with remainder in Z5® [z]

xr—2

x2+2x—3)m3+0x2+0m—1
23 4+ 222 — 3z

— 222 +3z—1

—222+ z+1

20 — 2

Answer: 23 — 1= (z — 2)(2? + 22 — 3) + (22 — 2)
To find ged(2® — 1,22 + 22 — 3):

2d —1=(z—-2)(2*+22—3) + (2 - 2)

3r—1

2x72)12+2x—3
22—z

3 —3

3z —3

0

2?2422 -3=22—-2)3x—1)+0

So ged(z3 — 1,2 + 22 —3) =22 —2orz — 1
Theorem: Let F be a field, a(z), b(x) € F[z] with b(z) # 0. Then there are polynomials ¢(x), r(z) € F|x]
satisfying:

(1) a(z) = q(z)b(x) + r(x)

(2) deg(r(z)) < deg(b)
(If b(x) is constant, then (2) means r(z) = 0.)
Proof: Not gonna do it. O

Corollary: Let F be a field. Then F[z] is a PID.

Proof: Let I C F[z] be an ideal. If I = (0), then it’s principal. If not, then it contains a nonzero polynomial
p(z) of minimal degree. If a(z) € I, then a(x) = p(z)g(z) + r(z) where deg(r(z)) < deg(p(x)). But
r(z) = a(z) — p(z)q(z) € I, so by minimality of p(x), we get r(z) = 0 and a(z) € (p(x)). So I C (p(z)), and

p(x) el = (p(z)) C I, s0 I = (p(x)). O
Corollary: Let F be a field, a € F, p(z) € Flx] with p(a) = 0. Then = — a | p(z).
Proof: p(z) = q(z)(x — a) + r(x) with degr(x) < deg(z —a) = 1. Plug in « = a to deduce r = 0. O

Corollary: Let F be a field, p(z) € F[z] a nonzero polynomial of degree d. Then p(x) has at most d roots.
Proof: Each root corresponds to a factor of p(z), and F[z] is a PID and hence a UFD. O

If p(z) has degree 3 or less, then p(z) factors in F[z] iff it has a root in F. The proof is easy.
Example: 22+ + 1 is irreducible in Zs[z] because its degree is 2 < 3, and 02 +0+1# 0 and 12 +1+1 # 0.

Theorem: Let R be a ring, P a prime ideal of R, p(x) € R[z] a polynomial. If p(x) is irreducible in (R/P)x]
and if the leading coefficient of p(z) doesn’t lie in P, then p(z) is irreducible in R[z].
Proof: If p(x) = a(x)b(x) in R[z] with deg(a), deg(b) > 1, then

p(z) = a(z)b(x) mod P,

with deg(a), deg(b) > 1 mod P because deg(p(z)) is the same over R/P as over R. By contrapositive, we're
done. O

8) field
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Example: 22 + x + 1 is irreducible in Z[z] because it’s irreducible mod 2.

Example: Is 2° — 2 + 1 irreducible in Q[z]?
Yes. Reducing mod 2 yields 23 + x + 1, which has no roots, so 2% — z + 1 is irreducible in Zy[x] since deg < 3,
and so irreducible in Z[z], and by Gauss’s Lemma irreducible in Q[z].

PMATH 345 Lecture 14: June 4, 2010

Theorem: Let D be a UFD, p(z) = ag + a1z + - - + a,2™ € D[x] any nonzero polynomial, a; € D. If

p(F) =0for I, m € D, then I | a,, and m | ao.

3

Example: Does 323 + 1 have any roots in Q?
Answer: No. Any rational root ¢ satisfies b |3 and a | 1, so b € {#1,43} and a € {#1}. Without loss of
generality, b > 0, so b € {1,3}. Now we check these roots:
31 4+1=4#0
3(-1)4+1=-2#0
33 +1#£0
3(3)°+1#0

Therefore 323 4 1 has no roots in Q. Since its degree is < 3, this means it’s irreducible over Q.

Proof: Say () = 0. Then in K(D)[z], we have (z — ) | p(z), so lx —m | p(x). By Gauss’s Lemma,
p(x) = (Ilx — m)q(x) for some q(x) in D[z]. If q(x) = by + byx + -+ + b,_12" "1, then ap = —bgm and
an = 1lby_1. O

Theorem: (Eisenstein’s Criterion)
Let D be a domain, P C D a prime ideal, f(z) = ag+a1x+---+a,2™ € D[z] a nonzero polynomial satisfying:

(1) a; €D
(2) a; e Pifi<n
(3) an ¢ P
(4) ao ¢ P?
9)Then f(z) has only constant factors in D[z].

Example: Is 2 4 10z + 6 irreducible over Q?
Yes: Apply Eisenstein with P = (2):

(2) 0,0, 10, 6 all in (2)
(3) 1¢(2)
(4) 6¢(4) v
Proof: Say f(x) = a(x)b(z) in D[z]. Then f(x) = a(x)b(z) in (D/P)|x].
= a(z)b(z) = apz™ mod P
Since (D/P) is a domain, it has a fraction field K, and K|[z] is a UFD. So both a(x) and b(z) are both
constant multiples of a power of x mod P.

If a(z) and b(z) are both not constant, then their constant coefficients are both 0 mod P. This would mean
that both coefficients lie in P, so

ag = (constant coefficient of a(z)) - (constant coefficient of b(x))

would lie in P?. This is a contradiction, and so f(x) has only constant factors, as desired. O

9 Aside: P = (z1,...,2,) = P? = (%ixj)i,je{1,...,n} In particular (2)2 = (2?)

,,,,,
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Corollary: If f(z) satisfies the hypothesis of Eisenstein’s Criterion and D is a UFD, then f(z) is irreducible
in K(D)[x].
Proof: Gauss’s Lemma. O

Corollary: If f(x) is monic (leading coefficient is one) and satisfies the hypotheses of Eisenstein’s Criterion,
then f(z) is irreducible in D[z].
Proof: Immediate. O

Example: Is 2%y + 2y® — 2 + y — 1 irreducible in C[z, y]?

Yes: Apply Eisenstein’s Criterion to D = Cly] and P = (y — 1).
Write 23y + 2y — o +y — 1

— yl())xS + (y3 _ 1)11)‘,17 + (y _ 1)12)

So, by Eisenstein’s Criterion, 23y + xy® — 2 +y — 1 has only constant factors; namely, factors lying in D = Cly].
But y and y — 1 are both coefficients are relatively prime, so there are no nontrivial constant factors either.

PMATH 345 Lecture 15: June 7, 2010

Definition: A ring R is Noetharian iff every ideal of R is finitely generated. That is, R is Noetharian iff
every ideal I of R can be written in the form I = (ry,...,r,) for some ry, ..., r, € R.

Theorem: A ring R is Noetharian iff it satisfies the Ascending Chain Condition.
Proof: Forwards: Say R is Noetharian, and let I C Is C --- be an ascending chain of ideals. We want to
show that there is an index n such that I,, = I,,, for all m > n.

We've already seen that I = J, I is an ideal, so since R is Noetharian, I = (ry,...,r,,) for some 7, ...,
rm € R. For each i, r; € I implies r; € I,,, for some m;.

If n = max{m;}, then r; € I, for all . So I = (r1,...,rm) C I, C I, and therefore I = I,, and I,,, = I,, for
all m > n.

Backwards: We’ll skip. O

Theorem: (Hilbert Basis Theorem) Let R be a Noetharian ring. Then R[] is also Noetharian.

Remarks: Every field is Noetharian, as is every PID. By induction, HBT implies that Flz,...,z,] is
Noetharian for every field F.

Proof: Let I C R[x] be any ideal. We want to find a finite set of elements fi, ..., f, € R[x] such that
I=(f1,...,fn). Let L =set of leading coefficients of elements of I (leading coeflicient of 0 is 0).

Claim: L is an ideal of R.
Proof:

(1) 0eL v

(2) Say Iy, lo € L. Let f1, fo € I have leading coefficients Iy, l2 respectively. If deg fi > deg fa, then
f — pdeg fi—deg f2 f2 isin I and has leading coefficient Iy —I2, so [y —l3 € L. Otherwise, pdeg fa—deg fi fi—fo
will do.

