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Rings
A ring is a bunch of things you can add, subtract and multiply in a reasonable way.

Example: Z, R, Q, C, R[x] = {polynomials in x with real coefficients}, R[x1, . . . , xn] = {polynomials in x1,
. . . , xn with real coefficients}, Mn(Z) = {n× n matrices with Z coefficients}, Z/nZ, Z[i] = { a+ bi : a, b ∈
Z } = “Gaussian integers”

Definition: A ring is a set R with two functions +: R × R → R and · : R → R satisfying the following
properties for all a, b, c ∈ R:

(1) (a+ b) + c = a+ (b+ c)

(2) a+ b = b+ a

(3) There exists 0 ∈ R such that a+ 0 = a

(4) There exists −a ∈ R such that a+ (−a) = 0

(5) (a · b) · c = a · (b · c)

(6) a · b = b · a ← Not really a ring axiom

(7) There exists a 1 ∈ R such that 1 · a = a · 1 = a. Controversial! rng

(8) a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

0Paul = 0Paul + 0Ringo = 0Ringo

Definition: Let R be a ring. A subring of R is a subset S ⊂ R which is a ring using the + and · of R.
Example: Q is a subring of C.
Z[i] is a subring of C.

Theorem: (Subring Theorem) Let R be a ring. S ⊂ R a subset. Then S is a subring of R iff

(1) 0, 1 ∈ S

(2) If a, b ∈ S, then a− b ∈ S.

(3) If a, b ∈ S, then a · b ∈ S.

PMATH 345 Lecture 2: May 5, 2010
Definition: A ring is a set R with 2 operations +: R×R→ R, · : R×R→ R satisfying for all a, b, c ∈ R:

(1) (a+ b) + c = a+ (b+ c)

(2) a+ b = b+ a

(3) There is 0 ∈ R such that a+ 0 = a ∀a ∈ R

(4) There is −a ∈ R such that a+ (−a) = 0

(5) a · (b · c) = (a · b) · c
(6) a · b = b · a
(7) There is 1 ∈ R such that a · 1 = 1 · a = a for all a ∈ R

(8) a · (b+ c) = a · b+ a · c
(a+ b) · c = a · c+ b · c

Theorem: (Subring Theorem)
Let R be a ring. S ⊂ R any subset. Then S is a subring of R iff :
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(1) 0, 1 ∈ S

(2) If a, b ∈ S then a− b ∈ S

(3) If a, b ∈ S then ab ∈ S

Proof: Forwards is trivial.
Backwards: Assume S satisfies (1), (2), and (3) from the theorem. We need to check that + and · are well
defined from S × S → S, and we need to check (1)–(8).

The fact that · is from S × S → S is precisely (3). For +, first note that (1) means that 0, 1 ∈ S. By (2), we
find 0− 1 = −1 ∈ S. Thus, if a, b ∈ S, then by (3), (−1) · b ∈ S so since (−1) · b = −b, we get −b ∈ S.

(−1) · b+ b = (−1 + 1) · b
= 0 · b
= 0

follows from: 0 · b = (0 + 0) · b
= 0 · b+ 0 · b

=⇒ −0 · b+ 0 · b = −0 · b+ 0 · b+ 0 · b
=⇒ 0 = 0 · b

We want to show that a+ b ∈ S. Well, −b ∈ S, so a− (−b) ∈ S by (2), so a+ b ∈ S.
(1), (2), (5), (6), (8): Trivial for S

(3), (7): By (1)

(4): Already done

Example: Prove Z[
√

17] = { a+ b
√

17 : a, b ∈ Z } is a subring of R.
Solution: Z[

√
17] ⊂ R clearly. By Subring Theorem:

(1) 0 = 0 + 0
√

17 ∈ Z[
√

17]
1 = 1 + 0

√
17 ∈ Z[

√
17]

(2) a+ b
√

17 ∈ Z[
√

17]
c+ d

√
17 ∈ Z[

√
17]

=⇒ (a+ b
√

17)− (c+ d
√

17) = (a− c) + (b− d)
√

17 ∈ Z[
√

17]

(3) Similarly, (a+ b
√

17)(c+ d
√

17) = (ac+ 17bd) + (ad+ bc)
√

17 ∈ Z[
√

17] so we’re done.

Definition: Let R be a ring, r ∈ R any element. Then:

r is a zero divisor iff ra = 0 for some a ∈ R, a 6= 0, provided r 6= 0. r is a unit iff there is an element 1/r ∈ R
such that r(1/r) = 1.
r is nilpotent iff rn = 0 for some positive integer n (r 6= 0).

Definition: A ring R is called an (integral) domain iff it contains no zero divisors.

A ring R is a field iff every nonzero element is a unit.
A ring R is reduced iff it contains no nilpotent elements.

Z/4Z is not reduced: 22 = 0, 2 6= 0
Z/6Z is reduced, but not a domain: 2 · 3 = 0, 2, 3 6= 0
Z/7Z is a field: every nonzero element is a unit: 1 · 1 = 1, 2 · 4 = 1, 3 · 5 = 1, 6 · 6 = 1

Z is a domain that’s not a field.
Theorem: Let R be a ring, r ∈ R any element. Then r cannot be both a zero divisor and a unit.
Proof: Say r is a unit. Then r · (1/r) = 1. If r is also a zero divisor, then ra = 0 for some a 6= 0, so:

ar(1/r) = a

=⇒ 0 = a

Bad!
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Definition: Let R, S be rings. Their direct sum is the ring R⊕ S. The elements of R⊕ S are the elements
of R× S, and the + and · are:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

(r1, s1)(r2, s2) = (r1r2, s1s2)

Theorem: R⊕ S is a ring.
Proof: Dull.

0↔ (0, 0)

1↔ (1, 1)

(1, 0) · (0, 1) = (0, 0)
If R, S are nonzero, then 0 6= 1, so R⊕ S is not an integral domain.

PMATH 345 Lecture 3: May 7, 2010
Definition: Let R be a ring. A subring of R is a set S ⊂ R such that S is a ring using the same operations
as R and 1 ∈ S.

Example: R = Z/6Z
S = {0, 3}
S is a ring using + and · as R, but the multiplicative identity of S is not 1 ∈ R.
S ⊂ R, S closed under +, ·, −, and has z ∈ S such that z + r = r for all r ∈ S.
=⇒ z = 0 X.

Theorem: Let n ≥ 1 be an integer. Then Z/nZ is:

(1) A field iff n is prime

(2) Reduced iff n is squarefree

Proof:

(1) If n is prime, then every nonzero element of Z/nZ is represented by an integer coprime to n. Thus,
every nonzero element of Z/nZ is a unit, so Z/nZ is a field.

Conversely, if Z/nZ is a field, then every nonzero element is coprime to n, so n is prime.

(2) Assume p2 | n, p > 1. Then n/p 6= 0, n/p ∈ Z =⇒ n/p is well defined mod n, but(n
p

)2

=
n2

p2
=
( n
p2

)
n = 0.

So Z/nZ is not reduced, since n/p is nilpotent.

Finally, assume that m is nilpotent mod n. We want to show that n is not squarefree. Well, m 6= 0 mod n,

but ma = 0 mod m. As integers, write
m=p

a1
1 ···p

ar
r

n=p
b1
1 ···p

br
r

where, in principle, some of the ai, bi may be 0.

Since n - m, we get n - m, we get bi > ai for some i. Since n | ma, we get bi ≤ aai. Note bi > ai ≥ 0,
and bi ≤ aai, so ai > 0. So bi > ai ≥ 1, and so bi ≥ 2. Thus, p2

i | n, and n is not squarefree.

Homomorphisms
Definition: Let R, S be rings. A homomorphism from R to S is a function f : R→ S satisfying:

(1) f(1) = 1

(2) f(a+ b) = f(a) + f(b)

(3) f(ab) = f(a)f(b)
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Example: f : C→ C, f(a+ bi) = a− bi
Example: f : Z→ Z/nZ
f(r) = r mod n
Example: f : Q[x]→ Q
f(p(x)) = p(3 1

2 )
f(x− 7) = −3 1

2
f(x2 + 2x+ 3) = 49+28+12

4 = 89
4

f(6) = 6
“Plugging in” homomorphism:

f : R[x1, . . . , xn]→ T

where R is a ring, R ⊂ T , and:
f(p(x1, . . . , xn)) = p(t1, . . . , tn)

where t1, . . . , tn ∈ T are any fixed elements of T .

Example: f : Z[i]→ Z/5Z
f(a+ bi) = a+ 2b mod 5

(1) f(1) = 1 mod 5 X

(2) f((a+ bi) + (c+ di)) = f((a+ c) + (b+ d)i) = a+ c+ 2(b+ d) mod 5
f(a+ bi) + f(c+ di) = a+ 2b+ c+ 2d mod 5. Same.

(3) f(a+ bi)f(c+ di) = (a+ 2b)(c+ 2d) = ac+ 4bd+ 2ad+ 2bc mod 5

f((a+ bi)(c+ di)) = f(ac− bd+ bci+ adi) = ac− bd+ 2(ad+ bc) mod 5

These are the same, so �.

PMATH 345 Lecture 4: May 10, 2010
Z3 = Z/3Z = “Integers mod 3”

Definition: Let R, S be rings, f : R→ S a homomorphism. Then f is an isomorphism iff there is another
homomorphism g : S → R such that f ◦ g = id and g ◦ f = id.

Example: f : C→ C, f(z) = z. This is an isomorphism; the inverse of f is f .

•

×z

×

p
1 Re

Im

i2 = −1

To prove z = i, we’d have to have some relationship between z, real numbers, and + and ·:

anz
n + · · ·+ a1z + a0 = 0

where ai ∈ R. Then:
anz

n + · · ·+ a1z + a0 = 0

So there’s no way to tell the difference between i and −i.

Definition: Let f : R→ S be a homomorphism. The image of f is the set:

im(f) = { f(x) : x ∈ R }
= range of f
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and the kernel of f :
ker(f) = {x ∈ R : f(x) = 0 }

Theorem: Let f : R→ S be a homomorphism. Then f is 1–1 iff ker(f) = {0}.
Proof: Forwards is trivial, because f(0) = 0.
Backwards: Assume ker f = {0}. We want to show f is 1–1. If f(a) = f(b), then f(a − b) = 0, so
a− b ∈ ker f , so a− b = 0 =⇒ a = b.

Theorem: Let f : R→ S be a homomorphism. Then:

(1) f(0) = 0

(2) The composition of homomorphisms is a homomorphism

(3) If x is a unit, then so is f(x).

Theorem: Let f : R→ S be a homomorphism. Then ker f is usually not a subring of R. In fact, ker f is a
subring of R iff ker f = R.

Definition: Let R be a ring. An ideal of R is a subset I ⊂ R satisfying:

(1) 0 ∈ I

(2) If a, b ∈ I then a− b ∈ I

(3) If a ∈ I, r ∈ R, then ar ∈ I.

Theorem: Let f : R→ S be a homomorphism. Then ker f is an ideal of R.
Proof:

(1) f(0) = 0 =⇒ 0 ∈ ker f .

(2) If a, b ∈ ker f , then f(a) = f(b) = 0. We want a− b ∈ ker f , i.e., f(a− b) = 0. This is trivial.

(3) If a ∈ ker f , r ∈ R, then f(a) = 0, so f(ra) = f(r)f(a) = f(r) · 0 = 0. So ra ∈ ker f .

Example: What are the ideals of Z?
{0} is the trivial or zero ideal.
Z is the improper or unit ideal.
I = {even integers} is an ideal, often written 2Z.
In fact, {multiples of n} = nZ is an ideal of Z.
Better yet, every ideal of Z is of the form nZ for some n ∈ Z.

Definition: Let R be a ring, a ∈ R any element. The principal ideal of R generated by a is the set:

(a) = aR = { aR : r ∈ R }.

Theorem: (a) is an ideal of R.
Proof: Easy.

PMATH 345 Lecture 5: May 12, 2010
Claim: The ideals of Z are precisely the sets nZ = {nr : r ∈ Z }.
Proof: First, nZ is an ideal by a quick check of the definition. It only remains to show that every ideal is of
the form nZ. Thus, say I ⊂ Z is an ideal. It could be that I = {0} = 0Z. Otherwise, I must contain some
nonzero integer, which we may assume is positive. Let n be the smallest positive element of I. We will show
that I = (n) = nZ. Clearly nZ ⊂ I, since n ∈ I. Thus, x ∈ I. We want to show x ∈ nZ. After long division:

x = qn+ r

where q, r ∈ Z, 0 ≤ r < n. But r = x− qn ∈ I, so by minimality of n, we get r = 0, and hence x = qn ∈ nZ.
Thus, I = nZ.

5



Definition: Let R be a ring, a1, . . . , an ∈ R any elements. The ideal generated by a1, . . . , an is:

(a1, . . . , an) = { r1a1 + · · ·+ rnan : r1, . . . , rn ∈ R }

It is easy to see that this is an ideal.

Example: (6, 8) ⊂ Z

= { 6a+ 8b : a, b ∈ Z }
= { 2(3a+ 4b) : a, b ∈ Z }

so 2 ∈ (6, 8). This immediately means that (2) ⊂ (6, 8).

Conversely, 6, 8 ∈ (2), so (6, 8) ⊂ (2), and hence (2) = (6, 8).

Fact: Given an ideal I and elements a1, . . . , an ∈ R, if a1, . . . , an ∈ I then (a1, . . . , an) ⊂ I.

Example: (x, y) ⊂ Q[x, y]

(x, y) = {xp(x, y) + yq(x, y) : p, q ∈ Q[x, y] }
= { r(x, y) : r(0, 0) = 0 }

Definition: Let I, J be ideals. Then these are ideals:

I + J = { a+ b : a ∈ I, b ∈ J }
and IJ = { a1b1 + · · ·+ anbn : ai ∈ I, bi ∈ J }

(a1, . . . , an) + (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm)

(a1, . . . , an)(b1, . . . , bm) = (a1b1, a1b2, . . . , a1bm, a2b1, . . . , a2bm, . . . , anb1, . . . , anbm)

= (aibj) i∈{1,...,n}
j∈{1,...,m}

Example: In Q[x, y]:

(x, y2) · (x− y, y3 − y) = (x2 − xy, xy2 − y3, xy3 − xy, y5 − y3)

If R is a ring, then R∗ = group of units of R

Theorem: Let I be an ideal of a ring R. Then I = (1) = R iff I contains some unit of R.
Proof: Forwards is trivial. For backwards, assume u ∈ I is a unit. Then 1 = uu−1 ∈ I =⇒ I = (1).

