PMATH 345 Lecture 1: May 3, 2010

PMath 345
David McKinnon
http://www.student.math.uwaterloo.ca/~pmat345

Rings

A ring is a bunch of things you can add, subtract and multiply in a reasonable way.
Example: $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{R}[x]=\{$ polynomials in x with real coefficients $\}, \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=\left\{\right.$ polynomials in x_{1}, \ldots, x_{n} with real coefficients $\}, M_{n}(\mathbb{Z})=\{n \times n$ matrices with \mathbb{Z} coefficients $\}, \mathbb{Z} / n \mathbb{Z}, \mathbb{Z}[i]=\{a+b i: a, b \in$ $\mathbb{Z}\}=$ "Gaussian integers"

Definition: A ring is a set R with two functions $+: R \times R \rightarrow R$ and $\cdot R \rightarrow R$ satisfying the following properties for all $a, b, c \in R$:
(1) $(a+b)+c=a+(b+c)$
(2) $a+b=b+a$
(3) There exists $0 \in R$ such that $a+0=a$
(4) There exists $-a \in R$ such that $a+(-a)=0$
(5) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
(6) $a \cdot b=b \cdot a \leftarrow$ Not really a ring axiom
(7) There exists a $1 \in R$ such that $1 \cdot a=a \cdot 1=a$. Controversial! rng
(8) $a \cdot(b+c)=a \cdot b+a \cdot c$

$$
(a+b) \cdot c=a \cdot c+b \cdot c
$$

$$
0_{\text {Paul }}=0_{\text {Paul }}+0_{\text {Ringo }}=0_{\text {Ringo }}
$$

Definition: Let R be a ring. A subring of R is a subset $S \subset R$ which is a ring using the + and \cdot of R. Example: \mathbb{Q} is a subring of \mathbb{C}.
$\mathbb{Z}[i]$ is a subring of \mathbb{C}.
Theorem: (Subring Theorem) Let R be a ring. $S \subset R$ a subset. Then S is a subring of R iff
(1) $0,1 \in S$
(2) If $a, b \in S$, then $a-b \in S$.
(3) If $a, b \in S$, then $a \cdot b \in S$.

PMATH 345 Lecture 2: May 5, 2010

Definition: A ring is a set R with 2 operations $+: R \times R \rightarrow R, \cdot: R \times R \rightarrow R$ satisfying for all $a, b, c \in R$:
(1) $(a+b)+c=a+(b+c)$
(2) $a+b=b+a$
(3) There is $0 \in R$ such that $a+0=a \forall a \in R$
(4) There is $-a \in R$ such that $a+(-a)=0$
(5) $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
(6) $a \cdot b=b \cdot a$
(7) There is $1 \in R$ such that $a \cdot 1=1 \cdot a=a$ for all $a \in R$
(8) $a \cdot(b+c)=a \cdot b+a \cdot c$ $(a+b) \cdot c=a \cdot c+b \cdot c$

Theorem: (Subring Theorem)
Let R be a ring. $S \subset R$ any subset. Then S is a subring of R iff:
(1) $0,1 \in S$
(2) If $a, b \in S$ then $a-b \in S$
(3) If $a, b \in S$ then $a b \in S$

Proof: Forwards is trivial.
Backwards: Assume S satisfies (1), (2), and (3) from the theorem. We need to check that + and \cdot are well defined from $S \times S \rightarrow S$, and we need to check (1)-(8).
The fact that • is from $S \times S \rightarrow S$ is precisely (3). For + , first note that (1) means that $0,1 \in S$. By (2), we find $0-1=-1 \in S$. Thus, if $a, b \in S$, then by $(3),(-1) \cdot b \in S$ so since $(-1) \cdot b=-b$, we get $-b \in S$.

$$
\begin{aligned}
(-1) \cdot b+b & =(-1+1) \cdot b \\
& =0 \cdot b \\
& =0 \\
\text { follows from: } 0 \cdot b & =(0+0) \cdot b \\
& =0 \cdot b+0 \cdot b \\
\Longrightarrow-0 \cdot b+0 \cdot b & =-0 \cdot b+0 \cdot b+0 \cdot b \\
\Longrightarrow 0 & =0 \cdot b
\end{aligned}
$$

We want to show that $a+b \in S$. Well, $-b \in S$, so $a-(-b) \in S$ by (2), so $a+b \in S$.
(1), (2), (5), (6), (8): Trivial for S
(3), (7): By (1)
(4): Already done

Example: Prove $\mathbb{Z}[\sqrt{17}]=\{a+b \sqrt{17}: a, b \in \mathbb{Z}\}$ is a subring of \mathbb{R}.
Solution: $\mathbb{Z}[\sqrt{17}] \subset \mathbb{R}$ clearly. By Subring Theorem:
(1) $0=0+0 \sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
$1=1+0 \sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
(2) $a+b \sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
$c+d \sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
$\Longrightarrow(a+b \sqrt{17})-(c+d \sqrt{17})=(a-c)+(b-d) \sqrt{17} \in \mathbb{Z}[\sqrt{17}]$
(3) Similarly, $(a+b \sqrt{17})(c+d \sqrt{17})=(a c+17 b d)+(a d+b c) \sqrt{17} \in \mathbb{Z}[\sqrt{17}]$ so we're done.

Definition: Let R be a ring, $r \in R$ any element. Then:
r is a zero divisor iff $r a=0$ for some $a \in R, a \neq 0$, provided $r \neq 0 . r$ is a unit iff there is an element $1 / r \in R$ such that $r(1 / r)=1$.
r is nilpotent iff $r^{n}=0$ for some positive integer $n(r \neq 0)$.
Definition: A ring R is called an (integral) domain iff it contains no zero divisors.
A ring R is a field iff every nonzero element is a unit.
A ring R is reduced iff it contains no nilpotent elements.
$\mathbb{Z} / 4 \mathbb{Z}$ is not reduced: $2^{2}=0,2 \neq 0$
$\mathbb{Z} / 6 \mathbb{Z}$ is reduced, but not a domain: $2 \cdot 3=0,2,3 \neq 0$
$\mathbb{Z} / 7 \mathbb{Z}$ is a field: every nonzero element is a unit: $1 \cdot 1=1,2 \cdot 4=1,3 \cdot 5=1,6 \cdot 6=1$
\mathbb{Z} is a domain that's not a field.
Theorem: Let R be a ring, $r \in R$ any element. Then r cannot be both a zero divisor and a unit.
Proof: Say r is a unit. Then $r \cdot(1 / r)=1$. If r is also a zero divisor, then $r a=0$ for some $a \neq 0$, so:

$$
\begin{aligned}
\operatorname{ar}(1 / r) & =a \\
\Longrightarrow 0 & =a
\end{aligned}
$$

Bad!

Definition: Let R, S be rings. Their direct sum is the ring $R \oplus S$. The elements of $R \oplus S$ are the elements of $R \times S$, and the + and \cdot are:

$$
\begin{aligned}
\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right) & =\left(r_{1}+r_{2}, s_{1}+s_{2}\right) \\
\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right) & =\left(r_{1} r_{2}, s_{1} s_{2}\right)
\end{aligned}
$$

Theorem: $R \oplus S$ is a ring.
Proof: Dull.

$$
\begin{aligned}
& 0 \leftrightarrow(0,0) \\
& 1 \leftrightarrow(1,1)
\end{aligned}
$$

$(1,0) \cdot(0,1)=(0,0)$
If R, S are nonzero, then $0 \neq 1$, so $R \oplus S$ is not an integral domain.

PMATH 345 Lecture 3: May 7, 2010

Definition: Let R be a ring. A subring of R is a set $S \subset R$ such that S is a ring using the same operations as R and $1 \in S$.

Example: $R=\mathbb{Z} / 6 \mathbb{Z}$
$S=\{0,3\}$
S is a ring using + and \cdot as R, but the multiplicative identity of S is not $1 \in R$.
$S \subset R, S$ closed under $+, \cdot,-$, and has $z \in S$ such that $z+r=r$ for all $r \in S$.
$\Longrightarrow z=0 \checkmark$.
Theorem: Let $n \geq 1$ be an integer. Then $\mathbb{Z} / n \mathbb{Z}$ is:
(1) A field iff n is prime
(2) Reduced iff n is squarefree

Proof:

(1) If n is prime, then every nonzero element of $\mathbb{Z} / n \mathbb{Z}$ is represented by an integer coprime to n. Thus, every nonzero element of $\mathbb{Z} / n \mathbb{Z}$ is a unit, so $\mathbb{Z} / n \mathbb{Z}$ is a field.
Conversely, if $\mathbb{Z} / n \mathbb{Z}$ is a field, then every nonzero element is coprime to n, so n is prime.
(2) Assume $p^{2} \mid n, p>1$. Then $n / p \neq 0, n / p \in \mathbb{Z} \Longrightarrow n / p$ is well defined $\bmod n$, but

$$
\left(\frac{n}{p}\right)^{2}=\frac{n^{2}}{p^{2}}=\left(\frac{n}{p^{2}}\right) n=0 .
$$

So $\mathbb{Z} / n \mathbb{Z}$ is not reduced, since n / p is nilpotent.
Finally, assume that m is nilpotent $\bmod n$. We want to show that n is not squarefree. Well, $m \neq 0 \bmod n$, but $m^{a}=0 \bmod m$. As integers, write $\begin{gathered}m=p_{1}^{a_{1} \ldots p_{1} a_{r} r} \\ n=p_{1} \ldots \ldots p_{r}^{r} \\ r\end{gathered}$ where, in principle, some of the a_{i}, b_{i} may be 0 .
Since $n \nmid m$, we get $n \nmid m$, we get $b_{i}>a_{i}$ for some i. Since $n \mid m^{a}$, we get $b_{i} \leq a a_{i}$. Note $b_{i}>a_{i} \geq 0$, and $b_{i} \leq a a_{i}$, so $a_{i}>0$. So $b_{i}>a_{i} \geq 1$, and so $b_{i} \geq 2$. Thus, $p_{i}^{2} \mid n$, and n is not squarefree.

Homomorphisms

Definition: Let R, S be rings. A homomorphism from R to S is a function $f: R \rightarrow S$ satisfying:
(1) $f(1)=1$
(2) $f(a+b)=f(a)+f(b)$
(3) $f(a b)=f(a) f(b)$

Example: $f: \mathbb{C} \rightarrow \mathbb{C}, f(a+b i)=a-b i$
Example: $f: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$
$f(r)=r \bmod n$
Example: $f: \mathbb{Q}[x] \rightarrow \mathbb{Q}$
$f(p(x))=p\left(3 \frac{1}{2}\right)$
$f(x-7)=-3 \frac{1}{2}$
$f\left(x^{2}+2 x+3\right)=\frac{49+28+12}{4}=\frac{89}{4}$
$f(6)=6$
"Plugging in" homomorphism:

$$
f: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow T
$$

where R is a ring, $R \subset T$, and:

$$
f\left(p\left(x_{1}, \ldots, x_{n}\right)\right)=p\left(t_{1}, \ldots, t_{n}\right)
$$

where $t_{1}, \ldots, t_{n} \in T$ are any fixed elements of T.
Example: $f: \mathbb{Z}[i] \rightarrow \mathbb{Z} / 5 \mathbb{Z}$
$f(a+b i)=a+2 b \bmod 5$
(1) $f(1)=1 \bmod 5 \checkmark$
(2) $f((a+b i)+(c+d i))=f((a+c)+(b+d) i)=a+c+2(b+d) \bmod 5$ $f(a+b i)+f(c+d i)=a+2 b+c+2 d \bmod 5 . S a m e$.

$$
\begin{gather*}
f(a+b i) f(c+d i)=(a+2 b)(c+2 d)=a c+4 b d+2 a d+2 b c \bmod 5 \tag{3}\\
f((a+b i)(c+d i))=f(a c-b d+b c i+a d i)=a c-b d+2(a d+b c) \bmod 5
\end{gather*}
$$

These are the same, so

PMATH 345 Lecture 4: May 10, 2010

$\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}="$ Integers $\bmod 3 "$
Definition: Let R, S be rings, $f: R \rightarrow S$ a homomorphism. Then f is an isomorphism iff there is another homomorphism $g: S \rightarrow R$ such that $f \circ g=$ id and $g \circ f=\mathrm{id}$.
Example: $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\bar{z}$. This is an isomorphism; the inverse of f is f.

To prove $z=i$, we'd have to have some relationship between z, real numbers, and + and \cdot :

$$
a_{n} z^{n}+\cdots+a_{1} z+a_{0}=0
$$

where $a_{i} \in \mathbb{R}$. Then:

$$
a_{n} \bar{z}^{n}+\cdots+a_{1} \bar{z}+a_{0}=0
$$

So there's no way to tell the difference between i and $-i$.
Definition: Let $f: R \rightarrow S$ be a homomorphism. The image of f is the set:

$$
\begin{aligned}
\operatorname{im}(f) & =\{f(x): x \in R\} \\
& =\text { range of } f
\end{aligned}
$$

and the kernel of f :

$$
\operatorname{ker}(f)=\{x \in R: f(x)=0\}
$$

Theorem: Let $f: R \rightarrow S$ be a homomorphism. Then f is $1-1$ iff $\operatorname{ker}(f)=\{0\}$.
Proof: Forwards is trivial, because $f(0)=0$.
Backwards: Assume ker $f=\{0\}$. We want to show f is $1-1$. If $f(a)=f(b)$, then $f(a-b)=0$, so $a-b \in \operatorname{ker} f$, so $a-b=0 \Longrightarrow a=b$.

Theorem: Let $f: R \rightarrow S$ be a homomorphism. Then:
(1) $f(0)=0$
(2) The composition of homomorphisms is a homomorphism
(3) If x is a unit, then so is $f(x)$.

Theorem: Let $f: R \rightarrow S$ be a homomorphism. Then ker f is usually not a subring of R. In fact, ker f is a subring of R iff $\operatorname{ker} f=R$.
Definition: Let R be a ring. An ideal of R is a subset $I \subset R$ satisfying:
(1) $0 \in I$
(2) If $a, b \in I$ then $a-b \in I$
(3) If $a \in I, r \in R$, then $a r \in I$.

Theorem: Let $f: R \rightarrow S$ be a homomorphism. Then $\operatorname{ker} f$ is an ideal of R.

Proof:

(1) $f(0)=0 \Longrightarrow 0 \in \operatorname{ker} f$.
(2) If $a, b \in \operatorname{ker} f$, then $f(a)=f(b)=0$. We want $a-b \in \operatorname{ker} f$, i.e., $f(a-b)=0$. This is trivial.
(3) If $a \in \operatorname{ker} f, r \in R$, then $f(a)=0$, so $f(r a)=f(r) f(a)=f(r) \cdot 0=0$. So $r a \in \operatorname{ker} f$.

Example: What are the ideals of \mathbb{Z} ?
$\{0\}$ is the trivial or zero ideal.
\mathbb{Z} is the improper or unit ideal.
$I=\{$ even integers $\}$ is an ideal, often written $2 \mathbb{Z}$.
In fact, $\{$ multiples of $n\}=n \mathbb{Z}$ is an ideal of \mathbb{Z}.
Better yet, every ideal of \mathbb{Z} is of the form $n \mathbb{Z}$ for some $n \in \mathbb{Z}$.
Definition: Let R be a ring, $a \in R$ any element. The principal ideal of R generated by a is the set:

$$
(a)=a R=\{a R: r \in R\}
$$

Theorem: (a) is an ideal of R.
Proof: Easy.

PMATH 345 Lecture 5: May 12, 2010

Claim: The ideals of \mathbb{Z} are precisely the sets $n \mathbb{Z}=\{n r: r \in \mathbb{Z}\}$.
Proof: First, $n \mathbb{Z}$ is an ideal by a quick check of the definition. It only remains to show that every ideal is of the form $n \mathbb{Z}$. Thus, say $I \subset \mathbb{Z}$ is an ideal. It could be that $I=\{0\}=0 \mathbb{Z}$. Otherwise, I must contain some nonzero integer, which we may assume is positive. Let n be the smallest positive element of I. We will show that $I=(n)=n \mathbb{Z}$. Clearly $n \mathbb{Z} \subset I$, since $n \in I$. Thus, $x \in I$. We want to show $x \in n \mathbb{Z}$. After long division:

$$
x=q n+r
$$

where $q, r \in \mathbb{Z}, 0 \leq r<n$. But $r=x-q n \in I$, so by minimality of n, we get $r=0$, and hence $x=q n \in n \mathbb{Z}$. Thus, $I=n \mathbb{Z}$.

Definition: Let R be a ring, $a_{1}, \ldots, a_{n} \in R$ any elements. The ideal generated by a_{1}, \ldots, a_{n} is:

$$
\left(a_{1}, \ldots, a_{n}\right)=\left\{r_{1} a_{1}+\cdots+r_{n} a_{n}: r_{1}, \ldots, r_{n} \in R\right\}
$$

It is easy to see that this is an ideal.
Example: $(6,8) \subset \mathbb{Z}$

$$
\begin{aligned}
& =\{6 a+8 b: a, b \in \mathbb{Z}\} \\
& =\{2(3 a+4 b): a, b \in \mathbb{Z}\}
\end{aligned}
$$

so $2 \in(6,8)$. This immediately means that $(2) \subset(6,8)$.
Conversely, $6,8 \in(2)$, so $(6,8) \subset(2)$, and hence $(2)=(6,8)$.
Fact: Given an ideal I and elements $a_{1}, \ldots, a_{n} \in R$, if $a_{1}, \ldots, a_{n} \in I$ then $\left(a_{1}, \ldots, a_{n}\right) \subset I$.
Example: $(x, y) \subset \mathbb{Q}[x, y]$

$$
\begin{aligned}
(x, y) & =\{x p(x, y)+y q(x, y): p, q \in \mathbb{Q}[x, y]\} \\
& =\{r(x, y): r(0,0)=0\}
\end{aligned}
$$

Definition: Let I, J be ideals. Then these are ideals:

$$
\begin{aligned}
I+J & =\{a+b: a \in I, b \in J\} \\
\text { and } I J & =\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: a_{i} \in I, b_{i} \in J\right\} \\
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{m}\right) & =\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \\
\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{m}\right) & =\left(a_{1} b_{1}, a_{1} b_{2}, \ldots, a_{1} b_{m}, a_{2} b_{1}, \ldots, a_{2} b_{m}, \ldots, a_{n} b_{1}, \ldots, a_{n} b_{m}\right) \\
& =\left(a_{i} b_{j}\right)_{\substack{i \in\{1, \ldots, n\} \\
j \in\{1, \ldots, m\}}}
\end{aligned}
$$

Example: In $\mathbb{Q}[x, y]$:

$$
\left(x, y^{2}\right) \cdot\left(x-y, y^{3}-y\right)=\left(x^{2}-x y, x y^{2}-y^{3}, x y^{3}-x y, y^{5}-y^{3}\right)
$$

If R is a ring, then $R^{*}=$ group of units of R
Theorem: Let I be an ideal of a ring R. Then $I=(1)=R$ iff I contains some unit of R.
Proof: Forwards is trivial. For backwards, assume $u \in I$ is a unit. Then $1=u u^{-1} \in I \Longrightarrow I=(1)$.
Theorem: Let R be a ring, $R \neq\{0\}$. Then R is a field iff it has exactly two ideals, (0) and (1).
Proof: Forwards: Assume R is a field, $I \subset R$ any ideal. If $I=(0)$, we're done. If not, I contains some $x \in R$, $x \neq 0$. Since R is a field, x is a unit, so $I=(1)$.
Backwards: Let $x \in R$ be any nonzero element. We want to show $x \in R^{*}$. Well, $(x) \subset R$ is an ideal with $(x) \neq(0)$, so by assumption $(x) \neq(1)$. This means $1 \in(x)=\{x r: r \in R\}$

$$
\Longrightarrow 1=r x \text { for some } r \in R
$$

so $x \in R^{*}$ and R is a field.