(3) Sayl € L, r € R, f € I with leading coefficient . Then rf has leading coefficient Ir, so Ir € L. O

Since R is Noetharian, we get L = (a1, ...,a,) for some ay, ..., a, € R. Let f1, ..., f, € I have leading
coefficients ay, ..., a,, respectively. For each integer d > 0, define

L4 = {set of leading cofficients of elements of I of degree d} U {0}

It turns out (by a proof similar to Claim’s) that L, is an ideal of R, so we can write Ly = (bg.1,. - ., ban,) for
some bq; € R. Let fq,; € I have leading coefficient bq;, with deg f;, = d.
Let N = max{deg f;}.

10)not in (y — 1)
Win (y —1)
12)in (y — 1) but not (y — 1)2
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Claim: [ is generated by fi, ..., f, and fg; for d; < N.
Proof of claim: It’s clear that every f; and fy; is contained in I, so it suffices to show that every element of
I can be written in terms of f; and fg ;.

Assume f € I is the element of smallest degree that cannot be written as an R[z]-linear combination of the f;
and fq,. (d =degf)

Case I: deg f > N. Let a = leading coefficient of f. Since a € L, we can write a = rya; +- - - +r,a, for some
ri € R. So f —ryxd=deefif — ... _p gd=deefn £ — g has degree less than d, and is nonzero by construction
of f. This implies that g cannot be written as an R[x]-linear combination of f; and f;;, which contradicts
minimality of f.

Case II: deg f < N. Then a € L, for deg f = d < N, so the Case I argument applies to Ly instead of L. By
contradiction, we’re done. O

PMATH 345 Lecture 16: June 9, 2010

Office Hours
Thursday 1:30-3:30

Theorem: Let R be Noetharian, I C R any ideal. Then R/I is Noetharian.

Proof: Let J be any ideal of R/I. We want to show that J = (rq,...,7,) for some elements r; € R/I. Let
q: R — R/I be the quotient homomorphism, and let A= ¢ 1(J)={r € R:r € JmodI}. Then A is an
ideal of R, which is a Noetharian ring, so A = (rq,...,r,) for some r1, ..., r, € R.

Claim: J = (7q,...,7,), where 7; = r; mod 1.
Proof of claim: Say a € J. Then there is some r € A such that ¢(r) = a. So we can write

T =071 + Q2 + -+ apTy
for some aq, ..., ay € R, so:

a=aq7] + -+ a,r, mod I

e (m,...,/n) O
Corollary: Let R be any Noetharian ring (e.g., a field, or Z). Then for any ideal I of R, the ring
R[Ila s 7In]/I

is Noetharian.

Definition: A monomial ordering on the set of monomials { " --- 2% : a; € Z>¢ } is a partial ordering <

satisfying:

13)

(1) Tt must be a total order: for any two monomials m; and mg, either m; < msg or my > mg. If both hold,
then mq = ms.

(2) It must be a well ordering: there are no infinite descending sequences of monomials.
(3) Given monomials my, ma, ms with m; < mg, then myms < mams.

Example: Lexicographic order:

b b b
Pt Ty et > wtag?

Zﬁ a; > by
or a; = by and as > by
or a; = by, ag = by, and ag > b3

13) Aside: Ideals, Varieties, and Algorithms: Cox, Little, O’Shea
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ora; =b; Vi <n and a, > b,

.I%l‘g > .Tla?% .’E%J]QM) — x%xl
2xy < xia
561,18;917 < I‘%J»‘Q
a®>a
Definition: Let p(z1,...,x,) be a polynomial. The leading monomial of p is the “biggest” monomial with
a nonzero coefficient. The leading coefficient is the coefficient of the leading monomial. The leading term
is (leading coefficient)(leading monomial). The multidegree of a monomial z7* ---a%" is (ai,...,a,). The

multidegree of p is the multidegree of its leading monomial.

PMATH 345 Lecture 17: June 14, 2010

Long division helps with:
Telling if p(x) € (q(z)).
Finding ged(p(z), q(z)).
In many variables:

Tell if p(y, ... 2) € (Fi(@1r- -1 Tn)se o fr(@nse s 20)
Find a “good” set of generators for (f1,..., fr).

Example: Divide 2%y + xy? + y? by {ay — 1,4% — 1}. (Use lex order with z > y.) long division

r+y, 1 Remainder
xy71y2—1):c2y+xy2+y2 z y 1
b
22y— =

ny + x+y2
ry* — y

F+yi+y

y -1

g1

Lty =+ y) P (ey - D+ W)WY - D)+ (2 +y+ 1)1

Example: Same as before:

x+1,x Remainder
2 _ _ 2 2 2
Y 1, zy 1)aty+$cy +y 2¢ 1

2y —
xy? + 1+ y?
xy?—
2+
y>—1

2Py +ay’ +y = @+ )™ (° - 1) + (2)' ey — 1) + (20 + 1)*

Theorem: Let fi, ..., fs € Flx1,...,2,] where F is a field, fi, ..., fs not all the zero polynomial. Then

14)]eading term

15) coefficient of zy — 1
16) coefficient of y2 — 1
17) remainder

18) coefficient of y2 — 1
19) coefficient of zy — 1
20)remainder
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every f € Flz1,...,2,] can be written as:
f=afit-t+asfs+r

where a;, r € F[z1,...,x,], every term in r not divisible by any LT(f;). If a; f; # 0, then multideg(a; f;) <
multideg(f).
Proof: In Papantonopoulou. 0

Let I be an ideal of Flz1,...,x,].
Define LT(I) = ideal generated by { LT(f): f € I}.
Fact: If I = (fy,..., f.), then

LT(I) # (LT(f1), ..., LT(fr))

unless the f; are carefully chosen.

Definition: Let I = (f1,..., f+) be an ideal of F[z1,...,z,]. Then {fi,..., f.} is a Grobner basis for I iff
LT(I) = (LT(f1), ..., LT(f).

PMATH 345 Lecture 18: June 16, 2010

Definition: Let fi, ..., f. € E[x1,...,2,] be any set of polynomials. Then {fi,..., f-} is a Grébner basis
for I =(f1,...,fr) iff

In other words, any monomial m that is divisible by LT(g) for some g € I is divisible by some LT(f;).

Theorem: If LT(I) = (LT(f1),...,LT(f,)) and fi, ..., fr € I, then I = (f1,..., fr).
Proof: Since f1, ..., fr € I, it follows immediately that (fi,..., f-) C I. So it suffices to show I C (f1,..., fr).
Let g € I, and divide g by {f1,..., f+}. By the Division Theorem, we get:

g=aifit ot anfs tt

where ¢ is the remainder, whose terms are all not divisible by any (LT(f;)). But ¢t € I, so LT(t) € LT(I)
(LT(f1),...,LT(fr)). This immediately implies t = 0so g € (f1,..., fr)-

0ol

Do Grobner bases exist? Yes!
Theorem: Let [ C Flx1,...,x,] be an ideal. Then there is a Grobner basis for I.
Proof: Consider LT(I), which is generated by an infinite collection of monomials:

M={LT(f): fel}
Notice that LT(I) is also generated by the set of leading monomials of elements of I:
L={IM(f): fel}

The set £ is countably infinite, since each monomial x{* - - - 2% corresponding uniquely to (a1,...,a,) € Z™.
Therefore, we can enumerate the monomials in L:

my, Mma, M3, ...

Define Ij:(ml,...,mj)
I1CIQC13CI4C"'

So by ACC, this chain stabilizes at some finite step v, so:
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for some fy, ..., f, € I.

O

Theorem: Let {f1,..., fi} be a Grobner basis (for I = (f1,..., fi) # (0)), f € F[z1,...,2,]. Then there

exists a unique r € Fxy,...,2,] such that
f=afi+-+afi+r

for some aq, ..., a; € Flxy,...,x,], and no term of r is divisible by any LT(f;).