Theorem: Let R be a ring, R 6= {0}. Then R is a field iff it has exactly two ideals, (0) and (1).
Proof: Forwards: Assume R is a field, I ⊂ R any ideal. If I = (0), we’re done. If not, I contains some x ∈ R,
x 6= 0. Since R is a field, x is a unit, so I = (1).

Backwards: Let x ∈ R be any nonzero element. We want to show x ∈ R∗. Well, (x) ⊂ R is an ideal with
(x) 6= (0), so by assumption (x) 6= (1). This means 1 ∈ (x) = {xr : r ∈ R }

=⇒ 1 = rx for some r ∈ R

so x ∈ R∗ and R is a field.

Quotient rings
Let R be a ring, I ⊂ R an ideal. (e.g., R = Z, I = (n))
We want to build a ring R/I and a homomorphism q : R→ R/I such that ker q = I.

If we had such a thing, then q(x) = q(y) ⇐⇒ x− y ∈ ker q = I.

Thus, elements of R/I ought to be equivalence classes of elements of R under the equivalence relation

x ≡ y mod I iff x− y ∈ I.
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PMATH 345 Lecture 6: May 14, 2010
Theorem: A homomorphism f : R→ S is an isomorphism iff it’s 1–1 and onto.
Proof: Forwards is trivial.
Backwards: Assume f is 1–1 and onto. We want to show that f−1 : S → R is a homomorphism.

First, f−1(1) = 1 because f(1) = 1. Next, let a, b ∈ S be any elements. We want to show that

f−1(a+ b) = f−1(a) + f−1(b).

Since f is 1–1 and onto, we can find A, B, C ∈ R such that f(A) = a, f(B) = b, and f(C) = a+ b. Then:
f(A) + f(B) = f(A+B) = a+ b

=⇒ A+B = f−1(a+ b)

But C = f−1(a+ b) by definition of C

=⇒ A+B = C

=⇒ f−1(a) + f−1(b) = f−1(a+ b)

as desired.
Proving f−1(a)f−1(b) = f−1(ab) is exactly similar.

We’ve got: a ring R, an ideal I ⊂ R
We want: a ring R/I = “R mod I” an onto homomorphism q : R→ R/I with ker q = I.

R/I = {equivalence classes of elements of R}

where r1 ≡ r2 mod I iff r1 − r2 ∈ I

= { r + I1) : r ∈ R }

Addition: (r1 + I) + (r2 + I) = (r1 + r2) + I
Multiplication: (r1 + I)(r2 + I) = (r1r2 + I)
One: 1 + I
We need to check that these definitions are well defined.

If r1 ≡ r′1 mod I and r2 ≡ r′2 mod I, we must check that r1 + r2 ≡ r′1 + r′2 mod I and r′1r
′
2 ≡ r1r2 mod I.

If a1 = r1 − r′1 ∈ I, a2 = r2 − r′2 ∈ I, then

(r1 + r2)− (r′1 + r′2) = (r1 − r′1) + (r2 − r′2) ∈ I

and r1r2 − r′1r′2 = r1r2 − (r1 − a1)(r2 − a2)

=(((
(((r1r2 − r1r2 + a1r2 + a2r1 − a1a2

∈ I

Checking that R/I is a ring is tedious but straight forward.

It’s clear from the construction that the map

q : R→ R/I

given by q(r) = r mod I

= r + I

is a surjective homomorphism. The map q is called the “reduction mod I” homomorphism.

1)“coset of I”
r + I = { r + a : a ∈ I }
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Example: R = Z, I = (n)
Then R/I = Z/nZ = Zn.
Example: C[x]/(x) should be isomorphic to C.
Example: R[x]/(x2 + 1) should be isomorphic to C.2)

C[x, y, z]/(x2 − x+ 3yz, x3z + 4y)

Theorem: (Universal Property of Quotients)
Let R, S be rings, I ⊂ R an ideal, f : R→ S a homomorphism, q : R→ R/I the “reduce mod I” homomor-
phism.

R
f

//

q
!!

S

R/I
f̃

>>

There exists a homomorphism f̃ : R/I → S with f̃ ◦ q = f iff I ⊂ ker f .

Remark: This theorem says that if you can find a homomorphism f : R→ S with I ⊂ ker f , then f “makes
sense mod I”.

PMATH 345 Lecture 7: May 17, 2010
Theorem: (UPQ) Let R, S be rings, I ⊂ R an ideal, f : R → S a homomorphism, q : R/I the quotient
homomorphism

R
f

//

q
!!

S

R/I
f̃

>>

Then there exists a homomorphism f̃ : R/I → S with f = f̃ ◦ q iff I ⊂ ker f .

Example: Find an isomorphism from C[x]/(x) to C.

C[x]3)/(x)4) to C5)

C[x]
f

//

q
$$

C

C[x]/(x)

f̃

;;

f(p(x)) = p(0)

This is a homomorphism, and x ∈ ker f , so (x) ⊂ ker f , so by the UPQ, f “makes sense” as a homomorphism
from C[x]/(x)→ C. That is, f induces a homomorphism f̃ : C[x]/(x)→ C.

f̃(p(x) mod I) = p(0).

It’s onto because f̃(z) = z for any z ∈ C, so we just need to check 1–1. To do this, we show that
ker f̃ = (0) ⇐⇒ ker f = (x).
We already know (x) ⊂ ker f , so let p(x) ∈ ker f . Then f(p(x)) = p(0) = 0, so x | p(x), and so p(x) ∈ (x) and
we’re done.

Proof of UPQ: Forwards: We have f̃ ◦ q = f , so if r ∈ I, we compute f(r) = f̃(q(r)) = f̃(0) = 0, so
r ∈ ker f .

2)Aside: Show: R[x]/(x2 − 1) ∼= R⊕ R
3)R
4)I
5)S
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Backwards: Assume I ⊂ ker f . We want f̃ : R/I → S such that f̃ ◦ q = f
Define

f̃(r mod I) = f(r)

To check that this is well defined, we check that if r1 ≡ r2 mod I, then f̃(r1 mod I) = f̃(r2 mod I). That is,
we check that f(r1) = f(r2).

Well, f(r1)− f(r2) = f(r1 − r2) = 0 since r1 − r2 ∈ I ⊂ ker f .

We check that f̃ is a homomorphism:

f̃(1 mod I) = f(1) = 1 X

f̃(a+ b mod I) = f(a+ b) = f(a) + f(b) = f̃(a mod I) + f̃(b mod I) X

f̃(ab mod I) = f(ab) = f(a)f(b) = f̃(a mod I)f̃(b mod I) X

Facts: ker f̃ = ker f mod I
im f̃ = im f

Theorem: (First Isomorphism Theorem) Let f : R→ S be a homomorphism. Then im f ∼=6) R/ ker f .
Proof: Straight from UPQ.

Theorem: Let f : R→ S be a homomorphism, I ⊂ R an ideal, J ⊂ S an ideal. Then:

(1) f−1(J) = { r ∈ R : f(r) ∈ J } = preimage of J is an ideal of R

(2) If f is onto, then
f(I) = { f(r) : r ∈ I }

is an ideal of S.

Proof:

(1) 0 ∈ f−1(J) because f(0) = 0 ∈ J . If a, b ∈ f−1(J), then f(a), f(b) ∈ J , so f(a− b) = f(a)− f(b) ∈ J ,
and hence a− b ∈ f−1(J).

Finally, if a ∈ f−1(J), r ∈ R, then f(ra) = f(r)f(a) ∈ J , so ra ∈ f−1(J).

(2) 0 ∈ f(I) because f(0) = 0. If a, b ∈ f(I). Then a = f(r), b = f(s) for r, s ∈ I, so a− b = f(r)− f(s) =
f(r − s), so a− b ∈ f(I).

Finally, let a ∈ f(I), r ∈ S. Since f is onto, we write r = f(t) and a = f(u) for t ∈ R, u ∈ I.

Then tu ∈ I and f(tu) = ra, so ra ∈ f(I).

Definition: Let R be a ring, I ⊂ R an ideal. Then I is prime iff I 6= R and for all a, b ∈ R, if ab ∈ I then
either a ∈ I or b ∈ I.
I is maximal iff the only ideal J with I ( J is J = R and I 6= R.

PMATH 345 Lecture 8: May 19, 2010
Z5[x]: polynomials in x whose coefficients lie in Z5.
Fact: If a ∈ Z5, then a5 = a.
Fact: In Z5[x], x5 and x are different polynomials that define the same function Z5 → Z5.

x5 = (
√

2)5 =
√

32 = 4
√

2 = −
√

2

x =
√

2 6= 4
√

2

Definition: Let R be a ring, I ⊂ R an ideal. Then I is prime iff every a, b ∈ R with ab ∈ I satisfies a ∈ I
or b ∈ I, and I 6= R.

Furthermore, I is maximal iff I 6= R and the only ideal J ⊂ R with I ( J is J = R.

6)“is isomorphic to”

9



Example: What are the prime and maximal ideals of Z?

Well, any ideal of Z is of the form (n) for n ∈ Z.

If n is composite, then n = ab for a, b ∈ Z, a, b 6= ±1. In that case:

(n) ( (a) 6= (1)

so (n) is not a maximal ideal. Also, a /∈ (n) and b /∈ (n), but ab ∈ (n), so (n) isn’t prime.

(0) is prime but not maximal. If n is prime, then we can call it p. The ideal (p) is maximal and prime. The
ideal (p) is prime because p | ab =⇒ p | a or p | b, and (p) is maximal because if (p) ( (n), then n | p, so
n = ±p (not possible since (p) 6= (n)) or n = ±1, in which case (n) = (1). Hence (p) is maximal.

Theorem: Let R be a ring. I an ideal of R. Then:

(1) I is prime iff R/I is a domain

(2) I is maximal iff R/I is a field

Proof:

(1) Forwards: I is prime. Let a, b ∈ R be any elements with ab ≡ 0 mod I. We want to show either a ≡ 0
or b ≡ 0. Since ab ≡ 0, we get ab ∈ I, so either a ∈ I or b ∈ I =⇒ a ≡ 0 or b ≡ 0.

Backwards: Similar.

(2) Forwards: I is maximal. This means only two ideals of R contain I, namely, I and R.

Now let J be any ideal of R/I, q : R→ R/I the quotient homomorphism. Then

q−1(J) = { r ∈ R : q(r) ∈ J }

is an ideal of R that contains I.

So q−1J = I or R, so J = (0) or (1). Thus, R/I has exactly 2 ideals, and so must be a field.

Backwards: Similar.

Corollary: Every maximal ideal is prime.
Proof: Every field is a domain.

Example: Is (x− 1) a prime ideal of Q[x]? How about Z[x]?

Q[x]
f

//

q
%%

Q

Q[x]/(x− 1)

f̃

99

f(p(x)) = p(1). By UPQ, this induces f̃ : Q[x]/(x− 1)→ Q because f(x− 1) = 1− 1 = 0.
We see that f̃ is onto, since f(c) = c for all c ∈ Q. Moreover, f̃ is 1–1 because f(p(x)) = 0 ⇐⇒ p(1) =
0 ⇐⇒ x− 1 | p(x) ⇐⇒ p(x) ∈ (x− 1). That is, ker f = (x− 1) ⇐⇒ ker f̃ = (0).

Since Q[x]/(x− 1) ∼= Q (via f̃), we see that (x− 1) is prime and maximal.

Z[x]:

Z[x]
f

//

q
%%

Z

Z[x]/(x− 1)

f̃

:: f(p(x)) = p(1)

Not too hard to show f̃ is 1–1 and onto. Since Z is a domain but not a field, (x− 1) is prime but not maximal
in Z[x].
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Let R be any ring. There is exactly one homomorphism φ : Z→ R, given by φ(n) = n, called the characteristic
homomorphism. Since kerφ is an ideal of Z, we have kerφ = (n) for some n ≥ 0. This n is called the
characteristic of R, and is written charR.

Z/nZ has characteristic n.
charR = first positive integer n such that n = 0 in R
If none, then charR = 0.

Example: charQ = charZ = 0.
Fact: R is a domain =⇒ charR is 0 or prime.

PMATH 345 Lecture 9: May 21, 2010
Let R be a ring, φ : Z→ R the characteristic homomorphism charR = n, where kerφ = (n). Every ring of
characteristic n > 0 has a subring isomorphic to Z/nZ, namely, imφ.

Every ring of characteristic 0 has a subring isomorphic to Z, namely imφ.

Theorem: Let D be a domain. Then charD = 0 or charD is prime.
Proof: Say charD > 0 and charD = ab for integers a, b. We want to show a = 1 or b = 1.

Well, ab = 0 in D. Since D is a domain, this means a = 0 or b = 0; without loss of generality, say a = 0. Then
by definition of charD, a ≥ ab, so b ≤ 1. Since b ∈ Z, b > 0, we get b = 1.

Fraction fields
Let D be a domain. We will construct a field that contains D.

Definition: Let D be a domain. Define the fraction field K(D) by:

K(D) =
{ a
b

: a, b ∈ D, b 6= 0
}/
∼

where a
b ∼

c
d iff ad = bc, and:

a

b
+
c

d
=
ad+ bc

bd

and
a

b
· c
d

=
ac

bd

Need to show:

(1) If a
b ∼

a′

b′ , then a
b + c

d ∼
a′

b′ + c
d and a′

b′ ·
c
d = a

b ·
c
d

(2) K(D) with all these operations is a field.

I do not deign to do so.

Note that there is a natural homomorphism φ : D ↪→ K(D), φ(d) = d
1 . Typically, we identify D with φ(D),

and say that D ⊂ K(D).

