PMATH 345 Lecture 1: May 3, 2010

PMath 345 David McKinnon http://www.student.math.uwaterloo.ca/~pmat345

Rings

A ring is a bunch of things you can add, subtract and multiply in a reasonable way.

Example: \mathbb{Z} , \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{R}[x] = \{\text{polynomials in } x \text{ with real coefficients} \}$, $\mathbb{R}[x_1, \ldots, x_n] = \{\text{polynomials in } x_1, \ldots, x_n \text{ with real coefficients} \}$, $M_n(\mathbb{Z}) = \{n \times n \text{ matrices with } \mathbb{Z} \text{ coefficients} \}$, $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} = \text{``Gaussian integers''}$

Definition: A ring is a set R with two functions $+: R \times R \to R$ and $:: R \to R$ satisfying the following properties for all $a, b, c \in R$:

- (1) (a+b) + c = a + (b+c)
- $(2) \quad a+b=b+a$
- (3) There exists $0 \in R$ such that a + 0 = a
- (4) There exists $-a \in R$ such that a + (-a) = 0
- (5) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- (6) $a \cdot b = b \cdot a \quad \leftarrow$ Not really a ring axiom
- (7) There exists a $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$. Controversial! rng
- (8) $a \cdot (b+c) = a \cdot b + a \cdot c$ $(a+b) \cdot c = a \cdot c + b \cdot c$

$$0_{\text{Paul}} = 0_{\text{Paul}} + 0_{\text{Ringo}} = 0_{\text{Ringo}}$$

Definition: Let R be a ring. A subring of R is a subset $S \subset R$ which is a ring using the + and \cdot of R. **Example:** \mathbb{Q} is a subring of \mathbb{C} .

 $\mathbb{Z}[i]$ is a subring of \mathbb{C} .

Theorem: (Subring Theorem) Let R be a ring. $S \subset R$ a subset. Then S is a subring of R iff

- (1) $0, 1 \in S$
- (2) If $a, b \in S$, then $a b \in S$.
- (3) If $a, b \in S$, then $a \cdot b \in S$.

PMATH 345 Lecture 2: May 5, 2010

Definition: A ring is a set R with 2 operations $+: R \times R \rightarrow R$, $:: R \times R \rightarrow R$ satisfying for all $a, b, c \in R$:

(1)
$$(a+b) + c = a + (b+c)$$

- (2) a + b = b + a
- (3) There is $0 \in R$ such that $a + 0 = a \ \forall a \in R$
- (4) There is $-a \in R$ such that a + (-a) = 0
- (5) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- (6) $a \cdot b = b \cdot a$
- (7) There is $1 \in R$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$
- (8) $a \cdot (b+c) = a \cdot b + a \cdot c$ $(a+b) \cdot c = a \cdot c + b \cdot c$

Theorem: (Subring Theorem) Let R be a ring. $S \subset R$ any subset. Then S is a subring of R *iff*: (1) $0, 1 \in S$

- (2) If $a, b \in S$ then $a b \in S$
- (3) If $a, b \in S$ then $ab \in S$

Proof: Forwards is trivial.

Backwards: Assume S satisfies (1), (2), and (3) from the theorem. We need to check that + and \cdot are well defined from $S \times S \to S$, and we need to check (1)–(8).

The fact that \cdot is from $S \times S \to S$ is precisely (3). For +, first note that (1) means that $0, 1 \in S$. By (2), we find $0 - 1 = -1 \in S$. Thus, if $a, b \in S$, then by (3), $(-1) \cdot b \in S$ so since $(-1) \cdot b = -b$, we get $-b \in S$.

$$(-1) \cdot b + b = (-1+1) \cdot b$$
$$= 0 \cdot b$$
$$= 0$$
follows from: $0 \cdot b = (0+0) \cdot b$
$$= 0 \cdot b + 0 \cdot b$$
$$\implies -0 \cdot b + 0 \cdot b = -0 \cdot b + 0 \cdot b + 0 \cdot b$$
$$\implies 0 = 0 \cdot b$$

b

We want to show that $a + b \in S$. Well, $-b \in S$, so $a - (-b) \in S$ by (2), so $a + b \in S$. (1), (2), (5), (6), (8): Trivial for S

(3), (7): By (1)

(4): Already done

Example: Prove $\mathbb{Z}[\sqrt{17}] = \{a + b\sqrt{17} : a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R} . **Solution:** $\mathbb{Z}[\sqrt{17}] \subset \mathbb{R}$ clearly. By Subring Theorem:

(1)
$$0 = 0 + 0\sqrt{17} \in \mathbb{Z}[\sqrt{17}]$$

 $1 = 1 + 0\sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
(2) $a + b\sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
 $c + d\sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
 $\implies (a + b\sqrt{17}) - (c + d\sqrt{17}) = (a - c) + (b - d)\sqrt{17} \in \mathbb{Z}[\sqrt{17}]$

(3) Similarly, $(a + b\sqrt{17})(c + d\sqrt{17}) = (ac + 17bd) + (ad + bc)\sqrt{17} \in \mathbb{Z}[\sqrt{17}]$ so we're done.

Definition: Let R be a ring, $r \in R$ any element. Then:

r is a zero divisor iff ra = 0 for some $a \in R$, $a \neq 0$, provided $r \neq 0$. r is a unit iff there is an element $1/r \in R$ such that r(1/r) = 1.

r is nilpotent iff $r^n = 0$ for some positive integer $n \ (r \neq 0)$.

Definition: A ring R is called an (integral) domain *iff* it contains no zero divisors.

A ring R is a field *iff* every nonzero element is a unit. A ring R is reduced *iff* it contains no nilpotent elements.

 $\mathbb{Z}/4\mathbb{Z}$ is not reduced: $2^2 = 0, 2 \neq 0$ $\mathbb{Z}/6\mathbb{Z}$ is reduced, but not a domain: $2 \cdot 3 = 0, 2, 3 \neq 0$ $\mathbb{Z}/7\mathbb{Z}$ is a field: every nonzero element is a unit: $1 \cdot 1 = 1, 2 \cdot 4 = 1, 3 \cdot 5 = 1, 6 \cdot 6 = 1$

 \mathbbm{Z} is a domain that's not a field.

Theorem: Let R be a ring, $r \in R$ any element. Then r cannot be both a zero divisor and a unit. **Proof:** Say r is a unit. Then $r \cdot (1/r) = 1$. If r is also a zero divisor, then ra = 0 for some $a \neq 0$, so:

$$ar(1/r) = a \\ \implies 0 = a$$

Bad!

Definition: Let R, S be rings. Their direct sum is the ring $R \oplus S$. The elements of $R \oplus S$ are the elements of $R \times S$, and the + and \cdot are:

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$

 $(r_1, s_1)(r_2, s_2) = (r_1 r_2, s_1 s_2)$

Theorem: $R \oplus S$ is a ring. **Proof:** Dull.

$$\begin{array}{c} 0 \leftrightarrow (0,0) \\ 1 \leftrightarrow (1,1) \end{array}$$

 $(1,0) \cdot (0,1) = (0,0)$

If R, S are nonzero, then $0 \neq 1$, so $R \oplus S$ is not an integral domain.

PMATH 345 Lecture 3: May 7, 2010

Definition: Let R be a ring. A subring of R is a set $S \subset R$ such that S is a ring using the same operations as R and $1 \in S$.

Example: $R = \mathbb{Z}/6\mathbb{Z}$ $S = \{0,3\}$ S is a ring using + and \cdot as R, but the multiplicative identity of S is not $1 \in R$. $S \subset R$, S closed under $+, \cdot, -$, and has $z \in S$ such that z + r = r for all $r \in S$. $\implies z = 0 \checkmark$.

Theorem: Let $n \ge 1$ be an integer. Then $\mathbb{Z}/n\mathbb{Z}$ is:

- (1) A field *iff* n is prime
- (2) Reduced *iff* n is squarefree

Proof:

(1) If n is prime, then every nonzero element of $\mathbb{Z}/n\mathbb{Z}$ is represented by an integer coprime to n. Thus, every nonzero element of $\mathbb{Z}/n\mathbb{Z}$ is a unit, so $\mathbb{Z}/n\mathbb{Z}$ is a field.

Conversely, if $\mathbb{Z}/n\mathbb{Z}$ is a field, then every nonzero element is coprime to n, so n is prime.

(2) Assume $p^2 \mid n, p > 1$. Then $n/p \neq 0, n/p \in \mathbb{Z} \implies n/p$ is well defined mod n, but

$$\left(\frac{n}{p}\right)^2 = \frac{n^2}{p^2} = \left(\frac{n}{p^2}\right)n = 0.$$

So $\mathbb{Z}/n\mathbb{Z}$ is not reduced, since n/p is nilpotent.

Finally, assume that m is nilpotent mod n. We want to show that n is not squarefree. Well, $m \neq 0 \mod n$, but $m^a = 0 \mod m$. As integers, write $m = p_1^{a_1} \cdots p_r^{a_r} m^{a_r}$, where, in principle, some of the a_i , b_i may be 0.

Since $n \nmid m$, we get $n \nmid m$, we get $b_i > a_i$ for some *i*. Since $n \mid m^a$, we get $b_i \le aa_i$. Note $b_i > a_i \ge 0$, and $b_i \le aa_i$, so $a_i > 0$. So $b_i > a_i \ge 1$, and so $b_i \ge 2$. Thus, $p_i^2 \mid n$, and *n* is not squarefree. \Box

Homomorphisms

Definition: Let R, S be rings. A homomorphism from R to S is a function $f: R \to S$ satisfying:

- (1) f(1) = 1
- (2) f(a+b) = f(a) + f(b)
- $(3) \quad f(ab) = f(a)f(b)$

Example: $f: \mathbb{C} \to \mathbb{C}, f(a+bi) = a-bi$ **Example:** $f: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ $f(r) = r \mod n$ **Example:** $f: \mathbb{Q}[x] \to \mathbb{Q}$ $f(p(x)) = p(3\frac{1}{2})$ $f(x-7) = -3\frac{1}{2}$ $f(x^2+2x+3) = \frac{49+28+12}{4} = \frac{89}{4}$ f(6) = 6"Plugging in" homomorphism:

$$f: R[x_1, \ldots, x_n] \to T$$

where R is a ring, $R \subset T$, and:

$$f(p(x_1,\ldots,x_n)) = p(t_1,\ldots,t_n)$$

where $t_1, \ldots, t_n \in T$ are any fixed elements of T.

Example: $f: \mathbb{Z}[i] \to \mathbb{Z}/5\mathbb{Z}$ $f(a+bi) = a+2b \mod 5$

(1) $f(1) = 1 \mod 5 \checkmark$

(2)
$$f((a+bi) + (c+di)) = f((a+c) + (b+d)i) = a + c + 2(b+d) \mod 5$$

 $f(a+bi) + f(c+di) = a + 2b + c + 2d \mod 5$. Same.

$$f(a+bi)f(c+di) = (a+2b)(c+2d) = ac+4bd+2ad+2bc \mod 5$$

$$f((a+bi)(c+di)) = f(ac-bd+bci+adi) = ac-bd+2(ad+bc) \mod 5$$

These are the same, so \Box .

PMATH 345 Lecture 4: May 10, 2010

 $\mathbb{Z}_3 = \mathbb{Z}/3\mathbb{Z} =$ "Integers mod 3"

Definition: Let R, S be rings, $f: R \to S$ a homomorphism. Then f is an isomorphism *iff* there is another homomorphism $g: S \to R$ such that $f \circ g = \text{id}$ and $g \circ f = \text{id}$.

Example: $f: \mathbb{C} \to \mathbb{C}, f(z) = \overline{z}$. This is an isomorphism; the inverse of f is f.

To prove z = i, we'd have to have some relationship between z, real numbers, and + and :

$$a_n z^n + \dots + a_1 z + a_0 = 0$$

where $a_i \in \mathbb{R}$. Then:

$$a_n\overline{z}^n + \dots + a_1\overline{z} + a_0 = 0$$

So there's no way to tell the difference between i and -i.

Definition: Let $f: R \to S$ be a homomorphism. The image of f is the set:

$$im(f) = \{ f(x) : x \in R \}$$

= range of f

and the kernel of f:

$$\ker(f) = \{ x \in R : f(x) = 0 \}$$

Theorem: Let $f: R \to S$ be a homomorphism. Then f is 1–1 iff ker $(f) = \{0\}$. **Proof:** Forwards is trivial, because f(0) = 0. **Backwards:** Assume ker $f = \{0\}$. We want to show f is 1–1. If f(a) = f(b), then f(a - b) = 0, so $a-b \in \ker f$, so $a-b=0 \implies a=b$.

Theorem: Let $f: R \to S$ be a homomorphism. Then:

- (1) f(0) = 0
- (2) The composition of homomorphisms is a homomorphism
- (3) If x is a unit, then so is f(x).

Theorem: Let $f: R \to S$ be a homomorphism. Then ker f is usually not a subring of R. In fact, ker f is a subring of R iff ker f = R.

Definition: Let R be a ring. An ideal of R is a subset $I \subset R$ satisfying:

- (1) $0 \in I$
- (2) If $a, b \in I$ then $a b \in I$
- (3) If $a \in I$, $r \in R$, then $ar \in I$.

Theorem: Let $f: R \to S$ be a homomorphism. Then ker f is an ideal of R. **Proof:**

- (1) $f(0) = 0 \implies 0 \in \ker f$.
- (2) If $a, b \in \ker f$, then f(a) = f(b) = 0. We want $a b \in \ker f$, i.e., f(a b) = 0. This is trivial.

(3) If
$$a \in \ker f$$
, $r \in \mathbb{R}$, then $f(a) = 0$, so $f(ra) = f(r)f(a) = f(r) \cdot 0 = 0$. So $ra \in \ker f$.

Example: What are the ideals of \mathbb{Z} ?

 $\{0\}$ is the trivial or zero ideal.

 \mathbb{Z} is the improper or unit ideal.

 $I = \{\text{even integers}\}$ is an ideal, often written $2\mathbb{Z}$.

In fact, {multiples of n} = $n\mathbb{Z}$ is an ideal of \mathbb{Z} .

Better yet, every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$.

Definition: Let R be a ring, $a \in R$ any element. The principal ideal of R generated by a is the set:

$$(a) = aR = \{ aR : r \in R \}.$$

Theorem: (a) is an ideal of R. **Proof:** Easy.

PMATH 345 Lecture 5: May 12, 2010

Claim: The ideals of \mathbb{Z} are precisely the sets $n\mathbb{Z} = \{nr : r \in \mathbb{Z}\}$. **Proof:** First, $n\mathbb{Z}$ is an ideal by a quick check of the definition. It only remains to show that every ideal is of the form $n\mathbb{Z}$. Thus, say $I \subset \mathbb{Z}$ is an ideal. It could be that $I = \{0\} = 0\mathbb{Z}$. Otherwise, I must contain some nonzero integer, which we may assume is positive. Let n be the smallest positive element of I. We will show that $I = (n) = n\mathbb{Z}$. Clearly $n\mathbb{Z} \subset I$, since $n \in I$. Thus, $x \in I$. We want to show $x \in n\mathbb{Z}$. After long division:

$$x = qn + r$$

where $q, r \in \mathbb{Z}, 0 \le r < n$. But $r = x - qn \in I$, so by minimality of n, we get r = 0, and hence $x = qn \in n\mathbb{Z}$. Thus, $I = n\mathbb{Z}$.

Definition: Let R be a ring, $a_1, \ldots, a_n \in R$ any elements. The ideal generated by a_1, \ldots, a_n is:

$$(a_1, \ldots, a_n) = \{ r_1 a_1 + \cdots + r_n a_n : r_1, \ldots, r_n \in R \}$$

It is easy to see that this is an ideal.

Example: $(6,8) \subset \mathbb{Z}$

$$= \{ 6a + 8b : a, b \in \mathbb{Z} \} \\= \{ 2(3a + 4b) : a, b \in \mathbb{Z} \}$$

so $2 \in (6, 8)$. This immediately means that $(2) \subset (6, 8)$.

Conversely, $6, 8 \in (2)$, so $(6, 8) \subset (2)$, and hence (2) = (6, 8).

Fact: Given an ideal I and elements $a_1, \ldots, a_n \in R$, if $a_1, \ldots, a_n \in I$ then $(a_1, \ldots, a_n) \subset I$. **Example:** $(x, y) \subset \mathbb{Q}[x, y]$

$$(x,y) = \{ xp(x,y) + yq(x,y) : p,q \in \mathbb{Q}[x,y] \}$$

= { r(x,y) : r(0,0) = 0 }

Definition: Let I, J be ideals. Then these are ideals:

$$I + J = \{ a + b : a \in I, b \in J \}$$

and $IJ = \{ a_1b_1 + \dots + a_nb_n : a_i \in I, b_i \in J \}$

$$(a_1, \dots, a_n) + (b_1, \dots, b_m) = (a_1, \dots, a_n, b_1, \dots, b_m)$$

$$(a_1, \dots, a_n)(b_1, \dots, b_m) = (a_1b_1, a_1b_2, \dots, a_1b_m, a_2b_1, \dots, a_2b_m, \dots, a_nb_1, \dots, a_nb_m)$$

$$= (a_ib_j)_{\substack{i \in \{1, \dots, m\}\\j \in \{1, \dots, m\}}}$$

Example: In $\mathbb{Q}[x, y]$:

$$(x, y^2) \cdot (x - y, y^3 - y) = (x^2 - xy, xy^2 - y^3, xy^3 - xy, y^5 - y^3)$$

If R is a ring, then $R^* = \text{group of units of } R$

Theorem: Let *I* be an ideal of a ring *R*. Then I = (1) = R iff *I* contains some unit of *R*. **Proof:** Forwards is trivial. For backwards, assume $u \in I$ is a unit. Then $1 = uu^{-1} \in I \implies I = (1)$. \Box

Theorem: Let R be a ring, $R \neq \{0\}$. Then R is a field *iff* it has exactly two ideals, (0) and (1). **Proof:** Forwards: Assume R is a field, $I \subset R$ any ideal. If I = (0), we're done. If not, I contains some $x \in R$, $x \neq 0$. Since R is a field, x is a unit, so I = (1).