Proof: Say:
arfi+--tafe+r=ad fit+-+afi+r

Then:
(ar—ay)fit-+(ae—ay)fe=r"—r

So LT(r" —r) € LT(I) = (LT(f1),...,LT(f:)). But 7’/ and r aren’t allowed to have any terms divisible by any

LT(f;), so " — r has no terms and is therefore 0. So ' = r. O
Corollary: Let f € Flx1,...,2,] be any polynomial, I any nonzero ideal, f1, ..., f; a Grobner basis for I.
Then f €I iff f divided by {f1,..., f¢} gives zero remainder.
Proof: Immediate. 0
Definition: Let f, g € Flz1,...,2,] be any nonzero polynomials. Then
LCM LCM
S(f.9) = (F(f))f_ (m)g
where LCM = LCM(LM(f), LM(g)).
f=32"-2 g=-ay+1
LT(f) = 322 LT(g) = —zy
LM(f)=2®  LM(g) = ay
LCM = z%y
— S(9) = 24007 - D) - 2L (g 1)
= 3y(32* — 2) — (~2)(~zy +1)
= (a%y — 3y) — (a%y — @)
=z—2y
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How can one tell if {g1,...,g,} is a Grobner basis?
Definition: Let f, g € Fx1,...,x,] be two nonzero polynomials. Then:
LCM LCM
S(f.9) = (m)f— (m)g
where LCM = LCM(LM(f), LM(g)).
Theorem: (Buchberger’s Criterion) Say I = (f1,..., f.) is an ideal of F[z1,...,z,]. Then {f1,..., f-} is a
Grébner basis for I iff for all 4, j, S(fi, f;) gives zero remainder upon division by {fi,..., fr}.
O

Proof: Forwards is trivial. Backwards is too hard.

Example: Is {ry — 1,4% — 1} a Grobner basis? By Buchberger’s Criterion:

Sy — 1,07 —1) =ylzy — 1) —x(y® — 1)
=y’ —y—ay’ +u

:{L‘—y
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Clearly, a long division of z — y by {xy — 1,y? — 1} yields a remainder of  — y. Since this is nonzero, we
conclude that {zy — 1,y? — 1} is not a Grobner basis.

Theorem: (Buchberger’s Algorithm) One can compute a Grébner basis for I = (f1,..., fr) by the following
method:

(1) Compute S(f;, f;) and divide it by {f1,..., fr} for each ¢, j
(2) If all remainders are zero, STOP; you have a Grébner basis.
(3) Otherwise, enlarge the set {fi,..., f.} by the nonzero remainders, and return to step (1).

Proof: This algorithm terminates because the ideal generated by {LT(f;)} strictly increases at each iteration,
so by the ACC, the set of nonzero remainders must eventually be empty. When this happens, Buchberger’s
Criterion implies that {f;} is a Grobner basis. O

Example: Find a Grébner basis of (zy — 1,32 — 1).
S(ay—1,9° -1) =z —y
This gives remainder z — y, so:

{zy—1,9° -1,z —y}
Sy — Lz —y)=1(zy — 1) —y(z —y)
=ay—1—ay+y°
=42 -1

This clearly gives remainder 0, so we just need to check:

Sy* —La—y)=z(y*—1) —y*(z —y)
— o — -z’ + P
:—a;‘+y3

Long divide:
07 Y, —1
zy—1,92 -1,z —y)—z+y>
y> —
¥ -y
0

Zero remainder of all S-polynomials implies (by Buchberger) that {xy — 1,4% — 1,2 — y} is a Grébner basis.
Notice that LT(z —y) | LT(zy — 1) so:

(LT(xy — 1),LT(y* —1),LT(z — y)) = (LT(y* — 1), LT(z — y)) = LT(zy — 1,9* — 1)

Therefore, since {xy — 1,y> — 1,2 — y} is a Grébner basis, we see that {x —y,y? — 1} is also a Grobner basis.
Any subset of I that contains a Grébner basis for I is itself a Grobner basis for .
Definition: Let I C F[zy,...,x,] be a nonzero ideal. Then {f1,..., f.} is a minimal Grobner basis for I iff
(1) {f1,..., fr} is a Grobner basis for I
(2) LC(f;) =1 for all ¢

(3) LT(f:) + LT(f;) for i # j
— LT(fi) & (LT(f;));#i
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Example: {zy —1,y?> — 1,2 — y} is not minimal, because LT(x — ) | LT(2y — 1). By deleting f; whose
leading terms are redundant (i.e., divisible by some other leading term), we can always construct a minimal
Grobner basis from an arbitrary one. Since Grobner bases always exist, therefore, so do minimal Grobner
bases.

Example: {y?> — 1,z — y} is a minimal Grébner basis. So is {y? — 1,z — y + 1= (y* — 1)}.

PMATH 345 Lecture 20: June 21, 2010

Definition: A set {f1,...,f-} C Flz1,...,2,] is a Grobner basis iff

LT(fla-“va) = (LT(fl)a’LT(fr))

Definition: A Grobner basis {f1,..., fr} is minimal iff every f; has leading coefficient 1 and LT(f;) { LT(f;)
if i £ j.

Theorem: Any two minimal Grobner bases for the same ideal have the same number of elements.

Proof: Let {f1,...,f-} and {¢1,...,9:} be two minimal Grobner bases for the ideal I = (f1,...,f,) =
(91,--.,9¢). We want to show r =t. Let f; € {fi,..., fr} be any element. Then there is some g; such that
LT(g;) | LT(f;), since LT(f;) is not in the (zero) remainder left upon division of f; by {g1,...,g:}. Similarly,
some fj, satisfies LT(fx) | LT(g;). So LT(fx) | LT(f;). Then minimality of {fi,..., f..} implies i = k, and so
LT(f;) = LT(g,). Since all the leading terms of the f;s are different, and similarly for the g;s, we've just built
a bijection between the f;s and g;s. O

Definition: A Grobner basis {f1,..., fr} is reduced iff it is minimal and no term of any f; is divisible by
LT(f;) for i # j.

Example: {z —y,y* — 1} is reduced.
{z —y?—y+1,y% — 1} is not reduced.

To find a reduced Grobner basis, first find a minimal one {f1,..., f,}. For each i, replace f; by its remainder
upon division by {f1,..., fi,---, fr}.
Theorem: Any nonzero ideal I C F[zy,...,x,] has a unique reduced Grobner basis.

Proof: Say {g1,...,9-} and {¢},...,g.} are reduced Grobuner bases for I = (g1,...,9») = (91,..-,9.). For
any g;, let g; be the element such that LT(g;) = LT(g}).

The element g; — g; has no terms divisible by any LT(gx) (because LT(g;) is cancelled by LT(g})). But
gi —g; € 1,50 g; — g; =0, and so g; = gj.

Let F be a field, F[z] the polynomial ring in one variable. Then F has two ideals: (0) and (1), and every
nonzero element of F is a unit.

Fact: Let R be a nonzero ring. F' a field. Then every homomorphism from F' — R is 1-1.

F[z] is a PID, so it’s also a UFD. Every ideal of F[z] is of the form I = (p(z)) for some p(z) € F[z]. The
ideal (p(x)) is maximal ff p(x) is irreducible, and prime iff p(x) is irreducible or zero.

What does F|x]/(p(x)) look like?
Theorem: (Chinese Remainder) Let p(z), ¢(x) € F[x] be coprime polynomials. Then:
¢: Flz]/(pg) = Flz]/(p) ® Flx]/(q)

given by ¢(a(x) mod pg) = (a(x) mod p,a(x) mod ¢) is an isomorphism.
Proof: ¢ is clearly a homomorphism.
1-1: Say a(z) = b(x) mod p and a(z) = b(z) mod q. We want to show

a(x) = b(x) mod pg.
Since p | a — b and ¢ | a — b, the fact that p, g are coprime and Fz] is a UFD = pq | a — b, so

a(z) = b(z) mod pq.
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Onto: Say f(z), g(x) are any elements of F[x]. We want to find a single h(z) € F|x] satisfying ¢(h(z) mod
pq) = (f(z) mod p, g(x) mod g):

h(z) = f(x) mod p
h(z) = g(z) mod ¢

Since p, q coprime, there are a(z), b(z) € F[z] such that:
a(@)p(x) + b(w)a(z) = 1.
PMATH 345 Lecture 21: June 23, 2010

Theorem: (Chinese Remainder) Let F be a field, p(z), ¢(x) € F|[x] coprime polynomials. Then the function:

¢: Flz]/(pq) — Flz]/(p) © Flz]/(q)

given by
(a(x) mod pq) — (a(x) mod p, a(z) mod q)

is an isomorphism.
Proof: (Continued) To show that ¢ is onto, we first note that since F[z] is a PID, and since p, ¢ are coprime,
we get (p(x),q(z)) = (1). In other words, there are a(z), b(x) € F[z] such that

a(x)p(x) + b(z)q(x) = 1.
Now let f(z), g(z) € F[z] be any polynomials. We want to find h(z) € F[z] such that

h(z) = f(x) mod p
h(z) = g(x) mod ¢

h(z) = f(x) mod p
and h(z) = g(z) mod ¢
So ¢(h(x) mod pqg) = (f(x) mod p, g(x) mod q), as desired. O

In light of the CRT, to understand F[z]/(f(x)), it suffices to understand

Flal/(p(z)®)

for irreducible polynomials p(x). We will study F[z]/(p(z)) for irreducible p(z). Note that Flx]/(p(x)) is a
field iff p(x) is irreducible in F[z].