Quotient rings

Let R be a ring, $I \subset R$ an ideal. (e.g., $R=\mathbb{Z}, I=(n)$)
We want to build a ring R / I and a homomorphism $q: R \rightarrow R / I$ such that $\operatorname{ker} q=I$.
If we had such a thing, then $q(x)=q(y) \Longleftrightarrow x-y \in \operatorname{ker} q=I$.
Thus, elements of R / I ought to be equivalence classes of elements of R under the equivalence relation

$$
x \equiv y \bmod I \quad \text { iff } \quad x-y \in I
$$

PMATH 345 Lecture 6: May 14, 2010

Theorem: A homomorphism $f: R \rightarrow S$ is an isomorphism iff it's 1-1 and onto.
Proof: Forwards is trivial.
Backwards: Assume f is $1-1$ and onto. We want to show that $f^{-1}: S \rightarrow R$ is a homomorphism.
First, $f^{-1}(1)=1$ because $f(1)=1$. Next, let $a, b \in S$ be any elements. We want to show that

$$
f^{-1}(a+b)=f^{-1}(a)+f^{-1}(b)
$$

Since f is $1-1$ and onto, we can find $A, B, C \in R$ such that $f(A)=a, f(B)=b$, and $f(C)=a+b$. Then: $f(A)+f(B)=f(A+B)=a+b$

$$
\Longrightarrow A+B=f^{-1}(a+b)
$$

But $C=f^{-1}(a+b)$ by definition of C

$$
\begin{aligned}
& \Longrightarrow A+B=C \\
& \Longrightarrow f^{-1}(a)+f^{-1}(b)=f^{-1}(a+b)
\end{aligned}
$$

as desired.
Proving $f^{-1}(a) f^{-1}(b)=f^{-1}(a b)$ is exactly similar.
We've got: a ring R, an ideal $I \subset R$
We want: a ring $R / I=" R \bmod I$ " an onto homomorphism $q: R \rightarrow R / I$ with $\operatorname{ker} q=I$.

$$
R / I=\{\text { equivalence classes of elements of } R\}
$$

where $r_{1} \equiv r_{2} \bmod I$ iff $r_{1}-r_{2} \in I$

$$
=\left\{r+I^{1)}: r \in R\right\}
$$

Addition: $\left(r_{1}+I\right)+\left(r_{2}+I\right)=\left(r_{1}+r_{2}\right)+I$
Multiplication: $\left(r_{1}+I\right)\left(r_{2}+I\right)=\left(r_{1} r_{2}+I\right)$
One: $1+I$
We need to check that these definitions are well defined.
If $r_{1} \equiv r_{1}^{\prime} \bmod I$ and $r_{2} \equiv r_{2}^{\prime} \bmod I$, we must check that $r_{1}+r_{2} \equiv r_{1}^{\prime}+r_{2}^{\prime} \bmod I$ and $r_{1}^{\prime} r_{2}^{\prime} \equiv r_{1} r_{2} \bmod I$.
If $a_{1}=r_{1}-r_{1}^{\prime} \in I, a_{2}=r_{2}-r_{2}^{\prime} \in I$, then

$$
\begin{aligned}
\left(r_{1}+r_{2}\right)-\left(r_{1}^{\prime}\right. & \left.+r_{2}^{\prime}\right)=\left(r_{1}-r_{1}^{\prime}\right)+\left(r_{2}-r_{2}^{\prime}\right) \in I \\
\text { and } r_{1} r_{2}-r_{1}^{\prime} r_{2}^{\prime} & =r_{1} r_{2}-\left(r_{1}-a_{1}\right)\left(r_{2}-a_{2}\right) \\
& =r_{1} r_{2}-r_{1} r_{2}+a_{1} r_{2}+a_{2} r_{1}-a_{1} a_{2} \\
& \in I
\end{aligned}
$$

Checking that R / I is a ring is tedious but straight forward.
It's clear from the construction that the map

$$
\begin{aligned}
q: R \rightarrow & R / I \\
\text { given by } q(r) & =r \bmod I \\
& =r+I
\end{aligned}
$$

is a surjective homomorphism. The map q is called the "reduction mod I " homomorphism.

[^0]Example: $R=\mathbb{Z}, I=(n)$
Then $R / I=\mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$.
Example: $\mathbb{C}[x] /(x)$ should be isomorphic to \mathbb{C}.
Example: $\mathbb{R}[x] /\left(x^{2}+1\right)$ should be isomorphic to $\left.\mathbb{C} .{ }^{2}\right)$

$$
\mathbb{C}[x, y, z] /\left(x^{2}-x+3 y z, x^{3} z+4 y\right)
$$

Theorem: (Universal Property of Quotients)
Let R, S be rings, $I \subset R$ an ideal, $f: R \rightarrow S$ a homomorphism, $q: R \rightarrow R / I$ the "reduce mod I " homomorphism.

There exists a homomorphism $\tilde{f}: R / I \rightarrow S$ with $\tilde{f} \circ q=f$ iff $I \subset \operatorname{ker} f$.
Remark: This theorem says that if you can find a homomorphism $f: R \rightarrow S$ with $I \subset$ ker f, then f "makes sense mod $I "$.

PMATH 345 Lecture 7: May 17, 2010

Theorem: (UPQ) Let R, S be rings, $I \subset R$ an ideal, $f: R \rightarrow S$ a homomorphism, $q: R / I$ the quotient homomorphism

Then there exists a homomorphism $\tilde{f}: R / I \rightarrow S$ with $f=\tilde{f} \circ q$ iff $I \subset \operatorname{ker} f$.
Example: Find an isomorphism from $\mathbb{C}[x] /(x)$ to \mathbb{C}.

$$
\mathbb{C}[x]^{3)} /(x)^{4)} \quad \text { to } \quad \mathbb{C}^{5)}
$$

$$
f(p(x))=p(0)
$$

This is a homomorphism, and $x \in \operatorname{ker} f$, so $(x) \subset \operatorname{ker} f$, so by the UPQ, f "makes sense" as a homomorphism from $\mathbb{C}[x] /(x) \rightarrow \mathbb{C}$. That is, f induces a homomorphism $\tilde{f}: \mathbb{C}[x] /(x) \rightarrow \mathbb{C}$.

$$
\tilde{f}(p(x) \bmod I)=p(0)
$$

It's onto because $\tilde{f}(z)=z$ for any $z \in \mathbb{C}$, so we just need to check $1-1$. To do this, we show that $\operatorname{ker} \tilde{f}=(0) \Longleftrightarrow \operatorname{ker} f=(x)$.
We already know $(x) \subset$ ker f, so let $p(x) \in \operatorname{ker} f$. Then $f(p(x))=p(0)=0$, so $x \mid p(x)$, and so $p(x) \in(x)$ and we're done.

Proof of UPQ: Forwards: We have $\tilde{f} \circ q=f$, so if $r \in I$, we compute $f(r)=\tilde{f}(q(r))=\tilde{f}(0)=0$, so $r \in \operatorname{ker} f$.

[^1]Backwards: Assume $I \subset \operatorname{ker} f$. We want $\tilde{f}: R / I \rightarrow S$ such that $\tilde{f} \circ q=f$
Define

$$
\tilde{f}(r \bmod I)=f(r)
$$

To check that this is well defined, we check that if $r_{1} \equiv r_{2} \bmod I$, then $\tilde{f}\left(r_{1} \bmod I\right)=\tilde{f}\left(r_{2} \bmod I\right)$. That is, we check that $f\left(r_{1}\right)=f\left(r_{2}\right)$.

Well, $f\left(r_{1}\right)-f\left(r_{2}\right)=f\left(r_{1}-r_{2}\right)=0$ since $r_{1}-r_{2} \in I \subset \operatorname{ker} f$.
We check that \tilde{f} is a homomorphism:

$$
\begin{gathered}
\tilde{f}(1 \bmod I)=f(1)=1 \quad \checkmark \\
\tilde{f}(a+b \bmod I)=f(a+b)=f(a)+f(b)=\tilde{f}(a \bmod I)+\tilde{f}(b \bmod I) \quad \checkmark \\
\tilde{f}(a b \bmod I)=f(a b)=f(a) f(b)=\tilde{f}(a \bmod I) \tilde{f}(b \bmod I)
\end{gathered}
$$

Facts: $\operatorname{ker} \tilde{f}=\operatorname{ker} f \bmod I$
$\operatorname{im} \tilde{f}=\operatorname{im} f$
Theorem: (First Isomorphism Theorem) Let $f: R \rightarrow S$ be a homomorphism. Then $\operatorname{im} f \cong{ }^{6} R / \operatorname{ker} f$.
Proof: Straight from UPQ.
Theorem: Let $f: R \rightarrow S$ be a homomorphism, $I \subset R$ an ideal, $J \subset S$ an ideal. Then:
(1) $f^{-1}(J)=\{r \in R: f(r) \in J\}=$ preimage of J is an ideal of R
(2) If f is onto, then

$$
f(I)=\{f(r): r \in I\}
$$

is an ideal of S.

Proof:

(1) $0 \in f^{-1}(J)$ because $f(0)=0 \in J$. If $a, b \in f^{-1}(J)$, then $f(a), f(b) \in J$, so $f(a-b)=f(a)-f(b) \in J$, and hence $a-b \in f^{-1}(J)$.
Finally, if $a \in f^{-1}(J), r \in R$, then $f(r a)=f(r) f(a) \in J$, so $r a \in f^{-1}(J)$.
(2) $0 \in f(I)$ because $f(0)=0$. If $a, b \in f(I)$. Then $a=f(r), b=f(s)$ for $r, s \in I$, so $a-b=f(r)-f(s)=$ $f(r-s)$, so $a-b \in f(I)$.

Finally, let $a \in f(I), r \in S$. Since f is onto, we write $r=f(t)$ and $a=f(u)$ for $t \in R, u \in I$.
Then $t u \in I$ and $f(t u)=r a$, so $r a \in f(I)$.
Definition: Let R be a ring, $I \subset R$ an ideal. Then I is prime iff $I \neq R$ and for all $a, b \in R$, if $a b \in I$ then either $a \in I$ or $b \in I$.
I is maximal iff the only ideal J with $I \subsetneq J$ is $J=R$ and $I \neq R$.

PMATH 345 Lecture 8: May 19, 2010

$\mathbb{Z}_{5}[x]$: polynomials in x whose coefficients lie in \mathbb{Z}_{5}.
Fact: If $a \in \mathbb{Z}_{5}$, then $a^{5}=a$.
Fact: In $\mathbb{Z}_{5}[x], x^{5}$ and x are different polynomials that define the same function $\mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$.

$$
\begin{aligned}
x^{5}=(\sqrt{2})^{5} & =\sqrt{32}=4 \sqrt{2}=-\sqrt{2} \\
x & =\sqrt{2} \neq 4 \sqrt{2}
\end{aligned}
$$

Definition: Let R be a ring, $I \subset R$ an ideal. Then I is prime iff every $a, b \in R$ with $a b \in I$ satisfies $a \in I$ or $b \in I$, and $I \neq R$.

Furthermore, I is maximal iff $I \neq R$ and the only ideal $J \subset R$ with $I \subsetneq J$ is $J=R$.

[^2]Example: What are the prime and maximal ideals of \mathbb{Z} ?
Well, any ideal of \mathbb{Z} is of the form (n) for $n \in \mathbb{Z}$.
If n is composite, then $n=a b$ for $a, b \in \mathbb{Z}, a, b \neq \pm 1$. In that case:

$$
(n) \subsetneq(a) \neq(1)
$$

so (n) is not a maximal ideal. Also, $a \notin(n)$ and $b \notin(n)$, but $a b \in(n)$, so (n) isn't prime.
(0) is prime but not maximal. If n is prime, then we can call it p. The ideal (p) is maximal and prime. The ideal (p) is prime because $p|a b \Longrightarrow p| a$ or $p \mid b$, and (p) is maximal because if $(p) \subsetneq(n)$, then $n \mid p$, so $n= \pm p$ (not possible since $(p) \neq(n)$) or $n= \pm 1$, in which case $(n)=(1)$. Hence (p) is maximal.
Theorem: Let R be a ring. I an ideal of R. Then:
(1) I is prime iff R / I is a domain
(2) I is maximal iff R / I is a field

Proof:

(1) Forwards: I is prime. Let $a, b \in R$ be any elements with $a b \equiv 0 \bmod I$. We want to show either $a \equiv 0$ or $b \equiv 0$. Since $a b \equiv 0$, we get $a b \in I$, so either $a \in I$ or $b \in I \Longrightarrow a \equiv 0$ or $b \equiv 0$.

Backwards: Similar.
(2) Forwards: I is maximal. This means only two ideals of R contain I, namely, I and R.

Now let J be any ideal of $R / I, q: R \rightarrow R / I$ the quotient homomorphism. Then

$$
q^{-1}(J)=\{r \in R: q(r) \in J\}
$$

is an ideal of R that contains I.
So $q^{-1} J=I$ or R, so $J=(0)$ or (1). Thus, R / I has exactly 2 ideals, and so must be a field.
Backwards: Similar.
Corollary: Every maximal ideal is prime.
Proof: Every field is a domain.
Example: Is $(x-1)$ a prime ideal of $\mathbb{Q}[x]$? How about $\mathbb{Z}[x]$?

$f(p(x))=p(1)$. By UPQ, this induces $\tilde{f}: \mathbb{Q}[x] /(x-1) \rightarrow \mathbb{Q}$ because $f(x-1)=1-1=0$.
We see that \tilde{f} is onto, since $f(c)=c$ for all $c \in \mathbb{Q}$. Moreover, \tilde{f} is $1-1$ because $f(p(x))=0 \Longleftrightarrow p(1)=$ $0 \Longleftrightarrow x-1 \mid p(x) \Longleftrightarrow p(x) \in(x-1)$. That is, $\operatorname{ker} f=(x-1) \Longleftrightarrow \operatorname{ker} \tilde{f}=(0)$.
Since $\mathbb{Q}[x] /(x-1) \cong \mathbb{Q}($ via $\tilde{f})$, we see that $(x-1)$ is prime and maximal.
$\mathbb{Z}[x]:$

Not too hard to show \tilde{f} is $1-1$ and onto. Since \mathbb{Z} is a domain but not a field, $(x-1)$ is prime but not maximal in $\mathbb{Z}[x]$.

Let R be any ring. There is exactly one homomorphism $\phi: \mathbb{Z} \rightarrow R$, given by $\phi(n)=n$, called the characteristic homomorphism. Since $\operatorname{ker} \phi$ is an ideal of \mathbb{Z}, we have $\operatorname{ker} \phi=(n)$ for some $n \geq 0$. This n is called the characteristic of R, and is written char R.
$\mathbb{Z} / n \mathbb{Z}$ has characteristic n.
char $R=$ first positive integer n such that $n=0$ in R
If none, then char $R=0$.
Example: char $\mathbb{Q}=\operatorname{char} \mathbb{Z}=0$.
Fact: R is a domain \Longrightarrow char R is 0 or prime.

PMATH 345 Lecture 9: May 21, 2010

Let R be a ring, $\phi: \mathbb{Z} \rightarrow R$ the characteristic homomorphism char $R=n$, where ker $\phi=(n)$. Every ring of characteristic $n>0$ has a subring isomorphic to $\mathbb{Z} / n \mathbb{Z}$, namely, $\operatorname{im} \phi$.
Every ring of characteristic 0 has a subring isomorphic to \mathbb{Z}, namely im ϕ.
Theorem: Let D be a domain. Then char $D=0$ or char D is prime.
Proof: Say char $D>0$ and char $D=a b$ for integers a, b. We want to show $a=1$ or $b=1$.
Well, $a b=0$ in D. Since D is a domain, this means $a=0$ or $b=0$; without loss of generality, say $a=0$. Then by definition of char $D, a \geq a b$, so $b \leq 1$. Since $b \in \mathbb{Z}, b>0$, we get $b=1$.

Fraction fields

Let D be a domain. We will construct a field that contains D.
Definition: Let D be a domain. Define the fraction field $K(D)$ by:

$$
K(D)=\left\{\frac{a}{b}: a, b \in D, b \neq 0\right\} / \sim
$$

where $\frac{a}{b} \sim \frac{c}{d}$ iff $a d=b c$, and:

$$
\begin{array}{r}
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} \\
\text { and } \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
\end{array}
$$

Need to show:
(1) If $\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}}$, then $\frac{a}{b}+\frac{c}{d} \sim \frac{a^{\prime}}{b^{\prime}}+\frac{c}{d}$ and $\frac{a^{\prime}}{b^{\prime}} \cdot \frac{c}{d}=\frac{a}{b} \cdot \frac{c}{d}$
(2) $K(D)$ with all these operations is a field.

I do not deign to do so.
Note that there is a natural homomorphism $\phi: D \hookrightarrow K(D), \phi(d)=\frac{d}{1}$. Typically, we identify D with $\phi(D)$, and say that $D \subset K(D)$.
Example: $K(\mathbb{Z})=\mathbb{Q}$.
Example: $K(F[x])=F(x)$ if F is a field

$$
F(x)=\left\{\frac{f(x)}{q(x)}: p, q \in F[x], q \neq 0\right\}
$$

Example: $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$

$$
\begin{aligned}
& K(\mathbb{Z}[i])=\left\{\frac{a+b i}{c+d i}: a, b, c, d \in \mathbb{Z}, c+d i \neq 0\right\} \\
& \text { But } \quad \frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{c^{2}+d^{2}} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+\left(\frac{b c-a d}{c^{2}+d^{2}}\right) i \\
& \in \mathbb{Q}(i)=\{a+b i: a, b \in \mathbb{Q}\}
\end{aligned}
$$

So $K(\mathbb{Z}[i])=\mathbb{Q}(i)^{7)}$
Theorem: (Universal Property of Fraction Fields) Let F be a field, and D a domain, $\phi: D \hookrightarrow F$ an injective homomorphism. Then ϕ extends to an injective homomorphism $\tilde{\phi}: K(D) \hookrightarrow F$.
Proof: Define $\tilde{\phi}\left(\frac{a}{b}\right)=\frac{\phi(a)}{\phi(b)}$. This is well defined because $\phi(b) \neq 0$ (since $b \neq 0$ and ϕ is $1-1$). Checking that this is an injective homomorphism is straightforward.
Theorem: Let $\phi: F \rightarrow E$ be a homomorphism of fields E and F. Then ϕ is $1-1$.
Proof: Consider ker ϕ. It's an ideal of F, so $\operatorname{ker} \phi=(0)$ or (1). Since $\phi(1)=1$, we get ker $\phi=(0)$, and so ϕ is $1-1$.

PMATH 345 Lecture 10: May 26, 2010

http://cumc.math.ca/
July 6-July 10
Definition: Let D be a domain, $x \in D$ any element, $x \neq 0, x \notin D^{*}$. Recall: $D^{*}=\{$ units of $D\}$. Then x is prime iff (x) is a prime ideal. Also, x is irreducible iff when $x=a b$ for $a, b \in D$, we have $a \in D^{*}$ or $b \in D^{*}$.
Example: Prime elements of \mathbb{Z} are prime numbers. Irreducible elements of \mathbb{Z} are prime numbers.
Example: $D=\mathbb{Z}[\sqrt{10}], x=2$. Showing that x is irreducible is not easy, but can be done.
But x is not prime. We will prove this by showing (2) is not a prime ideal, by showing that $\mathbb{Z}[\sqrt{10}] /(2)$ is not a domain.

Well, $\mathbb{Z}[\sqrt{10}]=\{a+b \sqrt{10}: a, b \in \mathbb{Z}\} . \mathbb{Z}[\sqrt{10}] /(2)$ has 4 elements, represented by $0,1, \sqrt{10}, 1+\sqrt{10}$. To prove this, note that those 4 elements are all different $\bmod 2$, and any $a+b \sqrt{10}$ is congruent to one of these 4 $\bmod 2$.