Backwards: Let $x \in R$ be any nonzero element. We want to show $x \in R^*$. Well, $(x) \subset R$ is an ideal with $(x) \neq (0)$, so by assumption $(x) \neq (1)$. This means $1 \in (x) = \{xr : r \in R\}$

$$\implies 1 = rx$$
 for some $r \in R$

so $x \in R^*$ and R is a field.

Quotient rings

Let R be a ring, $I \subset R$ an ideal. (e.g., $R = \mathbb{Z}$, I = (n)) We want to build a ring R/I and a homomorphism $q: R \to R/I$ such that ker q = I.

If we had such a thing, then $q(x) = q(y) \iff x - y \in \ker q = I$.

Thus, elements of R/I ought to be equivalence classes of elements of R under the equivalence relation

 $x \equiv y \mod I$ iff $x - y \in I$.

PMATH 345 Lecture 6: May 14, 2010

Theorem: A homomorphism $f: R \to S$ is an isomorphism *iff* it's 1–1 and onto. **Proof:** Forwards is trivial.

Backwards: Assume f is 1–1 and onto. We want to show that $f^{-1}: S \to R$ is a homomorphism.

First, $f^{-1}(1) = 1$ because f(1) = 1. Next, let $a, b \in S$ be any elements. We want to show that

$$f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$$

Since f is 1–1 and onto, we can find A, B, $C \in R$ such that f(A) = a, f(B) = b, and f(C) = a + b. Then: f(A) + f(B) = f(A + B) = a + b

$$\implies A+B = f^{-1}(a+b)$$

But $C = f^{-1}(a+b)$ by definition of C

$$\implies A + B = C$$
$$\implies f^{-1}(a) + f^{-1}(b) = f^{-1}(a+b)$$

as desired.

Proving $f^{-1}(a)f^{-1}(b) = f^{-1}(ab)$ is exactly similar.

We've got: a ring R, an ideal $I \subset R$ We want: a ring $R/I = "R \mod I"$ an onto homomorphism $q: R \to R/I$ with ker q = I.

 $R/I = \{$ equivalence classes of elements of $R \}$

where $r_1 \equiv r_2 \mod I$ iff $r_1 - r_2 \in I$

$$= \{ r + I^{(1)} : r \in R \}$$

Addition: $(r_1 + I) + (r_2 + I) = (r_1 + r_2) + I$ Multiplication: $(r_1 + I)(r_2 + I) = (r_1r_2 + I)$ One: 1 + I

We need to check that these definitions are well defined.

If $r_1 \equiv r'_1 \mod I$ and $r_2 \equiv r'_2 \mod I$, we must check that $r_1 + r_2 \equiv r'_1 + r'_2 \mod I$ and $r'_1r'_2 \equiv r_1r_2 \mod I$. If $a_1 = r_1 - r'_1 \in I$, $a_2 = r_2 - r'_2 \in I$, then

$$(r_1 + r_2) - (r'_1 + r'_2) = (r_1 - r'_1) + (r_2 - r'_2) \in I$$

and
$$r_1r_2 - r'_1r'_2 = r_1r_2 - (r_1 - a_1)(r_2 - a_2)$$

= $r_1r_2 - r_1r_2 + a_1r_2 + a_2r_1 - a_1a_2$
 $\in I$

Checking that R/I is a ring is tedious but straight forward.

It's clear from the construction that the map

$$q \colon R \to R/I$$

given by $q(r) = r \mod I$
 $= r + I$

is a surjective homomorphism. The map q is called the "reduction mod I" homomorphism.

¹⁾ "coset of I" $r + I = \{ r + a : a \in I \}$

7

Example: $R = \mathbb{Z}, I = (n)$ Then $R/I = \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$. **Example:** $\mathbb{C}[x]/(x)$ should be isomorphic to \mathbb{C} . **Example:** $\mathbb{R}[x]/(x^2 + 1)$ should be isomorphic to \mathbb{C} .²⁾

$$\mathbb{C}[x,y,z]/(x^2-x+3yz,x^3z+4y)$$

Theorem: (Universal Property of Quotients)

Let R, S be rings, $I \subset R$ an ideal, $f: R \to S$ a homomorphism, $q: R \to R/I$ the "reduce mod I" homomorphism.

There exists a homomorphism $\tilde{f}: R/I \to S$ with $\tilde{f} \circ q = f$ iff $I \subset \ker f$.

Remark: This theorem says that if you can find a homomorphism $f: R \to S$ with $I \subset \ker f$, then f "makes sense mod I".

PMATH 345 Lecture 7: May 17, 2010

Theorem: (UPQ) Let R, S be rings, $I \subset R$ an ideal, $f: R \to S$ a homomorphism, q: R/I the quotient homomorphism

Then there exists a homomorphism $\tilde{f}: R/I \to S$ with $f = \tilde{f} \circ q$ iff $I \subset \ker f$.

Example: Find an isomorphism from $\mathbb{C}[x]/(x)$ to \mathbb{C} .

f(p(x)) = p(0)

This is a homomorphism, and $x \in \ker f$, so $(x) \subset \ker f$, so by the UPQ, f "makes sense" as a homomorphism from $\mathbb{C}[x]/(x) \to \mathbb{C}$. That is, f induces a homomorphism $\tilde{f} \colon \mathbb{C}[x]/(x) \to \mathbb{C}$.

$$\tilde{f}(p(x) \mod I) = p(0)$$

It's onto because $\tilde{f}(z) = z$ for any $z \in \mathbb{C}$, so we just need to check 1–1. To do this, we show that $\ker \tilde{f} = (0) \iff \ker f = (x)$.

We already know $(x) \subset \ker f$, so let $p(x) \in \ker f$. Then f(p(x)) = p(0) = 0, so $x \mid p(x)$, and so $p(x) \in (x)$ and we're done.

Proof of UPQ: Forwards: We have $\tilde{f} \circ q = f$, so if $r \in I$, we compute $f(r) = \tilde{f}(q(r)) = \tilde{f}(0) = 0$, so $r \in \ker f$.

²⁾Aside: Show: $\mathbb{R}[x]/(x^2-1) \cong \mathbb{R} \oplus \mathbb{R}$

 $^{^{3)}}R$

 $^{^{4)}}I$

 $^{^{5)}}S$

Backwards: Assume $I \subset \ker f$. We want $\tilde{f} \colon R/I \to S$ such that $\tilde{f} \circ q = f$ Define

$$\tilde{f}(r \mod I) = f(r)$$

To check that this is well defined, we check that if $r_1 \equiv r_2 \mod I$, then $\tilde{f}(r_1 \mod I) = \tilde{f}(r_2 \mod I)$. That is, we check that $f(r_1) = f(r_2)$.

Well, $f(r_1) - f(r_2) = f(r_1 - r_2) = 0$ since $r_1 - r_2 \in I \subset \ker f$.

We check that \tilde{f} is a homomorphism:

$$\tilde{f}(1 \mod I) = f(1) = 1 \quad \checkmark$$

$$\tilde{f}(a + b \mod I) = f(a + b) = f(a) + f(b) = \tilde{f}(a \mod I) + \tilde{f}(b \mod I) \quad \checkmark$$

$$\tilde{f}(ab \mod I) = f(ab) = f(a)f(b) = \tilde{f}(a \mod I)\tilde{f}(b \mod I) \quad \checkmark \quad \Box$$

Facts: ker $\tilde{f} = \ker f \mod I$ im $\tilde{f} = \operatorname{im} f$

Theorem: (First Isomorphism Theorem) Let $f: R \to S$ be a homomorphism. Then im $f \cong^{6} R / \ker f$. **Proof:** Straight from UPQ.

Theorem: Let $f: R \to S$ be a homomorphism, $I \subset R$ an ideal, $J \subset S$ an ideal. Then:

- (1) $f^{-1}(J) = \{ r \in R : f(r) \in J \}$ = preimage of J is an ideal of R
- (2) If f is onto, then

$$f(I) = \{ f(r) : r \in I \}$$

 \square

is an ideal of S.

Proof:

(1) $0 \in f^{-1}(J)$ because $f(0) = 0 \in J$. If $a, b \in f^{-1}(J)$, then $f(a), f(b) \in J$, so $f(a - b) = f(a) - f(b) \in J$, and hence $a - b \in f^{-1}(J)$.

Finally, if $a \in f^{-1}(J)$, $r \in R$, then $f(ra) = f(r)f(a) \in J$, so $ra \in f^{-1}(J)$.

(2) $0 \in f(I)$ because f(0) = 0. If $a, b \in f(I)$. Then a = f(r), b = f(s) for $r, s \in I$, so a - b = f(r) - f(s) = f(r - s), so $a - b \in f(I)$.

Finally, let $a \in f(I)$, $r \in S$. Since f is onto, we write r = f(t) and a = f(u) for $t \in R$, $u \in I$.

Then $tu \in I$ and f(tu) = ra, so $ra \in f(I)$.

Definition: Let R be a ring, $I \subset R$ an ideal. Then I is prime *iff* $I \neq R$ and for all $a, b \in R$, if $ab \in I$ then either $a \in I$ or $b \in I$.

I is maximal *iff* the only ideal J with $I \subsetneq J$ is J = R and $I \neq R$.

PMATH 345 Lecture 8: May 19, 2010

 $\mathbb{Z}_5[x]$: polynomials in x whose coefficients lie in \mathbb{Z}_5 .

Fact: If $a \in \mathbb{Z}_5$, then $a^5 = a$.

Fact: In $\mathbb{Z}_5[x]$, x^5 and x are *different* polynomials that define the same function $\mathbb{Z}_5 \to \mathbb{Z}_5$.

$$x^{5} = (\sqrt{2})^{5} = \sqrt{32} = 4\sqrt{2} = -\sqrt{2}$$
$$x = \sqrt{2} \neq 4\sqrt{2}$$

Definition: Let R be a ring, $I \subset R$ an ideal. Then I is prime *iff* every $a, b \in R$ with $ab \in I$ satisfies $a \in I$ or $b \in I$, and $I \neq R$.

Furthermore, I is maximal iff $I \neq R$ and the only ideal $J \subset R$ with $I \subsetneq J$ is J = R.

⁶⁾ "is isomorphic to"

Example: What are the prime and maximal ideals of \mathbb{Z} ?

Well, any ideal of \mathbb{Z} is of the form (n) for $n \in \mathbb{Z}$.

If n is composite, then n = ab for $a, b \in \mathbb{Z}$, $a, b \neq \pm 1$. In that case:

 $(n) \subsetneq (a) \neq (1)$

so (n) is not a maximal ideal. Also, $a \notin (n)$ and $b \notin (n)$, but $ab \in (n)$, so (n) isn't prime.

(0) is prime but not maximal. If n is prime, then we can call it p. The ideal (p) is maximal and prime. The ideal (p) is prime because $p \mid ab \implies p \mid a$ or $p \mid b$, and (p) is maximal because if $(p) \subsetneq (n)$, then $n \mid p$, so $n = \pm p$ (not possible since $(p) \neq (n)$) or $n = \pm 1$, in which case (n) = (1). Hence (p) is maximal.

Theorem: Let R be a ring. I an ideal of R. Then:

- (1) I is prime iff R/I is a domain
- (2) I is maximal iff R/I is a field

Proof:

- (1) Forwards: *I* is prime. Let $a, b \in R$ be any elements with $ab \equiv 0 \mod I$. We want to show either $a \equiv 0$ or $b \equiv 0$. Since $ab \equiv 0$, we get $ab \in I$, so either $a \in I$ or $b \in I \implies a \equiv 0$ or $b \equiv 0$. Backwards: Similar.
- (2) Forwards: I is maximal. This means only two ideals of R contain I, namely, I and R.

Now let J be any ideal of R/I, $q: R \to R/I$ the quotient homomorphism. Then

$$q^{-1}(J) = \{ r \in R : q(r) \in J \}$$

is an ideal of R that contains I.

So $q^{-1}J = I$ or R, so J = (0) or (1). Thus, R/I has exactly 2 ideals, and so must be a field.

Backwards: Similar.

Corollary: Every maximal ideal is prime. **Proof:** Every field is a domain.

Example: Is (x - 1) a prime ideal of $\mathbb{Q}[x]$? How about $\mathbb{Z}[x]$?

f(p(x)) = p(1). By UPQ, this induces $\tilde{f} : \mathbb{Q}[x]/(x-1) \to \mathbb{Q}$ because f(x-1) = 1-1 = 0. We see that \tilde{f} is onto, since f(c) = c for all $c \in \mathbb{Q}$. Moreover, \tilde{f} is 1–1 because $f(p(x)) = 0 \iff p(1) = 0 \iff x-1 \mid p(x) \iff p(x) \in (x-1)$. That is, ker $f = (x-1) \iff \ker \tilde{f} = (0)$.

Since $\mathbb{Q}[x]/(x-1) \cong \mathbb{Q}$ (via \tilde{f}), we see that (x-1) is prime and maximal. $\mathbb{Z}[x]$:

Not too hard to show \tilde{f} is 1–1 and onto. Since \mathbb{Z} is a domain but not a field, (x-1) is prime but not maximal in $\mathbb{Z}[x]$.

Let R be any ring. There is exactly one homomorphism $\phi \colon \mathbb{Z} \to R$, given by $\phi(n) = n$, called the characteristic homomorphism. Since ker ϕ is an ideal of \mathbb{Z} , we have ker $\phi = (n)$ for some $n \ge 0$. This n is called the characteristic of R, and is written char R.

 $\mathbb{Z}/n\mathbb{Z}$ has characteristic n. char R = first positive integer n such that n = 0 in RIf none, then char R = 0.

Example: char \mathbb{Q} = char \mathbb{Z} = 0. **Fact:** R is a domain \implies char R is 0 or prime.

PMATH 345 Lecture 9: May 21, 2010

Let R be a ring, $\phi \colon \mathbb{Z} \to R$ the characteristic homomorphism char R = n, where ker $\phi = (n)$. Every ring of characteristic n > 0 has a subring isomorphic to $\mathbb{Z}/n\mathbb{Z}$, namely, im ϕ .

Every ring of characteristic 0 has a subring isomorphic to \mathbb{Z} , namely im ϕ .

Theorem: Let *D* be a domain. Then char D = 0 or char *D* is prime. **Proof:** Say char D > 0 and char D = ab for integers *a*, *b*. We want to show a = 1 or b = 1.

Well, ab = 0 in D. Since D is a domain, this means a = 0 or b = 0; without loss of generality, say a = 0. Then by definition of char D, $a \ge ab$, so $b \le 1$. Since $b \in \mathbb{Z}$, b > 0, we get b = 1.

Fraction fields

Let D be a domain. We will construct a field that contains D.

Definition: Let D be a domain. Define the fraction field K(D) by:

$$K(D) = \left\{ \frac{a}{b} : a, b \in D, \ b \neq 0 \right\} \Big/ \!\! \sim$$

where $\frac{a}{b} \sim \frac{c}{d}$ iff ad = bc, and:

and
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

 $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

Need to show:

- (1) If $\frac{a}{b} \sim \frac{a'}{b'}$, then $\frac{a}{b} + \frac{c}{d} \sim \frac{a'}{b'} + \frac{c}{d}$ and $\frac{a'}{b'} \cdot \frac{c}{d} = \frac{a}{b} \cdot \frac{c}{d}$
- (2) K(D) with all these operations is a field.

I do not deign to do so.

Note that there is a natural homomorphism $\phi: D \hookrightarrow K(D), \phi(d) = \frac{d}{1}$. Typically, we identify D with $\phi(D)$, and say that $D \subset K(D)$.

Example: $K(\mathbb{Z}) = \mathbb{Q}$. **Example:** K(F[x]) = F(x) if F is a field

$$F(x) = \left\{ \frac{f(x)}{q(x)} : p, q \in F[x], q \neq 0 \right\}$$

Example: $\mathbb{Z}[i] = \{ a + bi : a, b \in \mathbb{Z} \}$

$$K(\mathbb{Z}[i]) = \left\{ \frac{a+bi}{c+di} : a, b, c, d \in \mathbb{Z}, \ c+di \neq 0 \right\}$$

But
$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2}$$
$$= \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i$$
$$\in \mathbb{Q}(i) = \{a+bi: a, b \in \mathbb{Q}\}$$

So $K(\mathbb{Z}[i]) = \mathbb{Q}(i)^{7}$

Theorem: (Universal Property of Fraction Fields) Let F be a field, and D a domain, $\phi: D \hookrightarrow F$ an injective homomorphism. Then ϕ extends to an injective homomorphism $\tilde{\phi}: K(D) \hookrightarrow F$.

Proof: Define $\tilde{\phi}(\frac{a}{b}) = \frac{\phi(a)}{\phi(b)}$. This is well defined because $\phi(b) \neq 0$ (since $b \neq 0$ and ϕ is 1–1). Checking that this is an injective homomorphism is straightforward.

Theorem: Let $\phi: F \to E$ be a homomorphism of fields E and F. Then ϕ is 1–1. **Proof:** Consider ker ϕ . It's an ideal of F, so ker $\phi = (0)$ or (1). Since $\phi(1) = 1$, we get ker $\phi = (0)$, and so ϕ is 1–1.