Linear Algebra over general fields.
Non-definition: A vector space over a field F' is a set V of “vectors” that you can add, subtract, and
multiply by scalars in a sensible way.

Spanning, linear independence, basis, dimension, linear transformation, kernel, range, eigenstuff. .. they all
have the same definitions and properties over a general field as they do over, say, R.

Note that if F'is a field and R is any ring with F' C R, then R is an F-vector space.

In particular, F[x]/(p(x)) is an F-vector space.

F — Flz]/(p)
a— (amod p)

Theorem: Let F be a field, p(z) € F|[x] any polynomial. If p(z) = 0, then dimp Fz]/(p(x)) = co. Otherwise,
dimp Flz]/(p(z)) = deg(p(z)).
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Proof: If p(x) = 0, then F[z]/(0) = F[x], which contains the infinite linearly independent set {1, z, 22, z3,...}.
Now assume p(z) # 0. Then by the Division Theorem, for any f(x) € F[z], we can write:

f(x) = q(@)p(x) + r(z)
where ¢(z), r(z) € Flz], and deg(r(z)) < deg(p(x)). Better yet, r(x) is unique!

So F[z]/(p(x)) is in 1-1 correspondence with {r(z) : deg(r) < deg(p) }. Furthermore, this correspondence
respects addition and scalar multiplication, but not multiplication (unless you reduce the result mod p(z)
again).

In particular, F[x]/(p(x)) is isomorphic as an F-vector space to:
V ={r(z): deg(r(z)) < deg(p(x)) }

A basis for V' is
2 degp—1
{1,z,z%,..., 298P~}

so dimp F[z]/(p(z)) = deg(p(z)) as desired. O
Example: dimg Q[z]/(z% —1) =2
(a+ bx)(c+ dx) = (ac + bd) + (ad + be)x

Basis: {1,x}
Example: dimg Q[z]/(2% —2) =2

(a + bx)(c+ dz) = (ac + 2bd) + (ad + be)x

Basis: {1,z}.
These two rings are not isomorphic, but the two Q-vector spaces are.

PMATH 345 Lecture 22: June 25, 2010

Say R is a ring, contained in another ring 7. Let a € T. Then:

Rlo] = { f(a) : f(x) € R[z] }*V

Example: ZIV2) = { f(V2): f(z) € Z[z] }
={a+bV2:0a,beZ}

Say F'is a field, contained in some other field E. Let o € E. Then:

Pﬁ@z{ffﬁfyewamm¢o}

Example: :{ : f,9 € Qlx], (‘/5)#0}
:{”bf c+dvV2 40, abcde(@}
= a+b\/7 Cid\/i) ,b,C,d€Q7C—|—d\/§#O
c? — 2d?
Messy Other_ messy
= { (omt) + (raenal™ ) v21
21)ring
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so Q(v2) c {A+BvV2: A BcQ}. It's clear that A+ Bv/2 € Q(\/2) for all A, B € Q, so:

Q(V2)={A+BV2:A,BcQ}
zspanQ{l,\/i}

QV2 = {f(V2) : f(x) € Qla]}
={A+BV2:A,BeQ}
=Q(v2)

Definition: A field extension E/F is a pair of fields F, F with F C E. If « € F, then « is algebraic over F
iff there is some nonzero p(z) € Fx] such that p(«a) = 0. Otherwise, « is called transcendental over F.

An extension E/F is called algebraic iff every element o € E is algebraic over F. Otherwise, E/F is called
transcendental.

If E/F is an extension of fields, then E is an F-vector space. The dimension of F over F is called the degree
of E/F.
[E : F] = dimp E = dimension of E as an F-vector space
Example: [Q(v/2) : Q] = 2, basis {1,v/2}
[C:R] =2
[R:Q] =0
The degree of a over F' is the degree of F'(a) over F.

Theorem: Let E/F be a field extension, « € F algebraic over F. Then there is a unique monic irreducible
polynomial p(z) € F[z] such that

F(a) = Flz]/(p(x))
where the isomorphism is given by
(f (x) mod p(x)) = f(c)

Proof: Define ¢: F[z] — E by ¢(f(x)) = f(a). The kernel of ¢ is an ideal of F[z], which is a PID, so we can
write ker ¢ = (p(z)) for some polynomial p(z) € F[z]. Since « is algebraic over F, ker ¢ # (0), so p(z) # 0.
There is a unique monic p(z) that generates ker ¢; choose that one.

Now, FE is a domain, so im ¢ is a domain, so F[z]/ker ¢ = im ¢ is a domain, so ker ¢ = (p(x)) is a prime ideal.
Since ker ¢ # (0) and F[z] is a PID, we know that (p(x)) is a maximal ideal, so p(z) is irreducible in F[x].

It remains only to show that F'(a) = im ¢. First, note that im ¢ is a field that contains «, so F(«a) C im ¢,
because im ¢ is closed under 4+, —, -, and +. The definitions of F'(«) and ¢ immediately imply that im ¢ C F(«),
so im ¢ = F (), as desired. O
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Let E/F be a field extension, a € E, a algebraic over F. Then F(a) = F[z]/(p(x)), where p(z) is a unique,
monic, irreducible polynomial in F[x]. The polynomial p(z) is called the minimal polynomial for « over F.

Note that this fact immediately implies that:
[F(a) : F] = degp F(o) = deg(p),
and that a basis for F(a)/F is {1,a,a?, ..., ade@ -1},

Theorem: Let a be algebraic over F, p(z) € F[z] the minimal polynomial for a/F. If ¢(x) € F[z] satisfies
g(a) = 0, then p(z) | ¢(x). In particular, if g(a)) = 0, ¢(x) € Flz], ¢(x) monic and irreducible, then ¢(z) = p(x).
Proof: We may write ¢(x) = a(x)p(z) + r(x) where deg(r(z)) < deg(p(x)). Then:

r(a) = q(@) —a(a)p(a) =0

so r(x) € kernel of “plug in «” homomorphism. This kernel is, by definition of the minimal polynomial, just
(p(x)). Since deg(r) < deg(p), this means that r(z) = 0, and p(x) | q(z). O
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Theorem: Let o be algebraic over F, p(x) the polynomial for a/F. Then p(x) is the monic, nonzero
polynomial in F[z] of smallest degree such that p(a) = 0.

Proof: By definition, (p(z)) = ker(plug-in-c). Since p(z) is the monic polynomial in (p(x)) of smallest degree,
it is immediately also the monic, nonzero polynomial of smallest degree in ker(plug-in-«)

={q(@) € Fla]: q(a) =0}. O

Example: Find the minimal polynomial for v/2 over Q.
Answer: x2 — 2, because (v/2)? —2 = 0 and 2 — 2 is monic and irreducible (by Eisenstein on (2)).
Example: Find the minimal polynomial for e27#/5 over Q.

27i/5

2®> —1hase as a root, but is not irreducible:

P —1l=@-)a"+23+22+2+1)

Is this it?