Notice that $\sqrt{10} \not \equiv 0 \bmod 2$, but $(\sqrt{10})^{2} \equiv 0 \bmod 2$, so 2 is not prime.
Definition: A domain D is a Principal Ideal Domain (PID) iff every ideal of D is principal; i.e., every ideal is of the form (x) for some $x \in D$.
Definition: A domain D is a Unique Factorization Domain (UFD) iff every $x \in D, x \neq 0$, can be factored into irreducible elements of $p_{1}, \ldots, p_{n} \in D$:

$$
x=p_{1} p_{2} \cdots p_{n}
$$

and this factorization is unique up to multiplication by units and reordering the p_{i} s.
We will show that every PID is a UFD. However, $\mathbb{Q}[x, y]$ is a UFD, but not a PID because (x, y) is not principal.
Theorem: Every prime element of a domain D is irreducible.
Proof: Let $x \in D$ be prime, and assume $x=a b, a, b \in D$. We want to show either $a \in D^{*}$ or $b \in D^{*}$. Since x is prime, $a b \in(x) \Longrightarrow a \in(x)$ or $b \in(x)$; without loss of generality $a \in(x)$.
So $a=x d$ for some $d \in D$:

$$
x=x d b
$$

Since $x \neq 0$, we get $1=d b$, and so $b \in D^{*}$.
Theorem: Let D be a PID. Then every irreducible element of D is prime.
Note: This theorem is not true if D is not a PID! (E.g., $D=\mathbb{Z}[\sqrt{10}]$.)
Proof: Say $a \in D, a \neq 0, a \notin D^{*}$. Assume a is irreducible. Then (a) is a maximal ideal:
If $(a) \subset I$ for some ideal I, then $I=(x)$ for some $x \in D$. Then $a=x d$ for some $d \in D$. Since a is irreducible, we get $x \in D^{*}$ or $d \in D^{*}$. If $x \in D^{*}$ then $I=(1)$. If $d \in D^{*}$ then $I=(a)$. So (a) is a maximal ideal. Which means (a) is a prime ideal. So a is prime.

[^3]Theorem: Let D be a PID, $I_{1} \subset I_{2} \subset I_{3} \subset \cdots$ be an ascending chain of ideals I_{n} of D. Then for some m, $I_{n}=I_{m}$ for all $n \geq m$.
Proof: Consider $\bar{I}=\bigcup_{n} I_{n}$. Then I is an ideal of D :
(1) $0 \in I_{1} \subset I$
(2) If $a, b \in I$, then $a \in I_{n}$ and $b \in I_{l}$ for some n, l. Without loss of generality, $n \geq l$, in which case $I_{l} \subset I_{n}$ so $a, b \in I_{n}$. So $a-b \in I_{n} \subset I$. \checkmark
(3) Similarly, if $d \in D, a \in I$, then $a \in I_{n} \Longrightarrow d a \in I_{n} \subset I \checkmark$

Since D is a PID, we get $I=(x)$ for some $x \in D$. But $x \in I_{n}$ for some n, so $I=(x) \subset I_{n} \subset I$, and so $I=I_{n}$.

PMATH 345 Lecture 11: May 28, 2010

Theorem: Every PID is a UFD.
Proof: Recall from last time:
Theorem: Every irreducible element of a PID is prime.
Theorem: Let $I_{1} \subset I_{2} \subset \cdots$ be a chain of ideals in a PID. Then for some $n, I_{m}=I_{n}$ for all $m \geq n$.
Digression: Every irreducible element of a UFD is prime.
Proof: Say x is irreducible in a UFD D. We will show that (x) is a prime ideal, so x is prime.
So, assume $a b \in(x)$. Then $a b=x c$ for some $c \in D$. Factoring both sides into irreducibles gives:

$$
\underbrace{\left(p_{1} \cdots p_{n}\right)}_{a} \underbrace{\left(q_{1} \cdots q_{m}\right)}_{b}=x \underbrace{\left(r_{1} \cdots r_{l}\right)}_{c}
$$

By uniqueness of factorization, we get $x=u p_{i}$ or $x=u q_{i}$ for some $u \in D^{*}$ and index i.
So either $a \in(x)$ (if $x=u p_{i}$) or $b \in(x)$ (if $x=u q_{i}$). Hence (x) is a prime ideal and x is prime, as desired.
We will now show that if D is a PID, then D is a UFD. To do this, we will show that any element $a \in D$, $a \neq 0, a \notin D^{*}$, can be factored uniquely into a product of irreducibles.

Thus, choose any $a \in D, a \neq 0, a \notin D^{*}$. We want to find some irreducible element $p \in D$ such that $p \mid a$. Well, if a is irreducible, then we may choose $p=a$. If a is not irreducible, then we may write $a=b c$ for $b, c \in D, b, c \notin D^{*}$. If b or c are irreducible, we win. Otherwise, we get $(a) \subset(b)$ with $(b) \neq(1)$. Write $a_{1}=b$.
Write $a_{1}=a_{2} b_{2}$ for $a_{2}, b_{2} \notin D^{*}$. Write $a_{2}=a_{3} b_{3}$ for $a_{3} \notin D^{*}$, and continue writing $a_{n}=a_{n+1} b_{n+1}$ with $a_{n+1} \notin D^{*}$, and $b_{n+1} \notin D^{*}$ whenever a_{n} is reducible. We have an ascending chain of ideals: $(a) \subset\left(a_{1}\right) \subset$ $\left(a_{2}\right) \subset \cdots$. By ACC for PIDs, there is an n such that $\left(a_{n}\right)=\left(a_{m}\right)$ for all $m \geq n$. In particular, $\left(a_{n}\right)=\left(a_{n+1}\right)$, where $a_{n}=a_{n+1} b_{n+1}$. This means $b_{n+1} \in D^{*}$, so a_{n} is irreducible, with $a_{n} \mid a$.
Now we'll show that a can be factored completely into irreducibles. Write $a=p_{1} a_{1}$ for irreducible $p_{1} \in D$. Write $a=p_{1} p_{2} a_{2}$ for irreducible $p_{2} \in D$ (unless $a_{1} \in D^{*}$). Keep going until $a_{n} \in D^{*}$, at which point:

$$
a=\underbrace{p_{1} p_{2} p_{3} \cdots\left(a_{n} p_{n}\right)}_{\text {all irreducible }}
$$

To show that $a_{n} \in D^{*}$ for some n, note that $(a) \subset\left(a_{1}\right) \subset\left(a_{2}\right) \subset \cdots$ is an ascending chain of ideals. By ACC, this means $\left(a_{n}\right)=\left(a_{n+1}\right)$ for some n, with $a_{n}=p_{n+1} a_{n+1}$; this is impossible! So a_{n} must have been a unit, and so a has been factored completely into irreducibles.

Finally, we show that this factorization is unique. Say

$$
\begin{equation*}
a=p_{1} \cdots p_{n}=q_{1} \cdots q_{m} \tag{*}
\end{equation*}
$$

for irreducibles $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m} \in D$. First, note that $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}$ are all prime, so $p_{1}\left|q_{1} \cdots q_{m} \Longrightarrow p_{1}\right| q_{i}$ for some i. Then $q_{i}=p_{1} x$ for some $x \in D$ and $x \in D^{*}$ because $p_{1} \notin D^{*}$ and q_{i} is irreducible. So we cancel p_{1} from both sides of $(*)$:

$$
p_{2} \cdots p_{n}=q_{1} \cdots \hat{q}_{i} \cdots q_{m} x
$$

where the hat means q_{i} is not present. Keep doing this for each p_{j} in turn until either the p_{i} s run out or the $q_{i} \mathrm{~s}$ do. If the two sets don't run out at the same step, then a nonempty product of primes would be a unit, which is impossible. So $n=m$, and so the two factorizations are the same up to permutation and multiplication by units.

PMATH 345 Lecture 12: May 31, 2010

Definition: Let D be a UFD, $p(x) \in D[x]$ any nonzero polynomial. The content of $p(x)$ is the greatest common factor of the coefficients of $p(x)$. A polynomial $p(x)$ is primitive iff its content is 1 .

Theorem: (Gauss's Lemma)
The product of primitive polynomials is primitive. More precisely, let D be a UFD, $p(x), q(x) \in D[x]$ primitive polynomials. Then $p(x) q(x)$ is primitive.
Proof: Assume $p(x) q(x)$ is not primitive. Then there is some prime l which divides all the coefficients of $p q$. Reducing mod l gives $p(x) q(x) \equiv 0 \bmod l$, so since l is prime, D / l is a domain, so $(D / l)[x]$ is a domain, so either $p(x) \equiv 0 \bmod l$ or $q(x) \equiv 0 \bmod l$. In other words, either l divides the content of p or l divides the content of q. Both are impossible by primitivity of $p(x)$ and $q(x)$.

Theorem: (Gauss's Lemma)
Let D be a UFD, $p(x) \in D[x]$ a nonzero polynomial. Then $p(x)=a(x) b(x)$ in $K(D)[x]$ iff $p(x)=A(x) B(x)$ in $D[x]$, where $A(x)=\alpha a(x)$ and $B(x)=\beta b(x)$ for some $\alpha, \beta \in K(D)$. In particular, $p(x)$ is irreducible in $K(D)[x]$ iff it's irreducible in $D[x]$ (except possibly for constant factors).
Proof: Backwards is trivial.
Forwards: Say $p(x)=a(x) b(x)$ with $a, b \in K(D)[x]$. Write

$$
\alpha \beta p(x)=[\alpha a(x)][\beta b(x)]
$$

where $\alpha a, \beta b$ lie in $D[x]$. Factoring out the contents of αa and βb gives

$$
c_{3} \alpha \beta p^{\prime}(x)=c_{1}(\underbrace{\alpha^{\prime} a^{\prime}(x)}_{\text {primitive }}) c_{2}(\underbrace{\beta^{\prime} b^{\prime}(x)}_{\text {primitive }})
$$

Cancelling gives:

$$
d p^{\prime}(x)=\left[\alpha^{\prime} a^{\prime}(x)\right]\left[\beta^{\prime} b^{\prime}(x)\right]
$$

where $d \in D$ and $p^{\prime}, \alpha^{\prime} a^{\prime}$, and $\beta^{\prime} b^{\prime}$ are all primitive. By Gauss's Lemma, $d p^{\prime}(x)$ is primitive, so $d \in D^{*}$ and so $p^{\prime}(x)=\left[\alpha^{\prime} d^{-1} a^{\prime}(x)\right]\left[\beta^{\prime} b^{\prime}(x)\right]$. Since $p(x)=c_{3} p^{\prime}(x)$, we get:

$$
\begin{aligned}
p(x) & =\left[c_{3} \alpha^{\prime} d^{-1} a^{\prime}(x)\right]\left[\beta^{\prime} b^{\prime}(x)\right] \\
& =A(x) B(x)
\end{aligned}
$$

as desired.
Example: Consider $2 x^{2}-5 \in(\mathbb{Z}[\sqrt{10}])[x]$. The polynomial is irreducible. However:

$$
\begin{aligned}
2 x^{2}-5 & =2\left(x^{2}-\frac{5}{2}\right) \\
& =2\left(x-\sqrt{\frac{5}{2}}\right)\left(x+\sqrt{\frac{5}{2}}\right) \\
& =2\left(x-\frac{\sqrt{10}}{2}\right)\left(x+\frac{\sqrt{10}}{2}\right)
\end{aligned}
$$

So Gauss's Lemma does not apply to $(\mathbb{Z} \sqrt{10})[x]$.
Example: Prove that $x^{2}+x+1$ is irreducible in $\mathbb{Q}[x]$.
Solution: Reducing mod 2 gives $x^{2}+x+1$, which has no roots: $0^{2}+0+1 \neq 0,1^{2}+1+1 \neq 0$
So $x^{2}+x+1$ can't factor in $\mathbb{Z}_{2}[x]$. If $x^{2}+x+1$ factored in $\mathbb{Z}[x]$, then the factorization could be reduced $\bmod 2$. So $x^{2}+x+1$ is irreducible in $\mathbb{Z}[x]$. By Gauss's Lemma, $x^{2}+x+1$ is irreducible in $\mathbb{Q}[x]$.

PMATH 345 Lecture 13: June 2, 2010

Long division and Euclidean algorithm

Divide $x^{3}-1$ by $x^{2}+2 x-3$ with remainder in $\mathbb{Z}_{5}{ }^{8)}[x]$

$$
\begin{array}{r}
\left.x^{2}+2 x-3\right) x-2 \\
\frac{x x^{3}+0 x^{2}+0 x-1}{x^{3}+2 x^{2}-3 x} \\
\frac{-2 x^{2}+3 x-1}{} \\
\frac{-2 x^{2}+x+1}{2 x-2}
\end{array}
$$

Answer: $x^{3}-1=(x-2)\left(x^{2}+2 x-3\right)+(2 x-2)$
To find $\operatorname{gcd}\left(x^{3}-1, x^{2}+2 x-3\right)$:

$$
\begin{gathered}
x^{3}-1=(x-2)\left(x^{2}+2 x-3\right)+(2 x-2) \\
2 x-2) \frac{3 x-1}{x^{2}+2 x-3} \\
\frac{x^{2}-x}{3 x}-3 \\
\frac{3 x-3}{0} \\
x^{2}+2 x-3=(2 x-2)(3 x-1)+0
\end{gathered}
$$

So $\operatorname{gcd}\left(x^{3}-1, x^{2}+2 x-3\right)=2 x-2$ or $x-1$
Theorem: Let F be a field, $a(x), b(x) \in F[x]$ with $b(x) \neq 0$. Then there are polynomials $q(x), r(x) \in F[x]$ satisfying:
(1) $a(x)=q(x) b(x)+r(x)$
(2) $\operatorname{deg}(r(x))<\operatorname{deg}(b)$
(If $b(x)$ is constant, then (2) means $r(x)=0$.)
Proof: Not gonna do it.
Corollary: Let F be a field. Then $F[x]$ is a PID.
Proof: Let $I \subset F[x]$ be an ideal. If $I=(0)$, then it's principal. If not, then it contains a nonzero polynomial $p(x)$ of minimal degree. If $a(x) \in I$, then $a(x)=p(x) q(x)+r(x)$ where $\operatorname{deg}(r(x))<\operatorname{deg}(p(x))$. But $r(x)=a(x)-p(x) q(x) \in I$, so by minimality of $p(x)$, we get $r(x)=0$ and $a(x) \in(p(x))$. So $I \subset(p(x))$, and $p(x) \in I \Longrightarrow(p(x)) \subset I$, so $I=(p(x))$.
Corollary: Let F be a field, $a \in F, p(x) \in F[x]$ with $p(a)=0$. Then $x-a \mid p(x)$.
Proof: $p(x)=q(x)(x-a)+r(x)$ with $\operatorname{deg} r(x)<\operatorname{deg}(x-a)=1$. Plug in $x=a$ to deduce $r=0$.
Corollary: Let F be a field, $p(x) \in F[x]$ a nonzero polynomial of degree d. Then $p(x)$ has at most d roots. Proof: Each root corresponds to a factor of $p(x)$, and $F[x]$ is a PID and hence a UFD.
If $p(x)$ has degree 3 or less, then $p(x)$ factors in $F[x]$ iff it has a root in F. The proof is easy.
Example: $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$ because its degree is $2 \leq 3$, and $0^{2}+0+1 \neq 0$ and $1^{2}+1+1 \neq 0$.
Theorem: Let R be a ring, P a prime ideal of $R, p(x) \in R[x]$ a polynomial. If $p(x)$ is irreducible in $(R / P)[x]$ and if the leading coefficient of $p(x)$ doesn't lie in P, then $p(x)$ is irreducible in $R[x]$.
Proof: If $p(x)=a(x) b(x)$ in $R[x]$ with $\operatorname{deg}(a), \operatorname{deg}(b) \geq 1$, then

$$
p(x) \equiv a(x) b(x) \bmod P
$$

with $\operatorname{deg}(a), \operatorname{deg}(b) \geq 1 \bmod P$ because $\operatorname{deg}(p(x))$ is the same over R / P as over R. By contrapositive, we're done.

[^4]Example: $x^{2}+x+1$ is irreducible in $\mathbb{Z}[x]$ because it's irreducible $\bmod 2$.
Example: Is $x^{3}-x+1$ irreducible in $\mathbb{Q}[x]$?
Yes. Reducing mod 2 yields $x^{3}+x+1$, which has no roots, so $x^{3}-x+1$ is irreducible in $\mathbb{Z}_{2}[x]$ since deg ≤ 3, and so irreducible in $\mathbb{Z}[x]$, and by Gauss's Lemma irreducible in $\mathbb{Q}[x]$.

PMATH 345 Lecture 14: June 4, 2010

Theorem: Let D be a UFD, $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in D[x]$ any nonzero polynomial, $a_{i} \in D$. If $p\left(\frac{m}{l}\right)=0$ for $l, m \in D$, then $l \mid a_{n}$ and $m \mid a_{0}$.
Example: Does $3 x^{3}+1$ have any roots in \mathbb{Q} ?
Answer: No. Any rational root $\frac{a}{b}$ satisfies $b \mid 3$ and $a \mid 1$, so $b \in\{ \pm 1, \pm 3\}$ and $a \in\{ \pm 1\}$. Without loss of generality, $b>0$, so $b \in\{1,3\}$. Now we check these roots:

$$
\begin{gathered}
3(1)^{3}+1=4 \neq 0 \\
3(-1)^{3}+1=-2 \neq 0 \\
3\left(\frac{1}{3}\right)^{3}+1 \neq 0 \\
3\left(\frac{1}{3}\right)^{3}+1 \neq 0
\end{gathered}
$$

Therefore $3 x^{3}+1$ has no roots in \mathbb{Q}. Since its degree is ≤ 3, this means it's irreducible over \mathbb{Q}.
Proof: Say $\left(\frac{m}{l}\right)=0$. Then in $K(D)[x]$, we have $\left.\left(x-\frac{m}{l}\right) \right\rvert\, p(x)$, so $l x-m \mid p(x)$. By Gauss's Lemma, $p(x)=(l x-m) q(x)$ for some $q(x)$ in $D[x]$. If $q(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}$, then $a_{0}=-b_{0} m$ and $a_{n}=l b_{n-1}$.

Theorem: (Eisenstein's Criterion)
Let D be a domain, $P \subset D$ a prime ideal, $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in D[x]$ a nonzero polynomial satisfying:
(1) $a_{i} \in D$
(2) $a_{i} \in P$ if $i<n$
(3) $a_{n} \notin P$
(4) $a_{0} \notin P^{2}$
${ }^{9)}$ Then $f(x)$ has only constant factors in $D[x]$.
Example: Is $x^{4}+10 x+6$ irreducible over \mathbb{Q} ?
Yes: Apply Eisenstein with $P=(2)$:
(2) $0,0,10,6$ all in (2)
(3) $1 \notin(2)$
(4) $6 \notin(4) \checkmark$

Proof: Say $f(x)=a(x) b(x)$ in $D[x]$. Then $f(x) \equiv a(x) b(x)$ in $(D / P)[x]$.

$$
\Longrightarrow a(x) b(x) \equiv a_{n} x^{n} \bmod P
$$

Since (D / P) is a domain, it has a fraction field K, and $K[x]$ is a UFD. So both $a(x)$ and $b(x)$ are both constant multiples of a power of $x \bmod P$.

If $a(x)$ and $b(x)$ are both not constant, then their constant coefficients are both $0 \bmod P$. This would mean that both coefficients lie in P, so

$$
a_{0}=(\text { constant coefficient of } a(x)) \cdot(\text { constant coefficient of } b(x))
$$

would lie in P^{2}. This is a contradiction, and so $f(x)$ has only constant factors, as desired.