PMATH 345 Lecture 10: May 26, 2010

http://cumc.math.ca/ July 6-July 10

Definition: Let D be a domain, $x \in D$ any element, $x \neq 0$, $x \notin D^*$. Recall: $D^* = \{\text{units of } D\}$. Then x is prime *iff* (x) is a prime ideal. Also, x is irreducible *iff* when x = ab for $a, b \in D$, we have $a \in D^*$ or $b \in D^*$.

Example: Prime elements of \mathbb{Z} are prime numbers. Irreducible elements of \mathbb{Z} are prime numbers.

Example: $D = \mathbb{Z}[\sqrt{10}], x = 2$. Showing that x is irreducible is not easy, but can be done.

But x is not prime. We will prove this by showing (2) is not a prime ideal, by showing that $\mathbb{Z}[\sqrt{10}]/(2)$ is not a domain.

Well, $\mathbb{Z}[\sqrt{10}] = \{a + b\sqrt{10} : a, b \in \mathbb{Z}\}$. $\mathbb{Z}[\sqrt{10}]/(2)$ has 4 elements, represented by 0, 1, $\sqrt{10}$, $1 + \sqrt{10}$. To prove this, note that those 4 elements are all different mod 2, and any $a + b\sqrt{10}$ is congruent to one of these 4 mod 2.

Notice that $\sqrt{10} \not\equiv 0 \mod 2$, but $(\sqrt{10})^2 \equiv 0 \mod 2$, so 2 is not prime.

Definition: A domain D is a Principal Ideal Domain (PID) *iff* every ideal of D is principal; *i.e.*, every ideal is of the form (x) for some $x \in D$.

Definition: A domain D is a Unique Factorization Domain (UFD) *iff* every $x \in D$, $x \neq 0$, can be factored into irreducible elements of $p_1, \ldots, p_n \in D$:

$$x = p_1 p_2 \cdots p_n$$

and this factorization is unique up to multiplication by units and reordering the p_i s.

We will show that every PID is a UFD. However, $\mathbb{Q}[x, y]$ is a UFD, but not a PID because (x, y) is not principal.

Theorem: Every prime element of a domain D is irreducible.

Proof: Let $x \in D$ be prime, and assume x = ab, $a, b \in D$. We want to show either $a \in D^*$ or $b \in D^*$. Since x is prime, $ab \in (x) \implies a \in (x)$ or $b \in (x)$; without loss of generality $a \in (x)$.

So a = xd for some $d \in D$:

$$x = xdb.$$

Since $x \neq 0$, we get 1 = db, and so $b \in D^*$.

Theorem: Let D be a PID. Then every irreducible element of D is prime.

Note: This theorem is not true if D is not a PID! (*E.g.*, $D = \mathbb{Z}[\sqrt{10}]$.) **Proof:** Say $a \in D$, $a \neq 0$, $a \notin D^*$. Assume a is irreducible. Then (a) is a maximal ideal:

If $(a) \subset I$ for some ideal I, then I = (x) for some $x \in D$. Then a = xd for some $d \in D$. Since a is irreducible, we get $x \in D^*$ or $d \in D^*$. If $x \in D^*$ then I = (1). If $d \in D^*$ then I = (a). So (a) is a maximal ideal. Which means (a) is a prime ideal. So a is prime.

⁷⁾Aside: $\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}$

Theorem: Let *D* be a PID, $I_1 \subset I_2 \subset I_3 \subset \cdots$ be an ascending chain of ideals I_n of *D*. Then for some *m*, $I_n = I_m$ for all $n \ge m$.

Proof: Consider $I = \bigcup_n I_n$. Then I is an ideal of D:

- (1) $0 \in I_1 \subset I$
- (2) If $a, b \in I$, then $a \in I_n$ and $b \in I_l$ for some n, l. Without loss of generality, $n \ge l$, in which case $I_l \subset I_n$ so $a, b \in I_n$. So $a b \in I_n \subset I$.
- (3) Similarly, if $d \in D$, $a \in I$, then $a \in I_n \implies da \in I_n \subset I \checkmark$

Since D is a PID, we get I = (x) for some $x \in D$. But $x \in I_n$ for some n, so $I = (x) \subset I_n \subset I$, and so $I = I_n$.

Theorem: Every PID is a UFD.

Proof: Recall from last time:

Theorem: Every irreducible element of a PID is prime.

Theorem: Let $I_1 \subset I_2 \subset \cdots$ be a chain of ideals in a PID. Then for some $n, I_m = I_n$ for all $m \ge n$.

Digression: Every irreducible element of a UFD is prime.

Proof: Say x is irreducible in a UFD D. We will show that (x) is a prime ideal, so x is prime.

So, assume $ab \in (x)$. Then ab = xc for some $c \in D$. Factoring both sides into irreducibles gives:

$$\underbrace{(p_1 \cdots p_n)}_{a} \underbrace{(q_1 \cdots q_m)}_{b} = x \underbrace{(r_1 \cdots r_l)}_{c}$$

By uniqueness of factorization, we get $x = up_i$ or $x = uq_i$ for some $u \in D^*$ and index *i*.

So either $a \in (x)$ (if $x = up_i$) or $b \in (x)$ (if $x = uq_i$). Hence (x) is a prime ideal and x is prime, as desired. \Box

We will now show that if D is a PID, then D is a UFD. To do this, we will show that any element $a \in D$, $a \neq 0, a \notin D^*$, can be factored uniquely into a product of irreducibles.

Thus, choose any $a \in D$, $a \neq 0$, $a \notin D^*$. We want to find some irreducible element $p \in D$ such that $p \mid a$. Well, if a is irreducible, then we may choose p = a. If a is not irreducible, then we may write a = bc for $b, c \in D, b, c \notin D^*$. If b or c are irreducible, we win. Otherwise, we get $(a) \subset (b)$ with $(b) \neq (1)$. Write $a_1 = b$.

Write $a_1 = a_2b_2$ for $a_2, b_2 \notin D^*$. Write $a_2 = a_3b_3$ for $a_3 \notin D^*$, and continue writing $a_n = a_{n+1}b_{n+1}$ with $a_{n+1} \notin D^*$, and $b_{n+1} \notin D^*$ whenever a_n is reducible. We have an ascending chain of ideals: $(a) \subset (a_1) \subset (a_2) \subset \cdots$. By ACC for PIDs, there is an n such that $(a_n) = (a_m)$ for all $m \ge n$. In particular, $(a_n) = (a_{n+1})$, where $a_n = a_{n+1}b_{n+1}$. This means $b_{n+1} \in D^*$, so a_n is irreducible, with $a_n \mid a$.

Now we'll show that a can be factored completely into irreducibles. Write $a = p_1 a_1$ for irreducible $p_1 \in D$. Write $a = p_1 p_2 a_2$ for irreducible $p_2 \in D$ (unless $a_1 \in D^*$). Keep going until $a_n \in D^*$, at which point:

$$a = \underbrace{p_1 p_2 p_3 \cdots (a_n p_n)}_{\text{all irreducible}}$$

To show that $a_n \in D^*$ for some n, note that $(a) \subset (a_1) \subset (a_2) \subset \cdots$ is an ascending chain of ideals. By ACC, this means $(a_n) = (a_{n+1})$ for some n, with $a_n = p_{n+1}a_{n+1}$; this is impossible! So a_n must have been a unit, and so a has been factored completely into irreducibles.

Finally, we show that this factorization is unique. Say

$$a = p_1 \cdots p_n = q_1 \cdots q_m \tag{(*)}$$

for irreducibles $p_1, \ldots, p_n, q_1, \ldots, q_m \in D$. First, note that $p_1, \ldots, p_n, q_1, \ldots, q_m$ are all prime, so $p_1 \mid q_1 \cdots q_m \implies p_1 \mid q_i$ for some *i*. Then $q_i = p_1 x$ for some $x \in D$ and $x \in D^*$ because $p_1 \notin D^*$ and q_i is irreducible. So we cancel p_1 from both sides of (*):

$$p_2 \cdots p_n = q_1 \cdots \hat{q_i} \cdots q_m x$$

where the hat means q_i is not present. Keep doing this for each p_j in turn until either the p_i s run out or the q_i s do. If the two sets don't run out at the same step, then a nonempty product of primes would be a unit, which is impossible. So n = m, and so the two factorizations are the same up to permutation and multiplication by units.

PMATH 345 Lecture 12: May 31, 2010

Definition: Let D be a UFD, $p(x) \in D[x]$ any nonzero polynomial. The content of p(x) is the greatest common factor of the coefficients of p(x). A polynomial p(x) is primitive *iff* its content is 1.

Theorem: (Gauss's Lemma)

The product of primitive polynomials is primitive. More precisely, let D be a UFD, p(x), $q(x) \in D[x]$ primitive polynomials. Then p(x)q(x) is primitive.

Proof: Assume p(x)q(x) is not primitive. Then there is some prime l which divides all the coefficients of pq. Reducing mod l gives $p(x)q(x) \equiv 0 \mod l$, so since l is prime, D/l is a domain, so (D/l)[x] is a domain, so either $p(x) \equiv 0 \mod l$ or $q(x) \equiv 0 \mod l$. In other words, either l divides the content of p or l divides the content of q. Both are impossible by primitivity of p(x) and q(x).

Theorem: (Gauss's Lemma)

Let D be a UFD, $p(x) \in D[x]$ a nonzero polynomial. Then p(x) = a(x)b(x) in K(D)[x] iff p(x) = A(x)B(x)in D[x], where $A(x) = \alpha a(x)$ and $B(x) = \beta b(x)$ for some $\alpha, \beta \in K(D)$. In particular, p(x) is irreducible in K(D)[x] iff it's irreducible in D[x] (except possibly for constant factors).

Proof: Backwards is trivial.

Forwards: Say p(x) = a(x)b(x) with $a, b \in K(D)[x]$. Write

$$\alpha\beta p(x) = [\alpha a(x)][\beta b(x)]$$

where αa , βb lie in D[x]. Factoring out the contents of αa and βb gives

$$c_3 \alpha \beta p'(x) = c_1(\underbrace{\alpha' a'(x)}_{\text{primitive}}) c_2(\underbrace{\beta' b'(x)}_{\text{primitive}})$$

Cancelling gives:

$$dp'(x) = [\alpha'a'(x)][\beta'b'(x)]$$

where $d \in D$ and p', $\alpha' a'$, and $\beta' b'$ are all primitive. By Gauss's Lemma, dp'(x) is primitive, so $d \in D^*$ and so $p'(x) = [\alpha' d^{-1}a'(x)][\beta' b'(x)]$. Since $p(x) = c_3 p'(x)$, we get:

$$p(x) = [c_3 \alpha' d^{-1} a'(x)][\beta' b'(x)]$$
$$= A(x)B(x)$$

as desired.

Example: Consider $2x^2 - 5 \in (\mathbb{Z}[\sqrt{10}])[x]$. The polynomial is irreducible. However:

$$2x^{2} - 5 = 2\left(x^{2} - \frac{5}{2}\right)$$
$$= 2\left(x - \sqrt{\frac{5}{2}}\right)\left(x + \sqrt{\frac{5}{2}}\right)$$
$$= 2\left(x - \frac{\sqrt{10}}{2}\right)\left(x + \frac{\sqrt{10}}{2}\right)$$

So Gauss's Lemma does *not* apply to $(\mathbb{Z}\sqrt{10})[x]$.

Example: Prove that $x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$. **Solution:** Reducing mod 2 gives $x^2 + x + 1$, which has no roots: $0^2 + 0 + 1 \neq 0$, $1^2 + 1 + 1 \neq 0$ So $x^2 + x + 1$ can't factor in $\mathbb{Z}_2[x]$. If $x^2 + x + 1$ factored in $\mathbb{Z}[x]$, then the factorization could be reduced mod 2. So $x^2 + x + 1$ is irreducible in $\mathbb{Z}[x]$. By Gauss's Lemma, $x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$.

Long division and Euclidean algorithm

Divide $x^3 - 1$ by $x^2 + 2x - 3$ with remainder in $\mathbb{Z}_5^{(8)}[x]$

$$\begin{array}{r} x - 2 \\ x^{2} + 2x - 3 \overline{\smash{\big)} x^{3} + 0x^{2} + 0x - 1} \\ \underline{x^{3} + 2x^{2} - 3x} \\ - 2x^{2} + 3x - 1 \\ \underline{-2x^{2} + x + 1} \\ \underline{2x - 2} \end{array}$$

Answer: $x^3 - 1 = (x - 2)(x^2 + 2x - 3) + (2x - 2)$ To find $gcd(x^3 - 1, x^2 + 2x - 3)$:

$$x^{3} - 1 = (x - 2)(x^{2} + 2x - 3) + (2x - 2)$$

$$3x - 1$$

$$2x - 2\overline{\smash{\big)}x^{2} + 2x - 3}$$

$$\underline{x^{2} - x}$$

$$3x - 3$$

$$\underline{3x - 3}$$

$$0$$

$$x^{2} + 2x - 3 = (2x - 2)(3x - 1) + 0$$

So $gcd(x^3 - 1, x^2 + 2x - 3) = 2x - 2$ or x - 1

Theorem: Let F be a field, a(x), $b(x) \in F[x]$ with $b(x) \neq 0$. Then there are polynomials q(x), $r(x) \in F[x]$ satisfying:

(1) a(x) = q(x)b(x) + r(x)

(2)
$$\deg(r(x)) < \deg(b)$$

(If b(x) is constant, then (2) means r(x) = 0.) **Proof:** Not gonna do it.

Corollary: Let F be a field. Then F[x] is a PID.

Proof: Let $I \subset F[x]$ be an ideal. If I = (0), then it's principal. If not, then it contains a nonzero polynomial p(x) of minimal degree. If $a(x) \in I$, then a(x) = p(x)q(x) + r(x) where deg(r(x)) < deg(p(x)). But $r(x) = a(x) - p(x)q(x) \in I$, so by minimality of p(x), we get r(x) = 0 and $a(x) \in (p(x))$. So $I \subset (p(x))$, and $p(x) \in I \implies (p(x)) \subset I$, so I = (p(x)).

Corollary: Let F be a field, $a \in F$, $p(x) \in F[x]$ with p(a) = 0. Then $x - a \mid p(x)$. **Proof:** p(x) = q(x)(x - a) + r(x) with deg $r(x) < \deg(x - a) = 1$. Plug in x = a to deduce r = 0.

Corollary: Let *F* be a field, $p(x) \in F[x]$ a nonzero polynomial of degree *d*. Then p(x) has at most *d* roots. **Proof:** Each root corresponds to a factor of p(x), and F[x] is a PID and hence a UFD.

If p(x) has degree 3 or less, then p(x) factors in F[x] iff it has a root in F. The proof is easy. **Example:** $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$ because its degree is $2 \leq 3$, and $0^2 + 0 + 1 \neq 0$ and $1^2 + 1 + 1 \neq 0$.

Theorem: Let R be a ring, P a prime ideal of R, $p(x) \in R[x]$ a polynomial. If p(x) is irreducible in (R/P)[x] and if the leading coefficient of p(x) doesn't lie in P, then p(x) is irreducible in R[x]. **Proof:** If p(x) = a(x)b(x) in R[x] with deg(a), deg(b) ≥ 1 , then

$$p(x) \equiv a(x)b(x) \bmod P,$$

with $\deg(a)$, $\deg(b) \ge 1 \mod P$ because $\deg(p(x))$ is the same over R/P as over R. By contrapositive, we're done.

 $^{^{8)}}$ field

Example: $x^2 + x + 1$ is irreducible in $\mathbb{Z}[x]$ because it's irreducible mod 2.

Example: Is $x^3 - x + 1$ irreducible in $\mathbb{Q}[x]$?

Yes. Reducing mod 2 yields $x^3 + x + 1$, which has no roots, so $x^3 - x + 1$ is irreducible in $\mathbb{Z}_2[x]$ since deg ≤ 3 , and so irreducible in $\mathbb{Z}[x]$, and by Gauss's Lemma irreducible in $\mathbb{Q}[x]$.

PMATH 345 Lecture 14: June 4, 2010

Theorem: Let D be a UFD, $p(x) = a_0 + a_1x + \cdots + a_nx^n \in D[x]$ any nonzero polynomial, $a_i \in D$. If $p(\frac{m}{l}) = 0$ for $l, m \in D$, then $l \mid a_n$ and $m \mid a_0$.

Example: Does $3x^3 + 1$ have any roots in \mathbb{Q} ?

Answer: No. Any rational root $\frac{a}{b}$ satisfies $b \mid 3$ and $a \mid 1$, so $b \in \{\pm 1, \pm 3\}$ and $a \in \{\pm 1\}$. Without loss of generality, b > 0, so $b \in \{1, 3\}$. Now we check these roots:

$$3(1)^{3} + 1 = 4 \neq 0$$

$$3(-1)^{3} + 1 = -2 \neq 0$$

$$3(\frac{1}{3})^{3} + 1 \neq 0$$

$$3(\frac{1}{3})^{3} + 1 \neq 0$$

Therefore $3x^3 + 1$ has no roots in \mathbb{Q} . Since its degree is ≤ 3 , this means it's irreducible over \mathbb{Q} . **Proof:** Say $(\frac{m}{l}) = 0$. Then in K(D)[x], we have $(x - \frac{m}{l}) \mid p(x)$, so $lx - m \mid p(x)$. By Gauss's Lemma, p(x) = (lx - m)q(x) for some q(x) in D[x]. If $q(x) = b_0 + b_1x + \cdots + b_{n-1}x^{n-1}$, then $a_0 = -b_0m$ and $a_n = lb_{n-1}$.

