PMATH 351 Lecture 1: September 14, 2009

PM351
Real Analysis
Prof. Kathryn Hare
MC 5072
Office Hours
Wed 2:30-3:30
Thursday 3-4
Wed Sept 16
12-1:30
DC 1302
NSERC Scholarships
(due Sept 25)
Definition: Two sets A and B have the same cardinality (and write $|A|=|B|$) if there is a bijection between A and B.

Say cardinality of A is \leq cardinality of B (write $|A| \leq|B|$) if there is an injection: $A \rightarrow B$.
Cardinality is an equivalence relation:

1. $|A|=|A|$ (reflexive) (identity map)
2. $|A|=|B| \Longleftrightarrow|B|=|A|$ (symmetric)
3. $|A|=|B|$ and $|B|=|C| \Longrightarrow|A|=|C|$

$$
\begin{aligned}
& A \underset{\substack{1-1 \\
\text { onto }}}{f} B \underset{\substack{g-1 \\
\text { onto }}}{g} C \\
& g \circ f: A \rightarrow C^{1)}
\end{aligned}
$$

Example: Say A has n elements and $|A|=|B|$. Here $f: A \rightarrow B$ is $1-1$, onto.
$\Longrightarrow B$ has at least n elements, because f is $1-1$.
$\Longrightarrow B$ has at most n elements because f is onto.
Thus B has n elements.
On the other hand, if A and B both have n elements then there exists a bijection: $A \rightarrow B$.
Say $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$.
Define $f\left(a_{j}\right)=b_{j}$, bijection.
Therefore $|A|=|B|$.
Example: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$
$|\mathbb{N}| \leq|\mathbb{Z}| \leq|\mathbb{Q}| \leq|\mathbb{R}|$
since the embedding maps are injections

$$
\begin{array}{cccccccccc}
f & \mathbb{Z} & 0 & 1 & -1 & 2 & -2 & 3 & -3 & \cdots \\
& \mathbb{N} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots
\end{array}
$$

$f: \mathbb{Z} \rightarrow \mathbb{N}$ is a bijection, therefore $|\mathbb{N}|=|\mathbb{Z}|$.
Definition: Say a set A is countable if it is either finite or $|A|=|\mathbb{N}|$. Say A is countably infinite if countable and infinite.
A is uncountable if it is not countable.
e.g., \mathbb{Z} is countable.

[^0]Countable sets can be written as $a_{1}, a_{2}, a_{3}, \ldots$
Have $f: \mathbb{N} \rightarrow A$. Put $a_{j}=f(j)$.
Conversely, if there is such a list then just define bijection $g: A \rightarrow \mathbb{N}$ by $g\left(a_{j}\right)=j$.
$\mathbb{Q}=\{p / q: p \in \mathbb{Z}, q \in \mathbb{N},(p, q)$ coprime $\},|\mathbb{Q}|=|\mathbb{N}|$
figure: diagonal
e.g., $|\mathbb{N} \times \mathbb{N}|=|\mathbb{N}|$

Problem: $\left|\mathbb{R}^{2}\right|=|\mathbb{R}|$
e.g., Any countable union of countable sets is countable. i.e.,

$$
A=\bigcup_{i=1}^{\infty} A_{i} \quad\left|A_{i}\right|=|\mathbb{N}|
$$

then $|A|=|\mathbb{N}|$
Proof:

$$
\begin{aligned}
A_{i} & =\left\{a_{1}^{(i)}, a_{2}^{(i)}, a_{3}^{(i)}, \ldots\right\} \\
& =\{a(i, 1), a(i, 2), \ldots\}
\end{aligned}
$$

Proposition: If $|A| \leq|\mathbb{N}|$ then either A is finite or $|A|=|\mathbb{N}|$.
Corollary: Hence any subset of a countable set is countable.
figure: diagonal winding through $a(i, j)$

Cardinality

$|A|=|B|$ means there exists a bijection from A to B
$|A| \leq|B|$ means there exists an injection from A to B

Countable

either finite or cardinality $=|\mathbb{N}|$
e.g., $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$