[^5]Corollary: If $f(x)$ satisfies the hypothesis of Eisenstein's Criterion and D is a UFD, then $f(x)$ is irreducible in $K(D)[x]$.
Proof: Gauss's Lemma.
Corollary: If $f(x)$ is monic (leading coefficient is one) and satisfies the hypotheses of Eisenstein's Criterion, then $f(x)$ is irreducible in $D[x]$.
Proof: Immediate.
Example: Is $x^{3} y+x y^{3}-x+y-1$ irreducible in $\mathbb{C}[x, y]$?
Yes: Apply Eisenstein's Criterion to $D=\mathbb{C}[y]$ and $P=(y-1)$.
Write $x^{3} y+x y^{3}-x+y-1$
$=y^{10)} x^{3}+\left(y^{3}-1\right)^{11)} x+(y-1)^{12)}$
So, by Eisenstein's Criterion, $x^{3} y+x y^{3}-x+y-1$ has only constant factors; namely, factors lying in $D=\mathbb{C}[y]$. But y and $y-1$ are both coefficients are relatively prime, so there are no nontrivial constant factors either.

PMATH 345 Lecture 15: June 7, 2010

Definition: A ring R is Noetharian iff every ideal of R is finitely generated. That is, R is Noetharian iff every ideal I of R can be written in the form $I=\left(r_{1}, \ldots, r_{n}\right)$ for some $r_{1}, \ldots, r_{n} \in R$.
Theorem: A ring R is Noetharian iff it satisfies the Ascending Chain Condition.
Proof: Forwards: Say R is Noetharian, and let $I_{1} \subset I_{2} \subset \cdots$ be an ascending chain of ideals. We want to show that there is an index n such that $I_{n}=I_{m}$ for all $m \geq n$.

We've already seen that $I=\bigcup_{k} I_{k}$ is an ideal, so since R is Noetharian, $I=\left(r_{1}, \ldots, r_{m}\right)$ for some r_{1}, \ldots, $r_{m} \in R$. For each $i, r_{i} \in I$ implies $r_{i} \in I_{m}$, for some m_{i}.

If $n=\max \left\{m_{i}\right\}$, then $r_{i} \in I_{n}$ for all i. So $I=\left(r_{1}, \ldots, r_{m}\right) \subset I_{n} \subset I$, and therefore $I=I_{n}$ and $I_{m}=I_{n}$ for all $m \geq n$.

Backwards: We'll skip.
Theorem: (Hilbert Basis Theorem) Let R be a Noetharian ring. Then $R[x]$ is also Noetharian.
Remarks: Every field is Noetharian, as is every PID. By induction, HBT implies that $F\left[x_{1}, \ldots, x_{n}\right]$ is Noetharian for every field F.
Proof: Let $I \subset R[x]$ be any ideal. We want to find a finite set of elements $f_{1}, \ldots, f_{n} \in R[x]$ such that $I=\left(f_{1}, \ldots, f_{n}\right)$. Let $L=$ set of leading coefficients of elements of I (leading coefficient of 0 is 0).
Claim: L is an ideal of R.
Proof:
(1) $0 \in L \checkmark$
(2) Say $l_{1}, l_{2} \in L$. Let $f_{1}, f_{2} \in I$ have leading coefficients l_{1}, l_{2} respectively. If $\operatorname{deg} f_{1} \geq \operatorname{deg} f_{2}$, then $f_{1}-x^{\operatorname{deg} f_{1}-\operatorname{deg} f_{2}} f_{2}$ is in I and has leading coefficient $l_{1}-l_{2}$, so $l_{1}-l_{2} \in L$. Otherwise, $x^{\operatorname{deg} \bar{f}_{2}-\operatorname{deg} f_{1}} f_{1}-f_{2}$ will do.
(3) Say $l \in L, r \in R, f \in I$ with leading coefficient l. Then $r f$ has leading coefficient $l r$, so $l r \in L$.

Since R is Noetharian, we get $L=\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{1}, \ldots, a_{n} \in R$. Let $f_{1}, \ldots, f_{n} \in I$ have leading coefficients a_{1}, \ldots, a_{n}, respectively. For each integer $d \geq 0$, define

$$
L_{d}=\{\text { set of leading cofficients of elements of } I \text { of degree } d\} \cup\{0\}
$$

It turns out (by a proof similar to Claim's) that L_{d} is an ideal of R, so we can write $L_{d}=\left(b_{d, 1}, \ldots, b_{d, n_{d}}\right)$ for some $b_{d, i} \in R$. Let $f_{d, i} \in I$ have leading coefficient $b_{d, i}$, with $\operatorname{deg} f_{d, i}=d$.
Let $N=\max \left\{\operatorname{deg} f_{i}\right\}$.

[^6]Claim: I is generated by f_{1}, \ldots, f_{n} and $f_{d, i}$ for $d_{i} \leq N$.
Proof of claim: It's clear that every f_{i} and $f_{d, i}$ is contained in I, so it suffices to show that every element of I can be written in terms of f_{i} and $f_{d, i}$.
Assume $f \in I$ is the element of smallest degree that cannot be written as an $R[x]$-linear combination of the f_{i} and $f_{d, i} .(d=\operatorname{deg} f)$

Case I: $\operatorname{deg} f \geq N$. Let $a=$ leading coefficient of f. Since $a \in L$, we can write $a=r_{1} a_{1}+\cdots+r_{n} a_{n}$ for some $r_{i} \in R$. So $f-r_{1} x^{d-\operatorname{deg} f_{1}} f_{1}-\cdots-r_{n} x^{d-\operatorname{deg} f_{n}} f_{n}=g$ has degree less than d, and is nonzero by construction of f. This implies that g cannot be written as an $R[x]$-linear combination of f_{i} and $f_{d, i}$, which contradicts minimality of f.
Case II: $\operatorname{deg} f<N$. Then $a \in L_{d}$ for $\operatorname{deg} f=d<N$, so the Case I argument applies to L_{d} instead of L. By contradiction, we're done.

PMATH 345 Lecture 16: June 9, 2010

Office Hours

Thursday 1:30-3:30
Theorem: Let R be Noetharian, $I \subset R$ any ideal. Then R / I is Noetharian.
Proof: Let J be any ideal of R / I. We want to show that $J=\left(r_{1}, \ldots, r_{n}\right)$ for some elements $r_{i} \in R / I$. Let $q: R \rightarrow R / I$ be the quotient homomorphism, and let $A=q^{-1}(J)=\{r \in R: r \in J \bmod I\}$. Then A is an ideal of R, which is a Noetharian ring, so $A=\left(r_{1}, \ldots, r_{n}\right)$ for some $r_{1}, \ldots, r_{n} \in R$.

Claim: $J=\left(\overline{r_{1}}, \ldots, \overline{r_{n}}\right)$, where $\overline{r_{i}}=r_{i} \bmod I$.
Proof of claim: Say $a \in J$. Then there is some $r \in A$ such that $q(r)=a$. So we can write

$$
r=\alpha_{1} r_{1}+\alpha_{2} r_{2}+\cdots+\alpha_{n} r_{n}
$$

for some $\alpha_{1}, \ldots, \alpha_{n} \in R$, so:

$$
\begin{aligned}
a & =\overline{\alpha_{1} r_{1}}+\cdots+\overline{\alpha_{n} r_{n}} \bmod I \\
& \in\left(\overline{r_{1}}, \ldots, \overline{r_{n}}\right) \quad \square
\end{aligned}
$$

Corollary: Let R be any Noetharian ring (e.g., a field, or \mathbb{Z}). Then for any ideal I of R, the ring

$$
R\left[x_{1}, \ldots, x_{n}\right] / I
$$

is Noetharian.
${ }^{13)}$ Definition: A monomial ordering on the set of monomials $\left\{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}: a_{i} \in \mathbb{Z}_{\geq 0}\right\}$ is a partial ordering \leq satisfying:
(1) It must be a total order: for any two monomials m_{1} and m_{2}, either $m_{1} \leq m_{2}$ or $m_{1} \geq m_{2}$. If both hold, then $m_{1}=m_{2}$.
(2) It must be a well ordering: there are no infinite descending sequences of monomials.
(3) Given monomials m_{1}, m_{2}, m_{3} with $m_{1} \leq m_{2}$, then $m_{1} m_{3} \leq m_{2} m_{3}$.

Example: Lexicographic order:

$$
x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}>x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}
$$

iff $a_{1}>b_{1}$
or $a_{1}=b_{1}$ and $a_{2}>b_{2}$
or $a_{1}=b_{1}, a_{2}=b_{2}$, and $a_{3}>b_{3}$