Reduce mod 2: z% + 2% + 22 + 2 + 1 has no roots, so it’s either irreducible or factors into 2 quadratics:
}1,44"2/!—/1’,1’2/—\‘—/33, 2+r+1

Since (22 + 2z +1)2 =2 + 22 + 1 # 2* + 23 + 2% + 2 + 1, our polynomial doesn’t factor into two quadratics,
so 2% + 23 + 22 + x + 1 is irreducible in Zy[z], and hence, also irreducible over Z and Q.

23+ #0 in Zo[x).
(V2)? — (V2) =4v2 - V2 =3V2#0

so 2° — z # 0 in Zs[z].

Example: Find the minimal polynomial for 3 + 2¢ over Q.
Answer: If ag +ajz + - + ana™ ' 4+ 2" is the minimal polynomial, then:

ap+ a1(3+2i) 4+ -+ (3+2)" =0

n = 0: Obvious non-starter.

n=1 ay+a1(3+2i)=0

- (ao + 3(11) + (2a1)i =0

Since {1,¢} are linearly independent over Q, we get:

ao+3a1:0
2@1:0

= ag = a; = 0. So no good.

n=2: ap + a1(3 + 22) + G,Q(?) + 22)2 =0

— (ao + 3a1 + 5a2) + (2(11 + 120,2)i =0
ag + 3a; + 5as =0

2a1 + 12a5 = 0
ap + 3&1 =-5
as =1 =
2(11 =—-12

= a1 = —6, a9 =13

Therefore 22 — 62 + 13 is the minimal polynomial

Check for irreducibility: z = $£v ‘36_52 = 6i\éjﬁ =3+2
Roots are not in Q, so irreducible.
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Fact: If F' is a field, @ an element of some ring R containing F', then any field F that contains F' and « must
contain F'(«).
M

[M:L]
(M:K]| L Tower of fields, K C L c M

[L:K]

K
Theorem: (KLM) Say K C L C M is a tower of fields. Then:

[M:K]=[M:L]L: K]

where [M : K] = oo iff either [M : L] = o0 or [L: K] = cc.
Proof: Let {uy,...,u;} be a basis for L/K, and let {vy,...,v,,} be a basis of M/L.
Claim: {u;v;} jeq1,...;) is a basis of M/K.

je{l,...m}
Note that the claim immediately implies the theorem.

Proof of claim: Spanning: Let € M be any element. We want to find a;; € K such that x =, j QijUiv;.
Since {v1,...,V;,} is a basis of M/L, we can find by, ..., b, € L such that:

x=bvy+- -+ bpv,

for each j, write:
bj =ai;u; + a2 U2 + -4 ap;ug

for a;; € K. Then:
T = (Z ail”i)”l +ee (Z aimui)vm
i i
= Z Qi U;V;
]

where a;; € K, as desired.

Linear independence: Set Z” a;;u;v; = 0. We want to show that if a;; € K, then a;; = 0 for all ¢, j.

Rewrite:
(Z ailui)vl +e (Z aimui)vm =0
i i

The coefficient of each v; lies in L, since a;; € K C L and u; € L. So:

a11u1 + ag1ue + - +apu =0
Since {v1,..., v} is linear independent over L

a1mU1 + a2muUz + -+ appu; =0

Since {u1,...,u;} is linearly independent over K, we conclude a;; = 0 for all 7, j, as desired. O (claim)
If [M : L] or [L: K] is infinite, then it is clear that [M : K| = oo because any infinite linearly independent
subset of M/L or L/K is also linearly independent in M/K.

Otherwise, if [M : L] and [L : K] are both finite, we’ve already shown that [M : K] is also finite. O
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Example: Compute [Q(v/13,v/7) : Q]. Find a basis for Q(v/13,v7)/Q
Q(V13,V7)

Q(V13)

2 22 — 13 is a minimal polynomial (Eisenstein on (13))

Q

Claim: z? — 7 is irreducible over Q(v/13).
Proof of claim: Look for roots:

(a+bV13)? — 7= a® + 13b% + 2abV/13 —
=0
— (a® 41302 —7) + (2ab)V13 =0

Since {1,v/13} is linearly independent over Q:

a? 4132 —7=0
2ab =0

It is easy to see that there are no a, b € Q satisfying both equations, so #2 — 7 has no roots in Q(v/13), and
so #2 — 7 is irreducible over Q(v/13). O (claim)
0 [Q(v13,v/7) : Q] = 4 by KLM. A basis for Q(+/13,v/7)/Q is {1,+/13,v/7,V/91}.

Say L/K is a field extension of degree n. If K C F C L with F a field, then n is a multiple of [F': K] and

/\ /\
\/ \/
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Definition: Let F' be a field, p(x) € F[z] any nonconstant polynomial. A splitting field for p(x) over F is a
field E such that:

(1) p(x) =clx —ay)---(r —ay) forc, a1, ..., anp € E
(2) E=Fl(ay,...,an).

Example: A splitting field for 22 — 2 over Q is Q(v/2), since Q(v/2) = Q(v/2, —/2).
Example: A splitting field for 22 — 1 over Q is Q.

Example: A splitting field for 2° — 2 over Q is Q(V/2, e2™/3) = Q(V/2, _1+2\/?3)
Proof: Let v = ¢2™/3 be a primitive cube root of unity. Then:

¥ =2 = (x = V2)(z —yV2)(x —*V2)

So a splitting field is:

Q(V2,7V2,4*V2) = Q(V2,7)
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Definition: An extension E/F is finite iff [E : F] < occ.
Theorem: Let E/F be a finite extension. Then E/F is algebraic.
Proof: Let a € E, [E: F] =n. Then {1,a,a?,...,a"} is linearly dependent over F:

ap + ara+ a0 + -+ a,a” =0

for ag, ..., a, € F, not all zero. Then « is a root of ag + - - - + apz™ € F[z], so « is algebraic over F. O

This means that for any E/F, the set of elements of F that are algebraic over F is a field:
B8 = {a € E: a is algebraic over F'}

because if o, § € E*#, then F(a)/F and F(3)/F are both finite extensions:

Fe, 8)

F(a) finite, by KLM

So F(a, ) is finite over F', and F(«, ) contains a + 8, a8, o — B, /. These four are all algebraic over F,
by the theorem, so E*® is closed under +, —, -, +.

For any field F, there is a field F' that is algebraic over F, and every non-constant polynomial p(z) € F|z]
factors into linear factors in F[z]. F is called an algebraic closure of F.

Definition: Let F' be a field, p(z) € F[z] a nonconstant polynomial. Then p(z) is separable iff ged(p(z),
p'(z)) =1, where p/(z) is the derivative of p(z).
Definition: Let F' be a field. Then the derivative of ag+ajz+---+a,z"™ € F[z]is a;+2asx+---+na,z" ! €

Clearly (cf(z)) =cf'(x) and (f+g) = f' + ¢
Theorem: (Product Rule)
(f9) =fg+4g'f

where f, g € F[z], F a field.
Proof: By additivity and linearity, we may reduce to the case f = 2", g = ™. Then:

(Fg)' = @) = (n+ m)am+m!
and flg+¢'f = n(x"il)xm + m(x”)x"“1

=(n+m)z"tmt O

Theorem: Let F be a field, p(z) € F[z] non-constant, F' an algebraic closure of F. Then p(z) is separable
iff p(z) has no multiple roots in F.

Proof: Forwards: If p(x) = (z — a)?q(x), then p'(z) = (x — a)?¢'(z) + 2(z — a)q(x) = p'(a) = 0 and
x—a| ged(p(z),p’(x)), so p(x) is not separable.
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Theorem: Let F be a field, p(x) € F|[z] a non-constant polynomial, F' an algebraic closure of F. Then p(x)
is separable iff p(x) has no multiple roots in F.

Proof: Forwards: If p(x) has a multiple root a € F, then (z — a)? | p(x), so by Product Rule x — a | p/(z)
so x —a | ged(p,p’) in F[z]. Since a is algebraic over F, it has a minimal polynomial ¢(z) in F[z], and
q(z) | ged(p,p’) in Flx].
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Backwards: Say g(z) = ged(p,p’), and assume g # 1. Then g(x) has a root a € F. So p(a) = p'(a) = 0. Then
p(z) = (z — a)q(z) for some ¢(x) € F[z], so

P'(x) =q(z) + (z — a)q'(2)
= ¢(a) =0.