Theorem: (Eisenstein's Criterion)

Let D be a domain, $P \subset D$ a prime ideal, $f(x) = a_0 + a_1 x + \dots + a_n x^n \in D[x]$ a nonzero polynomial satisfying:

- (1) $a_i \in D$
- (2) $a_i \in P$ if i < n
- (3) $a_n \notin P$
- (4) $a_0 \notin P^2$

⁹⁾Then f(x) has only constant factors in D[x].

Example: Is $x^4 + 10x + 6$ irreducible over \mathbb{Q} ? Yes: Apply Eisenstein with P = (2):

- (2) 0, 0, 10, 6 all in (2)
- (3) $1 \notin (2)$
- (4) $6 \notin (4) \checkmark$

Proof: Say f(x) = a(x)b(x) in D[x]. Then $f(x) \equiv a(x)b(x)$ in (D/P)[x].

$$\implies a(x)b(x) \equiv a_n x^n \mod P$$

Since (D/P) is a domain, it has a fraction field K, and K[x] is a UFD. So both a(x) and b(x) are both constant multiples of a power of $x \mod P$.

If a(x) and b(x) are both not constant, then their constant coefficients are both 0 mod P. This would mean that both coefficients lie in P, so

$$a_0 = (\text{constant coefficient of } a(x)) \cdot (\text{constant coefficient of } b(x))$$

would lie in P^2 . This is a contradiction, and so f(x) has only constant factors, as desired.

⁹⁾Aside: $P = (x_1, \dots, x_n) \implies P^2 = (x_i x_j)_{i,j \in \{1,\dots,n\}}$ In particular $(x)^2 = (x^2)$

Corollary: If f(x) satisfies the hypothesis of Eisenstein's Criterion and D is a UFD, then f(x) is irreducible in K(D)[x]. \square

Proof: Gauss's Lemma.

Corollary: If f(x) is monic (leading coefficient is one) and satisfies the hypotheses of Eisenstein's Criterion, then f(x) is irreducible in D[x]. **Proof:** Immediate.

Example: Is $x^3y + xy^3 - x + y - 1$ irreducible in $\mathbb{C}[x, y]$? Yes: Apply Eisenstein's Criterion to $D = \mathbb{C}[y]$ and P = (y - 1). Write $\hat{x^3y} + xy^3 - x + y - 1$ = $y^{10}x^3 + (y^3 - 1)^{11}x + (y - 1)^{12}$

So, by Eisenstein's Criterion, $x^3y + xy^3 - x + y - 1$ has only constant factors; namely, factors lying in $D = \mathbb{C}[y]$. But y and y-1 are both coefficients are relatively prime, so there are no nontrivial constant factors either.

PMATH 345 Lecture 15: June 7. 2010

Definition: A ring R is Noetharian *iff* every ideal of R is finitely generated. That is, R is Noetharian *iff* every ideal I of R can be written in the form $I = (r_1, \ldots, r_n)$ for some $r_1, \ldots, r_n \in R$.

Theorem: A ring R is Noetharian *iff* it satisfies the Ascending Chain Condition.

Proof: Forwards: Say R is Noetharian, and let $I_1 \subset I_2 \subset \cdots$ be an ascending chain of ideals. We want to show that there is an index n such that $I_n = I_m$ for all $m \ge n$.

We've already seen that $I = \bigcup_k I_k$ is an ideal, so since R is Noetharian, $I = (r_1, \ldots, r_m)$ for some r_1, \ldots, r_m $r_m \in R$. For each $i, r_i \in I$ implies $r_i \in I_m$, for some m_i .

If $n = \max\{m_i\}$, then $r_i \in I_n$ for all *i*. So $I = (r_1, \ldots, r_m) \subset I_n \subset I$, and therefore $I = I_n$ and $I_m = I_n$ for all $m \geq n$.

Backwards: We'll skip.

Theorem: (Hilbert Basis Theorem) Let R be a Noetharian ring. Then R[x] is also Noetharian.

Remarks: Every field is Noetharian, as is every PID. By induction, HBT implies that $F[x_1, \ldots, x_n]$ is Noetharian for every field F.

Proof: Let $I \subset R[x]$ be any ideal. We want to find a finite set of elements $f_1, \ldots, f_n \in R[x]$ such that $I = (f_1, \ldots, f_n)$. Let L = set of leading coefficients of elements of I (leading coefficient of 0 is 0).

Claim: L is an ideal of R. **Proof:**

- (1) $0 \in L \checkmark$
- (2) Say $l_1, l_2 \in L$. Let $f_1, f_2 \in I$ have leading coefficients l_1, l_2 respectively. If deg $f_1 \ge \text{deg } f_2$, then $f_1 - x^{\deg f_1 - \deg f_2} f_2$ is in I and has leading coefficient $l_1 - l_2$, so $l_1 - l_2 \in L$. Otherwise, $x^{\deg f_2 - \deg f_1} f_1 - f_2$ will do.
- (3) Say $l \in L$, $r \in R$, $f \in I$ with leading coefficient l. Then rf has leading coefficient lr, so $lr \in L$.

Since R is Noetharian, we get $L = (a_1, \ldots, a_n)$ for some $a_1, \ldots, a_n \in R$. Let $f_1, \ldots, f_n \in I$ have leading coefficients a_1, \ldots, a_n , respectively. For each integer $d \ge 0$, define

 $L_d = \{ \text{set of leading cofficients of elements of } I \text{ of degree } d \} \cup \{ 0 \} \}$

It turns out (by a proof similar to Claim's) that L_d is an ideal of R, so we can write $L_d = (b_{d,1}, \ldots, b_{d,n_d})$ for some $b_{d,i} \in R$. Let $f_{d,i} \in I$ have leading coefficient $b_{d,i}$, with deg $f_{d,i} = d$. Let $N = \max\{\deg f_i\}.$

 $^{^{10)}}$ not in (y-1)

¹¹⁾in (y-1)

¹²⁾in (y-1) but not $(y-1)^2$

Claim: I is generated by f_1, \ldots, f_n and $f_{d,i}$ for $d_i \leq N$.

Proof of claim: It's clear that every f_i and $f_{d,i}$ is contained in I, so it suffices to show that every element of I can be written in terms of f_i and $f_{d,i}$.

Assume $f \in I$ is the element of smallest degree that cannot be written as an R[x]-linear combination of the f_i and $f_{d,i}$. $(d = \deg f)$

Case I: deg $f \ge N$. Let a = leading coefficient of f. Since $a \in L$, we can write $a = r_1a_1 + \cdots + r_na_n$ for some $r_i \in R$. So $f - r_1x^{d-\deg f_1}f_1 - \cdots - r_nx^{d-\deg f_n}f_n = g$ has degree less than d, and is nonzero by construction of f. This implies that g cannot be written as an R[x]-linear combination of f_i and $f_{d,i}$, which contradicts minimality of f.

Case II: deg f < N. Then $a \in L_d$ for deg f = d < N, so the Case I argument applies to L_d instead of L. By contradiction, we're done.

PMATH 345 Lecture 16: June 9, 2010

Office Hours Thursday 1:30–3:30

Theorem: Let R be Noetharian, $I \subset R$ any ideal. Then R/I is Noetharian.

Proof: Let *J* be any ideal of R/I. We want to show that $J = (r_1, \ldots, r_n)$ for some elements $r_i \in R/I$. Let $q: R \to R/I$ be the quotient homomorphism, and let $A = q^{-1}(J) = \{r \in R : r \in J \mod I\}$. Then *A* is an ideal of *R*, which is a Noetharian ring, so $A = (r_1, \ldots, r_n)$ for some $r_1, \ldots, r_n \in R$.

Claim: $J = (\overline{r_1}, \ldots, \overline{r_n})$, where $\overline{r_i} = r_i \mod I$. **Proof of claim:** Say $a \in J$. Then there is some $r \in A$ such that q(r) = a. So we can write

$$r = \alpha_1 r_1 + \alpha_2 r_2 + \dots + \alpha_n r_n$$

for some $\alpha_1, \ldots, \alpha_n \in R$, so:

$$a = \overline{\alpha_1 r_1} + \dots + \overline{\alpha_n r_n} \mod I$$

$$\in (\overline{r_1}, \dots, \overline{r_n}) \quad \Box$$

Corollary: Let R be any Noetharian ring (e.g., a field, or \mathbb{Z}). Then for any ideal I of R, the ring

$$R[x_1,\ldots,x_n]/I$$

is Noetharian.

¹³⁾**Definition:** A monomial ordering on the set of monomials $\{x_1^{a_1} \cdots x_n^{a_n} : a_i \in \mathbb{Z}_{\geq 0}\}$ is a partial ordering \leq satisfying:

- (1) It must be a total order: for any two monomials m_1 and m_2 , either $m_1 \leq m_2$ or $m_1 \geq m_2$. If both hold, then $m_1 = m_2$.
- (2) It must be a well ordering: there are no infinite descending sequences of monomials.
- (3) Given monomials m_1, m_2, m_3 with $m_1 \leq m_2$, then $m_1m_3 \leq m_2m_3$.

Example: Lexicographic order:

$$x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} > x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}$$

iff $a_1 > b_1$ or $a_1 = b_1$ and $a_2 > b_2$ or $a_1 = b_1$, $a_2 = b_2$, and $a_3 > b_3$

¹³⁾Aside: Ideals, Varieties, and Algorithms: Cox, Little, O'Shea

: or $a_i = b_i \ \forall i < n \text{ and } a_n > b_n$

$$\begin{array}{ll} x_1^2 x_2 > x_1 x_2^2 & x_1^2 x_2^{-14)} - x_2^2 x_1 \\ & x_1^2 x_2 < x_1^2 x_2^2 \\ & x_1 x_2^{7917} < x_1^2 x_2 \\ & a^2 > a \end{array}$$

Definition: Let $p(x_1, \ldots, x_n)$ be a polynomial. The leading monomial of p is the "biggest" monomial with a nonzero coefficient. The leading coefficient is the coefficient of the leading monomial. The leading term is (leading coefficient)(leading monomial). The multidegree of a monomial $x_1^{a_1} \cdots a_n^{a_n}$ is (a_1, \ldots, a_n) . The multidegree of p is the multidegree of its leading monomial.

PMATH 345 Lecture 17: June 14, 2010

Long division helps with: Telling if $p(x) \in (q(x))$. Finding gcd(p(x), q(x)).

In many variables:

Tell if $p(x_1, \ldots, x_n) \in (f_1(x_1, \ldots, x_n), \ldots, f_r(x_1, \ldots, x_n))$ Find a "good" set of generators for (f_1, \ldots, f_r) .

Example: Divide $x^2y + xy^2 + y^2$ by $\{xy - 1, y^2 - 1\}$. (Use lex order with x > y.) long division

$$\begin{array}{cccc} x + y, 1 & & & & & & \\ xy - 1, y^2 - 1 & & & & & & \\ \hline x^2y - x & & & & \\ & & & & & \\ & & & \\ &$$

Example: Same as before:

$$\begin{array}{cccc} x+1, x & & & & & \\ y^2-1, xy-1)\overline{)x^2y+xy^2+y^2} & & & & & \\ & & & \\ & & & &$$

Theorem: Let $f_1, \ldots, f_s \in F[x_1, \ldots, x_n]$ where F is a field, f_1, \ldots, f_s not all the zero polynomial. Then

¹⁴⁾leading term

 $^{^{15)}}$ coefficient of xy - 1

¹⁶⁾ coefficient of $y^2 - 1$

 $^{^{17)}}$ remainder

 $^{^{18)}\}mathrm{coefficient}$ of y^2-1

¹⁹⁾ coefficient of xy - 1

 $^{^{20)}}$ remainder

every $f \in F[x_1, \ldots, x_n]$ can be written as:

$$f = a_1 f_1 + \dots + a_s f_s + r$$

where $a_i, r \in F[x_1, \ldots, x_n]$, every term in r not divisible by any $LT(f_i)$. If $a_i f_i \neq 0$, then multideg $(a_i f_i) \leq$ multideg(f).

Proof: In Papantonopoulou.

Let *I* be an ideal of $F[x_1, \ldots, x_n]$. Define LT(I) = ideal generated by { $LT(f) : f \in I$ }. Fact: If $I = (f_1, \ldots, f_r)$, then

$$LT(I) \neq (LT(f_1), \dots, LT(f_r))$$

unless the f_i are carefully chosen.

Definition: Let $I = (f_1, \ldots, f_r)$ be an ideal of $F[x_1, \ldots, x_n]$. Then $\{f_1, \ldots, f_r\}$ is a Gröbner basis for I iff $LT(I) = (LT(f_1), \ldots, LT(f_r))$.

PMATH 345 Lecture 18: June 16, 2010

Definition: Let $f_1, \ldots, f_r \in E[x_1, \ldots, x_n]$ be any set of polynomials. Then $\{f_1, \ldots, f_r\}$ is a Gröbner basis for $I = (f_1, \ldots, f_r)$ iff

$$LT(I) = (LT(f_1), \dots, LT(f_r)).$$

In other words, any monomial m that is divisible by LT(g) for some $g \in I$ is divisible by some $LT(f_i)$.

Theorem: If $LT(I) = (LT(f_1), \ldots, LT(f_r))$ and $f_1, \ldots, f_r \in I$, then $I = (f_1, \ldots, f_r)$. **Proof:** Since $f_1, \ldots, f_r \in I$, it follows immediately that $(f_1, \ldots, f_r) \subset I$. So it suffices to show $I \subset (f_1, \ldots, f_r)$. Let $g \in I$, and divide g by $\{f_1, \ldots, f_r\}$. By the Division Theorem, we get:

$$g = a_1 f_1 + \dots + a_r f_r + t$$

where t is the remainder, whose terms are all not divisible by any $(LT(f_i))$. But $t \in I$, so $LT(t) \in LT(I) = (LT(f_1), \ldots, LT(f_r))$. This immediately implies t = 0 so $g \in (f_1, \ldots, f_r)$.

Do Gröbner bases exist? Yes!

Theorem: Let $I \subset F[x_1, \ldots, x_n]$ be an ideal. Then there is a Gröbner basis for I. **Proof:** Consider LT(I), which is generated by an infinite collection of monomials:

$$\mathcal{M} = \{ \operatorname{LT}(f) : f \in I \}$$

Notice that LT(I) is also generated by the set of leading monomials of elements of I:

$$\mathcal{L} = \{ \operatorname{LM}(f) : f \in I \}$$

The set \mathcal{L} is countably infinite, since each monomial $x_1^{a_1} \cdots x_n^{a_n}$ corresponding uniquely to $(a_1, \ldots, a_n) \in \mathbb{Z}^n$. Therefore, we can enumerate the monomials in \mathcal{L} :

$$m_1, m_2, m_3, \ldots$$

Define $I_j = (m_1, \ldots, m_j)$

 $I_1 \subset I_2 \subset I_3 \subset I_4 \subset \cdots$

So by ACC, this chain stabilizes at some finite step v, so:

$$LT(I) = \bigcup_{j=1}^{\infty} I_j = I_v$$
$$= (m_1, \dots, m_v)$$
$$= (LT(f_1), \dots, LT(f_v))$$

for some $f_1, \ldots, f_v \in I$.

Theorem: Let $\{f_1, \ldots, f_t\}$ be a Gröbner basis (for $I = (f_1, \ldots, f_t) \neq (0)$), $f \in F[x_1, \ldots, x_n]$. Then there exists a unique $r \in F[x_1, \ldots, x_n]$ such that

$$f = a_1 f_1 + \dots + a_t f_t + n$$

for some $a_1, \ldots, a_t \in F[x_1, \ldots, x_n]$, and no term of r is divisible by any $LT(f_i)$. **Proof:** Say:

$$a_1f_1 + \dots + a_tf_t + r = a'_1f_1 + \dots + a'_tf_t + r'_t$$

Then:

$$(a_1 - a'_1)f_1 + \dots + (a_t - a'_t)f_t = r' - r$$

So $LT(r'-r) \in LT(I) = (LT(f_1), \ldots, LT(f_t))$. But r' and r aren't allowed to have any terms divisible by any $LT(f_i)$, so r'-r has no terms and is therefore 0. So r'=r. \Box **Corollary:** Let $f \in F[x_1, \ldots, x_n]$ be any polynomial, I any nonzero ideal, f_1, \ldots, f_t a Gröbner basis for I. Then $f \in I$ iff f divided by $\{f_1, \ldots, f_t\}$ gives zero remainder. **Proof:** Immediate. \Box

Definition: Let $f, g \in F[x_1, \ldots, x_n]$ be any nonzero polynomials. Then

$$S(f,g) = \left(\frac{\text{LCM}}{\text{LT}(f)}\right)f - \left(\frac{\text{LCM}}{\text{LT}(g)}\right)g$$

where LCM = LCM(LM(f), LM(g)).

$$\begin{split} f &= 3x^2 - 2 \qquad g = -xy + 1 \\ \mathrm{LT}(f) &= 3x^2 \qquad \mathrm{LT}(g) = -xy \\ \mathrm{LM}(f) &= x^2 \qquad \mathrm{LM}(g) = xy \\ \mathrm{LCM} &= x^2y \\ \implies S(f,g) &= \frac{x^2y}{3x^2}(3x^2 - 2) - \frac{x^2y}{-xy}(-xy + 1) \\ &= \frac{1}{3}y(3x^2 - 2) - (-x)(-xy + 1) \\ &= (x^2y - \frac{2}{3}y) - (x^2y - x) \\ &= x - \frac{2}{3}y \end{split}$$

PMATH 345 Lecture 19: June 18, 2010

How can one tell if $\{g_1, \ldots, g_r\}$ is a Gröbner basis? **Definition:** Let $f, g \in F[x_1, \ldots, x_n]$ be two nonzero polynomials. Then:

$$S(f,g) = \Big(\frac{\mathrm{LCM}}{\mathrm{LT}(f)}\Big)f - \Big(\frac{\mathrm{LCM}}{\mathrm{LT}(g)}\Big)g$$

where LCM = LCM(LM(f), LM(g)).