Example: K(Z) = Q.
Example: K(F [x]) = F (x) if F is a field

F (x) =
{ f(x)

q(x)
: p, q ∈ F [x], q 6= 0

}
Example: Z[i] = { a+ bi : a, b ∈ Z }

K(Z[i]) =
{ a+ bi

c+ di
: a, b, c, d ∈ Z, c+ di 6= 0

}
But

a+ bi

c+ di
=

(a+ bi)(c− di)
c2 + d2

=
(ac+ bd

c2 + d2

)
+
(bc− ad
c2 + d2

)
i

∈ Q(i) = { a+ bi : a, b ∈ Q }
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So K(Z[i]) = Q(i)7)

Theorem: (Universal Property of Fraction Fields) Let F be a field, and D a domain, φ : D ↪→ F an injective
homomorphism. Then φ extends to an injective homomorphism φ̃ : K(D) ↪→ F .

Proof: Define φ̃(ab ) = φ(a)
φ(b) . This is well defined because φ(b) 6= 0 (since b 6= 0 and φ is 1–1). Checking that

this is an injective homomorphism is straightforward.

Theorem: Let φ : F → E be a homomorphism of fields E and F . Then φ is 1–1.
Proof: Consider kerφ. It’s an ideal of F , so kerφ = (0) or (1). Since φ(1) = 1, we get kerφ = (0), and so φ
is 1–1.

PMATH 345 Lecture 10: May 26, 2010
http://cumc.math.ca/

July 6–July 10

Definition: Let D be a domain, x ∈ D any element, x 6= 0, x /∈ D∗. Recall: D∗ = {units of D}. Then x is
prime iff (x) is a prime ideal. Also, x is irreducible iff when x = ab for a, b ∈ D, we have a ∈ D∗ or b ∈ D∗.

Example: Prime elements of Z are prime numbers. Irreducible elements of Z are prime numbers.

Example: D = Z[
√

10], x = 2. Showing that x is irreducible is not easy, but can be done.

But x is not prime. We will prove this by showing (2) is not a prime ideal, by showing that Z[
√

10]/(2) is not
a domain.

Well, Z[
√

10] = { a + b
√

10 : a, b ∈ Z }. Z[
√

10]/(2) has 4 elements, represented by 0, 1,
√

10, 1 +
√

10. To
prove this, note that those 4 elements are all different mod 2, and any a+ b

√
10 is congruent to one of these 4

mod 2.

Notice that
√

10 6≡ 0 mod 2, but (
√

10)2 ≡ 0 mod 2, so 2 is not prime.

Definition: A domain D is a Principal Ideal Domain (PID) iff every ideal of D is principal; i.e., every ideal
is of the form (x) for some x ∈ D.

Definition: A domain D is a Unique Factorization Domain (UFD) iff every x ∈ D, x 6= 0, can be factored
into irreducible elements of p1, . . . , pn ∈ D:

x = p1p2 · · · pn

and this factorization is unique up to multiplication by units and reordering the pis.

We will show that every PID is a UFD. However, Q[x, y] is a UFD, but not a PID because (x, y) is not
principal.

Theorem: Every prime element of a domain D is irreducible.
Proof: Let x ∈ D be prime, and assume x = ab, a, b ∈ D. We want to show either a ∈ D∗ or b ∈ D∗. Since
x is prime, ab ∈ (x) =⇒ a ∈ (x) or b ∈ (x); without loss of generality a ∈ (x).

So a = xd for some d ∈ D:
x = xdb.

Since x 6= 0, we get 1 = db, and so b ∈ D∗.

Theorem: Let D be a PID. Then every irreducible element of D is prime.

Note: This theorem is not true if D is not a PID! (E.g., D = Z[
√

10].)
Proof: Say a ∈ D, a 6= 0, a /∈ D∗. Assume a is irreducible. Then (a) is a maximal ideal:

If (a) ⊂ I for some ideal I, then I = (x) for some x ∈ D. Then a = xd for some d ∈ D. Since a is irreducible,
we get x ∈ D∗ or d ∈ D∗. If x ∈ D∗ then I = (1). If d ∈ D∗ then I = (a). So (a) is a maximal ideal. Which
means (a) is a prime ideal. So a is prime.

7)Aside: Q[i] = { a+ bi : a, b ∈ Q }
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Theorem: Let D be a PID, I1 ⊂ I2 ⊂ I3 ⊂ · · · be an ascending chain of ideals In of D. Then for some m,
In = Im for all n ≥ m.
Proof: Consider I =

⋃
n In. Then I is an ideal of D:

(1) 0 ∈ I1 ⊂ I

(2) If a, b ∈ I, then a ∈ In and b ∈ Il for some n, l. Without loss of generality, n ≥ l, in which case Il ⊂ In
so a, b ∈ In. So a− b ∈ In ⊂ I. X

(3) Similarly, if d ∈ D, a ∈ I, then a ∈ In =⇒ da ∈ In ⊂ I X

Since D is a PID, we get I = (x) for some x ∈ D. But x ∈ In for some n, so I = (x) ⊂ In ⊂ I, and so
I = In.

PMATH 345 Lecture 11: May 28, 2010
Theorem: Every PID is a UFD.
Proof: Recall from last time:
Theorem: Every irreducible element of a PID is prime.
Theorem: Let I1 ⊂ I2 ⊂ · · · be a chain of ideals in a PID. Then for some n, Im = In for all m ≥ n.

Digression: Every irreducible element of a UFD is prime.
Proof: Say x is irreducible in a UFD D. We will show that (x) is a prime ideal, so x is prime.

So, assume ab ∈ (x). Then ab = xc for some c ∈ D. Factoring both sides into irreducibles gives:

(p1 · · · pn)︸ ︷︷ ︸
a

(q1 · · · qm)︸ ︷︷ ︸
b

= x (r1 · · · rl)︸ ︷︷ ︸
c

By uniqueness of factorization, we get x = upi or x = uqi for some u ∈ D∗ and index i.

So either a ∈ (x) (if x = upi) or b ∈ (x) (if x = uqi). Hence (x) is a prime ideal and x is prime, as desired.

We will now show that if D is a PID, then D is a UFD. To do this, we will show that any element a ∈ D,
a 6= 0, a /∈ D∗, can be factored uniquely into a product of irreducibles.

Thus, choose any a ∈ D, a 6= 0, a /∈ D∗. We want to find some irreducible element p ∈ D such that p | a.
Well, if a is irreducible, then we may choose p = a. If a is not irreducible, then we may write a = bc for
b, c ∈ D, b, c /∈ D∗. If b or c are irreducible, we win. Otherwise, we get (a) ⊂ (b) with (b) 6= (1). Write a1 = b.

Write a1 = a2b2 for a2, b2 /∈ D∗. Write a2 = a3b3 for a3 /∈ D∗, and continue writing an = an+1bn+1 with
an+1 /∈ D∗, and bn+1 /∈ D∗ whenever an is reducible. We have an ascending chain of ideals: (a) ⊂ (a1) ⊂
(a2) ⊂ · · · . By ACC for PIDs, there is an n such that (an) = (am) for all m ≥ n. In particular, (an) = (an+1),
where an = an+1bn+1. This means bn+1 ∈ D∗, so an is irreducible, with an | a.

Now we’ll show that a can be factored completely into irreducibles. Write a = p1a1 for irreducible p1 ∈ D.
Write a = p1p2a2 for irreducible p2 ∈ D (unless a1 ∈ D∗). Keep going until an ∈ D∗, at which point:

a = p1p2p3 · · · (anpn)︸ ︷︷ ︸
all irreducible

To show that an ∈ D∗ for some n, note that (a) ⊂ (a1) ⊂ (a2) ⊂ · · · is an ascending chain of ideals. By ACC,
this means (an) = (an+1) for some n, with an = pn+1an+1; this is impossible! So an must have been a unit,
and so a has been factored completely into irreducibles.

Finally, we show that this factorization is unique. Say

a = p1 · · · pn = q1 · · · qm (∗)

for irreducibles p1, . . . , pn, q1, . . . , qm ∈ D. First, note that p1, . . . , pn, q1, . . . , qm are all prime, so
p1 | q1 · · · qm =⇒ p1 | qi for some i. Then qi = p1x for some x ∈ D and x ∈ D∗ because p1 /∈ D∗ and qi is
irreducible. So we cancel p1 from both sides of (∗):

p2 · · · pn = q1 · · · q̂i · · · qmx
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where the hat means qi is not present. Keep doing this for each pj in turn until either the pis run out or
the qis do. If the two sets don’t run out at the same step, then a nonempty product of primes would be
a unit, which is impossible. So n = m, and so the two factorizations are the same up to permutation and
multiplication by units.

PMATH 345 Lecture 12: May 31, 2010
Definition: Let D be a UFD, p(x) ∈ D[x] any nonzero polynomial. The content of p(x) is the greatest
common factor of the coefficients of p(x). A polynomial p(x) is primitive iff its content is 1.

Theorem: (Gauss’s Lemma)
The product of primitive polynomials is primitive. More precisely, let D be a UFD, p(x), q(x) ∈ D[x] primitive
polynomials. Then p(x)q(x) is primitive.
Proof: Assume p(x)q(x) is not primitive. Then there is some prime l which divides all the coefficients of
pq. Reducing mod l gives p(x)q(x) ≡ 0 mod l, so since l is prime, D/l is a domain, so (D/l)[x] is a domain,
so either p(x) ≡ 0 mod l or q(x) ≡ 0 mod l. In other words, either l divides the content of p or l divides the
content of q. Both are impossible by primitivity of p(x) and q(x).

Theorem: (Gauss’s Lemma)
Let D be a UFD, p(x) ∈ D[x] a nonzero polynomial. Then p(x) = a(x)b(x) in K(D)[x] iff p(x) = A(x)B(x)
in D[x], where A(x) = αa(x) and B(x) = βb(x) for some α, β ∈ K(D). In particular, p(x) is irreducible in
K(D)[x] iff it’s irreducible in D[x] (except possibly for constant factors).
Proof: Backwards is trivial.
Forwards: Say p(x) = a(x)b(x) with a, b ∈ K(D)[x]. Write

αβp(x) = [αa(x)][βb(x)]

where αa, βb lie in D[x]. Factoring out the contents of αa and βb gives

c3αβp
′(x) = c1(α′a′(x)︸ ︷︷ ︸

primitive

)c2(β′b′(x)︸ ︷︷ ︸
primitive

)

Cancelling gives:
dp′(x) = [α′a′(x)][β′b′(x)]

where d ∈ D and p′, α′a′, and β′b′ are all primitive. By Gauss’s Lemma, dp′(x) is primitive, so d ∈ D∗ and
so p′(x) = [α′d−1a′(x)][β′b′(x)]. Since p(x) = c3p

′(x), we get:

p(x) = [c3α
′d−1a′(x)][β′b′(x)]

= A(x)B(x)

as desired.

Example: Consider 2x2 − 5 ∈ (Z[
√

10])[x]. The polynomial is irreducible. However:

2x2 − 5 = 2
(
x2 − 5

2

)
= 2
(
x−

√
5
2

)(
x+

√
5
2

)
= 2
(
x−

√
10
2

)(
x+

√
10
2

)
So Gauss’s Lemma does not apply to (Z

√
10)[x].

Example: Prove that x2 + x+ 1 is irreducible in Q[x].
Solution: Reducing mod 2 gives x2 + x+ 1, which has no roots: 02 + 0 + 1 6= 0, 12 + 1 + 1 6= 0
So x2 + x+ 1 can’t factor in Z2[x]. If x2 + x+ 1 factored in Z[x], then the factorization could be reduced
mod 2. So x2 + x+ 1 is irreducible in Z[x]. By Gauss’s Lemma, x2 + x+ 1 is irreducible in Q[x].

PMATH 345 Lecture 13: June 2, 2010
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Long division and Euclidean algorithm
Divide x3 − 1 by x2 + 2x− 3 with remainder in Z5

8)[x]

x− 2

x2 + 2x− 3
)
x3 + 0x2 + 0x− 1
x3 + 2x2 − 3x

− 2x2 + 3x− 1
− 2x2 + x+ 1

2x− 2

Answer: x3 − 1 = (x− 2)(x2 + 2x− 3) + (2x− 2)

To find gcd(x3 − 1, x2 + 2x− 3):

x3 − 1 = (x− 2)(x2 + 2x− 3) + (2x− 2)

3x− 1

2x− 2
)
x2 + 2x− 3
x2 − x

3x− 3
3x− 3

0

x2 + 2x− 3 = (2x− 2)(3x− 1) + 0

So gcd(x3 − 1, x2 + 2x− 3) = 2x− 2 or x− 1

Theorem: Let F be a field, a(x), b(x) ∈ F [x] with b(x) 6= 0. Then there are polynomials q(x), r(x) ∈ F [x]
satisfying:

(1) a(x) = q(x)b(x) + r(x)

(2) deg(r(x)) < deg(b)

(If b(x) is constant, then (2) means r(x) = 0.)
Proof: Not gonna do it.

Corollary: Let F be a field. Then F [x] is a PID.
Proof: Let I ⊂ F [x] be an ideal. If I = (0), then it’s principal. If not, then it contains a nonzero polynomial
p(x) of minimal degree. If a(x) ∈ I, then a(x) = p(x)q(x) + r(x) where deg(r(x)) < deg(p(x)). But
r(x) = a(x)− p(x)q(x) ∈ I, so by minimality of p(x), we get r(x) = 0 and a(x) ∈ (p(x)). So I ⊂ (p(x)), and
p(x) ∈ I =⇒ (p(x)) ⊂ I, so I = (p(x)).

Corollary: Let F be a field, a ∈ F , p(x) ∈ F [x] with p(a) = 0. Then x− a | p(x).
Proof: p(x) = q(x)(x− a) + r(x) with deg r(x) < deg(x− a) = 1. Plug in x = a to deduce r = 0.

Corollary: Let F be a field, p(x) ∈ F [x] a nonzero polynomial of degree d. Then p(x) has at most d roots.
Proof: Each root corresponds to a factor of p(x), and F [x] is a PID and hence a UFD.

If p(x) has degree 3 or less, then p(x) factors in F [x] iff it has a root in F . The proof is easy.
Example: x2 + x+ 1 is irreducible in Z2[x] because its degree is 2 ≤ 3, and 02 + 0 + 1 6= 0 and 12 + 1 + 1 6= 0.