This means = — a | ¢(z) = (z —a)? | p(x). O
Theorem: Let I be a field, p(z) € F[z] an irreducible polynomial. Then p(x) is separable, unless p’(z) = 0.
Proof: Well, p’(x) € F[z], and has smaller degree than p(x). In particular, p(z) 1 p/(z) unless p/(z) = 0. So
ged(p(z),p'(2)) = 1. O
Corollary: If char F = 0, then every irreducible polynomial in F[z] is separable.
Example: 22 — 1 € Zs. Then:

(x® —1) =322 =0
Example: F = Z3(T)
Consider 2° — T € F[z]??). Then (23 — T') = 322 = 0 but 2® — T has no roots in F, because v/T is not a
rational function.
Definition: A field is perfect iff every irreducible polynomial in F[z] is separable.
Note: Every field of characteristic 0 is perfect.
Fact: Every finite field is perfect.

Definition: Let E/F be a field extension, o € E any element. Then « is separable over F iff « is algebraic
over F' and its minimal polynomial is separable. E/F is separable iff every a € E is separable over F.
Note: F is perfect iff every extension of F' of finite degree is separable. Say f(x) = ag+ -+ + a,z™ satisfies
f'(z) = 0. Assume char F = p > 0.

Then f'(z) = a; + 2a + - -+ + na,z™ 1 = 0 so for all 4, ia; = 0. This means:

flx) = ao+ apa® + 02p1'2p 4+ akpxkp

Theorem: If char R = p is prime, then for all a, b € R, (a + b)P = a? + bP.

P
Proof: (a+b)P = Z (p) a'bP—t

becausep|(?):#imforie{l,...,pfl}. O

Definition: Let R be a ring of characteristic p for p prime. Then the function
Pp(a) = a”
is a homomorphism, called the Frobenius homomorphism. It’s often written Frob,,.

Theorem: Let F' be a field of characteristic p. Then F' is perfect iff Frob,: F' — F' is onto.

Proof: Forwards: Say F' is perfect, and let a € F' be any element. We want to show a = bP for some b € F'.
Consider 2P —a € F|x]. Its derivative is 0, so 2P — a is reducible in F[x]. However, if F is an algebraic closure
of F,and b € F is a root of 2P — a, we get,

(x=bP =2aP —a.

Comparing constant terms gives b = a. Write 2P —a = f(z)g(x) for f, g € F[z]. Then f(z) = (z — b)* for
some k € {1,...,p — 1}. The coefficient of z*~! in f(x) is —kb € F. Since k € {1,...,p — 1}, this means
k#0,s0be F.

Backwards: Say f(x) = ag+---+an,z™ is irreducible. If f'(x) # 0, then f(x) is separable, so assume f’(x) = 0.
Then f(x) = ag + apa? + - + appa?®
=bg+bﬁ)mp—|—-~-+b§az”k

22)imperfect
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for some b; € F.

@y (bo) + Dp(br2) + - - + By (byz™)
o (bo + by 4 -+ - + bpa®)
= (bo + biz + - + bpa®)P

so f(z) factors, a contradiction. So f/(x) # 0, and f(x) is separable. O

Theorem: Let F' be a finite field. Then F' is perfect.
Proof: The Frobenius homomorphism from F' to F'is 1-1, so since F is finite, Frobenius is also onto. So F'
is perfect. O
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Splitting fields
Definition: Let F' be a field, p(x) € F[x] a nonconstant polynomial. A splitting field for p(z) over F is a
field E containing F' such that

(1) p(x)=clx —ay)---(x—ay) for ¢, ay, ..., ap € E
and (2) E = F(ay,...,an).
If p(z) is constant, then we say F is a splitting field for p(x) over F.

Theorem: Let F be a field, p(x) € F[z] any polynomial. Then there is a splitting field for p(x) over F', and
any two splitting fields for p(z) over F are isomorphic.

Proof: Existence. We prove this by induction on deg(p(x)).

Base case: deg(p(xz)) =0 = splitting field is F.

Inductive Hypothesis: for any field F', and any p(z) € F[z] of degree < n, there exists a splitting field for p(x)
over F'.

Let p(x) € F[z] have degree n. Write:
p(x) = pi(z) - pi(z)

for irreducible py(x), ..., pr(x) € F[z]. Consider E = Fla]/(p1(a)). Then E is a field (because p;(z) is
irreducible), and it contains a root (namely a) of p(x). Then, in E[z], we have:

p(z) = (z — a)q(x)
for some ¢(z) € E[x]. Since deg(q(x)) < n, by induction, there exists a splitting field E’ of ¢(z) over E. Then,
in F'[x], we have:
p(@) = c(z —a)(z —az) - (z — an)

for ¢, ay, ..., a, € B, and

E' = E(as,...,a,)
= F(a)(agz,...,an)
= F(a,azg,...,a,)

so F’ is a splitting field for p(x) over F', as desired.

Uniqueness: We will induce on deg(p(x)), over all fields simultaneously. The base case is trivial, so assume
the inductive hypothesis for polynomials of degree < n, and let deg(p(z)) = n. Let E; and E, be splitting
fields for p(z) over F.

Write p(z) = ¢(x —a1) -+ (x — ap) € Eq[z] and p(x) = c¢(x — by) -+ (x — by,) € Eslx].
Lemma: Let L/K be a field extension, p(z) € K|z| irreducible, a, 8 € L such that p(a) = p(8) = 0. Then

K(a) = K(pB) and the isomorphism maps « to 8.
Proof of lemma: We already know K (a) = Klz]/(p(z)) = K(B). O lemma
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Without loss of generality, assume that a; and by are roots of the same irreducible factor of p(z). Then by
the lemma, F(a1) = F(b1), and:

p(x) = (z — a1)q(x) in F(ay)[z]
and p(z) = (z — by)gz(x) in F(by)[z]

We identify a; and by via the isomorphism F'(a;) = F(by). This identifies ¢ (z) = % with go(z) = pg))l, S0

x
by induction, any splitting field for ¢; over F'(aq) is isomorphic to any splitting field for g2 over F(b1) = F(aq).
These two fields are exactly Fy, and Es which are therefore isomorphic. O
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Finite Fields, F
Example: Z, residues mod p, p prime.

Every field contains one of Q or Z,,.
Since F' is finite, F' D Z, for some prime p.

F' is a vector space over Z, with basis vq, ..., vy.
Every v in F' looks like
v = a1v1 + - - + apv, Where a; € Z,

There are p possibilities for each a; and a change in any a; makes a fresh v.
So there are p™ vs in all
ie., #F =p".

Proposition: Let A be a commutative ring and G the set of units in A. If #G = finite = m, say, then for
any u in G, u™ = 1.
Proof: Let vy, va, ..., v,y be the full list of G.
Put v = vivg -+ - vy,.
Take any w in G. Look at list
UV, UVg, ..., UV, inside G.

This list has no duplicates. Indeed if uv; = uv;, cancel u and get v; = v;.
So our list exhausts G.
Hence 1-v = (uvy)(uve) -« - (uvy,)

m('UlUQ “e 'Um)
m

=u
=u"v
Cancel v and get u™ = 1.

When we apply this to the set of non-zero elements of our finite field F' (where #p™) we get u?" ~! =1 for all
u in F where u # 0.

Refresh on splitting fields
Let K be any field and p(z)?*) € K[z] (monic, say, deg p(x) = n). A splitting field for p(x) is a field L such
that

(1) KCL
(2) p(z) =(z —a1)(x — az) - (z — ay) where a; € L.
(3) If M is a field such that K C M C L then some a; ¢ M ORif K C M C Land all a; € M then M = L.

Every p(z) has a splitting field and if Ly, Ly are splitting fields of p(z) then there is an isomorphism
¢: L1 — Lo such that ¢(a) = a for each a in K.

Proposition: If F is finite field and #F = p” then F is the splitting field of 27" — 2 as a polynomial in Lp[z].
Proof:

23)# 0
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1) Z,C F

2) w?" 1 =1, for all u #0in F
multiply by u, get u?” — u = 0, also holds for u =0

3) Since every element of F' is a root of xP" — x, then any proper subfield M C F would not have at least
one of these roots.