[^7]```
\vdots
```

or $a_{i}=b_{i} \forall i<n$ and $a_{n}>b_{n}$

$$
\begin{aligned}
& x_{1}^{2} x_{2}>x_{1} x_{2}^{2} \quad x_{1}^{2} x_{2}^{14)}-x_{2}^{2} x_{1} \\
& x_{1}^{2} x_{2}<x_{1}^{2} x_{2}^{2} \\
& x_{1} x_{2}^{7917}<x_{1}^{2} x_{2} \\
& a^{2}>a
\end{aligned}
$$

Definition: Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial. The leading monomial of $p$ is the "biggest" monomial with a nonzero coefficient. The leading coefficient is the coefficient of the leading monomial. The leading term is (leading coefficient)(leading monomial). The multidegree of a monomial $x_{1}^{a_{1}} \cdots a_{n}^{a_{n}}$ is $\left(a_{1}, \ldots, a_{n}\right)$. The multidegree of $p$ is the multidegree of its leading monomial.

## PMATH 345 Lecture 17: June 14, 2010

Long division helps with:
Telling if $p(x) \in(q(x))$.
Finding $\operatorname{gcd}(p(x), q(x))$.
In many variables:
Tell if $p\left(x_{1}, \ldots, x_{n}\right) \in\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{r}\left(x_{1}, \ldots, x_{n}\right)\right)$
Find a "good" set of generators for $\left(f_{1}, \ldots, f_{r}\right)$.
Example: Divide $x^{2} y+x y^{2}+y^{2}$ by $\left\{x y-1, y^{2}-1\right\}$. (Use lex order with $x>y$.) long division

$$
\begin{gathered}
x y-1, y^{2}-1 \frac{x+y, 1}{x^{2} y+x y^{2}+y^{2}} \\
\frac{x^{2} y-x}{x y^{2}}+x+y^{2} \\
\frac{x y^{2}-y}{x x^{1}}+y^{2}+y \\
\frac{y^{2}-1}{y 1}+x^{2} \\
\therefore x^{2} y+x y^{2}+y^{2}=(x+y)^{15)}(x y-1)+(1)^{16)}\left(y^{2}-1\right)+(x+y+1)^{17)}
\end{gathered}
$$

Example: Same as before:

$$
\begin{gathered}
\left.y^{2}-1, x y-1\right) \\
\frac{x+1, x}{x^{2} y+x y^{2}+y^{2}} \\
\frac{x^{2} y-x}{x y^{2}}+x+y^{2} \\
\frac{x y^{2}-x}{2 x}+y^{2} \\
\frac{y^{2}-1}{\not 又 1} \\
x^{2} y+x y^{2}+y^{2}=(x+1)^{18)}\left(y^{2}-1\right)+(x)^{19)}(x y-1)+(2 x+1)^{20)}
\end{gathered}
$$

Theorem: Let $f_{1}, \ldots, f_{s} \in F\left[x_{1}, \ldots, x_{n}\right]$ where $F$ is a field, $f_{1}, \ldots, f_{s}$ not all the zero polynomial. Then

[^8]every $f \in F\left[x_{1}, \ldots, x_{n}\right]$ can be written as:
$$
f=a_{1} f_{1}+\cdots+a_{s} f_{s}+r
$$
where $a_{i}, r \in F\left[x_{1}, \ldots, x_{n}\right]$, every term in $r$ not divisible by any $\operatorname{LT}\left(f_{i}\right)$. If $a_{i} f_{i} \neq 0$, then multideg $\left(a_{i} f_{i}\right) \leq$ multideg $(f)$.
Proof: In Papantonopoulou.
Let $I$ be an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$.
Define $\operatorname{LT}(I)=$ ideal generated by $\{\operatorname{LT}(f): f \in I\}$.
Fact: If $I=\left(f_{1}, \ldots, f_{r}\right)$, then
$$
\operatorname{LT}(I) \neq\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{r}\right)\right)
$$
unless the $f_{i}$ are carefully chosen.
Definition: Let $I=\left(f_{1}, \ldots, f_{r}\right)$ be an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$. Then $\left\{f_{1}, \ldots, f_{r}\right\}$ is a Gröbner basis for $I$ iff $\mathrm{LT}(I)=\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{r}\right)\right)$.

## PMATH 345 Lecture 18: June 16, 2010

Definition: Let $f_{1}, \ldots, f_{r} \in E\left[x_{1}, \ldots, x_{n}\right]$ be any set of polynomials. Then $\left\{f_{1}, \ldots, f_{r}\right\}$ is a Gröbner basis for $I=\left(f_{1}, \ldots, f_{r}\right)$ iff

$$
\operatorname{LT}(I)=\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{r}\right)\right)
$$

In other words, any monomial $m$ that is divisible by $\operatorname{LT}(g)$ for some $g \in I$ is divisible by some $\operatorname{LT}\left(f_{i}\right)$.
Theorem: If $\operatorname{LT}(I)=\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{r}\right)\right)$ and $f_{1}, \ldots, f_{r} \in I$, then $I=\left(f_{1}, \ldots, f_{r}\right)$.
Proof: Since $f_{1}, \ldots, f_{r} \in I$, it follows immediately that $\left(f_{1}, \ldots, f_{r}\right) \subset I$. So it suffices to show $I \subset\left(f_{1}, \ldots, f_{r}\right)$. Let $g \in I$, and divide $g$ by $\left\{f_{1}, \ldots, f_{r}\right\}$. By the Division Theorem, we get:

$$
g=a_{1} f_{1}+\cdots+a_{r} f_{r}+t
$$

where $t$ is the remainder, whose terms are all not divisible by any $\left(\operatorname{LT}\left(f_{i}\right)\right)$. But $t \in I$, so $\operatorname{LT}(t) \in \operatorname{LT}(I)=$ $\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{r}\right)\right)$. This immediately implies $t=0$ so $g \in\left(f_{1}, \ldots, f_{r}\right)$.

Do Gröbner bases exist? Yes!
Theorem: Let $I \subset F\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Then there is a Gröbner basis for $I$.
Proof: Consider LT $(I)$, which is generated by an infinite collection of monomials:

$$
\mathcal{M}=\{\operatorname{LT}(f): f \in I\}
$$

Notice that LT $(I)$ is also generated by the set of leading monomials of elements of $I$ :

$$
\mathcal{L}=\{\operatorname{LM}(f): f \in I\}
$$

The set $\mathcal{L}$ is countably infinite, since each monomial $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ corresponding uniquely to $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$. Therefore, we can enumerate the monomials in $\mathcal{L}$ :

$$
m_{1}, m_{2}, m_{3}, \ldots
$$

Define $I_{j}=\left(m_{1}, \ldots, m_{j}\right)$

$$
I_{1} \subset I_{2} \subset I_{3} \subset I_{4} \subset \cdots
$$

So by ACC, this chain stabilizes at some finite step $v$, so:

$$
\begin{aligned}
\mathrm{LT}(I) & =\bigcup_{j=1}^{\infty} I_{j}=I_{v} \\
& =\left(m_{1}, \ldots, m_{v}\right) \\
& =\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{v}\right)\right)
\end{aligned}
$$

for some $f_{1}, \ldots, f_{v} \in I$.
Theorem: Let $\left\{f_{1}, \ldots, f_{t}\right\}$ be a Gröbner basis (for $\left.I=\left(f_{1}, \ldots, f_{t}\right) \neq(0)\right), f \in F\left[x_{1}, \ldots, x_{n}\right]$. Then there exists a unique $r \in F\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f=a_{1} f_{1}+\cdots+a_{t} f_{t}+r
$$

for some $a_{1}, \ldots, a_{t} \in F\left[x_{1}, \ldots, x_{n}\right]$, and no term of $r$ is divisible by any $\operatorname{LT}\left(f_{i}\right)$.
Proof: Say:

$$
a_{1} f_{1}+\cdots+a_{t} f_{t}+r=a_{1}^{\prime} f_{1}+\cdots+a_{t}^{\prime} f_{t}+r^{\prime}
$$

Then:

$$
\left(a_{1}-a_{1}^{\prime}\right) f_{1}+\cdots+\left(a_{t}-a_{t}^{\prime}\right) f_{t}=r^{\prime}-r
$$

So $\operatorname{LT}\left(r^{\prime}-r\right) \in \operatorname{LT}(I)=\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{t}\right)\right)$. But $r^{\prime}$ and $r$ aren't allowed to have any terms divisible by any $\mathrm{LT}\left(f_{i}\right)$, so $r^{\prime}-r$ has no terms and is therefore 0 . So $r^{\prime}=r$.
Corollary: Let $f \in F\left[x_{1}, \ldots, x_{n}\right]$ be any polynomial, $I$ any nonzero ideal, $f_{1}, \ldots, f_{t}$ a Gröbner basis for $I$. Then $f \in I$ iff $f$ divided by $\left\{f_{1}, \ldots, f_{t}\right\}$ gives zero remainder.
Proof: Immediate.
Definition: Let $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$ be any nonzero polynomials. Then

$$
S(f, g)=\left(\frac{\mathrm{LCM}}{\mathrm{LT}(f)}\right) f-\left(\frac{\mathrm{LCM}}{\mathrm{LT}(g)}\right) g
$$

where $\mathrm{LCM}=\operatorname{LCM}(\mathrm{LM}(f), \mathrm{LM}(g))$.

$$
\begin{array}{cl}
f=3 x^{2}-2 & g=-x y+1 \\
\operatorname{LT}(f)=3 x^{2} & \mathrm{LT}(g)=-x y \\
\operatorname{LM}(f)=x^{2} & \mathrm{LM}(g)=x y \\
\mathrm{LCM}=x^{2} y \\
\Longrightarrow S(f, g)= & \frac{x^{2} y}{3 x^{2}}\left(3 x^{2}-2\right)-\frac{x^{2} y}{-x y}(-x y+1) \\
= & \frac{1}{3} y\left(3 x^{2}-2\right)-(-x)(-x y+1) \\
= & \left(x^{2} y-\frac{2}{3} y\right)-\left(x^{2} y-x\right) \\
= & x-\frac{2}{3} y
\end{array}
$$

## PMATH 345 Lecture 19: June 18, 2010

How can one tell if $\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis?
Definition: Let $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$ be two nonzero polynomials. Then:

$$
S(f, g)=\left(\frac{\mathrm{LCM}}{\operatorname{LT}(f)}\right) f-\left(\frac{\mathrm{LCM}}{\mathrm{LT}(g)}\right) g
$$

where $\mathrm{LCM}=\operatorname{LCM}(\mathrm{LM}(f), \mathrm{LM}(g))$.
Theorem: (Buchberger's Criterion) Say $I=\left(f_{1}, \ldots, f_{r}\right)$ is an ideal of $F\left[x_{1}, \ldots, x_{n}\right]$. Then $\left\{f_{1}, \ldots, f_{r}\right\}$ is a Gröbner basis for $I$ iff for all $i, j, S\left(f_{i}, f_{j}\right)$ gives zero remainder upon division by $\left\{f_{1}, \ldots, f_{r}\right\}$.
Proof: Forwards is trivial. Backwards is too hard.
Example: Is $\left\{x y-1, y^{2}-1\right\}$ a Gröbner basis? By Buchberger's Criterion:

$$
\begin{aligned}
S\left(x y-1, y^{2}-1\right) & =y(x y-1)-x\left(y^{2}-1\right) \\
& =x y^{2}-y-x y^{2}+x \\
& =x-y
\end{aligned}
$$

Clearly, a long division of $x-y$ by $\left\{x y-1, y^{2}-1\right\}$ yields a remainder of $x-y$. Since this is nonzero, we conclude that $\left\{x y-1, y^{2}-1\right\}$ is not a Gröbner basis.
Theorem: (Buchberger's Algorithm) One can compute a Gröbner basis for $I=\left(f_{1}, \ldots, f_{r}\right)$ by the following method:
(1) Compute $S\left(f_{i}, f_{j}\right)$ and divide it by $\left\{f_{1}, \ldots, f_{r}\right\}$ for each $i, j$
(2) If all remainders are zero, STOP; you have a Gröbner basis.
(3) Otherwise, enlarge the set $\left\{f_{1}, \ldots, f_{r}\right\}$ by the nonzero remainders, and return to step (1).

Proof: This algorithm terminates because the ideal generated by $\left\{\mathrm{LT}\left(f_{i}\right)\right\}$ strictly increases at each iteration, so by the ACC, the set of nonzero remainders must eventually be empty. When this happens, Buchberger's Criterion implies that $\left\{f_{i}\right\}$ is a Gröbner basis.
Example: Find a Gröbner basis of $\left(x y-1, y^{2}-1\right)$.

$$
S\left(x y-1, y^{2}-1\right)=x-y
$$

This gives remainder $x-y$, so:

$$
\begin{gathered}
\left\{x y-1, y^{2}-1, x-y\right\} \\
S(x y-1, x-y)=1(x y-1)-y(x-y) \\
=x y-1-x y+y^{2} \\
=y^{2}-1
\end{gathered}
$$

This clearly gives remainder 0 , so we just need to check:

$$
\begin{aligned}
S\left(y^{2}-1, x-y\right) & =x\left(y^{2}-1\right)-y^{2}(x-y) \\
& =x y^{2}-x-x y^{2}+y^{3} \\
& =-x+y^{3}
\end{aligned}
$$

Long divide:

$$
\begin{array}{r}
\begin{array}{r}
0, y,-1 \\
x y-1, y^{2}-1, x-y+y^{3} \\
\frac{-x+y}{y^{3}}-y \\
\frac{y^{3}-y}{0}
\end{array}
\end{array}
$$

Zero remainder of all $S$-polynomials implies (by Buchberger) that $\left\{x y-1, y^{2}-1, x-y\right\}$ is a Gröbner basis. Notice that $\operatorname{LT}(x-y) \mid \operatorname{LT}(x y-1)$ so:

$$
\left(\operatorname{LT}(x y-1), \operatorname{LT}\left(y^{2}-1\right), \operatorname{LT}(x-y)\right)=\left(\operatorname{LT}\left(y^{2}-1\right), \operatorname{LT}(x-y)\right)=\operatorname{LT}\left(x y-1, y^{2}-1\right)
$$

Therefore, since $\left\{x y-1, y^{2}-1, x-y\right\}$ is a Gröbner basis, we see that $\left\{x-y, y^{2}-1\right\}$ is also a Gröbner basis. Any subset of $I$ that contains a Gröbner basis for $I$ is itself a Gröbner basis for $I$.

Definition: Let $I \subset F\left[x_{1}, \ldots, x_{n}\right]$ be a nonzero ideal. Then $\left\{f_{1}, \ldots, f_{r}\right\}$ is a minimal Gröbner basis for $I$ iff
(1) $\left\{f_{1}, \ldots, f_{r}\right\}$ is a Gröbner basis for $I$
(2) $\mathrm{LC}\left(f_{i}\right)=1$ for all $i$
(3) $\operatorname{LT}\left(f_{i}\right) \nmid \operatorname{LT}\left(f_{j}\right)$ for $i \neq j$ $\Longleftrightarrow \operatorname{LT}\left(f_{i}\right) \notin\left(\operatorname{LT}\left(f_{j}\right)\right)_{j \neq i}$

Example: $\left\{x y-1, y^{2}-1, x-y\right\}$ is not minimal, because $\operatorname{LT}(x-y) \mid \operatorname{LT}(x y-1)$. By deleting $f_{i}$ whose leading terms are redundant (i.e., divisible by some other leading term), we can always construct a minimal Gröbner basis from an arbitrary one. Since Gröbner bases always exist, therefore, so do minimal Gröbner bases.

Example: $\left\{y^{2}-1, x-y\right\}$ is a minimal Gröbner basis. So is $\left\{y^{2}-1, x-y+\frac{1}{17}\left(y^{2}-1\right)\right\}$.

## PMATH 345 Lecture 20: June 21, 2010

Definition: A set $\left\{f_{1}, \ldots, f_{r}\right\} \subset F\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner basis iff

$$
\operatorname{LT}\left(f_{1}, \ldots, f_{r}\right)=\left(\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{r}\right)\right)
$$

Definition: A Gröbner basis $\left\{f_{1}, \ldots, f_{r}\right\}$ is minimal iff every $f_{i}$ has leading coefficient 1 and $\operatorname{LT}\left(f_{i}\right) \nmid \operatorname{LT}\left(f_{j}\right)$ if $i \neq j$.

Theorem: Any two minimal Gröbner bases for the same ideal have the same number of elements.
Proof: Let $\left\{f_{1}, \ldots, f_{r}\right\}$ and $\left\{g_{1}, \ldots, g_{t}\right\}$ be two minimal Gröbner bases for the ideal $I=\left(f_{1}, \ldots, f_{r}\right)=$ $\left(g_{1}, \ldots, g_{t}\right)$. We want to show $r=t$. Let $f_{i} \in\left\{f_{1}, \ldots, f_{r}\right\}$ be any element. Then there is some $g_{j}$ such that $\mathrm{LT}\left(g_{j}\right) \mid \operatorname{LT}\left(f_{i}\right)$, since $\mathrm{LT}\left(f_{i}\right)$ is not in the (zero) remainder left upon division of $f_{i}$ by $\left\{g_{1}, \ldots, g_{t}\right\}$. Similarly, some $f_{k}$ satisfies $\operatorname{LT}\left(f_{k}\right) \mid \operatorname{LT}\left(g_{j}\right)$. So $\operatorname{LT}\left(f_{k}\right) \mid \operatorname{LT}\left(f_{i}\right)$. Then minimality of $\left\{f_{1}, \ldots, f_{r}\right\}$ implies $i=k$, and so $\mathrm{LT}\left(f_{i}\right)=\mathrm{LT}\left(g_{j}\right)$. Since all the leading terms of the $f_{i} \mathrm{~s}$ are different, and similarly for the $g_{j} \mathrm{~s}$, we've just built a bijection between the $f_{i} \mathrm{~s}$ and $g_{j} \mathrm{~s}$.
Definition: A Gröbner basis $\left\{f_{1}, \ldots, f_{r}\right\}$ is reduced iff it is minimal and no term of any $f_{i}$ is divisible by $\mathrm{LT}\left(f_{j}\right)$ for $i \neq j$.
Example: $\left\{x-y, y^{2}-1\right\}$ is reduced.
$\left\{x-y^{2}-y+1, y^{2}-1\right\}$ is not reduced.
To find a reduced Gröbner basis, first find a minimal one $\left\{f_{1}, \ldots, f_{r}\right\}$. For each $i$, replace $f_{i}$ by its remainder upon division by $\left\{f_{1}, \ldots, \hat{f}_{i}, \ldots, f_{r}\right\}$.

Theorem: Any nonzero ideal $I \subset F\left[x_{1}, \ldots, x_{n}\right]$ has a unique reduced Gröbner basis.
Proof: Say $\left\{g_{1}, \ldots, g_{r}\right\}$ and $\left\{g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right\}$ are reduced Gröbner bases for $I=\left(g_{1}, \ldots, g_{r}\right)=\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right)$. For any $g_{i}$, let $g_{j}^{\prime}$ be the element such that $\operatorname{LT}\left(g_{i}\right)=\operatorname{LT}\left(g_{j}^{\prime}\right)$.
The element $g_{i}-g_{j}^{\prime}$ has no terms divisible by any $\operatorname{LT}\left(g_{k}\right)$ (because $\operatorname{LT}\left(g_{i}\right)$ is cancelled by $\left.\operatorname{LT}\left(g_{j}^{\prime}\right)\right)$. But $g_{i}-g_{j}^{\prime} \in I$, so $g_{i}-g_{j}^{\prime}=0$, and so $g_{i}=g_{j}^{\prime}$.
Let $F$ be a field, $F[x]$ the polynomial ring in one variable. Then $F$ has two ideals: (0) and (1), and every nonzero element of $F$ is a unit.

Fact: Let $R$ be a nonzero ring. $F$ a field. Then every homomorphism from $F \rightarrow R$ is $1-1$.
$F[x]$ is a PID, so it's also a UFD. Every ideal of $F[x]$ is of the form $I=(p(x))$ for some $p(x) \in F[x]$. The ideal $(p(x))$ is maximal iff $p(x)$ is irreducible, and prime iff $p(x)$ is irreducible or zero.

What does $F[x] /(p(x))$ look like?
Theorem: (Chinese Remainder) Let $p(x), q(x) \in F[x]$ be coprime polynomials. Then:

$$
\phi: F[x] /(p q) \rightarrow F[x] /(p) \oplus F[x] /(q)
$$

given by $\phi(a(x) \bmod p q)=(a(x) \bmod p, a(x) \bmod q)$ is an isomorphism.
Proof: $\phi$ is clearly a homomorphism.
$1-1$ : Say $a(x) \equiv b(x) \bmod p$ and $a(x) \equiv b(x) \bmod q$. We want to show

$$
a(x) \equiv b(x) \bmod p q
$$

Since $p \mid a-b$ and $q \mid a-b$, the fact that $p, q$ are coprime and $F[x]$ is a UFD $\Longrightarrow p q \mid a-b$, so

$$
a(x) \equiv b(x) \bmod p q
$$

Onto: Say $f(x), g(x)$ are any elements of $F[x]$. We want to find a single $h(x) \in F[x]$ satisfying $\phi(h(x) \bmod$ $p q)=(f(x) \bmod p, g(x) \bmod q):$

$$
\begin{aligned}
h(x) & \equiv f(x) \bmod p \\
h(x) & \equiv g(x) \bmod q
\end{aligned}
$$

Since $p, q$ coprime, there are $a(x), b(x) \in F[x]$ such that:

$$
a(x) p(x)+b(x) q(x)=1
$$

## PMATH 345 Lecture 21: June 23, 2010

Theorem: (Chinese Remainder) Let $F$ be a field, $p(x), q(x) \in F[x]$ coprime polynomials. Then the function:

$$
\phi: F[x] /(p q) \rightarrow F[x] /(p) \oplus F[x] /(q)
$$

given by

$$
(a(x) \bmod p q) \mapsto(a(x) \bmod p, a(x) \bmod q)
$$

is an isomorphism.