Theorem: Let R be a ring, P a prime ideal of R, p(x) ∈ R[x] a polynomial. If p(x) is irreducible in (R/P )[x]
and if the leading coefficient of p(x) doesn’t lie in P , then p(x) is irreducible in R[x].
Proof: If p(x) = a(x)b(x) in R[x] with deg(a), deg(b) ≥ 1, then

p(x) ≡ a(x)b(x) mod P,

with deg(a), deg(b) ≥ 1 mod P because deg(p(x)) is the same over R/P as over R. By contrapositive, we’re
done.

8)field
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Example: x2 + x+ 1 is irreducible in Z[x] because it’s irreducible mod 2.

Example: Is x3 − x+ 1 irreducible in Q[x]?
Yes. Reducing mod 2 yields x3 + x+ 1, which has no roots, so x3 − x+ 1 is irreducible in Z2[x] since deg ≤ 3,
and so irreducible in Z[x], and by Gauss’s Lemma irreducible in Q[x].

PMATH 345 Lecture 14: June 4, 2010
Theorem: Let D be a UFD, p(x) = a0 + a1x + · · · + anx

n ∈ D[x] any nonzero polynomial, ai ∈ D. If
p(ml ) = 0 for l, m ∈ D, then l | an and m | a0.

Example: Does 3x3 + 1 have any roots in Q?
Answer: No. Any rational root a

b satisfies b | 3 and a | 1, so b ∈ {±1,±3} and a ∈ {±1}. Without loss of
generality, b > 0, so b ∈ {1, 3}. Now we check these roots:

3(1)3 + 1 = 4 6= 0

3(−1)3 + 1 = −2 6= 0

3( 1
3 )3 + 1 6= 0

3( 1
3 )3 + 1 6= 0

Therefore 3x3 + 1 has no roots in Q. Since its degree is ≤ 3, this means it’s irreducible over Q.
Proof: Say (ml ) = 0. Then in K(D)[x], we have (x − m

l ) | p(x), so lx − m | p(x). By Gauss’s Lemma,
p(x) = (lx − m)q(x) for some q(x) in D[x]. If q(x) = b0 + b1x + · · · + bn−1x

n−1, then a0 = −b0m and
an = lbn−1.

Theorem: (Eisenstein’s Criterion)
Let D be a domain, P ⊂ D a prime ideal, f(x) = a0 +a1x+ · · ·+anx

n ∈ D[x] a nonzero polynomial satisfying:

(1) ai ∈ D

(2) ai ∈ P if i < n

(3) an /∈ P

(4) a0 /∈ P 2

9)Then f(x) has only constant factors in D[x].

Example: Is x4 + 10x+ 6 irreducible over Q?
Yes: Apply Eisenstein with P = (2):

(2) 0, 0, 10, 6 all in (2)

(3) 1 /∈ (2)

(4) 6 /∈ (4) X

Proof: Say f(x) = a(x)b(x) in D[x]. Then f(x) ≡ a(x)b(x) in (D/P )[x].

=⇒ a(x)b(x) ≡ anxn mod P

Since (D/P ) is a domain, it has a fraction field K, and K[x] is a UFD. So both a(x) and b(x) are both
constant multiples of a power of x mod P .

If a(x) and b(x) are both not constant, then their constant coefficients are both 0 mod P . This would mean
that both coefficients lie in P , so

a0 = (constant coefficient of a(x)) · (constant coefficient of b(x))

would lie in P 2. This is a contradiction, and so f(x) has only constant factors, as desired.

9)Aside: P = (x1, . . . , xn) =⇒ P 2 = (xixj)i,j∈{1,...,n} In particular (x)2 = (x2)
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Corollary: If f(x) satisfies the hypothesis of Eisenstein’s Criterion and D is a UFD, then f(x) is irreducible
in K(D)[x].
Proof: Gauss’s Lemma.

Corollary: If f(x) is monic (leading coefficient is one) and satisfies the hypotheses of Eisenstein’s Criterion,
then f(x) is irreducible in D[x].
Proof: Immediate.

Example: Is x3y + xy3 − x+ y − 1 irreducible in C[x, y]?
Yes: Apply Eisenstein’s Criterion to D = C[y] and P = (y − 1).
Write x3y + xy3 − x+ y − 1
= y10)x3 + (y3 − 1)11)x+ (y − 1)12)

So, by Eisenstein’s Criterion, x3y+xy3−x+y−1 has only constant factors; namely, factors lying in D = C[y].
But y and y − 1 are both coefficients are relatively prime, so there are no nontrivial constant factors either.
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Definition: A ring R is Noetharian iff every ideal of R is finitely generated. That is, R is Noetharian iff
every ideal I of R can be written in the form I = (r1, . . . , rn) for some r1, . . . , rn ∈ R.

Theorem: A ring R is Noetharian iff it satisfies the Ascending Chain Condition.
Proof: Forwards: Say R is Noetharian, and let I1 ⊂ I2 ⊂ · · · be an ascending chain of ideals. We want to
show that there is an index n such that In = Im for all m ≥ n.

We’ve already seen that I =
⋃
k Ik is an ideal, so since R is Noetharian, I = (r1, . . . , rm) for some r1, . . . ,

rm ∈ R. For each i, ri ∈ I implies ri ∈ Im, for some mi.

If n = max{mi}, then ri ∈ In for all i. So I = (r1, . . . , rm) ⊂ In ⊂ I, and therefore I = In and Im = In for
all m ≥ n.

Backwards: We’ll skip.

Theorem: (Hilbert Basis Theorem) Let R be a Noetharian ring. Then R[x] is also Noetharian.
Remarks: Every field is Noetharian, as is every PID. By induction, HBT implies that F [x1, . . . , xn] is
Noetharian for every field F .
Proof: Let I ⊂ R[x] be any ideal. We want to find a finite set of elements f1, . . . , fn ∈ R[x] such that
I = (f1, . . . , fn). Let L = set of leading coefficients of elements of I (leading coefficient of 0 is 0).

Claim: L is an ideal of R.
Proof:

(1) 0 ∈ L X

(2) Say l1, l2 ∈ L. Let f1, f2 ∈ I have leading coefficients l1, l2 respectively. If deg f1 ≥ deg f2, then
f1−xdeg f1−deg f2f2 is in I and has leading coefficient l1−l2, so l1−l2 ∈ L. Otherwise, xdeg f2−deg f1f1−f2

will do.

(3) Say l ∈ L, r ∈ R, f ∈ I with leading coefficient l. Then rf has leading coefficient lr, so lr ∈ L.

Since R is Noetharian, we get L = (a1, . . . , an) for some a1, . . . , an ∈ R. Let f1, . . . , fn ∈ I have leading
coefficients a1, . . . , an, respectively. For each integer d ≥ 0, define

Ld = {set of leading cofficients of elements of I of degree d} ∪ {0}

It turns out (by a proof similar to Claim’s) that Ld is an ideal of R, so we can write Ld = (bd,1, . . . , bd,nd
) for

some bd,i ∈ R. Let fd,i ∈ I have leading coefficient bd,i, with deg fd,i = d.
Let N = max{deg fi}.
10)not in (y − 1)
11)in (y − 1)
12)in (y − 1) but not (y − 1)2
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Claim: I is generated by f1, . . . , fn and fd,i for di ≤ N .
Proof of claim: It’s clear that every fi and fd,i is contained in I, so it suffices to show that every element of
I can be written in terms of fi and fd,i.

Assume f ∈ I is the element of smallest degree that cannot be written as an R[x]-linear combination of the fi
and fd,i. (d = deg f)

Case I: deg f ≥ N . Let a = leading coefficient of f . Since a ∈ L, we can write a = r1a1 + · · ·+ rnan for some
ri ∈ R. So f − r1x

d−deg f1f1 − · · · − rnxd−deg fnfn = g has degree less than d, and is nonzero by construction
of f . This implies that g cannot be written as an R[x]-linear combination of fi and fd,i, which contradicts
minimality of f .

Case II: deg f < N . Then a ∈ Ld for deg f = d < N , so the Case I argument applies to Ld instead of L. By
contradiction, we’re done.

PMATH 345 Lecture 16: June 9, 2010
Office Hours
Thursday 1:30–3:30

Theorem: Let R be Noetharian, I ⊂ R any ideal. Then R/I is Noetharian.
Proof: Let J be any ideal of R/I. We want to show that J = (r1, . . . , rn) for some elements ri ∈ R/I. Let
q : R → R/I be the quotient homomorphism, and let A = q−1(J) = { r ∈ R : r ∈ J mod I }. Then A is an
ideal of R, which is a Noetharian ring, so A = (r1, . . . , rn) for some r1, . . . , rn ∈ R.

Claim: J = (r1, . . . , rn), where ri = ri mod I.
Proof of claim: Say a ∈ J . Then there is some r ∈ A such that q(r) = a. So we can write

r = α1r1 + α2r2 + · · ·+ αnrn

for some α1, . . . , αn ∈ R, so:

a = α1r1 + · · ·+ αnrn mod I

∈ (r1, . . . , rn)

Corollary: Let R be any Noetharian ring (e.g., a field, or Z). Then for any ideal I of R, the ring

R[x1, . . . , xn]/I

is Noetharian.

13)Definition: A monomial ordering on the set of monomials {xa11 · · ·xann : ai ∈ Z≥0 } is a partial ordering ≤
satisfying:

(1) It must be a total order: for any two monomials m1 and m2, either m1 ≤ m2 or m1 ≥ m2. If both hold,
then m1 = m2.

(2) It must be a well ordering: there are no infinite descending sequences of monomials.

(3) Given monomials m1, m2, m3 with m1 ≤ m2, then m1m3 ≤ m2m3.

Example: Lexicographic order:
xa11 xa22 · · ·xann > xb11 x

b2
2 · · ·xbnn

iff a1 > b1
or a1 = b1 and a2 > b2
or a1 = b1, a2 = b2, and a3 > b3

13)Aside: Ideals, Varieties, and Algorithms: Cox, Little, O’Shea
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...
or ai = bi ∀i < n and an > bn

x2
1x2 > x1x

2
2 x2

1x2
14) − x2

2x1

x2
1x2 < x2

1x
2
2

x1x
7917
2 < x2

1x2

a2 > a

Definition: Let p(x1, . . . , xn) be a polynomial. The leading monomial of p is the “biggest” monomial with
a nonzero coefficient. The leading coefficient is the coefficient of the leading monomial. The leading term
is (leading coefficient)(leading monomial). The multidegree of a monomial xa11 · · · aann is (a1, . . . , an). The
multidegree of p is the multidegree of its leading monomial.
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Long division helps with:
Telling if p(x) ∈ (q(x)).
Finding gcd(p(x), q(x)).

In many variables:
Tell if p(x1, . . . , xn) ∈ (f1(x1, . . . , xn), . . . , fr(x1, . . . , xn))
Find a “good” set of generators for (f1, . . . , fr).

Example: Divide x2y + xy2 + y2 by {xy − 1, y2 − 1}. (Use lex order with x > y.) long division

x+ y, 1 Remainder

xy − 1, y2 − 1
)
x2y + xy2 + y2 x y 1
x2y − x

xy2 + x+ y2

xy2 − y

�>x+ y2 + y
y2 − 1

���y + ���1

∴ x2y + xy2 + y2 = (x+ y)15)(xy − 1) + (1)16)(y2 − 1) + (x+ y + 1)17)

Example: Same as before:

x+ 1, x Remainder

y2 − 1, xy − 1
)
x2y + xy2 + y2 2x 1
x2y − x

xy2 + x+ y2

xy2 − x

��>2x+ y2

y2 − 1

���1

x2y + xy2 + y2 = (x+ 1)18)(y2 − 1) + (x)19)(xy − 1) + (2x+ 1)20)

Theorem: Let f1, . . . , fs ∈ F [x1, . . . , xn] where F is a field, f1, . . . , fs not all the zero polynomial. Then

14)leading term
15)coefficient of xy − 1
16)coefficient of y2 − 1
17)remainder
18)coefficient of y2 − 1
19)coefficient of xy − 1
20)remainder
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every f ∈ F [x1, . . . , xn] can be written as:

f = a1f1 + · · ·+ asfs + r

where ai, r ∈ F [x1, . . . , xn], every term in r not divisible by any LT(fi). If aifi 6= 0, then multideg(aifi) ≤
multideg(f).
Proof: In Papantonopoulou.

Let I be an ideal of F [x1, . . . , xn].
Define LT(I) = ideal generated by {LT(f) : f ∈ I }.
Fact: If I = (f1, . . . , fr), then

LT(I) 6= (LT(f1), . . . ,LT(fr))

unless the fi are carefully chosen.

Definition: Let I = (f1, . . . , fr) be an ideal of F [x1, . . . , xn]. Then {f1, . . . , fr} is a Gröbner basis for I iff
LT(I) = (LT(f1), . . . ,LT(fr)).
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Definition: Let f1, . . . , fr ∈ E[x1, . . . , xn] be any set of polynomials. Then {f1, . . . , fr} is a Gröbner basis
for I = (f1, . . . , fr) iff

LT(I) = (LT(f1), . . . ,LT(fr)).

In other words, any monomial m that is divisible by LT(g) for some g ∈ I is divisible by some LT(fi).

Theorem: If LT(I) = (LT(f1), . . . ,LT(fr)) and f1, . . . , fr ∈ I, then I = (f1, . . . , fr).
Proof: Since f1, . . . , fr ∈ I, it follows immediately that (f1, . . . , fr) ⊂ I. So it suffices to show I ⊂ (f1, . . . , fr).
Let g ∈ I, and divide g by {f1, . . . , fr}. By the Division Theorem, we get:

g = a1f1 + · · ·+ arfr + t

where t is the remainder, whose terms are all not divisible by any (LT(fi)). But t ∈ I, so LT(t) ∈ LT(I) =
(LT(f1), . . . ,LT(fr)). This immediately implies t = 0 so g ∈ (f1, . . . , fr).