Theorem: (Buchberger's Criterion) Say $I = (f_1, \ldots, f_r)$ is an ideal of $F[x_1, \ldots, x_n]$. Then $\{f_1, \ldots, f_r\}$ is a Gröbner basis for I iff for all $i, j, S(f_i, f_j)$ gives zero remainder upon division by $\{f_1, \ldots, f_r\}$. **Proof:** Forwards is trivial. Backwards is too hard.

Example: Is $\{xy - 1, y^2 - 1\}$ a Gröbner basis? By Buchberger's Criterion:

$$S(xy - 1, y^{2} - 1) = y(xy - 1) - x(y^{2} - 1)$$

= $xy^{2} - y - xy^{2} + x$
= $x - y$

Clearly, a long division of x - y by $\{xy - 1, y^2 - 1\}$ yields a remainder of x - y. Since this is nonzero, we conclude that $\{xy - 1, y^2 - 1\}$ is not a Gröbner basis.

Theorem: (Buchberger's Algorithm) One can compute a Gröbner basis for $I = (f_1, \ldots, f_r)$ by the following method:

- (1) Compute $S(f_i, f_j)$ and divide it by $\{f_1, \ldots, f_r\}$ for each i, j
- (2) If all remainders are zero, STOP; you have a Gröbner basis.
- (3) Otherwise, enlarge the set $\{f_1, \ldots, f_r\}$ by the nonzero remainders, and return to step (1).

Proof: This algorithm terminates because the ideal generated by $\{LT(f_i)\}$ strictly increases at each iteration, so by the ACC, the set of nonzero remainders must eventually be empty. When this happens, Buchberger's Criterion implies that $\{f_i\}$ is a Gröbner basis.

Example: Find a Gröbner basis of $(xy - 1, y^2 - 1)$.

$$S(xy - 1, y^2 - 1) = x - y$$

This gives remainder x - y, so:

$$\{xy - 1, y^2 - 1, x - y\}$$

$$S(xy - 1, x - y) = 1(xy - 1) - y(x - y)$$

$$= xy - 1 - xy + y^2$$

$$= y^2 - 1$$

This clearly gives remainder 0, so we just need to check:

$$S(y^{2} - 1, x - y) = x(y^{2} - 1) - y^{2}(x - y)$$

= $xy^{2} - x - xy^{2} + y^{3}$
= $-x + y^{3}$

Long divide:

$$xy - 1, y^{2} - 1, x - y \overline{) - x + y^{3}} - \frac{x + y}{y^{3} - y} - \frac{y^{3} - y}{y^{3} - y} - \frac{y^{3} - y}{y^{3} - y} - \frac{y^{3} - y}{0}$$

Zero remainder of all S-polynomials implies (by Buchberger) that $\{xy - 1, y^2 - 1, x - y\}$ is a Gröbner basis. Notice that LT(x - y) | LT(xy - 1) so:

$$(LT(xy-1), LT(y^2-1), LT(x-y)) = (LT(y^2-1), LT(x-y)) = LT(xy-1, y^2-1)$$

Therefore, since $\{xy - 1, y^2 - 1, x - y\}$ is a Gröbner basis, we see that $\{x - y, y^2 - 1\}$ is also a Gröbner basis. Any subset of I that contains a Gröbner basis for I is itself a Gröbner basis for I.

Definition: Let $I \subset F[x_1, \ldots, x_n]$ be a nonzero ideal. Then $\{f_1, \ldots, f_r\}$ is a minimal Gröbner basis for I iff

- (1) $\{f_1, \ldots, f_r\}$ is a Gröbner basis for I
- (2) $LC(f_i) = 1$ for all i
- (3) $\operatorname{LT}(f_i) \nmid \operatorname{LT}(f_j) \text{ for } i \neq j$ $\iff \operatorname{LT}(f_i) \notin (\operatorname{LT}(f_j))_{j \neq i}$

Example: $\{xy - 1, y^2 - 1, x - y\}$ is not minimal, because LT(x - y) | LT(xy - 1). By deleting f_i whose leading terms are redundant (*i.e.*, divisible by some other leading term), we can always construct a minimal Gröbner basis from an arbitrary one. Since Gröbner bases always exist, therefore, so do minimal Gröbner bases.

Example: $\{y^2 - 1, x - y\}$ is a minimal Gröbner basis. So is $\{y^2 - 1, x - y + \frac{1}{17}(y^2 - 1)\}$.

Definition: A set $\{f_1, \ldots, f_r\} \subset F[x_1, \ldots, x_n]$ is a Gröbner basis *iff*

$$\operatorname{LT}(f_1,\ldots,f_r) = (\operatorname{LT}(f_1),\ldots,\operatorname{LT}(f_r))$$

Definition: A Gröbner basis $\{f_1, \ldots, f_r\}$ is minimal *iff* every f_i has leading coefficient 1 and $LT(f_i) \nmid LT(f_j)$ if $i \neq j$.

Theorem: Any two minimal Gröbner bases for the same ideal have the same number of elements.

Proof: Let $\{f_1, \ldots, f_r\}$ and $\{g_1, \ldots, g_t\}$ be two minimal Gröbner bases for the ideal $I = (f_1, \ldots, f_r) = (g_1, \ldots, g_t)$. We want to show r = t. Let $f_i \in \{f_1, \ldots, f_r\}$ be any element. Then there is some g_j such that $LT(g_j) \mid LT(f_i)$, since $LT(f_i)$ is not in the (zero) remainder left upon division of f_i by $\{g_1, \ldots, g_t\}$. Similarly, some f_k satisfies $LT(f_k) \mid LT(g_j)$. So $LT(f_k) \mid LT(f_i)$. Then minimality of $\{f_1, \ldots, f_r\}$ implies i = k, and so $LT(f_i) = LT(g_j)$. Since all the leading terms of the f_i s are different, and similarly for the g_j s, we've just built a bijection between the f_i s and g_j s.

Definition: A Gröbner basis $\{f_1, \ldots, f_r\}$ is reduced *iff* it is minimal and no term of any f_i is divisible by $LT(f_j)$ for $i \neq j$.

Example: $\{x - y, y^2 - 1\}$ is reduced. $\{x - y^2 - y + 1, y^2 - 1\}$ is not reduced.

To find a reduced Gröbner basis, first find a minimal one $\{f_1, \ldots, f_r\}$. For each *i*, replace f_i by its remainder upon division by $\{f_1, \ldots, \hat{f}_i, \ldots, f_r\}$.

Theorem: Any nonzero ideal $I \subset F[x_1, \ldots, x_n]$ has a unique reduced Gröbner basis. **Proof:** Say $\{g_1, \ldots, g_r\}$ and $\{g'_1, \ldots, g'_r\}$ are reduced Gröbner bases for $I = (g_1, \ldots, g_r) = (g'_1, \ldots, g'_r)$. For any g_i , let g'_j be the element such that $LT(g_i) = LT(g'_j)$.

The element $g_i - g'_j$ has no terms divisible by any $LT(g_k)$ (because $LT(g_i)$ is cancelled by $LT(g'_j)$). But $g_i - g'_j \in I$, so $g_i - g'_j = 0$, and so $g_i = g'_j$.

Let F be a field, F[x] the polynomial ring in one variable. Then F has two ideals: (0) and (1), and every nonzero element of F is a unit.

Fact: Let R be a nonzero ring. F a field. Then every homomorphism from $F \to R$ is 1–1.

F[x] is a PID, so it's also a UFD. Every ideal of F[x] is of the form I = (p(x)) for some $p(x) \in F[x]$. The ideal (p(x)) is maximal *iff* p(x) is irreducible, and prime *iff* p(x) is irreducible or zero.

What does F[x]/(p(x)) look like?

Theorem: (Chinese Remainder) Let $p(x), q(x) \in F[x]$ be coprime polynomials. Then:

$$\phi \colon F[x]/(pq) \to F[x]/(p) \oplus F[x]/(q)$$

given by $\phi(a(x) \mod pq) = (a(x) \mod p, a(x) \mod q)$ is an isomorphism. **Proof:** ϕ is clearly a homomorphism.

1-1: Say $a(x) \equiv b(x) \mod p$ and $a(x) \equiv b(x) \mod q$. We want to show

$$a(x) \equiv b(x) \bmod pq.$$

Since $p \mid a - b$ and $q \mid a - b$, the fact that p, q are coprime and F[x] is a UFD $\implies pq \mid a - b$, so

 $a(x) \equiv b(x) \mod pq.$

Onto: Say f(x), g(x) are any elements of F[x]. We want to find a single $h(x) \in F[x]$ satisfying $\phi(h(x) \mod pq) = (f(x) \mod p, g(x) \mod q)$:

$$h(x) \equiv f(x) \mod p$$

 $h(x) \equiv g(x) \mod q$

Since p, q coprime, there are $a(x), b(x) \in F[x]$ such that:

$$a(x)p(x) + b(x)q(x) = 1.$$

PMATH 345 Lecture 21: June 23, 2010

Theorem: (Chinese Remainder) Let F be a field, $p(x), q(x) \in F[x]$ coprime polynomials. Then the function:

$$\phi \colon F[x]/(pq) \to F[x]/(p) \oplus F[x]/(q)$$

given by

$$(a(x) \mod pq) \mapsto (a(x) \mod p, a(x) \mod q)$$

is an isomorphism.

Proof: (Continued) To show that ϕ is onto, we first note that since F[x] is a PID, and since p, q are coprime, we get (p(x), q(x)) = (1). In other words, there are $a(x), b(x) \in F[x]$ such that

$$a(x)p(x) + b(x)q(x) = 1.$$

Now let $f(x), g(x) \in F[x]$ be any polynomials. We want to find $h(x) \in F[x]$ such that

$$h(x) \equiv f(x) \mod p$$
$$h(x) \equiv g(x) \mod q$$

Let h(x) = f(x)b(x)q(x) + g(x)a(x)p(x). Then

$$h(x) \equiv f(x) \mod p$$

and
$$h(x) \equiv g(x) \mod q$$

So $\phi(h(x) \mod pq) = (f(x) \mod p, g(x) \mod q)$, as desired.

In light of the CRT, to understand F[x]/(f(x)), it suffices to understand

$$F[x]/(p(x)^a)$$

for irreducible polynomials p(x). We will study F[x]/(p(x)) for irreducible p(x). Note that F[x]/(p(x)) is a field *iff* p(x) is irreducible in F[x].

Linear Algebra over general fields.

Non-definition: A vector space over a field F is a set V of "vectors" that you can add, subtract, and multiply by scalars in a sensible way.

Spanning, linear independence, basis, dimension, linear transformation, kernel, range, eigenstuff... they all have the same definitions and properties over a general field as they do over, say, \mathbb{R} .

Note that if F is a field and R is any ring with $F \subset R$, then R is an F-vector space.

In particular, F[x]/(p(x)) is an *F*-vector space.

$$F \hookrightarrow F[x]/(p)$$
$$\alpha \mapsto (\alpha \bmod p)$$

Theorem: Let F be a field, $p(x) \in F[x]$ any polynomial. If p(x) = 0, then $\dim_F F[x]/(p(x)) = \infty$. Otherwise, $\dim_F F[x]/(p(x)) = \deg(p(x))$.

Proof: If p(x) = 0, then F[x]/(0) = F[x], which contains the infinite linearly independent set $\{1, x, x^2, x^3, \ldots\}$. Now assume $p(x) \neq 0$. Then by the Division Theorem, for any $f(x) \in F[x]$, we can write:

$$f(x) = q(x)p(x) + r(x)$$

where $q(x), r(x) \in F[x]$, and $\deg(r(x)) < \deg(p(x))$. Better yet, r(x) is unique!

So F[x]/(p(x)) is in 1–1 correspondence with $\{r(x) : \deg(r) < \deg(p)\}$. Furthermore, this correspondence respects addition and scalar multiplication, but not multiplication (unless you reduce the result mod p(x) again).

In particular, F[x]/(p(x)) is isomorphic as an *F*-vector space to:

 $V = \{ r(x) : \deg(r(x)) < \deg(p(x)) \}$

A basis for V is

 $\{1, x, x^2, \dots, x^{\deg p-1}\}$

so dim_F $F[x]/(p(x)) = \deg(p(x))$ as desired.

Example: dim_{\mathbb{Q}} $\mathbb{Q}[x]/(x^2-1)=2$

$$(a+bx)(c+dx) = (ac+bd) + (ad+bc)x$$

Basis: $\{1, x\}$ Example: dim_Q $\mathbb{Q}[x]/(x^2 - 2) = 2$

$$(a+bx)(c+dx) = (ac+2bd) + (ad+bc)x$$

Basis: $\{1, x\}$.

These two rings are *not* isomorphic, but the two \mathbb{Q} -vector spaces are.

PMATH 345 Lecture 22: June 25, 2010

Say R is a ring, contained in another ring T. Let $\alpha \in T$. Then:

$$R[\alpha] = \{ f(\alpha) : f(x) \in R[x] \}^{21}$$

Example:

$$\mathbb{Z}[\sqrt{2}] = \{ f(\sqrt{2}) : f(x) \in \mathbb{Z}[x] \}$$
$$= \{ a + b\sqrt{2} : a, b \in \mathbb{Z} \}$$

Say F is a field, contained in some other field E. Let $\alpha \in E$. Then:

$$F(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in F[x], \, g(\alpha) \neq 0 \right\}$$

Example:

$$\mathbb{C}(\sqrt{2}) = \left\{ \frac{f(\sqrt{2})}{g(\sqrt{2})} : f, g \in \mathbb{Q}[x], g(\sqrt{2}) \neq 0 \right\}$$
$$= \left\{ \frac{a + b\sqrt{2}}{c + d\sqrt{2}} : c + d\sqrt{2} \neq 0, a, b, c, d \in \mathbb{Q} \right\}$$
$$= \left\{ \frac{(a + b\sqrt{2})(c - d\sqrt{2})}{c^2 - 2d^2} : a, b, c, d \in \mathbb{Q}, c + d\sqrt{2} \neq 0 \right\}$$
$$= \left\{ \binom{\text{Messy}}{\text{rational}} + \binom{\text{Other messy}}{\text{rational}} \sqrt{2} \right\}$$

 $^{21)}$ ring

so $\mathbb{Q}(\sqrt{2}) \subset \{A + B\sqrt{2} : A, B \in \mathbb{Q}\}$. It's clear that $A + B\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ for all $A, B \in \mathbb{Q}$, so:

$$\mathbb{Q}(\sqrt{2}) = \{A + B\sqrt{2} : A, B \in \mathbb{Q}\}$$
$$= \operatorname{span}_{\mathbb{Q}}\{1, \sqrt{2}\}$$
$$\mathbb{Q}[\sqrt{2}] = \{f(\sqrt{2}) : f(x) \in \mathbb{Q}[x]\}$$
$$= \{A + B\sqrt{2} : A, B \in \mathbb{Q}\}$$
$$= \mathbb{Q}(\sqrt{2})$$

Definition: A field extension E/F is a pair of fields E, F with $F \subset E$. If $\alpha \in E$, then α is algebraic over F iff there is some nonzero $p(x) \in F[x]$ such that $p(\alpha) = 0$. Otherwise, α is called transcendental over F.

An extension E/F is called algebraic *iff* every element $\alpha \in E$ is algebraic over F. Otherwise, E/F is called transcendental.

If E/F is an extension of fields, then E is an F-vector space. The dimension of E over F is called the *degree* of E/F.

$$[E:F] = \dim_F E = \text{dimension of } E \text{ as an } F \text{-vector space}$$

Example: $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, basis $\{1, \sqrt{2}\}$ $[\mathbb{C} : \mathbb{R}] = 2$ $[\mathbb{R} : \mathbb{Q}] = \infty$ The degree of α over F is the degree of $F(\alpha)$ over F.

Theorem: Let E/F be a field extension, $\alpha \in E$ algebraic over F. Then there is a unique monic irreducible polynomial $p(x) \in F[x]$ such that

$$F(\alpha) \cong F[x]/(p(x))$$

where the isomorphism is given by

$$(f(x) \mod p(x)) \mapsto f(\alpha)$$

Proof: Define $\phi: F[x] \to E$ by $\phi(f(x)) = f(\alpha)$. The kernel of ϕ is an ideal of F[x], which is a PID, so we can write ker $\phi = (p(x))$ for some polynomial $p(x) \in F[x]$. Since α is algebraic over F, ker $\phi \neq (0)$, so $p(x) \neq 0$. There is a unique monic p(x) that generates ker ϕ ; choose that one.

Now, E is a domain, so im ϕ is a domain, so $F[x]/\ker \phi \cong \operatorname{im} \phi$ is a domain, so $\ker \phi = (p(x))$ is a prime ideal. Since $\ker \phi \neq (0)$ and F[x] is a PID, we know that (p(x)) is a maximal ideal, so p(x) is irreducible in F[x].