Proof: (Continued) To show that $\phi$ is onto, we first note that since $F[x]$ is a PID, and since $p, q$ are coprime, we get $(p(x), q(x))=(1)$. In other words, there are $a(x), b(x) \in F[x]$ such that

$$
a(x) p(x)+b(x) q(x)=1
$$

Now let $f(x), g(x) \in F[x]$ be any polynomials. We want to find $h(x) \in F[x]$ such that

$$
\begin{aligned}
h(x) & \equiv f(x) \bmod p \\
h(x) & \equiv g(x) \bmod q
\end{aligned}
$$

Let $h(x)=f(x) b(x) q(x)+g(x) a(x) p(x)$. Then

$$
\begin{aligned}
& h(x) \\
\text { and } & \equiv f(x) \bmod p \\
h(x) & \equiv g(x) \bmod q
\end{aligned}
$$

So $\phi(h(x) \bmod p q)=(f(x) \bmod p, g(x) \bmod q)$, as desired.
In light of the CRT, to understand $F[x] /(f(x))$, it suffices to understand

$$
F[x] /\left(p(x)^{a}\right)
$$

for irreducible polynomials $p(x)$. We will study $F[x] /(p(x))$ for irreducible $p(x)$. Note that $F[x] /(p(x))$ is a field iff $p(x)$ is irreducible in $F[x]$.
Linear Algebra over general fields.
Non-definition: A vector space over a field $F$ is a set $V$ of "vectors" that you can add, subtract, and multiply by scalars in a sensible way.

Spanning, linear independence, basis, dimension, linear transformation, kernel, range, eigenstuff. . . they all have the same definitions and properties over a general field as they do over, say, $\mathbb{R}$.

Note that if $F$ is a field and $R$ is any ring with $F \subset R$, then $R$ is an $F$-vector space.
In particular, $F[x] /(p(x))$ is an $F$-vector space.

$$
\begin{aligned}
& F \hookrightarrow F[x] /(p) \\
& \alpha \mapsto(\alpha \bmod p)
\end{aligned}
$$

Theorem: Let $F$ be a field, $p(x) \in F[x]$ any polynomial. If $p(x)=0$, then $\operatorname{dim}_{F} F[x] /(p(x))=\infty$. Otherwise, $\operatorname{dim}_{F} F[x] /(p(x))=\operatorname{deg}(p(x))$.

Proof: If $p(x)=0$, then $F[x] /(0)=F[x]$, which contains the infinite linearly independent set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$. Now assume $p(x) \neq 0$. Then by the Division Theorem, for any $f(x) \in F[x]$, we can write:

$$
f(x)=q(x) p(x)+r(x)
$$

where $q(x), r(x) \in F[x]$, and $\operatorname{deg}(r(x))<\operatorname{deg}(p(x))$. Better yet, $r(x)$ is unique!
So $F[x] /(p(x))$ is in $1-1$ correspondence with $\{r(x): \operatorname{deg}(r)<\operatorname{deg}(p)\}$. Furthermore, this correspondence respects addition and scalar multiplication, but not multiplication (unless you reduce the result mod $p(x)$ again).

In particular, $F[x] /(p(x))$ is isomorphic as an $F$-vector space to:

$$
V=\{r(x): \operatorname{deg}(r(x))<\operatorname{deg}(p(x))\}
$$

A basis for $V$ is

$$
\left\{1, x, x^{2}, \ldots, x^{\operatorname{deg} p-1}\right\}
$$

so $\operatorname{dim}_{F} F[x] /(p(x))=\operatorname{deg}(p(x))$ as desired.
Example: $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}[x] /\left(x^{2}-1\right)=2$

$$
(a+b x)(c+d x)=(a c+b d)+(a d+b c) x
$$

Basis: $\{1, x\}$
Example: $\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}[x] /\left(x^{2}-2\right)=2$

$$
(a+b x)(c+d x)=(a c+2 b d)+(a d+b c) x
$$

Basis: $\{1, x\}$.
These two rings are not isomorphic, but the two $\mathbb{Q}$-vector spaces are.

$$
\text { PMATH } 345 \text { Lecture 22: June 25, } 2010
$$

Say $R$ is a ring, contained in another ring $T$. Let $\alpha \in T$. Then:

$$
R[\alpha]=\{f(\alpha): f(x) \in R[x]\}^{21)}
$$

Example:

$$
\begin{aligned}
\mathbb{Z}[\sqrt{2}] & =\{f(\sqrt{2}): f(x) \in \mathbb{Z}[x]\} \\
& =\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}
\end{aligned}
$$

Say $F$ is a field, contained in some other field $E$. Let $\alpha \in E$. Then:

$$
F(\alpha)=\left\{\frac{f(\alpha)}{g(\alpha)}: f, g \in F[x], g(\alpha) \neq 0\right\}
$$

Example:

$$
\begin{aligned}
\mathbb{Q}(\sqrt{2}) & =\left\{\frac{f(\sqrt{2})}{g(\sqrt{2})}: f, g \in \mathbb{Q}[x], g(\sqrt{2}) \neq 0\right\} \\
& =\left\{\frac{a+b \sqrt{2}}{c+d \sqrt{2}}: c+d \sqrt{2} \neq 0, a, b, c, d \in \mathbb{Q}\right\} \\
& =\left\{\frac{(a+b \sqrt{2})(c-d \sqrt{2})}{c^{2}-2 d^{2}}: a, b, c, d \in \mathbb{Q}, c+d \sqrt{2} \neq 0\right\} \\
& =\left\{\left(\begin{array}{c}
\text { Messy } \\
\text { rational } \\
\text { number }
\end{array}\right)+\left(\begin{array}{c}
\text { Other messy } \\
\text { rational } \\
\text { number }
\end{array}\right) \sqrt{2}\right\}
\end{aligned}
$$

[^9]so $\mathbb{Q}(\sqrt{2}) \subset\{A+B \sqrt{2}: A, B \in \mathbb{Q}\}$. It's clear that $A+B \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ for all $A, B \in \mathbb{Q}$, so:
\[

$$
\begin{aligned}
\mathbb{Q}(\sqrt{2}) & =\{A+B \sqrt{2}: A, B \in \mathbb{Q}\} \\
& =\operatorname{span}_{\mathbb{Q}}\{1, \sqrt{2}\} \\
\mathbb{Q}[\sqrt{2}] & =\{f(\sqrt{2}): f(x) \in \mathbb{Q}[x]\} \\
& =\{A+B \sqrt{2}: A, B \in \mathbb{Q}\} \\
& =\mathbb{Q}(\sqrt{2})
\end{aligned}
$$
\]

Definition: A field extension $E / F$ is a pair of fields $E, F$ with $F \subset E$. If $\alpha \in E$, then $\alpha$ is algebraic over $F$ iff there is some nonzero $p(x) \in F[x]$ such that $p(\alpha)=0$. Otherwise, $\alpha$ is called transcendental over $F$.
An extension $E / F$ is called algebraic iff every element $\alpha \in E$ is algebraic over $F$. Otherwise, $E / F$ is called transcendental.

If $E / F$ is an extension of fields, then $E$ is an $F$-vector space. The dimension of $E$ over $F$ is called the degree of $E / F$.

$$
[E: F]=\operatorname{dim}_{F} E=\text { dimension of } E \text { as an } F \text {-vector space }
$$

Example: $[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2$, basis $\{1, \sqrt{2}\}$
$[\mathbb{C}: \mathbb{R}]=2$
$[\mathbb{R}: \mathbb{Q}]=\infty$
The degree of $\alpha$ over $F$ is the degree of $F(\alpha)$ over $F$.
Theorem: Let $E / F$ be a field extension, $\alpha \in E$ algebraic over $F$. Then there is a unique monic irreducible polynomial $p(x) \in F[x]$ such that

$$
F(\alpha) \cong F[x] /(p(x))
$$

where the isomorphism is given by

$$
(f(x) \bmod p(x)) \mapsto f(\alpha)
$$

Proof: Define $\phi: F[x] \rightarrow E$ by $\phi(f(x))=f(\alpha)$. The kernel of $\phi$ is an ideal of $F[x]$, which is a PID, so we can write $\operatorname{ker} \phi=(p(x))$ for some polynomial $p(x) \in F[x]$. Since $\alpha$ is algebraic over $F, \operatorname{ker} \phi \neq(0)$, so $p(x) \neq 0$. There is a unique monic $p(x)$ that generates $\operatorname{ker} \phi$; choose that one.
Now, $E$ is a domain, so $\operatorname{im} \phi$ is a domain, so $F[x] / \operatorname{ker} \phi \cong \operatorname{im} \phi$ is a domain, so $\operatorname{ker} \phi=(p(x))$ is a prime ideal. Since $\operatorname{ker} \phi \neq(0)$ and $F[x]$ is a PID, we know that $(p(x))$ is a maximal ideal, so $p(x)$ is irreducible in $F[x]$.
It remains only to show that $F(\alpha)=\operatorname{im} \phi$. First, note that $\operatorname{im} \phi$ is a field that contains $\alpha$, so $F(\alpha) \subset \operatorname{im} \phi$, because $\operatorname{im} \phi$ is closed under,,$+- \cdot$, and $\div$. The definitions of $F(\alpha)$ and $\phi$ immediately imply that $\operatorname{im} \phi \subset F(\alpha)$, so $\operatorname{im} \phi=F(\alpha)$, as desired.

## PMATH 345 Lecture 23: June 28, 2010

Let $E / F$ be a field extension, $\alpha \in E, \alpha$ algebraic over $F$. Then $F(\alpha) \cong F[x] /(p(x))$, where $p(x)$ is a unique, monic, irreducible polynomial in $F[x]$. The polynomial $p(x)$ is called the minimal polynomial for $\alpha$ over $F$.

Note that this fact immediately implies that:

$$
[F(\alpha): F]=\operatorname{deg}_{F} F(\alpha)=\operatorname{deg}(p),
$$

and that a basis for $F(\alpha) / F$ is $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{\operatorname{deg}(p)-1}\right\}$.
Theorem: Let $\alpha$ be algebraic over $F, p(x) \in F[x]$ the minimal polynomial for $\alpha / F$. If $q(x) \in F[x]$ satisfies $q(\alpha)=0$, then $p(x) \mid q(x)$. In particular, if $q(\alpha)=0, q(x) \in F[x], q(x)$ monic and irreducible, then $q(x)=p(x)$. Proof: We may write $q(x)=a(x) p(x)+r(x)$ where $\operatorname{deg}(r(x))<\operatorname{deg}(p(x))$. Then:

$$
r(\alpha)=q(\alpha)-a(\alpha) p(\alpha)=0
$$

so $r(x) \in$ kernel of "plug in $\alpha$ " homomorphism. This kernel is, by definition of the minimal polynomial, just $(p(x))$. Since $\operatorname{deg}(r)<\operatorname{deg}(p)$, this means that $r(x)=0$, and $p(x) \mid q(x)$.

Theorem: Let $\alpha$ be algebraic over $F, p(x)$ the polynomial for $\alpha / F$. Then $p(x)$ is the monic, nonzero polynomial in $F[x]$ of smallest degree such that $p(\alpha)=0$.
Proof: By definition, $(p(x))=\operatorname{ker}($ plug-in- $\alpha)$. Since $p(x)$ is the monic polynomial in $(p(x))$ of smallest degree, it is immediately also the monic, nonzero polynomial of smallest degree in ker (plug-in- $\alpha$ )

$$
=\{q(x) \in F[x]: q(\alpha)=0\}
$$

Example: Find the minimal polynomial for $\sqrt{2}$ over $\mathbb{Q}$.
Answer: $x^{2}-2$, because $(\sqrt{2})^{2}-2=0$ and $x^{2}-2$ is monic and irreducible (by Eisenstein on (2)).
Example: Find the minimal polynomial for $e^{2 \pi i / 5}$ over $\mathbb{Q}$.
$x^{5}-1$ has $e^{2 \pi i / 5}$ as a root, but is not irreducible:

$$
x^{5}-1=(x-1)(\underbrace{x^{4}+x^{3}+x^{2}+x+1}_{\text {Is this it? }})
$$

Reduce $\bmod 2: x^{4}+x^{3}+x^{2}+x+1$ has no roots, so it's either irreducible or factors into 2 quadratics:

$$
\not x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1
$$

Since $\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1 \neq x^{4}+x^{3}+x^{2}+x+1$, our polynomial doesn't factor into two quadratics, so $x^{4}+x^{3}+x^{2}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$, and hence, also irreducible over $\mathbb{Z}$ and $\mathbb{Q}$.

$$
\begin{gathered}
x^{3}+x \neq 0 \text { in } \mathbb{Z}_{2}[x] \\
(\sqrt{2})^{5}-(\sqrt{2})=4 \sqrt{2}-\sqrt{2}=3 \sqrt{2} \neq 0
\end{gathered}
$$

so $x^{5}-x \neq 0$ in $\mathbb{Z}_{5}[x]$.
Example: Find the minimal polynomial for $3+2 i$ over $\mathbb{Q}$.
Answer: If $a_{0}+a_{1} x+\cdots+a_{n} x^{n-1}+x^{n}$ is the minimal polynomial, then:

$$
a_{0}+a_{1}(3+2 i)+\cdots+(3+2 i)^{n}=0
$$

$n=0:$ Obvious non-starter.
$n=1: a_{0}+a_{1}(3+2 i)=0$
$\Longrightarrow\left(a_{0}+3 a_{1}\right)+\left(2 a_{1}\right) i=0$
Since $\{1, i\}$ are linearly independent over $\mathbb{Q}$, we get:

$$
\left\{\begin{array}{r}
a_{0}+3 a_{1}=0 \\
2 a_{1}=0
\end{array}\right.
$$

$\Longrightarrow a_{0}=a_{1}=0$. So no good.
$n=2: a_{0}+a_{1}(3+2 i)+a_{2}(3+2 i)^{2}=0$
$\Longrightarrow\left(a_{0}+3 a_{1}+5 a_{2}\right)+\left(2 a_{1}+12 a_{2}\right) i=0$
$\left\{\begin{aligned} a_{0}+3 a_{1}+5 a_{2} & =0 \\ 2 a_{1}+12 a_{2} & =0\end{aligned}\right.$
$a_{2}=1 \Longrightarrow\left\{\begin{aligned} a_{0}+3 a_{1} & =-5 \\ 2 a_{1} & =-12\end{aligned}\right.$
$\Longrightarrow a_{1}=-6, a_{0}=13$
Therefore $x^{2}-6 x+13$ is the minimal polynomial
Check for irreducibility: $x=\frac{6 \pm \sqrt{36-52}}{2}=\frac{6 \pm \sqrt{-16}}{2}=3 \pm 2 i$
Roots are not in $\mathbb{Q}$, so irreducible.

## PMATH 345 Lecture 24: June 30, 2010

Fact: If $F$ is a field, $\alpha$ an element of some ring $R$ containing $F$, then any field $E$ that contains $F$ and $\alpha$ must contain $F(\alpha)$.


Theorem: (KLM) Say $K \subset L \subset M$ is a tower of fields. Then:

$$
[M: K]=[M: L][L: K]
$$

where $[M: K]=\infty$ iff either $[M: L]=\infty$ or $[L: K]=\infty$.
Proof: Let $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{l}\right\}$ be a basis for $L / K$, and let $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right\}$ be a basis of $M / L$.
Claim: $\left\{\boldsymbol{u}_{i} \boldsymbol{v}_{j}\right\}_{\substack{i \in\{1, \ldots, l\} \\ j \in\{1, \ldots\}}}$ is a basis of $M / K$. $j \in\{1, \ldots, m\}$
Note that the claim immediately implies the theorem.
Proof of claim: Spanning: Let $\boldsymbol{x} \in M$ be any element. We want to find $a_{i j} \in K$ such that $\boldsymbol{x}=\sum_{i, j} a_{i j} \boldsymbol{u}_{i} \boldsymbol{v}_{j}$. Since $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right\}$ is a basis of $M / L$, we can find $b_{1}, \ldots, b_{m} \in L$ such that:

$$
\boldsymbol{x}=b_{1} \boldsymbol{v}_{1}+\cdots+b_{m} \boldsymbol{v}_{m}
$$

for each $j$, write:

$$
b_{j}=a_{1 j} \boldsymbol{u}_{1}+a_{2 j} \boldsymbol{u}_{2}+\cdots+a_{l j} \boldsymbol{u}_{l}
$$

for $a_{i j} \in K$. Then:

$$
\begin{aligned}
\boldsymbol{x} & =\left(\sum_{i} a_{i 1} \boldsymbol{u}_{i}\right) \boldsymbol{v}_{1}+\cdots+\left(\sum_{i} a_{i m} \boldsymbol{u}_{i}\right) \boldsymbol{v}_{m} \\
& =\sum_{i, j} a_{i j} \boldsymbol{u}_{i} \boldsymbol{v}_{j}
\end{aligned}
$$

where $a_{i j} \in K$, as desired.
Linear independence: Set $\sum_{i, j} a_{i j} \boldsymbol{u}_{i} \boldsymbol{v}_{j}=0$. We want to show that if $a_{i j} \in K$, then $a_{i j}=0$ for all $i, j$. Rewrite:

$$
\left(\sum_{i} a_{i 1} \boldsymbol{u}_{i}\right) \boldsymbol{v}_{1}+\cdots+\left(\sum_{i} a_{i m} \boldsymbol{u}_{i}\right) \boldsymbol{v}_{m}=0
$$

The coefficient of each $\boldsymbol{v}_{j}$ lies in $L$, since $a_{i j} \in K \subset L$ and $\boldsymbol{u}_{1} \in L$. So:

$$
\text { Since }\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right\} \text { is linear independent over } L\left\{\begin{array}{c}
a_{11} \boldsymbol{u}_{1}+a_{21} \boldsymbol{u}_{2}+\cdots+a_{l 1} \boldsymbol{u}_{l}=0 \\
\vdots \\
a_{1 m} \boldsymbol{u}_{1}+a_{2 m} \boldsymbol{u}_{2}+\cdots+a_{l m} \boldsymbol{u}_{l}=0
\end{array}\right.
$$

Since $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{l}\right\}$ is linearly independent over $K$, we conclude $a_{i j}=0$ for all $i, j$, as desired.(claim) If $[M: L]$ or $[L: K]$ is infinite, then it is clear that $[M: K]=\infty$ because any infinite linearly independent subset of $M / L$ or $L / K$ is also linearly independent in $M / K$.

Otherwise, if $[M: L]$ and $[L: K]$ are both finite, we've already shown that $[M: K]$ is also finite.

Example: Compute $[\mathbb{Q}(\sqrt{13}, \sqrt{7}): \mathbb{Q}]$. Find a basis for $\mathbb{Q}(\sqrt{13}, \sqrt{7}) / \mathbb{Q}$.


Claim: $x^{2}-7$ is irreducible over $\mathbb{Q}(\sqrt{13})$.
Proof of claim: Look for roots:

$$
\begin{aligned}
(a+b \sqrt{13})^{2}-7 & =a^{2}+13 b^{2}+2 a b \sqrt{13}-7 \\
& =0 \\
\Longrightarrow\left(a^{2}+13 b^{2}-7\right)+(2 a b) \sqrt{13} & =0
\end{aligned}
$$

Since $\{1, \sqrt{13}\}$ is linearly independent over $\mathbb{Q}$ :

$$
\left\{\begin{array}{c}
a^{2}+13 b^{2}-7=0 \\
2 a b=0
\end{array}\right.
$$

It is easy to see that there are no $a, b \in \mathbb{Q}$ satisfying both equations, so $x^{2}-7$ has no roots in $\mathbb{Q}(\sqrt{13})$, and so $x^{2}-7$ is irreducible over $\mathbb{Q}(\sqrt{13})$.
(claim)
So $[\mathbb{Q}(\sqrt{13}, \sqrt{7}): \mathbb{Q}]=4$ by KLM. A basis for $\mathbb{Q}(\sqrt{13}, \sqrt{7}) / \mathbb{Q}$ is $\{1, \sqrt{13}, \sqrt{7}, \sqrt{91}\}$.
Say $L / K$ is a field extension of degree $n$. If $K \subset F \subset L$ with $F$ a field, then $n$ is a multiple of $[F: K]$ and $[L: F]$.


## PMATH 345 Lecture 25: July 5, 2010

Definition: Let $F$ be a field, $p(x) \in F[x]$ any nonconstant polynomial. A splitting field for $p(x)$ over $F$ is a field $E$ such that:
(1) $p(x)=c\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)$ for $c, a_{1}, \ldots, a_{n} \in E$
(2) $E=F\left(a_{1}, \ldots, a_{n}\right)$.

Example: A splitting field for $x^{2}-2$ over $\mathbb{Q}$ is $\mathbb{Q}(\sqrt{2})$, since $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\sqrt{2},-\sqrt{2})$.
Example: A splitting field for $x^{2}-1$ over $\mathbb{Q}$ is $\mathbb{Q}$.
Example: A splitting field for $x^{3}-2$ over $\mathbb{Q}$ is $\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)=\mathbb{Q}\left(\sqrt[3]{2}, \frac{-1+\sqrt{-3}}{2}\right)$
Proof: Let $\gamma=e^{2 \pi i / 3}$ be a primitive cube root of unity. Then:

$$
x^{3}-2=(x-\sqrt[3]{2})(x-\gamma \sqrt[3]{2})\left(x-\gamma^{2} \sqrt[3]{2}\right)
$$

So a splitting field is:

$$
\mathbb{Q}\left(\sqrt[3]{2}, \gamma \sqrt[3]{2}, \gamma^{2} \sqrt[3]{2}\right)=\mathbb{Q}(\sqrt[3]{2}, \gamma)
$$

Definition: An extension $E / F$ is finite iff $[E: F]<\infty$.
Theorem: Let $E / F$ be a finite extension. Then $E / F$ is algebraic.
Proof: Let $\alpha \in E,[E: F]=n$. Then $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$ is linearly dependent over $F$ :

$$
a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n} \alpha^{n}=0
$$

for $a_{0}, \ldots, a_{n} \in F$, not all zero. Then $\alpha$ is a root of $a_{0}+\cdots+a_{n} x^{n} \in F[x]$, so $\alpha$ is algebraic over $F$.
This means that for any $E / F$, the set of elements of $E$ that are algebraic over $F$ is a field:

$$
E^{\text {alg }}=\{\alpha \in E: \alpha \text { is algebraic over } F\}