Y23

Proposition: If p is any prime and n a positive integer and F' = the splitting of 27" — z in Zy[x], then #F = p".
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Every finite field F' has p™ elements for some prime p and some positive integer n.

Every such F is the splitting field of 2" — x over L.

Any two fields of cardinality p™ are isomorphic.

Proposition: If p is a prime and n a positive integer and F = splitting field of 2?" — x, then #F = p".
Lemma: If ¢: K — K is a field homomorphism, then M = {a € K : ¢(a) = a } is a subfield of K.
Proof: Let a, b€ M, i.e., ¢(a) = a, ¢(b) =b.

Then ¢(a £ b) = é(a) £ ¢(b) = a £ b,

and if a # 0, we also get ¢p(a™1) = ¢p(a)™! =a~ L.

Proof of proposition: Have F: splitting field of 27" — .

Take Frobenius automorphism:

¢: F - F

o } (use (a T b)? = a” T VP to show this is a field homomorphism)
ara

Then ¢ = podo--- o, n-times is also a field homomorphism, whose set of fixed elements is M = {a € F :
a?" = a}, which is a field inside F, by the lemma.

We see that M = set of roots of 7" — z. So F is a subfield of F, which was the splitting field of zP" — z.
Since F' = smallest field containing roots of z?" — x, we get M = F.
Finally, note that z”" — z has no repeated roots, because its derivative

n

(2P —z) = p"aP Tt —1=—1in Z[a]
is coprime with #?" — 2. So #F = p". O

Primitive generators
Let F = finite field and F* = F'\ {0}.
Let g =p™ — 1 = #F~*.
We saw that for every a in F'*, a? = 1.

Theorem: There is some a € F* such that the list 1, a', a2, ..., a?"! picks up all of F*.
Definition: If a € F* its order is the least integer k > 1 such that a* = 1. Write k = ord(a).
Proposition 1: If £ = ord(a) and ™ = 1, then k | m.

Proof: Write m = ks 4+ r, where 0 < r < k. Then

1=qg™ = akS+T — (ak)sar —1%" = d".

By the minimality of k£ get » = 0. So m = ks. O
Proposition 2: If @ € F* and ord(a) = k > 1, then 1, a, a?, ..., a*~! is the complete non-repeating list of
all b in F* such that b* = 1.

Proof:

i) If @/ is in the list, we see that (a/)* = (a¥)! =19 = 1.

ii) No repeats: Say a’ = a’, where 0 <i < j <k — 1.
Thus a’~* = 1, and since 0 < j — i < k, the minimality of k gives j = 1.
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iii) Let b € F* where b* = 1. Then b is a root of 2% — 1 € Z,[z]. This polynomial has at most k roots. But
the list is made up of such roots, and the list has k elements. So b is in the list. O
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We had finite field F, #F = p", F* = F \ {0}.

g=p" -1
If a € F*, ord(a) = least k > 1 such that a* = 1. (Recall a? = 1).

Proposition 1: If £ = ord(a) and ¢™ = 1, then k£ | m. So ord(a) | g.

Proposition 2: If k = ord(a), then the list 1, a, a2, ..., a*~! does not repeat and includes all b in F* that
satisfy bF = 1.

Proposition 3: If ord(a) = k and ord(b) = [, and k, [ are coprime, then ord(ab) = kl.
Proof: Let m = ord(ab).

Since (ab)*! = a*'b¥ = (aF) (B)F = (1)/(1)F = 1.

Thus m | kL.

Now check kl | m. Since k, | are coprime, enough to check &k | m and [ | m.

Aside: If ¢ € F* then ord(c) = ord(c7!): F =1 <= (¢ H)F =1

Now we have 1 = (ab)™ = a™b™.

Let j = ord(a™) = ord(b™).

Now (a™)F = (ak)™ = 1™ = 1.

= jlk

and likewise j | I.

Since k, [ are coprime, we get j = 1.

Soa™=1=0b"

Then k | m and I | m. O

Theorem: In F* there is some a such that 1, a, a?, ..., a9~ ! picks up all of F*.

Proof: Just check F* has an element of order q.

Pick any a in F* and put k = ord(a).

If k = q, done.

If k < ¢, the list 1, a, ..., a*~! does not cover all of F*. Pick b not in list. Let [ = ord(b).
Note: b* # 1, by Proposition 2.

Hence [ 1 k. Indeed, if k = Ir we would get

V=) =1"=1.

So some prime p (not original “p”) divides [ more often than it divides k. Write k = p’k; and [ = p’l; where
0 <i < jand ki, 1 have no p in them.
Put ¢ =a?', ordc = k;
d=10b", ordd = p?*¥
Thus ord(ed) = p’ky > pky = k.
We found an element, namely cd, whose order is bigger than ord a.
Keep doing this until an element in F* of order ¢ is found. O

Example: The polynomial 22 — 2 is irreducible in Zs[z]. Hence F = Zs[x]/(p()) is a field and #F = 25,
#F* = 24. Have f(z(b,;%f(g]:&z» and if a =z + (p(x)) we know that 1, «, is basis for F over Zs.
Every element in F fooks like a + ba where a, b € Zs.
Know a? —2 =0, o? = 2.
Find primitive generator of F'.
Start with «.
Take powers
La o?=2a°=20,a*=4,0°=40,a°=3,a" =30, =6 =1

too short. Pick 8 not in list. Say 8 =« + 1.

24) k1, pJ coprime
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Powers of 3.

1
5
B=(a+1)?=a*+2a+1=2a+3
B =2

Bt =2a+2

B® =4da+1

Br=d=-1

B2 =1

So ord g = 12.

So orda =3°9-23 ord 8 = 3! - 22

Put 7=a30 =q,ordy =38
§=p*=20+2, ord§ = 32%

So ord(yd) =8-3=24
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GF(p"™) = Field with p™ elements
GF29) (p) = Z,, = integers mod p
GF(p™) 2 Zpn if n > 2

Fix a prime p.

=
|

» = GF(p) = algebraic closure of GF(p)

GF(p®)
GF(p") GF(p%) GF(p?)
GF(p?) GF(p®) GF(p®) GF(p")

Theorem: Let p be prime, n, m € Z>1. Then GF(p™) C GF(p™) iff n | m. Moreover, if n | m, then there is
a unique subfield of GF(p™) with p" elements.

Proof: If GF(p") C GF(p™), then GF(p™) is a vector space over GF(p™), with finite dimension k. Then
GF(p™) has (p™)* elements (p™ scalars, k coefficients in basis), so p™ = p™* and so n | m.

n . n_ . m_
Now assume n | m. Then 2P" — z divides 2" — z, because P ~! — 1 divides 27" ~! — 1, because p" — 1
divides p™ — 1, because n divides m.

Every element of GF(p") is a root of 2" — 2, and so is a root of zP" — z, and so is an element of GF(p™).

Finally, any subfield of GF(p") with p™ elements must be exactly the set of roots of z?" — . O

25)ord 8, ord y coprime
26) “Galois Field”



Example: Z[y/10], 10 =2-5=+/10-/10

2, 5, 1/10 are all irreducible in Z[v/10]

But: (10) = (2,1/10)? - (5,1/10)?

Check: (2,/10)(5,+/10) = (10, 5v/10,2+/10, 10) = (1/10)
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Definition: Let D be a domain, K = K (D) its field of fractions. A fractional ideal (same as “fractionary
ideal”) of D is a subset I of K satisfying:

(1) 0el

(2) fa,bel, thena—bel

(3) fael,re D, thenracl

(4) There is some d € D, d # 0, such that dI C D.

Note: The set dI is an (integral) ideal of D, so I = é(dl) is just some integral ideal of D divided by a
nonzero element of D.

Example: The fractional ideals of Z are %(nZ) = 7 for integers n, m € Z with m # 0.