Do Gröbner bases exist? Yes!
Theorem: Let I ⊂ F [x1, . . . , xn] be an ideal. Then there is a Gröbner basis for I.
Proof: Consider LT(I), which is generated by an infinite collection of monomials:

M = {LT(f) : f ∈ I }

Notice that LT(I) is also generated by the set of leading monomials of elements of I:

L = {LM(f) : f ∈ I }

The set L is countably infinite, since each monomial xa11 · · ·xann corresponding uniquely to (a1, . . . , an) ∈ Zn.
Therefore, we can enumerate the monomials in L:

m1, m2, m3, . . .

Define Ij = (m1, . . . ,mj)
I1 ⊂ I2 ⊂ I3 ⊂ I4 ⊂ · · ·

So by ACC, this chain stabilizes at some finite step v, so:

LT(I) =

∞⋃
j=1

Ij = Iv

= (m1, . . . ,mv)

= (LT(f1), . . . ,LT(fv))
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for some f1, . . . , fv ∈ I.

Theorem: Let {f1, . . . , ft} be a Gröbner basis (for I = (f1, . . . , ft) 6= (0)), f ∈ F [x1, . . . , xn]. Then there
exists a unique r ∈ F [x1, . . . , xn] such that

f = a1f1 + · · ·+ atft + r

for some a1, . . . , at ∈ F [x1, . . . , xn], and no term of r is divisible by any LT(fi).
Proof: Say:

a1f1 + · · ·+ atft + r = a′1f1 + · · ·+ a′tft + r′

Then:
(a1 − a′1)f1 + · · ·+ (at − a′t)ft = r′ − r

So LT(r′ − r) ∈ LT(I) = (LT(f1), . . . ,LT(ft)). But r′ and r aren’t allowed to have any terms divisible by any
LT(fi), so r′ − r has no terms and is therefore 0. So r′ = r.
Corollary: Let f ∈ F [x1, . . . , xn] be any polynomial, I any nonzero ideal, f1, . . . , ft a Gröbner basis for I.
Then f ∈ I iff f divided by {f1, . . . , ft} gives zero remainder.
Proof: Immediate.

Definition: Let f , g ∈ F [x1, . . . , xn] be any nonzero polynomials. Then

S(f, g) =
( LCM

LT(f)

)
f −

( LCM

LT(g)

)
g

where LCM = LCM(LM(f),LM(g)).

f = 3x2 − 2 g = −xy + 1

LT(f) = 3x2 LT(g) = −xy
LM(f) = x2 LM(g) = xy

LCM = x2y

=⇒ S(f, g) =
x2y

3x2
(3x2 − 2)− x2y

−xy
(−xy + 1)

= 1
3y(3x2 − 2)− (−x)(−xy + 1)

= (x2y − 2
3y)− (x2y − x)

= x− 2
3y
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How can one tell if {g1, . . . , gr} is a Gröbner basis?
Definition: Let f , g ∈ F [x1, . . . , xn] be two nonzero polynomials. Then:

S(f, g) =
( LCM

LT(f)

)
f −

( LCM

LT(g)

)
g

where LCM = LCM(LM(f),LM(g)).

Theorem: (Buchberger’s Criterion) Say I = (f1, . . . , fr) is an ideal of F [x1, . . . , xn]. Then {f1, . . . , fr} is a
Gröbner basis for I iff for all i, j, S(fi, fj) gives zero remainder upon division by {f1, . . . , fr}.
Proof: Forwards is trivial. Backwards is too hard.

Example: Is {xy − 1, y2 − 1} a Gröbner basis? By Buchberger’s Criterion:

S(xy − 1, y2 − 1) = y(xy − 1)− x(y2 − 1)

= xy2 − y − xy2 + x

= x− y
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Clearly, a long division of x − y by {xy − 1, y2 − 1} yields a remainder of x − y. Since this is nonzero, we
conclude that {xy − 1, y2 − 1} is not a Gröbner basis.

Theorem: (Buchberger’s Algorithm) One can compute a Gröbner basis for I = (f1, . . . , fr) by the following
method:

(1) Compute S(fi, fj) and divide it by {f1, . . . , fr} for each i, j

(2) If all remainders are zero, STOP; you have a Gröbner basis.

(3) Otherwise, enlarge the set {f1, . . . , fr} by the nonzero remainders, and return to step (1).

Proof: This algorithm terminates because the ideal generated by {LT(fi)} strictly increases at each iteration,
so by the ACC, the set of nonzero remainders must eventually be empty. When this happens, Buchberger’s
Criterion implies that {fi} is a Gröbner basis.

Example: Find a Gröbner basis of (xy − 1, y2 − 1).

S(xy − 1, y2 − 1) = x− y

This gives remainder x− y, so:

{xy − 1, y2 − 1, x− y}
S(xy − 1, x− y) = 1(xy − 1)− y(x− y)

= xy − 1− xy + y2

= y2 − 1

This clearly gives remainder 0, so we just need to check:

S(y2 − 1, x− y) = x(y2 − 1)− y2(x− y)

= xy2 − x− xy2 + y3

= −x+ y3

Long divide:
0, y, −1

xy − 1, y2 − 1, x− y
)
−x+ y3

−x+ y

y3 − y
y3 − y

0

Zero remainder of all S-polynomials implies (by Buchberger) that {xy − 1, y2 − 1, x− y} is a Gröbner basis.

Notice that LT(x− y) | LT(xy − 1) so:

(LT(xy − 1),LT(y2 − 1),LT(x− y)) = (LT(y2 − 1),LT(x− y)) = LT(xy − 1, y2 − 1)

Therefore, since {xy − 1, y2 − 1, x− y} is a Gröbner basis, we see that {x− y, y2 − 1} is also a Gröbner basis.

Any subset of I that contains a Gröbner basis for I is itself a Gröbner basis for I.

Definition: Let I ⊂ F [x1, . . . , xn] be a nonzero ideal. Then {f1, . . . , fr} is a minimal Gröbner basis for I iff

(1) {f1, . . . , fr} is a Gröbner basis for I

(2) LC(fi) = 1 for all i

(3) LT(fi) - LT(fj) for i 6= j
⇐⇒ LT(fi) /∈ (LT(fj))j 6=i
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Example: {xy − 1, y2 − 1, x − y} is not minimal, because LT(x − y) | LT(xy − 1). By deleting fi whose
leading terms are redundant (i.e., divisible by some other leading term), we can always construct a minimal
Gröbner basis from an arbitrary one. Since Gröbner bases always exist, therefore, so do minimal Gröbner
bases.

Example: {y2 − 1, x− y} is a minimal Gröbner basis. So is {y2 − 1, x− y + 1
17 (y2 − 1)}.
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Definition: A set {f1, . . . , fr} ⊂ F [x1, . . . , xn] is a Gröbner basis iff

LT(f1, . . . , fr) = (LT(f1), . . . ,LT(fr))

Definition: A Gröbner basis {f1, . . . , fr} is minimal iff every fi has leading coefficient 1 and LT(fi) - LT(fj)
if i 6= j.

Theorem: Any two minimal Gröbner bases for the same ideal have the same number of elements.
Proof: Let {f1, . . . , fr} and {g1, . . . , gt} be two minimal Gröbner bases for the ideal I = (f1, . . . , fr) =
(g1, . . . , gt). We want to show r = t. Let fi ∈ {f1, . . . , fr} be any element. Then there is some gj such that
LT(gj) | LT(fi), since LT(fi) is not in the (zero) remainder left upon division of fi by {g1, . . . , gt}. Similarly,
some fk satisfies LT(fk) | LT(gj). So LT(fk) | LT(fi). Then minimality of {f1, . . . , fr} implies i = k, and so
LT(fi) = LT(gj). Since all the leading terms of the fis are different, and similarly for the gjs, we’ve just built
a bijection between the fis and gjs.

Definition: A Gröbner basis {f1, . . . , fr} is reduced iff it is minimal and no term of any fi is divisible by
LT(fj) for i 6= j.

Example: {x− y, y2 − 1} is reduced.
{x− y2 − y + 1, y2 − 1} is not reduced.

To find a reduced Gröbner basis, first find a minimal one {f1, . . . , fr}. For each i, replace fi by its remainder

upon division by {f1, . . . , f̂i, . . . , fr}.

Theorem: Any nonzero ideal I ⊂ F [x1, . . . , xn] has a unique reduced Gröbner basis.
Proof: Say {g1, . . . , gr} and {g′1, . . . , g′r} are reduced Gröbner bases for I = (g1, . . . , gr) = (g′1, . . . , g

′
r). For

any gi, let g′j be the element such that LT(gi) = LT(g′j).

The element gi − g′j has no terms divisible by any LT(gk) (because LT(gi) is cancelled by LT(g′j)). But
gi − g′j ∈ I, so gi − g′j = 0, and so gi = g′j .

Let F be a field, F [x] the polynomial ring in one variable. Then F has two ideals: (0) and (1), and every
nonzero element of F is a unit.

Fact: Let R be a nonzero ring. F a field. Then every homomorphism from F → R is 1–1.

F [x] is a PID, so it’s also a UFD. Every ideal of F [x] is of the form I = (p(x)) for some p(x) ∈ F [x]. The
ideal (p(x)) is maximal iff p(x) is irreducible, and prime iff p(x) is irreducible or zero.

What does F [x]/(p(x)) look like?

Theorem: (Chinese Remainder) Let p(x), q(x) ∈ F [x] be coprime polynomials. Then:

φ : F [x]/(pq)→ F [x]/(p)⊕ F [x]/(q)

given by φ(a(x) mod pq) = (a(x) mod p, a(x) mod q) is an isomorphism.
Proof: φ is clearly a homomorphism.
1–1: Say a(x) ≡ b(x) mod p and a(x) ≡ b(x) mod q. We want to show

a(x) ≡ b(x) mod pq.

Since p | a− b and q | a− b, the fact that p, q are coprime and F [x] is a UFD =⇒ pq | a− b, so

a(x) ≡ b(x) mod pq.
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Onto: Say f(x), g(x) are any elements of F [x]. We want to find a single h(x) ∈ F [x] satisfying φ(h(x) mod
pq) = (f(x) mod p, g(x) mod q):

h(x) ≡ f(x) mod p

h(x) ≡ g(x) mod q

Since p, q coprime, there are a(x), b(x) ∈ F [x] such that:

a(x)p(x) + b(x)q(x) = 1.
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Theorem: (Chinese Remainder) Let F be a field, p(x), q(x) ∈ F [x] coprime polynomials. Then the function:

φ : F [x]/(pq)→ F [x]/(p)⊕ F [x]/(q)

given by
(a(x) mod pq) 7→ (a(x) mod p, a(x) mod q)

is an isomorphism.
Proof: (Continued) To show that φ is onto, we first note that since F [x] is a PID, and since p, q are coprime,
we get (p(x), q(x)) = (1). In other words, there are a(x), b(x) ∈ F [x] such that

a(x)p(x) + b(x)q(x) = 1.

Now let f(x), g(x) ∈ F [x] be any polynomials. We want to find h(x) ∈ F [x] such that

h(x) ≡ f(x) mod p

h(x) ≡ g(x) mod q

Let h(x) = f(x)b(x)q(x) + g(x)a(x)p(x). Then

h(x) ≡ f(x) mod p

and h(x) ≡ g(x) mod q

So φ(h(x) mod pq) = (f(x) mod p, g(x) mod q), as desired.

In light of the CRT, to understand F [x]/(f(x)), it suffices to understand

F [x]/(p(x)a)

for irreducible polynomials p(x). We will study F [x]/(p(x)) for irreducible p(x). Note that F [x]/(p(x)) is a
field iff p(x) is irreducible in F [x].

Linear Algebra over general fields.
Non-definition: A vector space over a field F is a set V of “vectors” that you can add, subtract, and
multiply by scalars in a sensible way.

Spanning, linear independence, basis, dimension, linear transformation, kernel, range, eigenstuff. . . they all
have the same definitions and properties over a general field as they do over, say, R.

Note that if F is a field and R is any ring with F ⊂ R, then R is an F -vector space.

In particular, F [x]/(p(x)) is an F -vector space.

F ↪→ F [x]/(p)

α 7→ (α mod p)

Theorem: Let F be a field, p(x) ∈ F [x] any polynomial. If p(x) = 0, then dimF F [x]/(p(x)) =∞. Otherwise,
dimF F [x]/(p(x)) = deg(p(x)).
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Proof: If p(x) = 0, then F [x]/(0) = F [x], which contains the infinite linearly independent set {1, x, x2, x3, . . .}.
Now assume p(x) 6= 0. Then by the Division Theorem, for any f(x) ∈ F [x], we can write:

f(x) = q(x)p(x) + r(x)

where q(x), r(x) ∈ F [x], and deg(r(x)) < deg(p(x)). Better yet, r(x) is unique!

So F [x]/(p(x)) is in 1–1 correspondence with { r(x) : deg(r) < deg(p) }. Furthermore, this correspondence
respects addition and scalar multiplication, but not multiplication (unless you reduce the result mod p(x)
again).

In particular, F [x]/(p(x)) is isomorphic as an F -vector space to:

V = { r(x) : deg(r(x)) < deg(p(x)) }

A basis for V is
{1, x, x2, . . . , xdeg p−1}

so dimF F [x]/(p(x)) = deg(p(x)) as desired.