$$

because if $\alpha, \beta \in E^{\text {alg }}$, then $F(\alpha) / F$ and $F(\beta) / F$ are both finite extensions:


So $F(\alpha, \beta)$ is finite over $F$, and $F(\alpha, \beta)$ contains $\alpha+\beta, \alpha \beta, \alpha-\beta, \alpha / \beta$. These four are all algebraic over $F$, by the theorem, so $E^{\text {alg }}$ is closed under $+,-, \cdot, \div$.
For any field $F$, there is a field $\bar{F}$ that is algebraic over $F$, and every non-constant polynomial $p(x) \in F[x]$ factors into linear factors in $\bar{F}[x] . \bar{F}$ is called an algebraic closure of $F$.

Definition: Let $F$ be a field, $p(x) \in F[x]$ a nonconstant polynomial. Then $p(x)$ is separable iff $\operatorname{gcd}(p(x)$, $\left.p^{\prime}(x)\right)=1$, where $p^{\prime}(x)$ is the derivative of $p(x)$.
Definition: Let $F$ be a field. Then the derivative of $a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in F[x]$ is $a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1} \in$ $F[x]$.
Clearly $(c f(x))^{\prime}=c f^{\prime}(x)$ and $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
Theorem: (Product Rule)

$$
(f g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

where $f, g \in F[x], F$ a field.
Proof: By additivity and linearity, we may reduce to the case $f=x^{n}, g=x^{m}$. Then:

$$
\begin{aligned}
& \quad(f g)^{\prime}=\left(x^{n+m}\right)^{\prime}=(n+m) x^{n+m-1} \\
& \text { and } \begin{aligned}
f^{\prime} g+g^{\prime} f & =n\left(x^{n-1}\right) x^{m}+m\left(x^{n}\right) x^{m-1} \\
& =(n+m) x^{n+m-1}
\end{aligned}
\end{aligned}
$$

Theorem: Let $F$ be a field, $p(x) \in F[x]$ non-constant, $\bar{F}$ an algebraic closure of $F$. Then $p(x)$ is separable iff $p(x)$ has no multiple roots in $\bar{F}$.
Proof: Forwards: If $p(x)=(x-a)^{2} q(x)$, then $p^{\prime}(x)=(x-a)^{2} q^{\prime}(x)+2(x-a) q(x) \Longrightarrow p^{\prime}(a)=0$ and $x-a \mid \operatorname{gcd}\left(p(x), p^{\prime}(x)\right)$, so $p(x)$ is not separable.

## PMATH 345 Lecture 26: July 7, 2010

Theorem: Let $F$ be a field, $p(x) \in F[x]$ a non-constant polynomial, $\bar{F}$ an algebraic closure of $F$. Then $p(x)$ is separable iff $p(x)$ has no multiple roots in $\bar{F}$.
Proof: Forwards: If $p(x)$ has a multiple root $a \in \bar{F}$, then $(x-a)^{2} \mid p(x)$, so by Product Rule $x-a \mid p^{\prime}(x)$ so $x-a \mid \operatorname{gcd}\left(p, p^{\prime}\right)$ in $\bar{F}[x]$. Since $a$ is algebraic over $F$, it has a minimal polynomial $q(x)$ in $F[x]$, and $q(x) \mid \operatorname{gcd}\left(p, p^{\prime}\right)$ in $F[x]$.

Backwards: Say $g(x)=\operatorname{gcd}\left(p, p^{\prime}\right)$, and assume $g \neq 1$. Then $g(x)$ has a root $a \in \bar{F}$. So $p(a)=p^{\prime}(a)=0$. Then $p(x)=(x-a) q(x)$ for some $q(x) \in \bar{F}[x]$, so

$$
\begin{aligned}
p^{\prime}(x) & =q(x)+(x-a) q^{\prime}(x) \\
\Longrightarrow q(a) & =0 .
\end{aligned}
$$

This means $x-a\left|q(x) \Longrightarrow(x-a)^{2}\right| p(x)$.
Theorem: Let $F$ be a field, $p(x) \in F[x]$ an irreducible polynomial. Then $p(x)$ is separable, unless $p^{\prime}(x)=0$.
Proof: Well, $p^{\prime}(x) \in F[x]$, and has smaller degree than $p(x)$. In particular, $p(x) \nmid p^{\prime}(x)$ unless $p^{\prime}(x)=0$. So $\operatorname{gcd}\left(p(x), p^{\prime}(x)\right)=1$.
Corollary: If char $F=0$, then every irreducible polynomial in $F[x]$ is separable.
Example: $x^{3}-1 \in \mathbb{Z}_{3}$. Then:

$$
\left(x^{3}-1\right)^{\prime}=3 x^{2}=0
$$

Example: $F=\mathbb{Z}_{3}(T)$
Consider $x^{3}-T \in F[x]^{22)}$. Then $\left(x^{3}-T\right)^{\prime}=3 x^{2}=0$ but $x^{3}-T$ has no roots in $F$, because $\sqrt[3]{T}$ is not a rational function.
Definition: A field is perfect iff every irreducible polynomial in $F[x]$ is separable.
Note: Every field of characteristic 0 is perfect.
Fact: Every finite field is perfect.
Definition: Let $E / F$ be a field extension, $\alpha \in E$ any element. Then $\alpha$ is separable over $F$ iff $\alpha$ is algebraic over $F$ and its minimal polynomial is separable. $E / F$ is separable $i f f$ every $\alpha \in E$ is separable over $F$.
Note: $F$ is perfect iff every extension of $F$ of finite degree is separable. Say $f(x)=a_{0}+\cdots+a_{n} x^{n}$ satisfies $f^{\prime}(x)=0$. Assume char $F=p>0$.
Then $f^{\prime}(x)=a_{1}+2 a_{2}+\cdots+n a_{n} x^{n-1}=0$ so for all $i, i a_{i}=0$. This means:

$$
f(x)=a_{0}+a_{p} x^{p}+a_{2 p} x^{2 p}+\cdots+a_{k p} x^{k p}
$$

Theorem: If char $R=p$ is prime, then for all $a, b \in R,(a+b)^{p}=a^{p}+b^{p}$.

Proof:

$$
\begin{aligned}
(a+b)^{p} & =\sum_{i=0}^{p}\binom{p}{i} a^{i} b^{p-i} \\
& =a^{p}+b^{p}
\end{aligned}
$$

because $p \left\lvert\,\binom{ p}{i}=\frac{p!}{i!(p-i)!}\right.$ for $i \in\{1, \ldots, p-1\}$.
Definition: Let $R$ be a ring of characteristic $p$ for $p$ prime. Then the function

$$
\Phi_{p}(a)=a^{p}
$$

is a homomorphism, called the Frobenius homomorphism. It's often written Frob ${ }_{p}$.
Theorem: Let $F$ be a field of characteristic $p$. Then $F$ is perfect iff $\mathrm{Frob}_{p}: F \rightarrow F$ is onto.
Proof: Forwards: Say $F$ is perfect, and let $a \in F$ be any element. We want to show $a=b^{p}$ for some $b \in F$. Consider $x^{p}-a \in F[x]$. Its derivative is 0 , so $x^{p}-a$ is reducible in $F[x]$. However, if $\bar{F}$ is an algebraic closure of $F$, and $b \in \bar{F}$ is a root of $x^{p}-a$, we get,

$$
(x-b)^{p}=x^{p}-a
$$

Comparing constant terms gives $b^{p}=a$. Write $x^{p}-a=f(x) g(x)$ for $f, g \in F[x]$. Then $f(x)=(x-b)^{k}$ for some $k \in\{1, \ldots, p-1\}$. The coefficient of $x^{k-1}$ in $f(x)$ is $-k b \in F$. Since $k \in\{1, \ldots, p-1\}$, this means $k \neq 0$, so $b \in F$.
Backwards: Say $f(x)=a_{0}+\cdots+a_{n} x^{n}$ is irreducible. If $f^{\prime}(x) \neq 0$, then $f(x)$ is separable, so assume $f^{\prime}(x)=0$.

$$
\text { Then } \begin{aligned}
f(x) & =a_{0}+a_{p} x^{p}+\cdots+a_{p k} x^{p k} \\
& =b_{0}^{p}+b_{1}^{p} x^{p}+\cdots+b_{k}^{p} x^{p k}
\end{aligned}
$$

[^10]for some $b_{i} \in F$.
\[

$$
\begin{aligned}
& =\Phi_{p}\left(b_{0}\right)+\Phi_{p}\left(b_{1} x\right)+\cdots+\Phi_{p}\left(b_{k} x^{k}\right) \\
& =\Phi_{p}\left(b_{0}+b_{1} x+\cdots+b_{k} x^{k}\right) \\
& =\left(b_{0}+b_{1} x+\cdots+b_{k} x^{k}\right)^{p}
\end{aligned}
$$
\]

so $f(x)$ factors, a contradiction. So $f^{\prime}(x) \neq 0$, and $f(x)$ is separable.
Theorem: Let $F$ be a finite field. Then $F$ is perfect.
Proof: The Frobenius homomorphism from $F$ to $F$ is $1-1$, so since $F$ is finite, Frobenius is also onto. So $F$ is perfect.

## PMATH 345 Lecture 27: July 9, 2010

## Splitting fields

Definition: Let $F$ be a field, $p(x) \in F[x]$ a nonconstant polynomial. A splitting field for $p(x)$ over $F$ is a field $E$ containing $F$ such that
(1) $p(x)=c\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)$ for $c, a_{1}, \ldots, a_{n} \in E$
and (2) $E=F\left(a_{1}, \ldots, a_{n}\right)$.
If $p(x)$ is constant, then we say $F$ is a splitting field for $p(x)$ over $F$.
Theorem: Let $F$ be a field, $p(x) \in F[x]$ any polynomial. Then there is a splitting field for $p(x)$ over $F$, and any two splitting fields for $p(x)$ over $F$ are isomorphic.
Proof: Existence. We prove this by induction on $\operatorname{deg}(p(x))$.
Base case: $\operatorname{deg}(p(x))=0 \Longrightarrow$ splitting field is $F$.
Inductive Hypothesis: for any field $F$, and any $p(x) \in F[x]$ of degree $<n$, there exists a splitting field for $p(x)$ over $F$.

Let $p(x) \in F[x]$ have degree $n$. Write:

$$
p(x)=p_{1}(x) \cdots p_{k}(x)
$$

for irreducible $p_{1}(x), \ldots, p_{k}(x) \in F[x]$. Consider $E=F[a] /\left(p_{1}(a)\right)$. Then $E$ is a field (because $p_{1}(x)$ is irreducible), and it contains a root (namely $a$ ) of $p(x)$. Then, in $E[x]$, we have:

$$
p(x)=(x-a) q(x)
$$

for some $q(x) \in E[x]$. Since $\operatorname{deg}(q(x))<n$, by induction, there exists a splitting field $E^{\prime}$ of $q(x)$ over $E$. Then, in $E^{\prime}[x]$, we have:

$$
p(x)=c(x-a)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

for $c, a_{1}, \ldots, a_{n} \in E^{\prime}$, and

$$
\begin{aligned}
E^{\prime} & =E\left(a_{2}, \ldots, a_{n}\right) \\
& =F(a)\left(a_{2}, \ldots, a_{n}\right) \\
& =F\left(a, a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

so $E^{\prime}$ is a splitting field for $p(x)$ over $F$, as desired.
Uniqueness: We will induce on $\operatorname{deg}(p(x))$, over all fields simultaneously. The base case is trivial, so assume the inductive hypothesis for polynomials of degree $<n$, and let $\operatorname{deg}(p(x))=n$. Let $E_{1}$ and $E_{2}$ be splitting fields for $p(x)$ over $F$.
Write $p(x)=c\left(x-a_{1}\right) \cdots\left(x-a_{n}\right) \in E_{1}[x]$ and $p(x)=c\left(x-b_{1}\right) \cdots\left(x-b_{n}\right) \in E_{2}[x]$.
Lemma: Let $L / K$ be a field extension, $p(x) \in K[x]$ irreducible, $\alpha, \beta \in L$ such that $p(\alpha)=p(\beta)=0$. Then $K(\alpha) \cong K(\beta)$ and the isomorphism maps $\alpha$ to $\beta$.
Proof of lemma: We already know $K(\alpha) \cong K[x] /(p(x)) \cong K(\beta)$.

Without loss of generality, assume that $a_{1}$ and $b_{1}$ are roots of the same irreducible factor of $p(x)$. Then by the lemma, $F\left(a_{1}\right) \cong F\left(b_{1}\right)$, and:

$$
\begin{aligned}
p(x) & =\left(x-a_{1}\right) q_{1}(x) \text { in } F\left(a_{1}\right)[x] \\
\text { and } p(x) & =\left(x-b_{1}\right) q_{2}(x) \text { in } F\left(b_{1}\right)[x]
\end{aligned}
$$

We identify $a_{1}$ and $b_{1}$ via the isomorphism $F\left(a_{1}\right) \cong F\left(b_{1}\right)$. This identifies $q_{1}(x)=\frac{p(x)}{x-a_{1}}$ with $q_{2}(x)=\frac{p(x)}{x-b_{1}}$, so by induction, any splitting field for $q_{1}$ over $F\left(a_{1}\right)$ is isomorphic to any splitting field for $q_{2}$ over $F\left(b_{1}\right) \cong F\left(a_{1}\right)$. These two fields are exactly $E_{1}$ and $E_{2}$ which are therefore isomorphic.

## PMATH 345 Lecture 28: July 12, 2010

## Finite Fields, $F$

Example: $\mathbb{Z}_{p}$ residues $\bmod p, p$ prime.
Every field contains one of $\mathbb{Q}$ or $\mathbb{Z}_{p}$.
Since $F$ is finite, $F \supseteq \mathbb{Z}_{p}$ for some prime $p$.
$F$ is a vector space over $\mathbb{Z}_{p}$ with basis $v_{1}, \ldots, v_{n}$.
Every $v$ in $F$ looks like

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n} \text { where } a_{j} \in \mathbb{Z}_{p}
$$

There are $p$ possibilities for each $a_{j}$ and a change in any $a_{j}$ makes a fresh $v$.
So there are $p^{n} v$ s in all

$$
\text { i.e., } \# F=p^{n} \text {. }
$$

Proposition: Let $A$ be a commutative ring and $G$ the set of units in $A$. If $\# G=$ finite $=m$, say, then for any $u$ in $G, u^{m}=1$.
Proof: Let $v_{1}, v_{2}, \ldots, v_{m}$ be the full list of $G$.
Put $v=v_{1} v_{2} \cdots v_{m}$.
Take any $u$ in $G$. Look at list

$$
u v_{1}, u v_{2}, \ldots, u v_{m} \text { inside } G
$$

This list has no duplicates. Indeed if $u v_{j}=u v_{i}$, cancel $u$ and get $v_{j}=v_{i}$.
So our list exhausts $G$.

$$
\text { Hence } \begin{aligned}
1 \cdot v & =\left(u v_{1}\right)\left(u v_{2}\right) \cdots\left(u v_{m}\right) \\
& =u^{m}\left(v_{1} v_{2} \cdots v_{m}\right) \\
& =u^{m} v
\end{aligned}
$$

Cancel $v$ and get $u^{m}=1$.
When we apply this to the set of non-zero elements of our finite field $F$ (where $\# p^{n}$ ) we get $u^{p^{n}-1}=1$ for all $u$ in $F$ where $u \neq 0$.

## Refresh on splitting fields

Let $K$ be any field and $p(x)^{23)} \in K[x]$ (monic, say, $\operatorname{deg} p(x)=n$ ). A splitting field for $p(x)$ is a field $L$ such that
(1) $K \subseteq L$
(2) $p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$ where $a_{j} \in L$.
(3) If $M$ is a field such that $K \subseteq M \subsetneq L$ then some $a_{j} \notin M O R$ if $K \subseteq M \subseteq L$ and all $a_{j} \in M$ then $M=L$.

Every $p(x)$ has a splitting field and if $L_{1}, L_{2}$ are splitting fields of $p(x)$ then there is an isomorphism $\phi: L_{1} \rightarrow L_{2}$ such that $\phi(a)=a$ for each $a$ in $K$.
Proposition: If $F$ is finite field and $\# F=p^{n}$ then $F$ is the splitting field of $x^{p^{n}}-x$ as a polynomial in $\mathbb{Z}_{p}[x]$. Proof:

[^11]1) $\mathbb{Z}_{p} \subseteq F$
2) $u^{p^{n}-1}=1$, for all $u \neq 0$ in $F$
multiply by $u$, get $u^{p^{n}}-u=0$, also holds for $u=0$
3) Since every element of $F$ is a root of $x^{p^{n}}-x$, then any proper subfield $M \subsetneq F$ would not have at least one of these roots.
Proposition: If $p$ is any prime and $n$ a positive integer and $F=$ the splitting of $x^{p^{n}}-x$ in $\mathbb{Z}_{p}[x]$, then $\# F=p^{n}$.

## PMATH 345 Lecture 29: July 14, 2010

Every finite field $F$ has $p^{n}$ elements for some prime $p$ and some positive integer $n$.
Every such $F$ is the splitting field of $x^{p^{n}}-x$ over $\mathbb{Z}_{p}$.
Any two fields of cardinality $p^{n}$ are isomorphic.
Proposition: If $p$ is a prime and $n$ a positive integer and $F=$ splitting field of $x^{p^{n}}-x$, then $\# F=p^{n}$.
Lemma: If $\phi: K \rightarrow K$ is a field homomorphism, then $M=\{a \in K: \phi(a)=a\}$ is a subfield of $K$.
Proof: Let $a, b \in M$, i.e., $\phi(a)=a, \phi(b)=b$.
Then $\phi(a \dot{ \pm} b)=\phi(a) \dot{ \pm} \phi(b)=a \dot{ \pm} b$,
and if $a \neq 0$, we also get $\phi\left(a^{-1}\right)=\phi(a)^{-1}=a^{-1}$.
Proof of proposition: Have $F$ : splitting field of $x^{p^{n}}-x$.
Take Frobenius automorphism:

$$
\left.\begin{array}{rl}
\phi: & F \rightarrow F \\
a \mapsto a^{p}
\end{array}\right\}\left(\text { use }(a \pm b)^{p}=a^{p} \pm b^{p}\right. \text { to show this is a field homomorphism) }
$$

Then $\phi^{n}=\phi \circ \phi \circ \cdots \circ \phi, n$-times is also a field homomorphism, whose set of fixed elements is $M=\{a \in F$ : $\left.a^{p^{n}}=a\right\}$, which is a field inside $F$, by the lemma.

We see that $M=$ set of roots of $x^{p^{n}}-x$. So $F$ is a subfield of $F$, which was the splitting field of $x^{p^{n}}-x$. Since $F=$ smallest field containing roots of $x^{p^{n}}-x$, we get $M=F$.
Finally, note that $x^{p^{n}}-x$ has no repeated roots, because its derivative

$$
\left(x^{p^{n}}-x\right)^{\prime}=p^{n} x^{p^{n}-1}-1=-1 \text { in } \mathbb{Z}_{p}[x]
$$

is coprime with $x^{p^{n}}-x$. So $\# F=p^{n}$.

## Primitive generators

Let $F=$ finite field and $F^{*}=F \backslash\{0\}$.
Let $q=p^{n}-1=\# F^{*}$.
We saw that for every $a$ in $F^{*}, a^{q}=1$.
Theorem: There is some $a \in F^{*}$ such that the list $1, a^{1}, a^{2}, \ldots, a^{q-1}$ picks up all of $F^{*}$.
Definition: If $a \in F^{*}$ its order is the least integer $k \geq 1$ such that $a^{k}=1$. Write $k=\operatorname{ord}(a)$.
Proposition 1: If $k=\operatorname{ord}(a)$ and $a^{m}=1$, then $k \mid m$.
Proof: Write $m=k s+r$, where $0 \leq r<k$. Then

$$
1=a^{m}=a^{k s+r}=\left(a^{k}\right)^{s} a^{r}=1^{s} a^{r}=a^{r} .
$$

By the minimality of $k$ get $r=0$. So $m=k s$.
Proposition 2: If $a \in F^{*}$ and $\operatorname{ord}(a)=k \geq 1$, then $1, a, a^{2}, \ldots, a^{k-1}$ is the complete non-repeating list of all $b$ in $F^{*}$ such that $b^{k}=1$.
Proof:
i) If $a^{j}$ is in the list, we see that $\left(a^{j}\right)^{k}=\left(a^{k}\right)^{j}=1^{j}=1$.
ii) No repeats: Say $a^{i}=a^{j}$, where $0 \leq i \leq j \leq k-1$.

Thus $a^{j-i}=1$, and since $0 \leq j-i<k$, the minimality of $k$ gives $j=i$.
iii) Let $b \in F^{*}$ where $b^{k}=1$. Then $b$ is a root of $x^{k}-1 \in \mathbb{Z}_{p}[x]$. This polynomial has at most $k$ roots. But the list is made up of such roots, and the list has $k$ elements. So $b$ is in the list.

## PMATH 345 Lecture 30: July 16, 2010

We had finite field $F, \# F=p^{n}, F^{*}=F \backslash\{0\}$.
$q=p^{n}-1$.
If $a \in F^{*}, \operatorname{ord}(a)=$ least $k \geq 1$ such that $a^{k}=1 .\left(\right.$ Recall $\left.a^{q}=1\right)$.
Proposition 1: If $k=\operatorname{ord}(a)$ and $a^{m}=1$, then $k \mid m$. So $\operatorname{ord}(a) \mid q$.
Proposition 2: If $k=\operatorname{ord}(a)$, then the list $1, a, a^{2}, \ldots, a^{k-1}$ does not repeat and includes all $b$ in $F^{*}$ that satisfy $b^{k}=1$.

Proposition 3: If $\operatorname{ord}(a)=k$ and $\operatorname{ord}(b)=l$, and $k, l$ are coprime, then $\operatorname{ord}(a b)=k l$.
Proof: Let $m=\operatorname{ord}(a b)$.
Since $(a b)^{k l}=a^{k l} b^{k l}=\left(a^{k}\right)^{l}\left(b^{l}\right)^{k}=(1)^{l}(1)^{k}=1$.
Thus $m \mid k l$.
Now check $k l \mid m$. Since $k, l$ are coprime, enough to check $k \mid m$ and $l \mid m$.
Aside: If $c \in F^{*}$ then $\operatorname{ord}(c)=\operatorname{ord}\left(c^{-1}\right): c^{k}=1 \Longleftrightarrow\left(c^{-1}\right)^{k}=1$
Now we have $1=(a b)^{m}=a^{m} b^{m}$.