32={2:nez}={..,-3,-2,0233456,...}

Example: D = Z[v/10], I = /10D + 3D = (1/10,3)D or

I=YD+D#0
:{(a—i—b\/ﬁ)@—l—(c—i—d\/ﬁ):a,b,c,dEZ}

One can add and multiply fractional ideals simply:

(miD+---+a, D)+ (b1D+---+by,D)=a1:D+---+a,D+bD+---+ b, D
(@D + -+ +apD)(b1D + -+ bpnD) = > a;b;D
i,j

Example: (aD + bD)(cD + dD) = acD + beD + adD + bdD
Example: D = Z[/10]:

(YI2D + D) (V10D + LD) = 5D+vT0D + YD + 1D

5D C %D and /10D C ‘/TTOD so product is @D + %D

Definition: A fractional ideal is invertible iff there is a fractional ideal J such that I.J = D.

Say I, J fractional ideals of D, J # (0). Then I/J ={xz € K(D) :aJ C I}. I/J is a fractional ideal because
(1) o0erl/J

(2) IfzJ C I and yJ C I then (z —y)J C?D aJ —yJ C I

(3) f eJ C I and r € D, then raJ CaxJ C I, sorx € I/J.

(

4) Need b € D, b # 0 such that b(I/J) C D. Let a € D, a # 0 satisfy aI C D and choose z € JN D, = # 0.
Then b = ax works:

If y € I/J, then

)
)
)
)

axy = a(zy) € al C D
so ax(I/J) C D.

27)NOT the same!
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Example: (nZ)/(mZ) ={4% € Q: %(mk) e nZ forall k € Z }
:{%G@: ‘“}?k EanoraHkEZ}
:{%GQ:%GnZ}
= {2cQ:sec27)
= 7.

In general, if a, b € D, then aD/bD = £ D if b # 0. In particular, every principal fractional ideal (nonzero) is
invertible: aD/aD = D.
Example: Compute a, b such that D/(v/10D + 5D) = aD + bD for D = Z[/10].

Let I = D/(v/10D + 5D). Then:

I:{a—&-b\/ﬁz(a—kb\/ﬁ)meZ[\/ﬁ] forallmE\/ED—HiD}

a,beQ
= {a+£}e@ . (a + bV10) € Z[V10] and (a + bv/10)5 € Z[V10] }

106+ V10a € Z[V10] = a€Z, be L7
(5V10)b + 5a € Z[V10] => be iZ

Therefore guess: I = @D + D
(a 4+ bv/10 = (integer) + (integer)@)
Check: (YX2D + D)(v/10D + 5D) = 2D + /10D + /10D + 5D = D
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Definition: A fractional ideal I of a domain D is invertible iff there is a fractional ideal J such that I.J = D.

Definition: A Dedekind domain is a domain is a domain in which every nonzero fractional ideal is invertible.
Example: Every PID is Dedekind.

Theorem: Let D be a Dedekind domain, P a nonzero prime ideal. Then P is maximal.

Proof: Assume that there is some ideal I C D with P C I. We want to show either P =1 or [ = D.

The fractional ideal PI~! is a subset of I1~! = D, so PI~! is an integral ideal of D. Now:
(PI"HYI=P
so since P is prime, either PI=' ¢ Por I C P. If PI"' C P, then I"' € D so II™! C I so I = D because
D=1II"1
IfIcP,then PCIl — P=1. O

Theorem: Let D be a Dedekind domain, I C D any nonzero ideal. Then I can be factored as a product of
prime ideals:
I=P---P,

and this factorization is unique up to permutation of the P;.
Proof: Existence: If I is maximal, then it’s prime and I = I will do.

If I is not maximal, then there is an ideal J with I C J C D. Then I = J(J~1I), where J='I C J=1J = D,
so J7!I is an integral ideal. If J and J~'I are both prime, then we're done. If not, then keep factoring the
non-prime factors of I until all the factors are prime.

If this process never stops, then we have constructed an infinite ascending chain of ideals:

ICH® ChL Gl ¢

28) «g»

38



Lemma: Every invertible ideal is finitely generated.
Proof of lemma: Let I be an invertible ideal of a domain D. Then II-' = D, so 1 = aya} + - -+ + apal, for
a; €1,a, € I71. Clearly (ay,...,a,) CI,solet x € I. Then x = (xza})ay + - -- + (zal,)a,.

Since z € I, a, € I™!, we get xa’ € D so z € (ay,...,a,). Therefore, I = (ay,...,a,) is finitely generated.
O lemma

Corollary: Every Dedekind domain is Noetherian.

Proof: Immediate. O

By the Corollary, D is Noetherian, so it obeys the ACC, and we obtain a contradiction.

Uniqueness: Say I = P, -+ P, = Q1---Qn, for P;, Q; prime. We want to show that these two factorizations

are the same up to permutation.

Since Py -+- P, C Q1+ Qm C Q1, we get P; C @y for some i. But D is Dedekind, so P; is maximal and so
P; = Q1. Multiplying both sides by Qfl, we obtain Py -+ P;-+- P, = Q2 -+ - Qp,. Continuing in this manner,
we eventually obtain either a product of some F;s equals D, or some @;s equals D.

This is only possible if the product of P;s or Q;s is empty, so our repeated cancellation process constructed a
bijection between the @);s and P;s, as desired. O

Definition: Let D be a domain, I, J two nonzero ideals of D. Then I and J are in the same ideal class iff
there is some a € K (D) such that I = aJ. This is an equivalence relation, and the equivalence classes are
called ideal classes.

Note that D is a PID iff it has only one ideal class.
Definition: The class number of D is the number of ideal classes of D.
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Recall:
A/B={ze K(D):2aBC A}

Is this the same as AB~1?
Answer: No, because B might not be invertible.

Theorem: Let D be a domain, K (D) its fraction field, A, B two fractional ideals of D, with B invertible.
Then
A/B = AB™!

Proof: Clearly B(A/B) C A, so A/B C AB™%.

Conversely, say © € AB~!. We want to show z € A/B. Well, z € AB™! = 2B C A, sox € A/B. O
Corollary: Let I be an invertible ideal of a domain D. Then =1 = D/I.

Warning: If B is not invertible, then (4/B)B # A, necessarily.
Example: Compute (2,v/—5+1)"! in Z[/—5] = D.
Solution: Let J = (2,1 + +/=5). If a+by/—5 € J~!, then
2(a 4+ bv—=5) € Z[v—5] (1)
and (1++v=5)(a + bV =5) € Z[vV —5] (2)

(1) = a,beiZ

(2) — a—5beZ
a+beZ

39



Write a = 5, b= g. Then ¢ — 5d and ¢ + d are even. This is equivalent to ¢ = d mod 2:

P W :c+(c+22k)\/—5 ke

= <1+F)+kr

So guess: J~1 = (H'TR)D +(/-5)D=1I
Check: (((=2)D +/=5D)(2D + (1+=5)D) = (1 4+ v=5)D + (=2 ++v/=5)D + (2//=5)D + (=5 + V/=5)D
3=(1+vV-5)—(-2++-5)eclJ
—4=(1++=5) = (2V=5)+ (=5 +V-5) € 1J
(34 (-4)elJ

= DcClJ
Since IJ C D, weget [J=D = [=J""%
Example: Factor (6) in Z[v/7].
Solution: (6) = (2)(3).
Is (2) prime? Compute Z[v/7]/(2): {0,1,/7,1 + 7}

VT)2=7#0

VIA+VT) =T4+VT=1+VT#0
(1+ V) =14+ 2V7T+7=0!

Consider (2,1 + /7). Since (1 +v/7)2 = 0 mod (2), we're guessing that (2) = (2,1 +/7)%

(2,1+V7)? = (4,2 + 2V7,8 4+ 2V7)
= (4,6,2 + 27,8 4+ 2V/7)
=(2)

Is (2,1 + +/7) prime? Yes, because Z[vV7]/(2,1 + V7) = Z/2Z via a + by/7 + a + b (mod 2). So (6) =

This is not a domain, since 22 — 1 is reducible. 1+ /7 are zero divisors mod 3:
(1+V7)(1 - V7) = -6 =0mod 3.

Compute (3,1 +v/7)(3,1 —+/7) = (9,3 +3V7,3 - 3V7,-6) = (3)
(3,1 ++/7) is prime, because:
ZIVT) /(3,1 £V7) = Zs via

a+bV7— aFbmod 3

So (6) = (2,1 +V7)2(3,1 +V7)(3,1 — V7).
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