It remains only to show that $F(\alpha) = \operatorname{im} \phi$. First, note that $\operatorname{im} \phi$ is a field that contains α , so $F(\alpha) \subset \operatorname{im} \phi$, because $\operatorname{im} \phi$ is closed under $+, -, \cdot,$ and \div . The definitions of $F(\alpha)$ and ϕ immediately imply that $\operatorname{im} \phi \subset F(\alpha)$, so $\operatorname{im} \phi = F(\alpha)$, as desired.

PMATH 345 Lecture 23: June 28, 2010

Let E/F be a field extension, $\alpha \in E$, α algebraic over F. Then $F(\alpha) \cong F[x]/(p(x))$, where p(x) is a unique, monic, irreducible polynomial in F[x]. The polynomial p(x) is called the minimal polynomial for α over F.

Note that this fact immediately implies that:

$$[F(\alpha):F] = \deg_F F(\alpha) = \deg(p),$$

and that a basis for $F(\alpha)/F$ is $\{1, \alpha, \alpha^2, \ldots, \alpha^{\deg(p)-1}\}$.

Theorem: Let α be algebraic over F, $p(x) \in F[x]$ the minimal polynomial for α/F . If $q(x) \in F[x]$ satisfies $q(\alpha) = 0$, then $p(x) \mid q(x)$. In particular, if $q(\alpha) = 0$, $q(x) \in F[x]$, q(x) monic and irreducible, then q(x) = p(x). **Proof:** We may write q(x) = a(x)p(x) + r(x) where deg(r(x)) < deg(p(x)). Then:

$$r(\alpha) = q(\alpha) - a(\alpha)p(\alpha) = 0$$

so $r(x) \in$ kernel of "plug in α " homomorphism. This kernel is, by definition of the minimal polynomial, just (p(x)). Since deg(r) < deg(p), this means that r(x) = 0, and $p(x) \mid q(x)$.

Theorem: Let α be algebraic over F, p(x) the polynomial for α/F . Then p(x) is the monic, nonzero polynomial in F[x] of smallest degree such that $p(\alpha) = 0$.

Proof: By definition, $(p(x)) = \ker(\text{plug-in-}\alpha)$. Since p(x) is the monic polynomial in (p(x)) of smallest degree, it is immediately also the monic, nonzero polynomial of smallest degree in $\ker(\text{plug-in-}\alpha)$

$$= \{ q(x) \in F[x] : q(\alpha) = 0 \}. \quad \Box$$

Example: Find the minimal polynomial for $\sqrt{2}$ over \mathbb{Q} . **Answer:** $x^2 - 2$, because $(\sqrt{2})^2 - 2 = 0$ and $x^2 - 2$ is monic and irreducible (by Eisenstein on (2)). **Example:** Find the minimal polynomial for $e^{2\pi i/5}$ over \mathbb{Q} .

 $x^5 - 1$ has $e^{2\pi i/5}$ as a root, but is not irreducible:

$$x^{5} - 1 = (x - 1)(\underbrace{x^{4} + x^{3} + x^{2} + x + 1}_{\text{Is this it?}})$$

Reduce mod 2: $x^4 + x^3 + x^2 + x + 1$ has no roots, so it's either irreducible or factors into 2 quadratics:

$$x^2, x^2 + 1, x^2 + x, x^2 + x + 1$$

Since $(x^2 + x + 1)^2 = x^4 + x^2 + 1 \neq x^4 + x^3 + x^2 + x + 1$, our polynomial doesn't factor into two quadratics, so $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$, and hence, also irreducible over \mathbb{Z} and \mathbb{Q} .

$$x^{3} + x \neq 0 \text{ in } \mathbb{Z}_{2}[x].$$
$$(\sqrt{2})^{5} - (\sqrt{2}) = 4\sqrt{2} - \sqrt{2} = 3\sqrt{2} \neq 0$$

so $x^5 - x \neq 0$ in $\mathbb{Z}_5[x]$.

Example: Find the minimal polynomial for 3 + 2i over \mathbb{Q} . **Answer:** If $a_0 + a_1x + \cdots + a_nx^{n-1} + x^n$ is the minimal polynomial, then:

$$a_0 + a_1(3+2i) + \dots + (3+2i)^n = 0$$

n = 0: Obvious non-starter. n = 1: $a_0 + a_1(3 + 2i) = 0$ $\implies (a_0 + 3a_1) + (2a_1)i = 0$ Since $\{1, i\}$ are linearly independent over \mathbb{Q} , we get:

$$\begin{cases} a_0 + 3a_1 = 0\\ 2a_1 = 0 \end{cases}$$

$$\begin{array}{l} \Longrightarrow \ a_0 = a_1 = 0. \text{ So no good.} \\ n = 2: \ a_0 + a_1(3+2i) + a_2(3+2i)^2 = 0 \\ \Longrightarrow \ (a_0 + 3a_1 + 5a_2) + (2a_1 + 12a_2)i = 0 \\ \begin{cases} a_0 + 3a_1 + 5a_2 = 0 \\ 2a_1 + 12a_2 = 0 \end{cases} \\ a_2 = 1 \implies \begin{cases} a_0 + 3a_1 = -5 \\ 2a_1 = -12 \\ \Longrightarrow \ a_1 = -6, \ a_0 = 13 \end{cases} \\ \text{Therefore } x^2 - 6x + 13 \text{ is the minimal polynomial} \\ \text{Check for irreducibility: } x = \frac{6 \pm \sqrt{36-52}}{2} = \frac{6 \pm \sqrt{-16}}{2} = 3 \pm 2i \end{cases}$$

Roots are not in \mathbb{Q} , so irreducible.

PMATH 345 Lecture 24: June 30, 2010

Fact: If F is a field, α an element of some ring R containing F, then any field E that contains F and α must contain $F(\alpha)$.

$$\begin{bmatrix} M \\ \begin{bmatrix} [M:K] \\ L \\ \\ [L:K] \\ K \end{bmatrix}$$
 Tower of fields, $K \subset L \subset M$

Theorem: (KLM) Say $K \subset L \subset M$ is a tower of fields. Then:

$$[M:K] = [M:L][L:K]$$

where $[M:K] = \infty$ *iff* either $[M:L] = \infty$ or $[L:K] = \infty$. **Proof:** Let $\{u_1, \ldots, u_l\}$ be a basis for L/K, and let $\{v_1, \ldots, v_m\}$ be a basis of M/L. **Claim:** $\{u_i v_j\}_{i \in \{1, \ldots, l\}}$ is a basis of M/K.

Note that the claim immediately implies the theorem.

Proof of claim: Spanning: Let $x \in M$ be any element. We want to find $a_{ij} \in K$ such that $x = \sum_{i,j} a_{ij} u_i v_j$. Since $\{v_1, \ldots, v_m\}$ is a basis of M/L, we can find $b_1, \ldots, b_m \in L$ such that:

$$\boldsymbol{x} = b_1 \boldsymbol{v}_1 + \dots + b_m \boldsymbol{v}_m$$

for each j, write:

$$b_j = a_{1j}\boldsymbol{u}_1 + a_{2j}\boldsymbol{u}_2 + \dots + a_{lj}\boldsymbol{u}_l$$

for $a_{ij} \in K$. Then:

$$\boldsymbol{x} = \left(\sum_{i} a_{i1} \boldsymbol{u}_{i}\right) \boldsymbol{v}_{1} + \dots + \left(\sum_{i} a_{im} \boldsymbol{u}_{i}\right) \boldsymbol{v}_{m}$$
$$= \sum_{i,j} a_{ij} \boldsymbol{u}_{i} \boldsymbol{v}_{j}$$

where $a_{ij} \in K$, as desired.

Linear independence: Set $\sum_{i,j} a_{ij} \boldsymbol{u}_i \boldsymbol{v}_j = 0$. We want to show that if $a_{ij} \in K$, then $a_{ij} = 0$ for all i, j. Rewrite:

$$\left(\sum_{i}a_{i1}\boldsymbol{u}_{i}\right)\boldsymbol{v}_{1}+\cdots+\left(\sum_{i}a_{im}\boldsymbol{u}_{i}\right)\boldsymbol{v}_{m}=0$$

The coefficient of each v_j lies in L, since $a_{ij} \in K \subset L$ and $u_1 \in L$. So:

Since
$$\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_m\}$$
 is linear independent over $L \begin{cases} a_{11}\boldsymbol{u}_1 + a_{21}\boldsymbol{u}_2 + \dots + a_{l1}\boldsymbol{u}_l = 0 \\ \vdots \\ a_{1m}\boldsymbol{u}_1 + a_{2m}\boldsymbol{u}_2 + \dots + a_{lm}\boldsymbol{u}_l = 0 \end{cases}$

Since $\{u_1, \ldots, u_l\}$ is linearly independent over K, we conclude $a_{ij} = 0$ for all i, j, as desired. \Box (claim) If [M:L] or [L:K] is infinite, then it is clear that $[M:K] = \infty$ because any infinite linearly independent subset of M/L or L/K is also linearly independent in M/K.

Otherwise, if [M:L] and [L:K] are both finite, we've already shown that [M:K] is also finite.

Example: Compute $[\mathbb{Q}(\sqrt{13},\sqrt{7}):\mathbb{Q}]$. Find a basis for $\mathbb{Q}(\sqrt{13},\sqrt{7})/\mathbb{Q}$.

$$\mathbb{Q}(\sqrt{13},\sqrt{7})$$

$$\mathbb{Q}(\sqrt{13})$$

$$\mathbb{Q}(\sqrt{13})$$

$$\mathbb{Q}(x^2 - 13 \text{ is a minimal polynomial (Eisenstein on (13))}$$

$$\mathbb{Q}$$

Claim: $x^2 - 7$ is irreducible over $\mathbb{Q}(\sqrt{13})$. **Proof of claim:** Look for roots:

$$(a + b\sqrt{13})^2 - 7 = a^2 + 13b^2 + 2ab\sqrt{13} - 7$$
$$= 0$$
$$\implies (a^2 + 13b^2 - 7) + (2ab)\sqrt{13} = 0$$

Since $\{1, \sqrt{13}\}$ is linearly independent over \mathbb{Q} :

$$\begin{cases} a^2 + 13b^2 - 7 = 0\\ 2ab = 0 \end{cases}$$

It is easy to see that there are no $a, b \in \mathbb{Q}$ satisfying both equations, so $x^2 - 7$ has no roots in $\mathbb{Q}(\sqrt{13})$, and so $x^2 - 7$ is irreducible over $\mathbb{Q}(\sqrt{13})$. \Box (claim) So $[\mathbb{Q}(\sqrt{13},\sqrt{7}):\mathbb{Q}] = 4$ by KLM. A basis for $\mathbb{Q}(\sqrt{13},\sqrt{7})/\mathbb{Q}$ is $\{1,\sqrt{13},\sqrt{7},\sqrt{91}\}$.

Say L/K is a field extension of degree n. If $K \subset F \subset L$ with F a field, then n is a multiple of [F:K] and [L:F].

PMATH 345 Lecture 25: July 5, 2010

Definition: Let F be a field, $p(x) \in F[x]$ any nonconstant polynomial. A splitting field for p(x) over F is a field E such that:

(1) $p(x) = c(x - a_1) \cdots (x - a_n)$ for $c, a_1, \dots, a_n \in E$

$$(2) E = F(a_1, \ldots, a_n)$$

Example: A splitting field for $x^2 - 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{2})$, since $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{2}, -\sqrt{2})$. **Example:** A splitting field for $x^2 - 1$ over \mathbb{Q} is \mathbb{Q} . **Example:** A splitting field for $x^3 - 2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3}) = \mathbb{Q}(\sqrt[3]{2}, \frac{-1+\sqrt{-3}}{2})$ **Proof:** Let $\gamma = e^{2\pi i/3}$ be a primitive cube root of unity. Then:

$$x^{3} - 2 = (x - \sqrt[3]{2})(x - \gamma\sqrt[3]{2})(x - \gamma^{2}\sqrt[3]{2})$$

So a splitting field is:

$$\mathbb{Q}(\sqrt[3]{2}, \gamma\sqrt[3]{2}, \gamma^2\sqrt[3]{2}) = \mathbb{Q}(\sqrt[3]{2}, \gamma)$$

Definition: An extension E/F is finite *iff* $[E:F] < \infty$. **Theorem:** Let E/F be a finite extension. Then E/F is algebraic. **Proof:** Let $\alpha \in E$, [E:F] = n. Then $\{1, \alpha, \alpha^2, \ldots, \alpha^n\}$ is linearly dependent over F:

 $a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n = 0$

for $a_0, \ldots, a_n \in F$, not all zero. Then α is a root of $a_0 + \cdots + a_n x^n \in F[x]$, so α is algebraic over F. \Box

This means that for any E/F, the set of elements of E that are algebraic over F is a field:

 $E^{\text{alg}} = \{ \alpha \in E : \alpha \text{ is algebraic over } F \}$

because if $\alpha, \beta \in E^{\text{alg}}$, then $F(\alpha)/F$ and $F(\beta)/F$ are both finite extensions:

$$\left.\begin{array}{c}
F(\alpha,\beta)\\
\text{finite}\\
F(\alpha)\\
\text{finite}\\
F\end{array}\right\} \text{finite, by KLM}$$

So $F(\alpha, \beta)$ is finite over F, and $F(\alpha, \beta)$ contains $\alpha + \beta$, $\alpha\beta$, $\alpha - \beta$, α/β . These four are all algebraic over F, by the theorem, so E^{alg} is closed under $+, -, \cdot, \div$.

For any field F, there is a field \overline{F} that is algebraic over F, and every non-constant polynomial $p(x) \in F[x]$ factors into linear factors in $\overline{F}[x]$. \overline{F} is called an algebraic closure of F.

Definition: Let F be a field, $p(x) \in F[x]$ a nonconstant polynomial. Then p(x) is separable *iff* gcd(p(x), p'(x)) = 1, where p'(x) is the derivative of p(x).

Definition: Let F be a field. Then the derivative of $a_0 + a_1x + \cdots + a_nx^n \in F[x]$ is $a_1 + 2a_2x + \cdots + na_nx^{n-1} \in F[x]$.

Clearly (cf(x))' = cf'(x) and (f+g)' = f'+g'. **Theorem:** (Product Rule)

$$(fg)' = f'g + g'f$$

where $f, g \in F[x], F$ a field.

Proof: By additivity and linearity, we may reduce to the case $f = x^n$, $g = x^m$. Then:

$$(fg)' = (x^{n+m})' = (n+m)x^{n+m-1}$$

and $f'g + g'f = n(x^{n-1})x^m + m(x^n)x^{m-1}$
 $= (n+m)x^{n+m-1}$

Theorem: Let F be a field, $p(x) \in F[x]$ non-constant, \overline{F} an algebraic closure of F. Then p(x) is separable *iff* p(x) has no multiple roots in \overline{F} .

Proof: Forwards: If $p(x) = (x-a)^2 q(x)$, then $p'(x) = (x-a)^2 q'(x) + 2(x-a)q(x) \implies p'(a) = 0$ and $x-a \mid \gcd(p(x), p'(x))$, so p(x) is not separable.

PMATH 345 Lecture 26: July 7, 2010

Theorem: Let F be a field, $p(x) \in F[x]$ a non-constant polynomial, \overline{F} an algebraic closure of F. Then p(x) is separable *iff* p(x) has no multiple roots in \overline{F} .

Proof: Forwards: If p(x) has a multiple root $a \in \overline{F}$, then $(x-a)^2 | p(x)$, so by Product Rule x-a | p'(x) so $x-a | \gcd(p,p')$ in $\overline{F}[x]$. Since a is algebraic over F, it has a minimal polynomial q(x) in F[x], and $q(x) | \gcd(p,p')$ in F[x].

Backwards: Say $g(x) = \gcd(p, p')$, and assume $g \neq 1$. Then g(x) has a root $a \in \overline{F}$. So p(a) = p'(a) = 0. Then p(x) = (x - a)q(x) for some $q(x) \in \overline{F}[x]$, so

$$p'(x) = q(x) + (x - a)q'(x)$$
$$\implies q(a) = 0.$$

This means $x - a \mid q(x) \implies (x - a)^2 \mid p(x)$.

Theorem: Let F be a field, $p(x) \in F[x]$ an irreducible polynomial. Then p(x) is separable, unless p'(x) = 0. **Proof:** Well, $p'(x) \in F[x]$, and has smaller degree than p(x). In particular, $p(x) \nmid p'(x)$ unless p'(x) = 0. So gcd(p(x), p'(x)) = 1.

Corollary: If char F = 0, then every irreducible polynomial in F[x] is separable. **Example:** $x^3 - 1 \in \mathbb{Z}_3$. Then:

$$(x^3 - 1)' = 3x^2 = 0$$

Example: $F = \mathbb{Z}_3(T)$

Consider $x^3 - T \in F[x]^{22}$. Then $(x^3 - T)' = 3x^2 = 0$ but $x^3 - T$ has no roots in F, because $\sqrt[3]{T}$ is not a rational function.

Definition: A field is perfect *iff* every irreducible polynomial in F[x] is separable.

Note: Every field of characteristic 0 is perfect.

Fact: Every finite field is perfect.

Definition: Let E/F be a field extension, $\alpha \in E$ any element. Then α is separable over F iff α is algebraic over F and its minimal polynomial is separable. E/F is separable iff every $\alpha \in E$ is separable over F. Note: F is perfect iff every extension of F of finite degree is separable. Say $f(x) = a_0 + \cdots + a_n x^n$ satisfies

$$f'(x) = 0$$
. Assume char $F = p >$

Then $f'(x) = a_1 + 2a_2 + \dots + na_n x^{n-1} = 0$ so for all $i, ia_i = 0$. This means:

$$f(x) = a_0 + a_p x^p + a_{2p} x^{2p} + \dots + a_{kp} x^{kp}$$

Theorem: If char R = p is prime, then for all $a, b \in R, (a + b)^p = a^p + b^p$.