Let $j=\operatorname{ord}\left(a^{m}\right)=\operatorname{ord}\left(b^{m}\right)$.
Now $\left(a^{m}\right)^{k}=\left(a^{k}\right)^{m}=1^{m}=1$.
$\Longrightarrow j \mid k$
and likewise $j \mid l$.
Since $k, l$ are coprime, we get $j=1$.
So $a^{m}=1=b^{m}$
Then $k \mid m$ and $l \mid m$.
Theorem: In $F^{*}$ there is some $a$ such that $1, a, a^{2}, \ldots, a^{q-1}$ picks up all of $F^{*}$.
Proof: Just check $F^{*}$ has an element of order $q$.
Pick any $a$ in $F^{*}$ and put $k=\operatorname{ord}(a)$.
If $k=q$, done.
If $k<q$, the list $1, a, \ldots, a^{k-1}$ does not cover all of $F^{*}$. Pick $b$ not in list. Let $l=\operatorname{ord}(b)$.
Note: $b^{k} \neq 1$, by Proposition 2.
Hence $l \nmid k$. Indeed, if $k=l r$ we would get

$$
b^{k}=\left(b^{l}\right)^{r}=1^{r}=1
$$

So some prime $p$ (not original " $p$ ") divides $l$ more often than it divides $k$. Write $k=p^{i} k_{1}$ and $l=p^{j} l_{1}$ where $0 \leq i<j$ and $k_{1}, l_{1}$ have no $p$ in them.
Put $c=a^{p^{i}}$, ord $c=k_{1}$

$$
d=b^{l_{1}}, \text { ord } d=p^{j 24)}
$$

Thus ord $(c d)=p^{j} k_{1}>p^{i} k_{1}=k$.
We found an element, namely $c d$, whose order is bigger than ord $a$.
Keep doing this until an element in $F^{*}$ of order $q$ is found.
Example: The polynomial $x^{2}-2$ is irreducible in $\mathbb{Z}_{5}[x]$. Hence $F=\mathbb{Z}_{5}[x] /\langle p(x)\rangle$ is a field and $\# F=25$, $\# F^{*}=24$. Have $\begin{gathered}\phi: \mathbb{Z}_{5}[x] \rightarrow F \\ f(x) \mapsto f(x)+\langle p(x)\rangle\end{gathered}$ and if $\alpha=x+\langle p(x)\rangle$ we know that $1, \alpha$, is basis for $F$ over $\mathbb{Z}_{5}$.
Every element in $F$ looks like $a+b \alpha$ where $a, b \in \mathbb{Z}_{5}$.
Know $\alpha^{2}-2=0, \alpha^{2}=2$.
Find primitive generator of $F$.
Start with $\alpha$.
Take powers

$$
1, \alpha, \alpha^{2}=2, \alpha^{3}=2 \alpha, \alpha^{4}=4, \alpha^{5}=4 \alpha, \alpha^{6}=3, \alpha^{7}=3 \alpha, \alpha^{8}=6=1
$$

too short. Pick $\beta$ not in list. Say $\beta=\alpha+1$.

[^12]Powers of $\beta$.

$$
\begin{aligned}
& 1 \\
& \beta \\
& \beta^{2}=(\alpha+1)^{2}=\alpha^{2}+2 \alpha+1=2 \alpha+3 \\
& \beta^{3}=2 \\
& \beta^{4}=2 \alpha+2 \\
& \beta^{5}=4 \alpha+1 \\
& \beta^{6}=4=-1 \\
& \vdots \\
& \beta^{12}=1
\end{aligned}
$$

So ord $\beta=12$.
So ord $\alpha=3^{0} \cdot 2^{3}$, ord $\beta=3^{1} \cdot 2^{2}$
Put $\gamma=\alpha^{3^{0}}=\alpha$, ord $\gamma=8$
$\delta=\beta^{4}=2 \alpha+2$, ord $\delta=3^{25)}$
So ord $(\gamma \delta)=8 \cdot 3=24$

## PMATH 345 Lecture 31: July 19, 2010

$\mathrm{GF}\left(p^{n}\right)=$ Field with $p^{n}$ elements
$\mathrm{GF}^{26)}(p)=\mathbb{Z}_{p}=$ integers $\bmod p$
$\operatorname{GF}\left(p^{n}\right) \not \not \mathbb{Z}_{p^{n}}$ if $n \geq 2$
Fix a prime $p$.

$$
\overline{\mathbb{F}_{p}}=\overline{\mathrm{GF}(p)}=\text { algebraic closure of GF }(p)
$$



Theorem: Let $p$ be prime, $n, m \in \mathbb{Z}_{\geq 1}$. Then $\operatorname{GF}\left(p^{n}\right) \subset \operatorname{GF}\left(p^{m}\right)$ iff $n \mid m$. Moreover, if $n \mid m$, then there is a unique subfield of $\operatorname{GF}\left(p^{m}\right)$ with $p^{n}$ elements.
Proof: If $\operatorname{GF}\left(p^{n}\right) \subset \operatorname{GF}\left(p^{m}\right)$, then $\operatorname{GF}\left(p^{m}\right)$ is a vector space over $\operatorname{GF}\left(p^{n}\right)$, with finite dimension $k$. Then $\mathrm{GF}\left(p^{m}\right)$ has $\left(p^{n}\right)^{k}$ elements ( $p^{n}$ scalars, $k$ coefficients in basis), so $p^{m}=p^{n k}$ and so $n \mid m$.
Now assume $n \mid m$. Then $x^{p^{n}}-x$ divides $x^{p^{m}}-x$, because $x^{p^{n}-1}-1$ divides $x^{p^{m}-1}-1$, because $p^{n}-1$ divides $p^{m}-1$, because $n$ divides $m$.
Every element of $\operatorname{GF}\left(p^{n}\right)$ is a root of $x^{p^{n}}-x$, and so is a root of $x^{p^{m}}-x$, and so is an element of $\operatorname{GF}\left(p^{m}\right)$.
Finally, any subfield of $\operatorname{GF}\left(p^{m}\right)$ with $p^{n}$ elements must be exactly the set of roots of $x^{p^{n}}-x$.

[^13]Example: $\mathbb{Z}[\sqrt{10}], 10=2 \cdot 5=\sqrt{10} \cdot \sqrt{10}$
$2,5, \sqrt{10}$ are all irreducible in $\mathbb{Z}[\sqrt{10}]$
But: $(10)=(2, \sqrt{10})^{2} \cdot(5, \sqrt{10})^{2}$
Check: $(2, \sqrt{10})(5, \sqrt{10})=(10,5 \sqrt{10}, 2 \sqrt{10}, 10)=(\sqrt{10})$

## PMATH 345 Lecture 32: July 21, 2010

Definition: Let $D$ be a domain, $K=K(D)$ its field of fractions. A fractional ideal (same as "fractionary ideal") of $D$ is a subset $I$ of $K$ satisfying:
(1) $0 \in I$
(2) If $a, b \in I$, then $a-b \in I$
(3) If $a \in I, r \in D$, then $r a \in I$
(4) There is some $d \in D, d \neq 0$, such that $d I \subset D$.

Note: The set $d I$ is an (integral) ideal of $D$, so $I=\frac{1}{d}(d I)$ is just some integral ideal of $D$ divided by a nonzero element of $D$.
Example: The fractional ideals of $\mathbb{Z}$ are $\frac{1}{m}(n \mathbb{Z})=\frac{n}{m} \mathbb{Z}$ for integers $n, m \in \mathbb{Z}$ with $m \neq 0$.

$$
\frac{3}{2} \mathbb{Z}=\left\{\frac{3 n}{2}: n \in \mathbb{Z}\right\}=\left\{\ldots,-3,-\frac{3}{2}, 0, \frac{3}{2}, 3,4 \frac{1}{2}, 6, \ldots\right\}
$$

Example: $D=\mathbb{Z}[\sqrt{10}], I=\sqrt{10} D+3 D=(\sqrt{10}, 3) D$ or

$$
\begin{aligned}
I & =\frac{\sqrt{10}}{2} D+D \neq 0 \\
& =\left\{(a+b \sqrt{10}) \frac{\sqrt{10}}{2}+(c+d \sqrt{10}): a, b, c, d \in \mathbb{Z}\right\}
\end{aligned}
$$

One can add and multiply fractional ideals simply:

$$
\begin{gathered}
\left(a_{1} D+\cdots+a_{n} D\right)+\left(b_{1} D+\cdots+b_{m} D\right)=a_{1} D+\cdots+a_{n} D+b_{1} D+\cdots+b_{m} D \\
\left(a_{1} D+\cdots+a_{n} D\right)\left(b_{1} D+\cdots+b_{m} D\right)=\sum_{i, j} a_{i} b_{j} D
\end{gathered}
$$

Example: $(a D+b D)(c D+d D)=a c D+b c D+a d D+b d D$
Example: $D=\mathbb{Z}[\sqrt{10}]$ :

$$
\left(\frac{\sqrt{10}}{2} D+D\right)\left(\sqrt{10} D+\frac{1}{2} D\right)=5 D+\sqrt{10 D}+\frac{\sqrt{10}}{4} D+\frac{1}{2} D
$$

$5 D \subset \frac{1}{2} D$ and $\sqrt{10} D \subset \frac{\sqrt{10}}{4} D$ so product is $\frac{\sqrt{10}}{4} D+\frac{1}{2} D$
Definition: A fractional ideal is invertible iff there is a fractional ideal $J$ such that $I J=D$.
Say $I, J$ fractional ideals of $D, J \neq(0)$. Then $I / J=\{x \in K(D): x J \subset I\} . I / J$ is a fractional ideal because
(1) $0 \in I / J$
(2) If $x J \subset I$ and $y J \subset I$ then $(x-y) J \subset{ }^{27)} x J-y J \subset I$
(3) If $x J \subset I$ and $r \in D$, then $r x J \subset x J \subset I$, so $r x \in I / J$.
(4) Need $b \in D, b \neq 0$ such that $b(I / J) \subset D$. Let $a \in D, a \neq 0$ satisfy $a I \subset D$ and choose $x \in J \cap D, x \neq 0$. Then $b=a x$ works:
If $y \in I / J$, then

$$
a x y=a(x y) \in a I \subset D
$$

so $a x(I / J) \subset D$.

[^14]Example:

$$
\begin{aligned}
(n \mathbb{Z}) /(m \mathbb{Z}) & =\left\{\frac{a}{b} \in \mathbb{Q}: \frac{a}{b}(m k) \in n \mathbb{Z} \text { for all } k \in \mathbb{Z}\right\} \\
& =\left\{\frac{a}{b} \in \mathbb{Q}: \frac{a m k}{b} \in n \mathbb{Z} \text { for all } k \in \mathbb{Z}\right\} \\
& =\left\{\frac{a}{b} \in \mathbb{Q}: \frac{a m}{b} \in n \mathbb{Z}\right\} \\
& =\left\{\frac{a}{b} \in \mathbb{Q}: \frac{a}{b} \in \frac{n}{m} \mathbb{Z}\right\} \\
& =\frac{n}{m} \mathbb{Z}
\end{aligned}
$$

In general, if $a, b \in D$, then $a D / b D=\frac{a}{b} D$ if $b \neq 0$. In particular, every principal fractional ideal (nonzero) is invertible: $a D / a D=D$.
Example: Compute $a, b$ such that $D /(\sqrt{10} D+5 D)=a D+b D$ for $D=\mathbb{Z}[\sqrt{10}]$.
Let $I=D /(\sqrt{10} D+5 D)$. Then:

$$
\begin{gathered}
I=\left\{\begin{array}{c}
a+b \sqrt{10}:(a+b \sqrt{10}) x \in \mathbb{Z}[\sqrt{10}] \text { for all } x \in \sqrt{10} D+5 D\} \\
=\left\{\begin{array}{c}
a, b \sqrt{10}
\end{array}((a+b \sqrt{10}) \in \mathbb{Z}[\sqrt{10}] \text { and }(a+b \sqrt{10}) 5 \in \mathbb{Z}[\sqrt{10}]\}\right. \\
10 b+\sqrt{10} a \in \mathbb{Z}[\sqrt{10}] \Longrightarrow a \in \mathbb{Z}, b \in \frac{1}{10} \mathbb{Z} \\
(5 \sqrt{10}) b+5 a \in \mathbb{Z}[\sqrt{10}] \Longrightarrow b \in \frac{1}{5} \mathbb{Z}
\end{array}\right.
\end{gathered}
$$

Therefore guess: $I=\frac{\sqrt{10}}{5} D+D$
$\left(a+b \sqrt{10}=(\right.$ integer $)+($ integer $\left.) \frac{\sqrt{10}}{5}\right)$
Check: $\left(\frac{\sqrt{10}}{5} D+D\right)(\sqrt{10} D+5 D)=2 D+\sqrt{10} D+\sqrt{10} D+5 D=D$

## PMATH 345 Lecture 33: July 23, 2010

Definition: A fractional ideal $I$ of a domain $D$ is invertible iff there is a fractional ideal $J$ such that $I J=D$.
Definition: A Dedekind domain is a domain is a domain in which every nonzero fractional ideal is invertible. Example: Every PID is Dedekind.
Theorem: Let $D$ be a Dedekind domain, $P$ a nonzero prime ideal. Then $P$ is maximal.
Proof: Assume that there is some ideal $I \subset D$ with $P \subset I$. We want to show either $P=I$ or $I=D$.
The fractional ideal $P I^{-1}$ is a subset of $I I^{-1}=D$, so $P I^{-1}$ is an integral ideal of $D$. Now:

$$
\left(P I^{-1}\right) I=P
$$

so since $P$ is prime, either $P I^{-1} \subset P$ or $I \subset P$. If $P I^{-1} \subset P$, then $I^{-1} \subset D$ so $I I^{-1} \subset I$ so $I=D$ because $D=I I^{-1}$.

If $I \subset P$, then $P \subset I \Longrightarrow P=I$.
Theorem: Let $D$ be a Dedekind domain, $I \subset D$ any nonzero ideal. Then $I$ can be factored as a product of prime ideals:

$$
I=P_{1} \cdots P_{n}
$$

and this factorization is unique up to permutation of the $P_{i}$.
Proof: Existence: If $I$ is maximal, then it's prime and $I=I$ will do.
If $I$ is not maximal, then there is an ideal $J$ with $I \subsetneq J \subsetneq D$. Then $I=J\left(J^{-1} I\right)$, where $J^{-1} I \subset J^{-1} J=D$, so $J^{-1} I$ is an integral ideal. If $J$ and $J^{-1} I$ are both prime, then we're done. If not, then keep factoring the non-prime factors of $I$ until all the factors are prime.

If this process never stops, then we have constructed an infinite ascending chain of ideals:

$$
I \subsetneq I_{1}{ }^{28)} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots
$$

[^15]Lemma: Every invertible ideal is finitely generated.
Proof of lemma: Let $I$ be an invertible ideal of a domain $D$. Then $I I^{-1}=D$, so $1=a_{1} a_{1}^{\prime}+\cdots+a_{n} a_{n}^{\prime}$ for $a_{i} \in I, a_{i}^{\prime} \in I^{-1}$. Clearly $\left(a_{1}, \ldots, a_{n}\right) \subset I$, so let $x \in I$. Then $x=\left(x a_{1}^{\prime}\right) a_{1}+\cdots+\left(x a_{n}^{\prime}\right) a_{n}$.
Since $x \in I, a_{i}^{\prime} \in I^{-1}$, we get $x a_{i}^{\prime} \in D$ so $x \in\left(a_{1}, \ldots, a_{n}\right)$. Therefore, $I=\left(a_{1}, \ldots, a_{n}\right)$ is finitely generated. $\square$ lemma
Corollary: Every Dedekind domain is Noetherian.
Proof: Immediate.
By the Corollary, $D$ is Noetherian, so it obeys the ACC, and we obtain a contradiction.
Uniqueness: Say $I=P_{1} \cdots P_{n}=Q_{1} \cdots Q_{m}$ for $P_{i}, Q_{j}$ prime. We want to show that these two factorizations are the same up to permutation.

Since $P_{1} \cdots P_{n} \subset Q_{1} \cdots Q_{m} \subset Q_{1}$, we get $P_{i} \subset Q_{1}$ for some $i$. But $D$ is Dedekind, so $P_{i}$ is maximal and so $P_{i}=Q_{1}$. Multiplying both sides by $Q_{1}^{-1}$, we obtain $P_{1} \cdots \hat{P}_{i} \cdots P_{n}=Q_{2} \cdots Q_{m}$. Continuing in this manner, we eventually obtain either a product of some $P_{i}$ s equals $D$, or some $Q_{j}$ s equals $D$.
This is only possible if the product of $P_{i} \mathrm{~s}$ or $Q_{j} \mathrm{~s}$ is empty, so our repeated cancellation process constructed a bijection between the $Q_{j} \mathrm{~s}$ and $P_{i} \mathrm{~s}$, as desired.

Definition: Let $D$ be a domain, $I, J$ two nonzero ideals of $D$. Then $I$ and $J$ are in the same ideal class iff there is some $a \in K(D)$ such that $I=a J$. This is an equivalence relation, and the equivalence classes are called ideal classes.

Note that $D$ is a PID iff it has only one ideal class.
Definition: The class number of $D$ is the number of ideal classes of $D$.

$$
\text { PMATH } 345 \text { Lecture 34: July 26, } 2010
$$

## Recall:

$$
A / B=\{x \in K(D): x B \subset A\}
$$

Is this the same as $A B^{-1}$ ?
Answer: No, because $B$ might not be invertible.
Theorem: Let $D$ be a domain, $K(D)$ its fraction field, $A, B$ two fractional ideals of $D$, with $B$ invertible. Then

$$
A / B=A B^{-1}
$$

Proof: Clearly $B(A / B) \subset A$, so $A / B \subset A B^{-1}$.
Conversely, say $x \in A B^{-1}$. We want to show $x \in A / B$. Well, $x \in A B^{-1} \Longrightarrow x B \subset A$, so $x \in A / B$.
Corollary: Let $I$ be an invertible ideal of a domain $D$. Then $I^{-1}=D / I$.
Warning: If $B$ is not invertible, then $(A / B) B \neq A$, necessarily.
Example: Compute $(2, \sqrt{-5}+1)^{-1}$ in $\mathbb{Z}[\sqrt{-5}]=D$.
Solution: Let $J=(2,1+\sqrt{-5})$. If $a+b \sqrt{-5} \in J^{-1}$, then

$$
\begin{gather*}
2(a+b \sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}]  \tag{1}\\
\text { and }(1+\sqrt{-5})(a+b \sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}] \tag{2}
\end{gather*}
$$

$$
\begin{aligned}
(1) & \Longrightarrow a, b \in \frac{1}{2} \mathbb{Z} \\
(2) & \Longrightarrow\left\{\begin{array}{c}
a-5 b \in \mathbb{Z} \\
a+b \in \mathbb{Z}
\end{array}\right.
\end{aligned}
$$

Write $a=\frac{c}{2}, b=\frac{d}{2}$. Then $c-5 d$ and $c+d$ are even. This is equivalent to $c \equiv d \bmod 2$ :

$$
\begin{aligned}
a+b \sqrt{-5} & =\frac{c+(c+2 k) \sqrt{-5}}{2} \quad k \in \mathbb{Z} \\
& =c\left(\frac{1+\sqrt{-5}}{2}\right)+k \sqrt{-5}
\end{aligned}
$$

So guess: $J^{-1}=\left(\frac{1+\sqrt{-5}}{2}\right) D+(\sqrt{-5}) D=I$
Check: $\left(\left(\frac{1+\sqrt{-5}}{2}\right) D+\sqrt{-5} D\right)(2 D+(1+\sqrt{-5}) D)=(1+\sqrt{-5}) D+(-2+\sqrt{-5}) D+(2 \sqrt{-5}) D+(-5+\sqrt{-5}) D$

$$
\begin{aligned}
3=(1+\sqrt{-5}) & -(-2+\sqrt{-5}) \in I J \\
-4=(1+\sqrt{-5}) & -(2 \sqrt{-5})+(-5+\sqrt{-5}) \in I J \\
- & (3+(-4)) \in I J \\
& \Longrightarrow D \subset I J
\end{aligned}
$$

Since $I J \subset D$, we get $I J=D \Longrightarrow I=J^{-1}$.
Example: Factor (6) in $\mathbb{Z}[\sqrt{7}]$.
Solution: $(6)=(2)(3)$.
Is (2) prime? Compute $\mathbb{Z}[\sqrt{7}] /(2):\{0,1, \sqrt{7}, 1+\sqrt{7}\}$

$$
\begin{gathered}
(\sqrt{7})^{2}=7 \neq 0 \\
\sqrt{7}(1+\sqrt{7})=7+\sqrt{7}=1+\sqrt{7} \neq 0 \\
(1+\sqrt{7})^{2}=1+2 \sqrt{7}+7=0!
\end{gathered}
$$

Consider $(2,1+\sqrt{7})$. Since $(1+\sqrt{7})^{2} \equiv 0 \bmod (2)$, we're guessing that $(2)=(2,1+\sqrt{7})^{2}$ :

$$
\begin{aligned}
(2,1+\sqrt{7})^{2} & =(4,2+2 \sqrt{7}, 8+2 \sqrt{7}) \\
& =(4,6,2+2 \sqrt{7}, 8+2 \sqrt{7}) \\
& =(2)
\end{aligned}
$$

Is $(2,1+\sqrt{7})$ prime? Yes, because $\mathbb{Z}[\sqrt{7}] /(2,1+\sqrt{7}) \cong \mathbb{Z} / 2 \mathbb{Z}$ via $a+b \sqrt{7} \mapsto a+b(\bmod 2)$. So (6) $=$ $(2,1+\sqrt{7})^{2}(3)$
Is (3) prime?

$$
\begin{aligned}
\mathbb{Z}[\sqrt{7}] /(3) & \cong \mathbb{Z}[x] /\left(x^{2}-7,3\right) \\
& \cong \mathbb{Z}_{3}[x] /\left(x^{2}-7\right) \\
& \cong \mathbb{Z}_{3}[x] /\left(x^{2}-1\right)
\end{aligned}
$$

This is not a domain, since $x^{2}-1$ is reducible. $1 \pm \sqrt{7}$ are zero divisors mod 3 :

$$
(1+\sqrt{7})(1-\sqrt{7})=-6 \equiv 0 \bmod 3
$$

Compute $(3,1+\sqrt{7})(3,1-\sqrt{7})=(9,3+3 \sqrt{7}, 3-3 \sqrt{7},-6)=(3)$
( $3,1 \pm \sqrt{7}$ ) is prime, because: $\mathbb{Z}[\sqrt{7}] /(3,1 \pm \sqrt{7}) \cong \mathbb{Z}_{3}$ via

$$
a+b \sqrt{7} \mapsto a \mp b \bmod 3
$$

So $(6)=(2,1+\sqrt{7})^{2}(3,1+\sqrt{7})(3,1-\sqrt{7})$.


[^0]:    1) "coset of $I$ "
    $r+I=\{r+a: a \in I\}$
[^1]:    ${ }^{2)}$ Aside: Show: $\mathbb{R}[x] /\left(x^{2}-1\right) \cong \mathbb{R} \oplus \mathbb{R}$
    3) $R$
    4) $I$
    5) $S$

[^2]:    6) "is isomorphic to"
[^3]:    ${ }^{7}$ ) Aside: $\mathbb{Q}[i]=\{a+b i: a, b \in \mathbb{Q}\}$

[^4]:    ${ }^{8)}$ field

[^5]:    ${ }^{9)}$ Aside: $P=\left(x_{1}, \ldots, x_{n}\right) \Longrightarrow P^{2}=\left(x_{i} x_{j}\right)_{i, j \in\{1, \ldots, n\}}$ In particular $(x)^{2}=\left(x^{2}\right)$

[^6]:    10) not in $(y-1)$
    ${ }^{11)}$ in $(y-1)$
    11) in $(y-1)$ but not $(y-1)^{2}$
[^7]:    ${ }^{13)}$ Aside: Ideals, Varieties, and Algorithms: Cox, Little, O'Shea

[^8]:    ${ }^{14)}$ leading term
    15) coefficient of $x y-1$
    ${ }^{16)}$ coefficient of $y^{2}-1$
    17) remainder
    18) coefficient of $y^{2}-1$
    19) coefficient of $x y-1$
    ${ }^{20)}$ remainder

[^9]:    ${ }^{21)}$ ring

[^10]:    ${ }^{22)}$ imperfect

[^11]:    ${ }^{23)} \neq 0$

[^12]:    ${ }^{24)} k_{1}, p^{j}$ coprime

[^13]:    ${ }^{25)}$ ord $\delta$, ord $\gamma$ coprime
    26) "Galois Field"

[^14]:    ${ }^{27)}$ NOT the same!

[^15]:    28) " $J$ "