Proposition: If A is infinite and $|A| \leq|\mathbb{N}|$ then $|A|=|\mathbb{N}|$.
Lemma: Every infinite subset B of \mathbb{N} is countably infinite.
Proof: Claim: Every non-empty subset X of \mathbb{N} has a least element.
Why? Pick $n \in X$ and look at $\{k \in X: k \leq n\}$. This is a finite set of positive integers and has a least element $k_{1} . k_{1}$ is the least element of X.
B is non-empty so it has a least element, call it b_{1}.
$B \backslash\left\{b_{1}\right\}$ is non-empty so it has a least element, call it b_{2}.
$B \backslash\left\{b_{1}, b_{2}\right\}$ is non-empty so it has a least element, call it b_{3}.
Repeat. Produces $b_{1}<b_{2}<b_{3}<\cdots$.
Claim: $B=\left\{b_{n}\right\}_{n=1}^{\infty}$
Why? Take $b \in B$. Look at $\{n \in B: n \leq b\}^{2)}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$
$\Longrightarrow b_{k}=b$

$$
\text { Define } \left.\begin{array}{rl}
f: & B \rightarrow \mathbb{N} \\
b_{n} & \mapsto n
\end{array}\right\} \text { bijection. Hence }|B|=|\mathbb{N}| .
$$

Proof of Proposition: Have an injection $F: A \rightarrow \mathbb{N}$.
Let $B=F(A) \subseteq \mathbb{N}$.
Note that $F: A \rightarrow B$ bijection.

[^1]Hence $|A|=|B|$. Since A is infinite, so is B.
By the lemma $|B|=|\mathbb{N}|$. By transitivity $|A|=|\mathbb{N}|$.
Example: $[0,1)=\{x: 0 \leq x<1\}$ is uncountable.
Corollary: \mathbb{R} is uncountable.
Proof: Assume false.

$$
\begin{aligned}
& \underbrace{[0,1) \underset{\text { injection }}{\subseteq} \mathbb{R}^{\text {bijection }} \stackrel{\mathbb{N}}{ }}_{\text {injection }} \\
& \Longrightarrow|[0,1)| \leq|\mathbb{N}| \Longrightarrow|[0,1)|=|\mathbb{N}|^{3)}
\end{aligned}
$$

Proof of Example: Suppose [0,1) is countable, say $=\left\{r_{i}\right\}_{i=1}^{\infty}$.

$$
r_{i}=. r_{i 1} r_{i 2} r_{i 3} \cdots \quad r_{i j} \in\{0,1, \ldots, 9\}
$$

Let's write a real number not on this list.

$$
\begin{gathered}
a=a_{1} a_{2} a_{3} \cdots \\
a_{1}=\left\{\begin{array}{ll}
8 & \text { if } r_{11} \in\{0,1, \cdots, 4\} \\
1 & \text { if } r_{11} \in\{5,6, \cdots, 9\}
\end{array} \quad a_{2}=\left\{\begin{array}{ll}
8 & \text { if } r_{22} \in\{0,1, \cdots, 4\} \\
1 & \text { if } r_{22} \in\{5,6, \cdots, 9\}
\end{array} \quad \cdots \quad a_{k}= \begin{cases}8 & \text { if } r_{k k} \in\{0,1, \cdots, 4\} \\
1 & \text { if } r_{k k} \in\{5,6, \cdots, 9\}\end{cases} \right.\right.
\end{gathered}
$$

Say $a=r_{k}$ for some k.
But k th digit of a_{k} does not agree with k th digit of r_{k} so $a \neq r_{k}$.
Thus \mathbb{R} is a different level of infinity.

$$
|\mathbb{N}|=\aleph_{0} \quad|\mathbb{R}|=\aleph_{1}
$$

(1) Is \mathbb{R} the "next level" of infinity?
(2) If $A \subseteq \mathbb{R}$, and A is uncountable, is $|A|=|\mathbb{R}|$?
(3) Does there exist a B such that $|\mathbb{N}|<|B|<|\mathbb{R}|$?