Example: dimQ Q[x]/(x2 − 1) = 2

(a+ bx)(c+ dx) = (ac+ bd) + (ad+ bc)x

Basis: {1, x}
Example: dimQ Q[x]/(x2 − 2) = 2

(a+ bx)(c+ dx) = (ac+ 2bd) + (ad+ bc)x

Basis: {1, x}.
These two rings are not isomorphic, but the two Q-vector spaces are.
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Say R is a ring, contained in another ring T . Let α ∈ T . Then:

R[α] = { f(α) : f(x) ∈ R[x] }21)

Example: Z[
√

2] = { f(
√

2) : f(x) ∈ Z[x] }

= { a+ b
√

2 : a, b ∈ Z }

Say F is a field, contained in some other field E. Let α ∈ E. Then:

F (α) =

{
f(α)

g(α)
: f, g ∈ F [x], g(α) 6= 0

}

Example: Q(
√

2) =

{
f(
√

2)

g(
√

2)
: f, g ∈ Q[x], g(

√
2) 6= 0

}
=

{
a+ b

√
2

c+ d
√

2
: c+ d

√
2 6= 0, a, b, c, d ∈ Q

}
=

{
(a+ b

√
2)(c− d

√
2)

c2 − 2d2
: a, b, c, d ∈ Q, c+ d

√
2 6= 0

}
=
{(

Messy
rational
number

)
+
(

Other messy
rational
number

)√
2
}

21)ring
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so Q(
√

2) ⊂ {A+B
√

2 : A,B ∈ Q }. It’s clear that A+B
√

2 ∈ Q(
√

2) for all A, B ∈ Q, so:

Q(
√

2) = {A+B
√

2 : A,B ∈ Q }

= spanQ{1,
√

2}

Q[
√

2] = { f(
√

2) : f(x) ∈ Q[x] }

= {A+B
√

2 : A,B ∈ Q }

= Q(
√

2)

Definition: A field extension E/F is a pair of fields E, F with F ⊂ E. If α ∈ E, then α is algebraic over F
iff there is some nonzero p(x) ∈ F [x] such that p(α) = 0. Otherwise, α is called transcendental over F .

An extension E/F is called algebraic iff every element α ∈ E is algebraic over F . Otherwise, E/F is called
transcendental.

If E/F is an extension of fields, then E is an F -vector space. The dimension of E over F is called the degree
of E/F .

[E : F ] = dimF E = dimension of E as an F -vector space

Example: [Q(
√

2) : Q] = 2, basis {1,
√

2}
[C : R] = 2
[R : Q] =∞
The degree of α over F is the degree of F (α) over F .

Theorem: Let E/F be a field extension, α ∈ E algebraic over F . Then there is a unique monic irreducible
polynomial p(x) ∈ F [x] such that

F (α) ∼= F [x]/(p(x))

where the isomorphism is given by
(f(x) mod p(x)) 7→ f(α)

Proof: Define φ : F [x]→ E by φ(f(x)) = f(α). The kernel of φ is an ideal of F [x], which is a PID, so we can
write kerφ = (p(x)) for some polynomial p(x) ∈ F [x]. Since α is algebraic over F , kerφ 6= (0), so p(x) 6= 0.
There is a unique monic p(x) that generates kerφ; choose that one.

Now, E is a domain, so imφ is a domain, so F [x]/ kerφ ∼= imφ is a domain, so kerφ = (p(x)) is a prime ideal.
Since kerφ 6= (0) and F [x] is a PID, we know that (p(x)) is a maximal ideal, so p(x) is irreducible in F [x].

It remains only to show that F (α) = imφ. First, note that imφ is a field that contains α, so F (α) ⊂ imφ,
because imφ is closed under +, −, ·, and ÷. The definitions of F (α) and φ immediately imply that imφ ⊂ F (α),
so imφ = F (α), as desired.
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Let E/F be a field extension, α ∈ E, α algebraic over F . Then F (α) ∼= F [x]/(p(x)), where p(x) is a unique,
monic, irreducible polynomial in F [x]. The polynomial p(x) is called the minimal polynomial for α over F .

Note that this fact immediately implies that:

[F (α) : F ] = degF F (α) = deg(p),

and that a basis for F (α)/F is {1, α, α2, . . . , αdeg(p)−1}.

Theorem: Let α be algebraic over F , p(x) ∈ F [x] the minimal polynomial for α/F . If q(x) ∈ F [x] satisfies
q(α) = 0, then p(x) | q(x). In particular, if q(α) = 0, q(x) ∈ F [x], q(x) monic and irreducible, then q(x) = p(x).
Proof: We may write q(x) = a(x)p(x) + r(x) where deg(r(x)) < deg(p(x)). Then:

r(α) = q(α)− a(α)p(α) = 0

so r(x) ∈ kernel of “plug in α” homomorphism. This kernel is, by definition of the minimal polynomial, just
(p(x)). Since deg(r) < deg(p), this means that r(x) = 0, and p(x) | q(x).
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Theorem: Let α be algebraic over F , p(x) the polynomial for α/F . Then p(x) is the monic, nonzero
polynomial in F [x] of smallest degree such that p(α) = 0.
Proof: By definition, (p(x)) = ker(plug-in-α). Since p(x) is the monic polynomial in (p(x)) of smallest degree,
it is immediately also the monic, nonzero polynomial of smallest degree in ker(plug-in-α)

= { q(x) ∈ F [x] : q(α) = 0 }.

Example: Find the minimal polynomial for
√

2 over Q.
Answer: x2 − 2, because (

√
2)2 − 2 = 0 and x2 − 2 is monic and irreducible (by Eisenstein on (2)).

Example: Find the minimal polynomial for e2πi/5 over Q.

x5 − 1 has e2πi/5 as a root, but is not irreducible:

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1︸ ︷︷ ︸
Is this it?

)

Reduce mod 2: x4 + x3 + x2 + x+ 1 has no roots, so it’s either irreducible or factors into 2 quadratics:

��x
2,��

�
x2 + 1,��

��
x2 + x, x2 + x+ 1

Since (x2 + x+ 1)2 = x4 + x2 + 1 6= x4 + x3 + x2 + x+ 1, our polynomial doesn’t factor into two quadratics,
so x4 + x3 + x2 + x+ 1 is irreducible in Z2[x], and hence, also irreducible over Z and Q.

x3 + x 6= 0 in Z2[x].

(
√

2)5 − (
√

2) = 4
√

2−
√

2 = 3
√

2 6= 0

so x5 − x 6= 0 in Z5[x].

Example: Find the minimal polynomial for 3 + 2i over Q.
Answer: If a0 + a1x+ · · ·+ anx

n−1 + xn is the minimal polynomial, then:

a0 + a1(3 + 2i) + · · ·+ (3 + 2i)n = 0

n = 0: Obvious non-starter.
n = 1: a0 + a1(3 + 2i) = 0
=⇒ (a0 + 3a1) + (2a1)i = 0
Since {1, i} are linearly independent over Q, we get:{

a0 + 3a1 = 0

2a1 = 0

=⇒ a0 = a1 = 0. So no good.
n = 2: a0 + a1(3 + 2i) + a2(3 + 2i)2 = 0
=⇒ (a0 + 3a1 + 5a2) + (2a1 + 12a2)i = 0{
a0 + 3a1 + 5a2 = 0

2a1 + 12a2 = 0

a2 = 1 =⇒

{
a0 + 3a1 = −5

2a1 = −12

=⇒ a1 = −6, a0 = 13
Therefore x2 − 6x+ 13 is the minimal polynomial

Check for irreducibility: x = 6±
√

36−52
2 = 6±

√
−16

2 = 3± 2i
Roots are not in Q, so irreducible.
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Fact: If F is a field, α an element of some ring R containing F , then any field E that contains F and α must
contain F (α).

M

[M :L]

[M :K] L

[L:K]

K


Tower of fields, K ⊂ L ⊂M

Theorem: (KLM) Say K ⊂ L ⊂M is a tower of fields. Then:

[M : K] = [M : L][L : K]

where [M : K] =∞ iff either [M : L] =∞ or [L : K] =∞.
Proof: Let {u1, . . . ,ul} be a basis for L/K, and let {v1, . . . ,vm} be a basis of M/L.
Claim: {uivj} i∈{1,...,l}

j∈{1,...,m}
is a basis of M/K.

Note that the claim immediately implies the theorem.
Proof of claim: Spanning: Let x ∈M be any element. We want to find aij ∈ K such that x =

∑
i,j aijuivj .

Since {v1, . . . ,vm} is a basis of M/L, we can find b1, . . . , bm ∈ L such that:

x = b1v1 + · · ·+ bmvm

for each j, write:
bj = a1ju1 + a2ju2 + · · ·+ aljul

for aij ∈ K. Then:

x =
(∑

i

ai1ui

)
v1 + · · ·+

(∑
i

aimui

)
vm

=
∑
i,j

aijuivj

where aij ∈ K, as desired.

Linear independence: Set
∑
i,j aijuivj = 0. We want to show that if aij ∈ K, then aij = 0 for all i, j.

Rewrite: (∑
i

ai1ui

)
v1 + · · ·+

(∑
i

aimui

)
vm = 0

The coefficient of each vj lies in L, since aij ∈ K ⊂ L and u1 ∈ L. So:

Since {v1, . . . ,vm} is linear independent over L


a11u1 + a21u2 + · · ·+ al1ul = 0

...

a1mu1 + a2mu2 + · · ·+ almul = 0

Since {u1, . . . ,ul} is linearly independent over K, we conclude aij = 0 for all i, j, as desired. (claim)
If [M : L] or [L : K] is infinite, then it is clear that [M : K] =∞ because any infinite linearly independent
subset of M/L or L/K is also linearly independent in M/K.

Otherwise, if [M : L] and [L : K] are both finite, we’ve already shown that [M : K] is also finite.
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Example: Compute [Q(
√

13,
√

7) : Q]. Find a basis for Q(
√

13,
√

7)/Q.

Q(
√

13,
√

7)

Q(
√

13)

2 x2 − 13 is a minimal polynomial (Eisenstein on (13))

Q

Claim: x2 − 7 is irreducible over Q(
√

13).
Proof of claim: Look for roots:

(a+ b
√

13)2 − 7 = a2 + 13b2 + 2ab
√

13− 7

= 0

=⇒ (a2 + 13b2 − 7) + (2ab)
√

13 = 0

Since {1,
√

13} is linearly independent over Q:{
a2 + 13b2 − 7 = 0

2ab = 0

It is easy to see that there are no a, b ∈ Q satisfying both equations, so x2 − 7 has no roots in Q(
√

13), and
so x2 − 7 is irreducible over Q(

√
13). (claim)

So [Q(
√

13,
√

7) : Q] = 4 by KLM. A basis for Q(
√

13,
√

7)/Q is {1,
√

13,
√

7,
√

91}.

Say L/K is a field extension of degree n. If K ⊂ F ⊂ L with F a field, then n is a multiple of [F : K] and
[L : F ].

Q(
√

13,
√

7)

2 2

Q(
√

13)

2

Q(
√

7)

2

Q

Q(
√

13, 3
√

7)

3 2

Q(
√

13)

2

Q( 3
√

7)

3

Q
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Definition: Let F be a field, p(x) ∈ F [x] any nonconstant polynomial. A splitting field for p(x) over F is a
field E such that:

(1) p(x) = c(x− a1) · · · (x− an) for c, a1, . . . , an ∈ E

(2) E = F (a1, . . . , an).

Example: A splitting field for x2 − 2 over Q is Q(
√

2), since Q(
√

2) = Q(
√

2,−
√

2).
Example: A splitting field for x2 − 1 over Q is Q.

Example: A splitting field for x3 − 2 over Q is Q( 3
√

2, e2πi/3) = Q( 3
√

2, −1+
√
−3

2 )

Proof: Let γ = e2πi/3 be a primitive cube root of unity. Then:

x3 − 2 = (x− 3
√

2)(x− γ 3
√

2)(x− γ2 3
√

2)

So a splitting field is:
Q(

3
√

2, γ
3
√

2, γ2 3
√

2) = Q(
3
√

2, γ)
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Definition: An extension E/F is finite iff [E : F ] <∞.
Theorem: Let E/F be a finite extension. Then E/F is algebraic.
Proof: Let α ∈ E, [E : F ] = n. Then {1, α, α2, . . . , αn} is linearly dependent over F :

a0 + a1α+ a2α
2 + · · ·+ anα

n = 0

for a0, . . . , an ∈ F , not all zero. Then α is a root of a0 + · · ·+ anx
n ∈ F [x], so α is algebraic over F .

This means that for any E/F , the set of elements of E that are algebraic over F is a field:

Ealg = {α ∈ E : α is algebraic over F }

because if α, β ∈ Ealg, then F (α)/F and F (β)/F are both finite extensions:

F (α, β)

finite

F (α)

finite

F


finite, by KLM

So F (α, β) is finite over F , and F (α, β) contains α+ β, αβ, α− β, α/β. These four are all algebraic over F ,
by the theorem, so Ealg is closed under +, −, ·, ÷.

For any field F , there is a field F that is algebraic over F , and every non-constant polynomial p(x) ∈ F [x]
factors into linear factors in F [x]. F is called an algebraic closure of F .

Definition: Let F be a field, p(x) ∈ F [x] a nonconstant polynomial. Then p(x) is separable iff gcd(p(x),
p′(x)) = 1, where p′(x) is the derivative of p(x).

Definition: Let F be a field. Then the derivative of a0 +a1x+· · ·+anxn ∈ F [x] is a1 +2a2x+· · ·+nanxn−1 ∈
F [x].
Clearly (cf(x))′ = cf ′(x) and (f + g)′ = f ′ + g′.
Theorem: (Product Rule)

(fg)′ = f ′g + g′f

where f , g ∈ F [x], F a field.
Proof: By additivity and linearity, we may reduce to the case f = xn, g = xm. Then:

(fg)′ = (xn+m)′ = (n+m)xn+m−1

and f ′g + g′f = n(xn−1)xm +m(xn)xm−1

= (n+m)xn+m−1

Theorem: Let F be a field, p(x) ∈ F [x] non-constant, F an algebraic closure of F . Then p(x) is separable
iff p(x) has no multiple roots in F .
Proof: Forwards: If p(x) = (x − a)2q(x), then p′(x) = (x − a)2q′(x) + 2(x − a)q(x) =⇒ p′(a) = 0 and
x− a | gcd(p(x), p′(x)), so p(x) is not separable.
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Theorem: Let F be a field, p(x) ∈ F [x] a non-constant polynomial, F an algebraic closure of F . Then p(x)
is separable iff p(x) has no multiple roots in F .
Proof: Forwards: If p(x) has a multiple root a ∈ F , then (x− a)2 | p(x), so by Product Rule x− a | p′(x)
so x − a | gcd(p, p′) in F [x]. Since a is algebraic over F , it has a minimal polynomial q(x) in F [x], and
q(x) | gcd(p, p′) in F [x].
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Backwards: Say g(x) = gcd(p, p′), and assume g 6= 1. Then g(x) has a root a ∈ F . So p(a) = p′(a) = 0. Then
p(x) = (x− a)q(x) for some q(x) ∈ F [x], so

p′(x) = q(x) + (x− a)q′(x)

=⇒ q(a) = 0.