Proof:

$$(a+b)^p = \sum_{i=0}^p \binom{p}{i} a^i b^{p-i}$$
$$= a^p + b^p$$

because $p \mid {p \choose i} = \frac{p!}{i!(p-i)!}$ for $i \in \{1, ..., p-1\}$.

Definition: Let R be a ring of characteristic p for p prime. Then the function

$$\Phi_p(a) = a^p$$

is a homomorphism, called the Frobenius homomorphism. It's often written Frob_p.

Theorem: Let F be a field of characteristic p. Then F is perfect *iff* $\operatorname{Frob}_p \colon F \to F$ is onto. **Proof:** Forwards: Say F is perfect, and let $a \in F$ be any element. We want to show $a = b^p$ for some $b \in F$. Consider $x^p - a \in F[x]$. Its derivative is 0, so $x^p - a$ is reducible in F[x]. However, if \overline{F} is an algebraic closure of F, and $b \in \overline{F}$ is a root of $x^p - a$, we get,

$$(x-b)^p = x^p - a.$$

Comparing constant terms gives $b^p = a$. Write $x^p - a = f(x)g(x)$ for $f, g \in F[x]$. Then $f(x) = (x - b)^k$ for some $k \in \{1, \ldots, p-1\}$. The coefficient of x^{k-1} in f(x) is $-kb \in F$. Since $k \in \{1, \ldots, p-1\}$, this means $k \neq 0$, so $b \in F$.

Backwards: Say $f(x) = a_0 + \cdots + a_n x^n$ is irreducible. If $f'(x) \neq 0$, then f(x) is separable, so assume f'(x) = 0.

Then
$$f(x) = a_0 + a_p x^p + \dots + a_{pk} x^{pk}$$

$$= b_0^p + b_1^p x^p + \dots + b_k^p x^{pk}$$

 \square

 \square

²²⁾imperfect

for some $b_i \in F$.

$$= \Phi_p(b_0) + \Phi_p(b_1x) + \dots + \Phi_p(b_kx^k)$$
$$= \Phi_p(b_0 + b_1x + \dots + b_kx^k)$$
$$= (b_0 + b_1x + \dots + b_kx^k)^p$$

so f(x) factors, a contradiction. So $f'(x) \neq 0$, and f(x) is separable.

Theorem: Let F be a finite field. Then F is perfect.

Proof: The Frobenius homomorphism from F to F is 1–1, so since F is finite, Frobenius is also onto. So F is perfect.

Splitting fields

Definition: Let F be a field, $p(x) \in F[x]$ a nonconstant polynomial. A splitting field for p(x) over F is a field E containing F such that

(1) $p(x) = c(x - a_1) \cdots (x - a_n)$ for $c, a_1, \dots, a_n \in E$

and (2) $E = F(a_1, \ldots, a_n).$

If p(x) is constant, then we say F is a splitting field for p(x) over F.

Theorem: Let F be a field, $p(x) \in F[x]$ any polynomial. Then there is a splitting field for p(x) over F, and any two splitting fields for p(x) over F are isomorphic.

Proof: Existence. We prove this by induction on $\deg(p(x))$.

Base case: $\deg(p(x)) = 0 \implies$ splitting field is F.

Inductive Hypothesis: for any field F, and any $p(x) \in F[x]$ of degree $\langle n$, there exists a splitting field for p(x) over F.

Let $p(x) \in F[x]$ have degree n. Write:

$$p(x) = p_1(x) \cdots p_k(x)$$

for irreducible $p_1(x), \ldots, p_k(x) \in F[x]$. Consider $E = F[a]/(p_1(a))$. Then E is a field (because $p_1(x)$ is irreducible), and it contains a root (namely a) of p(x). Then, in E[x], we have:

$$p(x) = (x - a)q(x)$$

for some $q(x) \in E[x]$. Since $\deg(q(x)) < n$, by induction, there exists a splitting field E' of q(x) over E. Then, in E'[x], we have:

$$p(x) = c(x-a)(x-a_2)\cdots(x-a_n)$$

for $c, a_1, \ldots, a_n \in E'$, and

$$E' = E(a_2, \dots, a_n)$$

= F(a)(a_2, \dots, a_n)
= F(a, a_2, \dots, a_n)

so E' is a splitting field for p(x) over F, as desired.

Uniqueness: We will induce on $\deg(p(x))$, over all fields simultaneously. The base case is trivial, so assume the inductive hypothesis for polynomials of degree $\langle n, n \rangle$ and let $\deg(p(x)) = n$. Let E_1 and E_2 be splitting fields for p(x) over F.

Write $p(x) = c(x - a_1) \cdots (x - a_n) \in E_1[x]$ and $p(x) = c(x - b_1) \cdots (x - b_n) \in E_2[x]$. **Lemma:** Let L/K be a field extension, $p(x) \in K[x]$ irreducible, $\alpha, \beta \in L$ such that $p(\alpha) = p(\beta) = 0$. Then $K(\alpha) \cong K(\beta)$ and the isomorphism maps α to β .

Proof of lemma: We already know $K(\alpha) \cong K[x]/(p(x)) \cong K(\beta)$.

Without loss of generality, assume that a_1 and b_1 are roots of the same irreducible factor of p(x). Then by the lemma, $F(a_1) \cong F(b_1)$, and:

$$p(x) = (x - a_1)q_1(x) \text{ in } F(a_1)[x]$$

and $p(x) = (x - b_1)q_2(x) \text{ in } F(b_1)[x]$

We identify a_1 and b_1 via the isomorphism $F(a_1) \cong F(b_1)$. This identifies $q_1(x) = \frac{p(x)}{x-a_1}$ with $q_2(x) = \frac{p(x)}{x-b_1}$, so by induction, any splitting field for q_1 over $F(a_1)$ is isomorphic to any splitting field for q_2 over $F(b_1) \cong F(a_1)$. These two fields are exactly E_1 and E_2 which are therefore isomorphic.

PMATH 345 Lecture 28: July 12, 2010

Finite Fields, F

Example: \mathbb{Z}_p residues mod p, p prime.

Every field contains one of \mathbb{Q} or \mathbb{Z}_p . Since F is finite, $F \supseteq \mathbb{Z}_p$ for some prime p.

F is a vector space over \mathbb{Z}_p with basis v_1, \ldots, v_n . Every v in F looks like

$$v = a_1 v_1 + \cdots + a_n v_n$$
 where $a_i \in \mathbb{Z}_p$

There are p possibilities for each a_j and a change in any a_j makes a fresh v. So there are p^n vs in all

i.e.,
$$\#F = p^n$$

Proposition: Let A be a commutative ring and G the set of units in A. If #G = finite = m, say, then for any u in G, $u^m = 1$.

Proof: Let v_1, v_2, \ldots, v_m be the full list of G. Put $v = v_1 v_2 \cdots v_m$. Take any u in G. Look at list

$$uv_1, uv_2, \ldots, uv_m$$
 inside G.

This list has no duplicates. Indeed if $uv_j = uv_i$, cancel u and get $v_j = v_i$. So our list exhausts G.

Hence
$$1 \cdot v = (uv_1)(uv_2)\cdots(uv_m)$$

= $u^m(v_1v_2\cdots v_m)$
= $u^m v$

Cancel v and get $u^m = 1$.

When we apply this to the set of non-zero elements of our finite field F (where $\#p^n$) we get $u^{p^n-1} = 1$ for all u in F where $u \neq 0$.

Refresh on splitting fields

Let K be any field and $p(x)^{23} \in K[x]$ (monic, say, deg p(x) = n). A splitting field for p(x) is a field L such that

- (1) $K \subseteq L$
- (2) $p(x) = (x a_1)(x a_2) \cdots (x a_n)$ where $a_i \in L$.

(3) If M is a field such that $K \subseteq M \subsetneq L$ then some $a_j \notin M$ OR if $K \subseteq M \subseteq L$ and all $a_j \in M$ then M = L.

Every p(x) has a splitting field and if L_1 , L_2 are splitting fields of p(x) then there is an isomorphism $\phi: L_1 \to L_2$ such that $\phi(a) = a$ for each a in K.

Proposition: If F is finite field and $\#F = p^n$ then F is the splitting field of $x^{p^n} - x$ as a polynomial in $\mathbb{Z}_p[x]$. **Proof:**

 $(23) \neq 0$

- 1) $\mathbb{Z}_p \subseteq F$
- 2) $u^{p^n-1} = 1$, for all $u \neq 0$ in Fmultiply by u, get $u^{p^n} - u = 0$, also holds for u = 0
- 3) Since every element of F is a root of $x^{p^n} x$, then any proper subfield $M \subsetneq F$ would not have at least one of these roots.

Proposition: If p is any prime and n a positive integer and F = the splitting of $x^{p^n} - x$ in $\mathbb{Z}_p[x]$, then $\#F = p^n$.

PMATH 345 Lecture 29: July 14, 2010

Every finite field F has p^n elements for some prime p and some positive integer n. Every such F is the splitting field of $x^{p^n} - x$ over \mathbb{Z}_p . Any two fields of cardinality p^n are isomorphic.

Proposition: If p is a prime and n a positive integer and F = splitting field of $x^{p^n} - x$, then $\#F = p^n$. Lemma: If $\phi: K \to K$ is a field homomorphism, then $M = \{a \in K : \phi(a) = a\}$ is a subfield of K. **Proof:** Let $a, b \in M$, i.e., $\phi(a) = a, \phi(b) = b$.

Then $\phi(a \pm b) = \phi(a) \pm \phi(b) = a \pm b$,

and if $a \neq 0$, we also get $\phi(a^{-1}) = \phi(a)^{-1} = a^{-1}$.

Proof of proposition: Have F: splitting field of $x^{p^n} - x$.

Take Frobenius automorphism:

$$\begin{array}{c} \phi \colon F \to F \\ a \mapsto a^p \end{array} \right\} (\text{use } (a \stackrel{\pm}{\cdot} b)^p = a^p \stackrel{\pm}{\cdot} b^p \text{ to show this is a field homomorphism})$$

Then $\phi^n = \phi \circ \phi \circ \cdots \circ \phi$, *n*-times is also a field homomorphism, whose set of fixed elements is $M = \{a \in F : a^{p^n} = a\}$, which is a field inside F, by the lemma.

We see that $M = \text{set of roots of } x^{p^n} - x$. So F is a subfield of F, which was the splitting field of $x^{p^n} - x$. Since $F = \text{smallest field containing roots of } x^{p^n} - x$, we get M = F. Finally, note that $x^{p^n} - x$ has no repeated roots, because its derivative

$$(x^{p^n} - x)' = p^n x^{p^n - 1} - 1 = -1 \text{ in } \mathbb{Z}_p[x]$$

is coprime with $x^{p^n} - x$. So $\#F = p^n$.

Primitive generators

Let $F = \text{finite field and } F^* = F \setminus \{0\}.$ Let $q = p^n - 1 = \#F^*.$ We saw that for every a in F^* , $a^q = 1$.

Theorem: There is some $a \in F^*$ such that the list 1, $a^1, a^2, \ldots, a^{q-1}$ picks up all of F^* .

Definition: If $a \in F^*$ its order is the least integer $k \ge 1$ such that $a^k = 1$. Write $k = \operatorname{ord}(a)$.

Proposition 1: If $k = \operatorname{ord}(a)$ and $a^m = 1$, then $k \mid m$. **Proof:** Write m = ks + r, where $0 \le r < k$. Then

$$1 = a^m = a^{ks+r} = (a^k)^s a^r = 1^s a^r = a^r$$

By the minimality of k get r = 0. So m = ks.

Proposition 2: If $a \in F^*$ and $\operatorname{ord}(a) = k \ge 1$, then 1, a, a^2, \ldots, a^{k-1} is the complete non-repeating list of all b in F^* such that $b^k = 1$.

Proof:

i) If a^j is in the list, we see that $(a^j)^k = (a^k)^j = 1^j = 1$.

ii) No repeats: Say $a^i = a^j$, where $0 \le i \le j \le k - 1$. Thus $a^{j-i} = 1$, and since $0 \le j - i < k$, the minimality of k gives j = i. iii) Let $b \in F^*$ where $b^k = 1$. Then b is a root of $x^k - 1 \in \mathbb{Z}_p[x]$. This polynomial has at most k roots. But the list is made up of such roots, and the list has k elements. So b is in the list.

PMATH 345 Lecture 30: July 16, 2010

We had finite field F, $\#F = p^n$, $F^* = F \setminus \{0\}$. $q = p^n - 1$. If $a \in F^*$, $\operatorname{ord}(a) = \operatorname{least} k \ge 1$ such that $a^k = 1$. (Recall $a^q = 1$).

Proposition 1: If $k = \operatorname{ord}(a)$ and $a^m = 1$, then $k \mid m$. So $\operatorname{ord}(a) \mid q$.

Proposition 2: If $k = \operatorname{ord}(a)$, then the list 1, a, a^2, \ldots, a^{k-1} does not repeat and includes all b in F^* that satisfy $b^k = 1$.

Proposition 3: If $\operatorname{ord}(a) = k$ and $\operatorname{ord}(b) = l$, and k, l are coprime, then $\operatorname{ord}(ab) = kl$. **Proof:** Let $m = \operatorname{ord}(ab)$. Since $(ab)^{kl} = a^{kl}b^{kl} = (a^k)^l(b^l)^k = (1)^l(1)^k = 1$. Thus $m \mid kl$. Now check $kl \mid m$. Since k, l are coprime, enough to check $k \mid m$ and $l \mid m$. **Aside:** If $c \in F^*$ then $\operatorname{ord}(c) = \operatorname{ord}(c^{-1})$: $c^k = 1 \iff (c^{-1})^k = 1$ Now we have $1 = (ab)^m = a^m b^m$. Let $j = \operatorname{ord}(a^m) = \operatorname{ord}(b^m)$. Now $(a^m)^k = (a^k)^m = 1^m = 1$. $\implies j \mid k$ and likewise $j \mid l$. Since k, l are coprime, we get j = 1. So $a^m = 1 = b^m$ Then $k \mid m$ and $l \mid m$.

Theorem: In F^* there is some a such that 1, a, a^2, \ldots, a^{q-1} picks up all of F^* . **Proof:** Just check F^* has an element of order q. Pick any a in F^* and put $k = \operatorname{ord}(a)$. If k = q, done. If k < q, the list 1, a, \ldots, a^{k-1} does not cover all of F^* . Pick b not in list. Let $l = \operatorname{ord}(b)$. **Note:** $b^k \neq 1$, by Proposition 2. Hence $l \nmid k$. Indeed, if k = lr we would get

$$b^k = (b^l)^r = 1^r = 1.$$

So some prime p (not original "p") divides l more often than it divides k. Write $k = p^i k_1$ and $l = p^j l_1$ where $0 \le i < j$ and k_1 , l_1 have no p in them.

Put $c = a^{p^i}$, ord $c = k_1$ $d = b^{l_1}$, ord $d = p^{j_2 4}$

 $a = b^{-1}$, ord $a = p^{-1}$ Thus $\operatorname{ord}(cd) = p^{j}k_{1} > p^{i}k_{1} = k$. We found an element, namely cd, where c

We found an element, namely cd, whose order is bigger than ord a. Keep doing this until an element in F^* of order q is found.

Example: The polynomial $x^2 - 2$ is irreducible in $\mathbb{Z}_5[x]$. Hence $F = \mathbb{Z}_5[x]/\langle p(x) \rangle$ is a field and #F = 25, $\#F^* = 24$. Have $\stackrel{\phi: \mathbb{Z}_5[x] \to F}{f(x) \mapsto f(x) + \langle p(x) \rangle}$ and if $\alpha = x + \langle p(x) \rangle$ we know that 1, α , is basis for F over \mathbb{Z}_5 . Every element in F looks like $a + b\alpha$ where $a, b \in \mathbb{Z}_5$. Know $\alpha^2 - 2 = 0$, $\alpha^2 = 2$. Find primitive generator of F. Start with α . Take powers

1,
$$\alpha$$
, $\alpha^2 = 2$, $\alpha^3 = 2\alpha$, $\alpha^4 = 4$, $\alpha^5 = 4\alpha$, $\alpha^6 = 3$, $\alpha^7 = 3\alpha$, $\alpha^8 = 6 = 1$

too short. Pick β not in list. Say $\beta = \alpha + 1$.

 $^{^{24)}}k_1, p^j$ coprime

Powers of β .

$$1$$

$$\beta$$

$$\beta^{2} = (\alpha + 1)^{2} = \alpha^{2} + 2\alpha + 1 = 2\alpha + 3$$

$$\beta^{3} = 2$$

$$\beta^{4} = 2\alpha + 2$$

$$\beta^{5} = 4\alpha + 1$$

$$\beta^{6} = 4 = -1$$

$$\vdots$$

$$\beta^{12} = 1$$
So ord $\beta = 12$.
So ord $\alpha = 3^{0} \cdot 2^{3}$, ord $\beta = 3^{1} \cdot 2^{2}$
Put $\gamma = \alpha^{3^{0}} = \alpha$, ord $\gamma = 8$

$$\delta = \beta^{4} = 2\alpha + 2$$
, ord $\delta = 3^{25}$
So ord $(\gamma\delta) = 8 \cdot 3 = 24$
DM ATTLE 2.45 Level and 21 Level 10.200

PMATH 345 Lecture 31: July 19, 2010

 $\begin{aligned} \operatorname{GF}(p^n) &= \operatorname{Field} \text{ with } p^n \text{ elements} \\ \operatorname{GF}^{26)}(p) &= \mathbb{Z}_p = \operatorname{integers} \mod p \\ \operatorname{GF}(p^n) &\ncong \mathbb{Z}_{p^n} \text{ if } n \geq 2 \\ \operatorname{Fix a prime } p. \end{aligned}$

 $\overline{\mathbb{F}_p} = \overline{\mathrm{GF}(p)} = \text{algebraic closure of } \mathrm{GF}(p)$

Theorem: Let p be prime, $n, m \in \mathbb{Z}_{\geq 1}$. Then $\operatorname{GF}(p^n) \subset \operatorname{GF}(p^m)$ iff $n \mid m$. Moreover, if $n \mid m$, then there is a unique subfield of $\operatorname{GF}(p^m)$ with p^n elements.