This means x− a | q(x) =⇒ (x− a)2 | p(x).
Theorem: Let F be a field, p(x) ∈ F [x] an irreducible polynomial. Then p(x) is separable, unless p′(x) = 0.
Proof: Well, p′(x) ∈ F [x], and has smaller degree than p(x). In particular, p(x) - p′(x) unless p′(x) = 0. So
gcd(p(x), p′(x)) = 1.
Corollary: If charF = 0, then every irreducible polynomial in F [x] is separable.
Example: x3 − 1 ∈ Z3. Then:

(x3 − 1)′ = 3x2 = 0

Example: F = Z3(T )
Consider x3 − T ∈ F [x]22). Then (x3 − T )′ = 3x2 = 0 but x3 − T has no roots in F , because 3

√
T is not a

rational function.
Definition: A field is perfect iff every irreducible polynomial in F [x] is separable.
Note: Every field of characteristic 0 is perfect.
Fact: Every finite field is perfect.

Definition: Let E/F be a field extension, α ∈ E any element. Then α is separable over F iff α is algebraic
over F and its minimal polynomial is separable. E/F is separable iff every α ∈ E is separable over F .
Note: F is perfect iff every extension of F of finite degree is separable. Say f(x) = a0 + · · ·+ anx

n satisfies
f ′(x) = 0. Assume charF = p > 0.
Then f ′(x) = a1 + 2a2 + · · ·+ nanx

n−1 = 0 so for all i, iai = 0. This means:

f(x) = a0 + apx
p + a2px

2p + · · ·+ akpx
kp

Theorem: If charR = p is prime, then for all a, b ∈ R, (a+ b)p = ap + bp.

Proof: (a+ b)p =

p∑
i=0

(
p

i

)
aibp−i

= ap + bp

because p |
(
p
i

)
= p!

i!(p−i)! for i ∈ {1, . . . , p− 1}.

Definition: Let R be a ring of characteristic p for p prime. Then the function

Φp(a) = ap

is a homomorphism, called the Frobenius homomorphism. It’s often written Frobp.

Theorem: Let F be a field of characteristic p. Then F is perfect iff Frobp : F → F is onto.
Proof: Forwards: Say F is perfect, and let a ∈ F be any element. We want to show a = bp for some b ∈ F .
Consider xp− a ∈ F [x]. Its derivative is 0, so xp− a is reducible in F [x]. However, if F is an algebraic closure
of F , and b ∈ F is a root of xp − a, we get,

(x− b)p = xp − a.

Comparing constant terms gives bp = a. Write xp − a = f(x)g(x) for f , g ∈ F [x]. Then f(x) = (x− b)k for
some k ∈ {1, . . . , p − 1}. The coefficient of xk−1 in f(x) is −kb ∈ F . Since k ∈ {1, . . . , p − 1}, this means
k 6= 0, so b ∈ F .

Backwards: Say f(x) = a0 + · · ·+anx
n is irreducible. If f ′(x) 6= 0, then f(x) is separable, so assume f ′(x) = 0.

Then f(x) = a0 + apx
p + · · ·+ apkx

pk

= bp0 + bp1x
p + · · ·+ bpkx

pk

22)imperfect
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for some bi ∈ F .

= Φp(b0) + Φp(b1x) + · · ·+ Φp(bkx
k)

= Φp(b0 + b1x+ · · ·+ bkx
k)

= (b0 + b1x+ · · ·+ bkx
k)p

so f(x) factors, a contradiction. So f ′(x) 6= 0, and f(x) is separable.

Theorem: Let F be a finite field. Then F is perfect.
Proof: The Frobenius homomorphism from F to F is 1–1, so since F is finite, Frobenius is also onto. So F
is perfect.
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Splitting fields
Definition: Let F be a field, p(x) ∈ F [x] a nonconstant polynomial. A splitting field for p(x) over F is a
field E containing F such that

(1) p(x) = c(x− a1) · · · (x− an) for c, a1, . . . , an ∈ E

and (2) E = F (a1, . . . , an).

If p(x) is constant, then we say F is a splitting field for p(x) over F .

Theorem: Let F be a field, p(x) ∈ F [x] any polynomial. Then there is a splitting field for p(x) over F , and
any two splitting fields for p(x) over F are isomorphic.
Proof: Existence. We prove this by induction on deg(p(x)).
Base case: deg(p(x)) = 0 =⇒ splitting field is F .
Inductive Hypothesis: for any field F , and any p(x) ∈ F [x] of degree < n, there exists a splitting field for p(x)
over F .

Let p(x) ∈ F [x] have degree n. Write:
p(x) = p1(x) · · · pk(x)

for irreducible p1(x), . . . , pk(x) ∈ F [x]. Consider E = F [a]/(p1(a)). Then E is a field (because p1(x) is
irreducible), and it contains a root (namely a) of p(x). Then, in E[x], we have:

p(x) = (x− a)q(x)

for some q(x) ∈ E[x]. Since deg(q(x)) < n, by induction, there exists a splitting field E′ of q(x) over E. Then,
in E′[x], we have:

p(x) = c(x− a)(x− a2) · · · (x− an)

for c, a1, . . . , an ∈ E′, and

E′ = E(a2, . . . , an)

= F (a)(a2, . . . , an)

= F (a, a2, . . . , an)

so E′ is a splitting field for p(x) over F , as desired.

Uniqueness: We will induce on deg(p(x)), over all fields simultaneously. The base case is trivial, so assume
the inductive hypothesis for polynomials of degree < n, and let deg(p(x)) = n. Let E1 and E2 be splitting
fields for p(x) over F .

Write p(x) = c(x− a1) · · · (x− an) ∈ E1[x] and p(x) = c(x− b1) · · · (x− bn) ∈ E2[x].
Lemma: Let L/K be a field extension, p(x) ∈ K[x] irreducible, α, β ∈ L such that p(α) = p(β) = 0. Then
K(α) ∼= K(β) and the isomorphism maps α to β.
Proof of lemma: We already know K(α) ∼= K[x]/(p(x)) ∼= K(β). lemma
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Without loss of generality, assume that a1 and b1 are roots of the same irreducible factor of p(x). Then by
the lemma, F (a1) ∼= F (b1), and:

p(x) = (x− a1)q1(x) in F (a1)[x]

and p(x) = (x− b1)q2(x) in F (b1)[x]

We identify a1 and b1 via the isomorphism F (a1) ∼= F (b1). This identifies q1(x) = p(x)
x−a1 with q2(x) = p(x)

x−b1 , so
by induction, any splitting field for q1 over F (a1) is isomorphic to any splitting field for q2 over F (b1) ∼= F (a1).
These two fields are exactly E1 and E2 which are therefore isomorphic.
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Finite Fields, F

Example: Zp residues mod p, p prime.

Every field contains one of Q or Zp.
Since F is finite, F ⊇ Zp for some prime p.

F is a vector space over Zp with basis v1, . . . , vn.
Every v in F looks like

v = a1v1 + · · ·+ anvn where aj ∈ Zp
There are p possibilities for each aj and a change in any aj makes a fresh v.
So there are pn vs in all

i.e., #F = pn.

Proposition: Let A be a commutative ring and G the set of units in A. If #G = finite = m, say, then for
any u in G, um = 1.
Proof: Let v1, v2, . . . , vm be the full list of G.
Put v = v1v2 · · · vm.
Take any u in G. Look at list

uv1, uv2, . . . , uvm inside G.

This list has no duplicates. Indeed if uvj = uvi, cancel u and get vj = vi.
So our list exhausts G.

Hence 1 · v = (uv1)(uv2) · · · (uvm)

= um(v1v2 · · · vm)

= umv

Cancel v and get um = 1.

When we apply this to the set of non-zero elements of our finite field F (where #pn) we get up
n−1 = 1 for all

u in F where u 6= 0.

Refresh on splitting fields
Let K be any field and p(x)23) ∈ K[x] (monic, say, deg p(x) = n). A splitting field for p(x) is a field L such
that

(1) K ⊆ L

(2) p(x) = (x− a1)(x− a2) · · · (x− an) where aj ∈ L.

(3) If M is a field such that K ⊆M ( L then some aj /∈M OR if K ⊆M ⊆ L and all aj ∈M then M = L.

Every p(x) has a splitting field and if L1, L2 are splitting fields of p(x) then there is an isomorphism
φ : L1 → L2 such that φ(a) = a for each a in K.

Proposition: If F is finite field and #F = pn then F is the splitting field of xp
n −x as a polynomial in Zp[x].

Proof:

23) 6= 0
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1) Zp ⊆ F

2) up
n−1 = 1, for all u 6= 0 in F

multiply by u, get up
n − u = 0, also holds for u = 0

3) Since every element of F is a root of xp
n − x, then any proper subfield M ( F would not have at least

one of these roots.

Proposition: If p is any prime and n a positive integer and F = the splitting of xp
n − x in Zp[x], then #F = pn.
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Every finite field F has pn elements for some prime p and some positive integer n.
Every such F is the splitting field of xp

n − x over Zp.
Any two fields of cardinality pn are isomorphic.

Proposition: If p is a prime and n a positive integer and F = splitting field of xp
n − x, then #F = pn.

Lemma: If φ : K → K is a field homomorphism, then M = { a ∈ K : φ(a) = a } is a subfield of K.
Proof: Let a, b ∈M , i.e., φ(a) = a, φ(b) = b.

Then φ(a
.
± b) = φ(a)

.
± φ(b) = a

.
± b,

and if a 6= 0, we also get φ(a−1) = φ(a)−1 = a−1.
Proof of proposition: Have F : splitting field of xp

n − x.
Take Frobenius automorphism:

φ : F → F

a 7→ ap

}
(use (a±. b)p = ap ±. bp to show this is a field homomorphism)

Then φn = φ ◦ φ ◦ · · · ◦ φ, n-times is also a field homomorphism, whose set of fixed elements is M = { a ∈ F :
ap

n

= a }, which is a field inside F , by the lemma.

We see that M = set of roots of xp
n − x. So F is a subfield of F , which was the splitting field of xp

n − x.
Since F = smallest field containing roots of xp

n − x, we get M = F .
Finally, note that xp

n − x has no repeated roots, because its derivative

(xp
n

− x)′ = pnxp
n−1 − 1 = −1 in Zp[x]

is coprime with xp
n − x. So #F = pn.

Primitive generators
Let F = finite field and F ∗ = F \ {0}.
Let q = pn − 1 = #F ∗.
We saw that for every a in F ∗, aq = 1.

Theorem: There is some a ∈ F ∗ such that the list 1, a1, a2, . . . , aq−1 picks up all of F ∗.

Definition: If a ∈ F ∗ its order is the least integer k ≥ 1 such that ak = 1. Write k = ord(a).

Proposition 1: If k = ord(a) and am = 1, then k | m.
Proof: Write m = ks+ r, where 0 ≤ r < k. Then

1 = am = aks+r = (ak)sar = 1sar = ar.

By the minimality of k get r = 0. So m = ks.

Proposition 2: If a ∈ F ∗ and ord(a) = k ≥ 1, then 1, a, a2, . . . , ak−1 is the complete non-repeating list of
all b in F ∗ such that bk = 1.
Proof:

i) If aj is in the list, we see that (aj)k = (ak)j = 1j = 1.

ii) No repeats: Say ai = aj , where 0 ≤ i ≤ j ≤ k − 1.
Thus aj−i = 1, and since 0 ≤ j − i < k, the minimality of k gives j = i.
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iii) Let b ∈ F ∗ where bk = 1. Then b is a root of xk − 1 ∈ Zp[x]. This polynomial has at most k roots. But
the list is made up of such roots, and the list has k elements. So b is in the list.

PMATH 345 Lecture 30: July 16, 2010
We had finite field F , #F = pn, F ∗ = F \ {0}.
q = pn − 1.
If a ∈ F ∗, ord(a) = least k ≥ 1 such that ak = 1. (Recall aq = 1).

Proposition 1: If k = ord(a) and am = 1, then k | m. So ord(a) | q.

Proposition 2: If k = ord(a), then the list 1, a, a2, . . . , ak−1 does not repeat and includes all b in F ∗ that
satisfy bk = 1.

Proposition 3: If ord(a) = k and ord(b) = l, and k, l are coprime, then ord(ab) = kl.
Proof: Let m = ord(ab).
Since (ab)kl = aklbkl = (ak)l(bl)k = (1)l(1)k = 1.
Thus m | kl.
Now check kl | m. Since k, l are coprime, enough to check k | m and l | m.
Aside: If c ∈ F ∗ then ord(c) = ord(c−1): ck = 1 ⇐⇒ (c−1)k = 1
Now we have 1 = (ab)m = ambm.
Let j = ord(am) = ord(bm).
Now (am)k = (ak)m = 1m = 1.
=⇒ j | k
and likewise j | l.
Since k, l are coprime, we get j = 1.
So am = 1 = bm

Then k | m and l | m.

Theorem: In F ∗ there is some a such that 1, a, a2, . . . , aq−1 picks up all of F ∗.
Proof: Just check F ∗ has an element of order q.
Pick any a in F ∗ and put k = ord(a).
If k = q, done.
If k < q, the list 1, a, . . . , ak−1 does not cover all of F ∗. Pick b not in list. Let l = ord(b).
Note: bk 6= 1, by Proposition 2.
Hence l - k. Indeed, if k = lr we would get

bk = (bl)r = 1r = 1.

So some prime p (not original “p”) divides l more often than it divides k. Write k = pik1 and l = pj l1 where
0 ≤ i < j and k1, l1 have no p in them.
Put c = ap

i

, ord c = k1

d = bl1 , ord d = pj24)

Thus ord(cd) = pjk1 > pik1 = k.
We found an element, namely cd, whose order is bigger than ord a.
Keep doing this until an element in F ∗ of order q is found.

Example: The polynomial x2 − 2 is irreducible in Z5[x]. Hence F = Z5[x]/〈p(x)〉 is a field and #F = 25,

#F ∗ = 24. Have φ : Z5[x]→F
f(x) 7→f(x)+〈p(x)〉 and if α = x+ 〈p(x)〉 we know that 1, α, is basis for F over Z5.

Every element in F looks like a+ bα where a, b ∈ Z5.
Know α2 − 2 = 0, α2 = 2.
Find primitive generator of F .
Start with α.
Take powers

1, α, α2 = 2, α3 = 2α, α4 = 4, α5 = 4α, α6 = 3, α7 = 3α, α8 = 6 = 1

too short. Pick β not in list. Say β = α+ 1.

24)k1, pj coprime
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Powers of β.

1

β

β2 = (α+ 1)2 = α2 + 2α+ 1 = 2α+ 3

β3 = 2

β4 = 2α+ 2

β5 = 4α+ 1

β6 = 4 = −1

...

β12 = 1

So ordβ = 12.
So ordα = 30 · 23, ordβ = 31 · 22

Put γ = α30

= α, ord γ = 8
δ = β4 = 2α+ 2, ord δ = 325)

So ord(γδ) = 8 · 3 = 24

PMATH 345 Lecture 31: July 19, 2010
GF(pn) = Field with pn elements
GF26)(p) = Zp = integers mod p
GF(pn) 6∼= Zpn if n ≥ 2
Fix a prime p.

Fp = GF(p) = algebraic closure of GF(p)

GF(p8)

GF(p4) GF(p6) GF(p9)

GF(p2) GF(p3) GF(p5) GF(p7)

GF(p)

Theorem: Let p be prime, n, m ∈ Z≥1. Then GF(pn) ⊂ GF(pm) iff n | m. Moreover, if n | m, then there is
a unique subfield of GF(pm) with pn elements.
Proof: If GF(pn) ⊂ GF(pm), then GF(pm) is a vector space over GF(pn), with finite dimension k. Then
GF(pm) has (pn)k elements (pn scalars, k coefficients in basis), so pm = pnk and so n | m.

Now assume n | m. Then xp
n − x divides xp

m − x, because xp
n−1 − 1 divides xp

m−1 − 1, because pn − 1
divides pm − 1, because n divides m.

Every element of GF(pn) is a root of xp
n − x, and so is a root of xp

m − x, and so is an element of GF(pm).

Finally, any subfield of GF(pm) with pn elements must be exactly the set of roots of xp
n − x.

25)ord δ, ord γ coprime
26)“Galois Field”
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Example: Z[
√

10], 10 = 2 · 5 =
√

10 ·
√

10
2, 5,

√
10 are all irreducible in Z[

√
10]

But: (10) = (2,
√

10)2 · (5,
√

10)2

Check: (2,
√

10)(5,
√

10) = (10, 5
√

10, 2
√

10, 10) = (
√

10)
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Definition: Let D be a domain, K = K(D) its field of fractions. A fractional ideal (same as “fractionary
ideal”) of D is a subset I of K satisfying:

(1) 0 ∈ I

(2) If a, b ∈ I, then a− b ∈ I

(3) If a ∈ I, r ∈ D, then ra ∈ I

(4) There is some d ∈ D, d 6= 0, such that dI ⊂ D.

Note: The set dI is an (integral) ideal of D, so I = 1
d (dI) is just some integral ideal of D divided by a

nonzero element of D.

Example: The fractional ideals of Z are 1
m (nZ) = n

mZ for integers n, m ∈ Z with m 6= 0.

3
2Z = { 3n

2 : n ∈ Z } = {. . . ,−3,− 3
2 , 0,

3
2 , 3, 4

1
2 , 6, . . .}

Example: D = Z[
√

10], I =
√

10D + 3D = (
√

10, 3)D or

I =
√

10
2 D +D 6= 0

= { (a+ b
√

10)
√

10
2 + (c+ d

√
10) : a, b, c, d ∈ Z }

One can add and multiply fractional ideals simply:

(a1D + · · ·+ anD) + (b1D + · · ·+ bmD) = a1D + · · ·+ anD + b1D + · · ·+ bmD

(a1D + · · ·+ anD)(b1D + · · ·+ bmD) =
∑
i,j

aibjD

Example: (aD + bD)(cD + dD) = acD + bcD + adD + bdD
Example: D = Z[

√
10]: (√

10
2 D +D

)(√
10D + 1

2D
)

=(((
(((5D +
√

10D +
√

10
4 D + 1

2D

5D ⊂ 1
2D and

√
10D ⊂

√
10
4 D so product is

√
10
4 D + 1

2D

Definition: A fractional ideal is invertible iff there is a fractional ideal J such that IJ = D.

Say I, J fractional ideals of D, J 6= (0). Then I/J = {x ∈ K(D) : xJ ⊂ I }. I/J is a fractional ideal because

(1) 0 ∈ I/J

(2) If xJ ⊂ I and yJ ⊂ I then (x− y)J ⊂27) xJ − yJ ⊂ I

(3) If xJ ⊂ I and r ∈ D, then rxJ ⊂ xJ ⊂ I, so rx ∈ I/J .

(4) Need b ∈ D, b 6= 0 such that b(I/J) ⊂ D. Let a ∈ D, a 6= 0 satisfy aI ⊂ D and choose x ∈ J ∩D, x 6= 0.
Then b = ax works:

If y ∈ I/J , then
axy = a(xy) ∈ aI ⊂ D

so ax(I/J) ⊂ D.

27)NOT the same!
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Example: (nZ)/(mZ) =
{
a
b ∈ Q : ab (mk) ∈ nZ for all k ∈ Z

}
=
{
a
b ∈ Q : amkb ∈ nZ for all k ∈ Z

}
=
{
a
b ∈ Q : amb ∈ nZ

}
=
{
a
b ∈ Q : ab ∈

n
mZ

}
= n

mZ.

In general, if a, b ∈ D, then aD/bD = a
bD if b 6= 0. In particular, every principal fractional ideal (nonzero) is

invertible: aD/aD = D.
Example: Compute a, b such that D/(

√
10D + 5D) = aD + bD for D = Z[

√
10].

Let I = D/(
√

10D + 5D). Then:

I =
{
a+ b

√
10

a,b∈Q
: (a+ b

√
10)x ∈ Z[

√
10] for all x ∈

√
10D + 5D

}
=
{
a+ b

√
10

a,b∈Q
: (a+ b

√
10) ∈ Z[

√
10] and (a+ b

√
10)5 ∈ Z[

√
10]
}

10b+
√

10a ∈ Z[
√

10] =⇒ a ∈ Z, b ∈ 1
10Z

(5
√

10)b+ 5a ∈ Z[
√

10] =⇒ b ∈ 1
5Z

Therefore guess: I =
√

10
5 D +D

(a+ b
√

10 = (integer) + (integer)
√

10
5 )

Check: (
√

10
5 D +D)(

√
10D + 5D) = 2D +

√
10D +

√
10D + 5D = D
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Definition: A fractional ideal I of a domain D is invertible iff there is a fractional ideal J such that IJ = D.

Definition: A Dedekind domain is a domain is a domain in which every nonzero fractional ideal is invertible.
Example: Every PID is Dedekind.
Theorem: Let D be a Dedekind domain, P a nonzero prime ideal. Then P is maximal.
Proof: Assume that there is some ideal I ⊂ D with P ⊂ I. We want to show either P = I or I = D.

The fractional ideal PI−1 is a subset of II−1 = D, so PI−1 is an integral ideal of D. Now:

(PI−1)I = P

so since P is prime, either PI−1 ⊂ P or I ⊂ P . If PI−1 ⊂ P , then I−1 ⊂ D so II−1 ⊂ I so I = D because
D = II−1.

If I ⊂ P , then P ⊂ I =⇒ P = I.

Theorem: Let D be a Dedekind domain, I ⊂ D any nonzero ideal. Then I can be factored as a product of
prime ideals:

I = P1 · · ·Pn
and this factorization is unique up to permutation of the Pi.
Proof: Existence: If I is maximal, then it’s prime and I = I will do.

If I is not maximal, then there is an ideal J with I ( J ( D. Then I = J(J−1I), where J−1I ⊂ J−1J = D,
so J−1I is an integral ideal. If J and J−1I are both prime, then we’re done. If not, then keep factoring the
non-prime factors of I until all the factors are prime.

If this process never stops, then we have constructed an infinite ascending chain of ideals:

I ( I1
28) ( I2 ( I3 ( · · ·

28)“J”
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Lemma: Every invertible ideal is finitely generated.
Proof of lemma: Let I be an invertible ideal of a domain D. Then II−1 = D, so 1 = a1a

′
1 + · · ·+ ana

′
n for

ai ∈ I, a′i ∈ I−1. Clearly (a1, . . . , an) ⊂ I, so let x ∈ I. Then x = (xa′1)a1 + · · ·+ (xa′n)an.

Since x ∈ I, a′i ∈ I−1, we get xa′i ∈ D so x ∈ (a1, . . . , an). Therefore, I = (a1, . . . , an) is finitely generated.
lemma

Corollary: Every Dedekind domain is Noetherian.
Proof: Immediate.
By the Corollary, D is Noetherian, so it obeys the ACC, and we obtain a contradiction.
Uniqueness: Say I = P1 · · ·Pn = Q1 · · ·Qm for Pi, Qj prime. We want to show that these two factorizations
are the same up to permutation.

Since P1 · · ·Pn ⊂ Q1 · · ·Qm ⊂ Q1, we get Pi ⊂ Q1 for some i. But D is Dedekind, so Pi is maximal and so
Pi = Q1. Multiplying both sides by Q−1

1 , we obtain P1 · · · P̂i · · ·Pn = Q2 · · ·Qm. Continuing in this manner,
we eventually obtain either a product of some Pis equals D, or some Qjs equals D.

This is only possible if the product of Pis or Qjs is empty, so our repeated cancellation process constructed a
bijection between the Qjs and Pis, as desired.

Definition: Let D be a domain, I, J two nonzero ideals of D. Then I and J are in the same ideal class iff
there is some a ∈ K(D) such that I = aJ . This is an equivalence relation, and the equivalence classes are
called ideal classes.

Note that D is a PID iff it has only one ideal class.

Definition: The class number of D is the number of ideal classes of D.

PMATH 345 Lecture 34: July 26, 2010
Recall:

A/B = {x ∈ K(D) : xB ⊂ A }

Is this the same as AB−1?
Answer: No, because B might not be invertible.

Theorem: Let D be a domain, K(D) its fraction field, A, B two fractional ideals of D, with B invertible.
Then

A/B = AB−1

Proof: Clearly B(A/B) ⊂ A, so A/B ⊂ AB−1.

Conversely, say x ∈ AB−1. We want to show x ∈ A/B. Well, x ∈ AB−1 =⇒ xB ⊂ A, so x ∈ A/B.
Corollary: Let I be an invertible ideal of a domain D. Then I−1 = D/I.

Warning: If B is not invertible, then (A/B)B 6= A, necessarily.

Example: Compute (2,
√
−5 + 1)−1 in Z[

√
−5] = D.

Solution: Let J = (2, 1 +
√
−5). If a+ b

√
−5 ∈ J−1, then

2(a+ b
√
−5) ∈ Z[

√
−5] (1)

and (1 +
√
−5)(a+ b

√
−5) ∈ Z[

√
−5] (2)

(1) =⇒ a, b ∈ 1
2Z

(2) =⇒

{
a− 5b ∈ Z
a+ b ∈ Z
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Write a = c
2 , b = d

2 . Then c− 5d and c+ d are even. This is equivalent to c ≡ d mod 2:

a+ b
√
−5 =

c+ (c+ 2k)
√
−5

2
k ∈ Z

= c

(
1 +
√
−5

2

)
+ k
√
−5

So guess: J−1 = ( 1+
√
−5

2 )D + (
√
−5)D = I

Check: (( 1+
√
−5

2 )D+
√
−5D)(2D+ (1 +

√
−5)D) = (1 +

√
−5)D+ (−2 +

√
−5)D+ (2

√
−5)D+ (−5 +

√
−5)D

3 = (1 +
√
−5)− (−2 +

√
−5) ∈ IJ

−4 = (1 +
√
−5)− (2

√
−5) + (−5 +

√
−5) ∈ IJ

−(3 + (−4)) ∈ IJ
=⇒ D ⊂ IJ

Since IJ ⊂ D, we get IJ = D =⇒ I = J−1.

Example: Factor (6) in Z[
√

7].
Solution: (6) = (2)(3).
Is (2) prime? Compute Z[

√
7]/(2): {0, 1,

√
7, 1 +

√
7}

(
√

7)2 = 7 6= 0
√

7(1 +
√

7) = 7 +
√

7 = 1 +
√

7 6= 0

(1 +
√

7)2 = 1 + 2
√

7 + 7 = 0!

Consider (2, 1 +
√

7). Since (1 +
√

7)2 ≡ 0 mod (2), we’re guessing that (2) = (2, 1 +
√

7)2:

(2, 1 +
√

7)2 = (4, 2 + 2
√

7, 8 + 2
√

7)

= (4, 6, 2 + 2
√

7, 8 + 2
√

7)

= (2)

Is (2, 1 +
√

7) prime? Yes, because Z[
√

7]/(2, 1 +
√

7) ∼= Z/2Z via a + b
√

7 7→ a + b (mod 2). So (6) =
(2, 1 +

√
7)2(3)

Is (3) prime?

Z[
√

7]/(3) ∼= Z[x]/(x2 − 7, 3)

∼= Z3[x]/(x2 − 7)

∼= Z3[x]/(x2 − 1)

This is not a domain, since x2 − 1 is reducible. 1±
√

7 are zero divisors mod 3:

(1 +
√

7)(1−
√

7) = −6 ≡ 0 mod 3.

Compute (3, 1 +
√

7)(3, 1−
√

7) = (9, 3 + 3
√

7, 3− 3
√

7,−6) = (3)
(3, 1±

√
7) is prime, because:

Z[
√

7]/(3, 1±
√

7) ∼= Z3 via

a+ b
√

7 7→ a∓ b mod 3

So (6) = (2, 1 +
√

7)2(3, 1 +
√

7)(3, 1−
√

7).
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