Proof: If $GF(p^n) \subset GF(p^m)$, then $GF(p^m)$ is a vector space over $GF(p^n)$, with finite dimension k. Then $GF(p^m)$ has $(p^n)^k$ elements $(p^n \text{ scalars}, k \text{ coefficients in basis})$, so $p^m = p^{nk}$ and so $n \mid m$.

Now assume $n \mid m$. Then $x^{p^n} - x$ divides $x^{p^m} - x$, because $x^{p^n-1} - 1$ divides $x^{p^m-1} - 1$, because $p^n - 1$ divides $p^m - 1$, because n divides m.

Every element of $GF(p^n)$ is a root of $x^{p^n} - x$, and so is a root of $x^{p^m} - x$, and so is an element of $GF(p^m)$.

Finally, any subfield of $GF(p^m)$ with p^n elements must be exactly the set of roots of $x^{p^n} - x$.

 $^{25)}$ ord δ , ord γ coprime

²⁶⁾ "Galois Field"

Example: $\mathbb{Z}[\sqrt{10}]$, $10 = 2 \cdot 5 = \sqrt{10} \cdot \sqrt{10}$ 2, 5, $\sqrt{10}$ are all irreducible in $\mathbb{Z}[\sqrt{10}]$ But: $(10) = (2, \sqrt{10})^2 \cdot (5, \sqrt{10})^2$ Check: $(2, \sqrt{10})(5, \sqrt{10}) = (10, 5\sqrt{10}, 2\sqrt{10}, 10) = (\sqrt{10})$ PMATH 345 Lecture 32: July 21, 2010

Definition: Let D be a domain, K = K(D) its field of fractions. A fractional ideal (same as "fractionary ideal") of D is a subset I of K satisfying:

- (1) $0 \in I$
- (2) If $a, b \in I$, then $a b \in I$
- (3) If $a \in I$, $r \in D$, then $ra \in I$
- (4) There is some $d \in D$, $d \neq 0$, such that $dI \subset D$.

Note: The set dI is an (integral) ideal of D, so $I = \frac{1}{d}(dI)$ is just some integral ideal of D divided by a nonzero element of D.

Example: The fractional ideals of \mathbb{Z} are $\frac{1}{m}(n\mathbb{Z}) = \frac{n}{m}\mathbb{Z}$ for integers $n, m \in \mathbb{Z}$ with $m \neq 0$.

$$\frac{3}{2}\mathbb{Z} = \left\{ \frac{3n}{2} : n \in \mathbb{Z} \right\} = \left\{ \dots, -3, -\frac{3}{2}, 0, \frac{3}{2}, 3, 4\frac{1}{2}, 6, \dots \right\}$$

Example: $D = \mathbb{Z}[\sqrt{10}], I = \sqrt{10}D + 3D = (\sqrt{10}, 3)D$ or

$$\begin{split} I &= \frac{\sqrt{10}}{2}D + D \neq 0 \\ &= \{ (a + b\sqrt{10})\frac{\sqrt{10}}{2} + (c + d\sqrt{10}) : a, b, c, d \in \mathbb{Z} \} \end{split}$$

One can add and multiply fractional ideals simply:

$$(a_1D + \dots + a_nD) + (b_1D + \dots + b_mD) = a_1D + \dots + a_nD + b_1D + \dots + b_mD$$
$$(a_1D + \dots + a_nD)(b_1D + \dots + b_mD) = \sum_{i,j} a_ib_jD$$

Example: (aD + bD)(cD + dD) = acD + bcD + adD + bdD**Example:** $D = \mathbb{Z}[\sqrt{10}]$:

$$\left(\frac{\sqrt{10}}{2}D + D\right)\left(\sqrt{10}D + \frac{1}{2}D\right) = 5D + \sqrt{10}D + \frac{\sqrt{10}}{4}D + \frac{1}{2}D$$

 $5D \subset \frac{1}{2}D$ and $\sqrt{10}D \subset \frac{\sqrt{10}}{4}D$ so product is $\frac{\sqrt{10}}{4}D + \frac{1}{2}D$

Definition: A fractional ideal is invertible *iff* there is a fractional ideal J such that IJ = D.

Say *I*, *J* fractional ideals of *D*, $J \neq (0)$. Then $I/J = \{x \in K(D) : xJ \subset I\}$. I/J is a fractional ideal because

- $(1) \ 0 \in I/J$
- (2) If $xJ \subset I$ and $yJ \subset I$ then $(x-y)J \subset^{27} xJ yJ \subset I$
- (3) If $xJ \subset I$ and $r \in D$, then $rxJ \subset xJ \subset I$, so $rx \in I/J$.
- (4) Need $b \in D$, $b \neq 0$ such that $b(I/J) \subset D$. Let $a \in D$, $a \neq 0$ satisfy $aI \subset D$ and choose $x \in J \cap D$, $x \neq 0$. Then b = ax works:

If $y \in I/J$, then

$$axy = a(xy) \in aI \subset D$$

so $ax(I/J) \subset D$.

 $^{^{27)}\}mathrm{NOT}$ the same!

$$(n\mathbb{Z})/(m\mathbb{Z}) = \left\{ \begin{array}{l} \frac{a}{b} \in \mathbb{Q} : \frac{a}{b}(mk) \in n\mathbb{Z} \text{ for all } k \in \mathbb{Z} \end{array} \right\}$$
$$= \left\{ \begin{array}{l} \frac{a}{b} \in \mathbb{Q} : \frac{amk}{b} \in n\mathbb{Z} \text{ for all } k \in \mathbb{Z} \end{array} \right\}$$
$$= \left\{ \begin{array}{l} \frac{a}{b} \in \mathbb{Q} : \frac{am}{b} \in n\mathbb{Z} \end{array} \right\}$$
$$= \left\{ \begin{array}{l} \frac{a}{b} \in \mathbb{Q} : \frac{a}{b} \in n\mathbb{Z} \end{array} \right\}$$
$$= \left\{ \begin{array}{l} \frac{a}{b} \in \mathbb{Q} : \frac{a}{b} \in n\mathbb{Z} \end{array} \right\}$$
$$= \left\{ \begin{array}{l} \frac{a}{b} \in \mathbb{Q} : \frac{a}{b} \in n\mathbb{Z} \end{array} \right\}$$
$$= \frac{n}{m}\mathbb{Z}.$$

In general, if $a, b \in D$, then $aD/bD = \frac{a}{b}D$ if $b \neq 0$. In particular, every principal fractional ideal (nonzero) is invertible: aD/aD = D.

Example: Compute a, b such that $D/(\sqrt{10}D + 5D) = aD + bD$ for $D = \mathbb{Z}[\sqrt{10}]$.

Let $I = D/(\sqrt{10}D + 5D)$. Then:

$$I = \left\{ \begin{array}{l} a + b\sqrt{10} : (a + b\sqrt{10})x \in \mathbb{Z}[\sqrt{10}] \text{ for all } x \in \sqrt{10}D + 5D \right\} \\ = \left\{ \begin{array}{l} a + b\sqrt{10} : (a + b\sqrt{10}) \in \mathbb{Z}[\sqrt{10}] \text{ and } (a + b\sqrt{10})5 \in \mathbb{Z}[\sqrt{10}] \right\} \\ 10b + \sqrt{10}a \in \mathbb{Z}[\sqrt{10}] \implies a \in \mathbb{Z}, b \in \frac{1}{10}\mathbb{Z} \\ (5\sqrt{10})b + 5a \in \mathbb{Z}[\sqrt{10}] \implies b \in \frac{1}{7}\mathbb{Z} \end{array} \right\}$$

Therefore guess: $I = \frac{\sqrt{10}}{5}D + D$ $(a + b\sqrt{10} = (\text{integer}) + (\text{integer})\frac{\sqrt{10}}{5})$ **Check:** $(\frac{\sqrt{10}}{5}D + D)(\sqrt{10}D + 5D) = 2D + \sqrt{10}D + \sqrt{10}D + 5D = D$ PMATH 345 Lecture 33: July 23, 2010

Definition: A fractional ideal I of a domain D is invertible *iff* there is a fractional ideal J such that IJ = D.

Definition: A Dedekind domain is a domain in which every nonzero fractional ideal is invertible. **Example:** Every PID is Dedekind.

Theorem: Let *D* be a Dedekind domain, *P* a nonzero prime ideal. Then *P* is maximal. **Proof:** Assume that there is some ideal $I \subset D$ with $P \subset I$. We want to show either P = I or I = D.

The fractional ideal PI^{-1} is a subset of $II^{-1} = D$, so PI^{-1} is an integral ideal of D. Now:

 $(PI^{-1})I = P$

so since P is prime, either $PI^{-1} \subset P$ or $I \subset P$. If $PI^{-1} \subset P$, then $I^{-1} \subset D$ so $II^{-1} \subset I$ so I = D because $D = II^{-1}$.

If $I \subset P$, then $P \subset I \implies P = I$.

Theorem: Let D be a Dedekind domain, $I \subset D$ any nonzero ideal. Then I can be factored as a product of prime ideals:

$$I = P_1 \cdots P_n$$

and this factorization is unique up to permutation of the P_i . **Proof:** Existence: If I is maximal, then it's prime and I = I will do.

If I is not maximal, then there is an ideal J with $I \subsetneq J \subsetneq D$. Then $I = J(J^{-1}I)$, where $J^{-1}I \subset J^{-1}J = D$, so $J^{-1}I$ is an integral ideal. If J and $J^{-1}I$ are both prime, then we're done. If not, then keep factoring the non-prime factors of I until all the factors are prime.

If this process never stops, then we have constructed an infinite ascending chain of ideals:

$$I \subsetneq I_1^{(28)} \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$$

 $^{28)}$ "J"

Lemma: Every invertible ideal is finitely generated.

Proof of lemma: Let I be an invertible ideal of a domain D. Then $II^{-1} = D$, so $1 = a_1a'_1 + \cdots + a_na'_n$ for $a_i \in I, a'_i \in I^{-1}$. Clearly $(a_1, \ldots, a_n) \subset I$, so let $x \in I$. Then $x = (xa'_1)a_1 + \cdots + (xa'_n)a_n$.

Since $x \in I$, $a'_i \in I^{-1}$, we get $xa'_i \in D$ so $x \in (a_1, \ldots, a_n)$. Therefore, $I = (a_1, \ldots, a_n)$ is finitely generated.

Corollary: Every Dedekind domain is Noetherian.

Proof: Immediate.

By the Corollary, D is Noetherian, so it obeys the ACC, and we obtain a contradiction.

Uniqueness: Say $I = P_1 \cdots P_n = Q_1 \cdots Q_m$ for P_i, Q_j prime. We want to show that these two factorizations are the same up to permutation.

Since $P_1 \cdots P_n \subset Q_1 \cdots Q_m \subset Q_1$, we get $P_i \subset Q_1$ for some *i*. But *D* is Dedekind, so P_i is maximal and so $P_i = Q_1$. Multiplying both sides by Q_1^{-1} , we obtain $P_1 \cdots \hat{P}_i \cdots P_n = Q_2 \cdots Q_m$. Continuing in this manner, we eventually obtain either a product of some P_i s equals *D*, or some Q_j s equals *D*.

This is only possible if the product of P_i s or Q_j s is empty, so our repeated cancellation process constructed a bijection between the Q_j s and P_i s, as desired.

Definition: Let D be a domain, I, J two nonzero ideals of D. Then I and J are in the same ideal class *iff* there is some $a \in K(D)$ such that I = aJ. This is an equivalence relation, and the equivalence classes are called ideal classes.

Note that D is a PID *iff* it has only one ideal class.

Definition: The class number of D is the number of ideal classes of D.

PMATH 345 Lecture 34: July 26, 2010

Recall:

$$A/B = \{ x \in K(D) : xB \subset A \}$$

Is this the same as AB^{-1} ?

Answer: No, because B might not be invertible.

Theorem: Let D be a domain, K(D) its fraction field, A, B two fractional ideals of D, with B invertible. Then

$$A/B = AB^{-1}$$

Proof: Clearly $B(A/B) \subset A$, so $A/B \subset AB^{-1}$.

Conversely, say $x \in AB^{-1}$. We want to show $x \in A/B$. Well, $x \in AB^{-1} \implies xB \subset A$, so $x \in A/B$. **Corollary:** Let *I* be an invertible ideal of a domain *D*. Then $I^{-1} = D/I$.

Warning: If B is not invertible, then $(A/B)B \neq A$, necessarily.

Example: Compute $(2, \sqrt{-5} + 1)^{-1}$ in $\mathbb{Z}[\sqrt{-5}] = D$. Solution: Let $J = (2, 1 + \sqrt{-5})$. If $a + b\sqrt{-5} \in J^{-1}$, then

$$2(a+b\sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}] \tag{1}$$

and
$$(1+\sqrt{-5})(a+b\sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}]$$
 (2)

$$(1) \implies a, b \in \frac{1}{2}\mathbb{Z}$$
$$(2) \implies \begin{cases} a - 5b \in \mathbb{Z} \\ a + b \in \mathbb{Z} \end{cases}$$

Write $a = \frac{c}{2}$, $b = \frac{d}{2}$. Then c - 5d and c + d are even. This is equivalent to $c \equiv d \mod 2$:

$$a + b\sqrt{-5} = \frac{c + (c + 2k)\sqrt{-5}}{2} \qquad k \in \mathbb{Z}$$
$$= c\left(\frac{1 + \sqrt{-5}}{2}\right) + k\sqrt{-5}$$

So guess: $J^{-1} = (\frac{1+\sqrt{-5}}{2})D + (\sqrt{-5})D = I$ Check: $((\frac{1+\sqrt{-5}}{2})D + \sqrt{-5}D)(2D + (1+\sqrt{-5})D) = (1+\sqrt{-5})D + (-2+\sqrt{-5})D + (2\sqrt{-5})D + (-5+\sqrt{-5})D$

$$\begin{aligned} 3 &= (1 + \sqrt{-5}) - (-2 + \sqrt{-5}) \in IJ \\ -4 &= (1 + \sqrt{-5}) - (2\sqrt{-5}) + (-5 + \sqrt{-5}) \in IJ \\ &- (3 + (-4)) \in IJ \\ &\implies D \subset IJ \end{aligned}$$

Since $IJ \subset D$, we get $IJ = D \implies I = J^{-1}$.

Example: Factor (6) in $\mathbb{Z}[\sqrt{7}]$. **Solution:** (6) = (2)(3). Is (2) prime? Compute $\mathbb{Z}[\sqrt{7}]/(2)$: $\{0, 1, \sqrt{7}, 1 + \sqrt{7}\}$

$$(\sqrt{7})^2 = 7 \neq 0$$

 $\sqrt{7}(1+\sqrt{7}) = 7+\sqrt{7} = 1+\sqrt{7} \neq 0$
 $(1+\sqrt{7})^2 = 1+2\sqrt{7}+7 = 0!$

Consider $(2, 1 + \sqrt{7})$. Since $(1 + \sqrt{7})^2 \equiv 0 \mod (2)$, we're guessing that $(2) = (2, 1 + \sqrt{7})^2$:

$$(2, 1 + \sqrt{7})^2 = (4, 2 + 2\sqrt{7}, 8 + 2\sqrt{7})$$
$$= (4, 6, 2 + 2\sqrt{7}, 8 + 2\sqrt{7})$$
$$= (2)$$

Is $(2, 1 + \sqrt{7})$ prime? Yes, because $\mathbb{Z}[\sqrt{7}]/(2, 1 + \sqrt{7}) \cong \mathbb{Z}/2\mathbb{Z}$ via $a + b\sqrt{7} \mapsto a + b \pmod{2}$. So $(6) = (2, 1 + \sqrt{7})^2(3)$ Is (3) prime?

$$\mathbb{Z}[\sqrt{7}]/(3) \cong \mathbb{Z}[x]/(x^2 - 7, 3)$$
$$\cong \mathbb{Z}_3[x]/(x^2 - 7)$$
$$\cong \mathbb{Z}_3[x]/(x^2 - 1)$$

 $(1+\sqrt{7})(1-\sqrt{7}) = -6 \equiv 0 \mod 3.$

This is not a domain, since $x^2 - 1$ is reducible. $1 \pm \sqrt{7}$ are zero divisors mod 3:

Compute
$$(3, 1 + \sqrt{7})(3, 1 - \sqrt{7}) = (9, 3 + 3\sqrt{7}, 3 - 3\sqrt{7}, -6) = (3)$$

 $(3, 1 \pm \sqrt{7})$ is prime, because:
 $\mathbb{Z}[\sqrt{7}]/(3, 1 \pm \sqrt{7}) \cong \mathbb{Z}_3$ via
 $a + b\sqrt{7} \mapsto a \mp b \mod 3$
So $(6) = (2, 1 + \sqrt{7})^2(3, 1 + \sqrt{7})(3, 1 - \sqrt{7}).$