Continuum Hypothesis says (2) is yes (and (3) is no).
Answer is independent of set theory axioms.
Given set A, we can define $\mathcal{P}(A)=\{$ all subsets of $A\}$
e.g., $A=\{0,1\}, \mathcal{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$

If A has n elements then $|\mathcal{P}(A)|=2^{n}$
Cantor's Theorem: For any set $A,|A| \leq|\mathcal{P}(A)|$ and $|A| \neq|\mathcal{P}(A)|$.
$(|\mathcal{P}(A)|=1)$

Proof:

$$
\text { Injection: } \begin{aligned}
& A \\
a & \mapsto \mathcal{P}(A) \\
& \mapsto a\}
\end{aligned}
$$

Suppose there is a bijection $g: A \rightarrow \mathcal{P}(A)$: show this leads to a contradiction.
Let $B=\{a \in A: a \notin g(a)\} . g(a) \in \mathcal{P}(A)$, therefore $g(a)$ is a subset of A.
$B \subseteq A \Longrightarrow B \in \mathcal{P}(A)$ so there exists $x \in A$ such that $g(x)=B$ because g is onto.
Is $x \in B$?
Try yes: say $x \notin g(x)=B$: contradiction.
So the answer must be no: Means $x \in g(x)=B$: contradiction.
Either way we get contradiction. So there can be no bijection: $A \rightarrow \mathcal{P}(A)$.
Therefore $|A| \neq|\mathcal{P}(A)|$.

[^2]Start with infinite set A

$$
|A|<|\mathcal{P}(A)|<|\mathcal{P}(\mathcal{P}(A))|<\cdots
$$

Notation: Given set A, write $2^{A}=\{f: A \rightarrow\{0,1\}\}$
e.g., $|A|=n,\left|2^{A}\right|=2^{n}=2^{|A|}$

Theorem: $|\mathcal{P}(A)|=\left|2^{A}\right|$
PMATH 351 Lecture 3: September 18, 2009
$2^{A}=\{f: A \rightarrow\{0,1\}\}$
If A has n elements then $|\mathcal{P}(A)|=2^{n}$ and $\left|2^{A}\right|=2^{n}$
Theorem: $\left|2^{A}\right|=|\mathcal{P}(A)|$ for all sets A
Proof: Need to construct bijection $g: \mathcal{P}(A) \rightarrow 2^{A}$
Define $g(B)=1_{B}$
$B \subseteq \mathcal{P}(A)$ i.e., $B \subseteq A$
where $1_{B}(x)= \begin{cases}1 & 1 \text { if } x \in B \\ 0 & 0 \text { if } x \notin B\end{cases}$
$1_{B} \in 2^{A}$
Check g is $1-1$ and onto.
First, if $B \neq C$ then $1_{B} \neq 1_{C}$ so $g(B) \neq g(C) \Longrightarrow g$ is $1-1$
Onto: Take $f \in 2^{A}$
Put $B=\{x \in A: f(x)=1\} \Longrightarrow f(x)=1_{B}(x)$
Therefore $g(B)=f$ where g is a bijection.

Schroeder-Bernstein Theorem

If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$.
Proof: Given injections $f: A \rightarrow B$ and $g: B \rightarrow A$.

$$
\text { Define } \begin{aligned}
Q: & \mathcal{P}(A) \rightarrow \mathcal{P}(A) \\
& E \mapsto\left(g\left(f(E)^{\mathrm{C}}\right)\right)^{\mathrm{C}}
\end{aligned}
$$

figure:
$D^{\mathrm{C}}=g\left(f(D)^{\mathrm{C}}\right)$ and $D=\left(g\left(f(E)^{\mathrm{C}}\right)\right)^{\mathrm{C}}$

Want to find a set D such that $Q(D)=D$.
First, if $E \subseteq F$ then $Q(E) \subseteq Q(F)$ because $f(E) \subseteq f(F) \Longrightarrow f(E)^{\mathrm{C}} \supseteq f(F)^{\mathrm{C}}$
$\Longrightarrow g\left(f(E)^{\mathrm{C}}\right) \supseteq g\left(f(F)^{\mathrm{C}}\right) \Longrightarrow \underbrace{\left(g\left(f(E)^{\mathrm{C}}\right)\right)^{\mathrm{C}}}_{Q(E)} \subseteq \underbrace{\left(g\left(f(F)^{\mathrm{C}}\right)\right)^{\mathrm{C}}}_{Q(F)}$
Let $\mathcal{D}=\{E \subseteq A: E \subseteq Q(E)\}$.
Take $D=\bigcup_{E \in \mathcal{D}} E$
If $E \in \mathcal{D}$ then $E \subseteq D$
$\Longrightarrow Q(E) \subseteq Q(D)$
Also $E \subseteq Q(E) \subseteq Q(D)$ for all $E \in \mathcal{D}$
hence $D=\bigcup_{E \in \mathcal{D}} E \subseteq Q(D)$.
So $D \subseteq Q(D) \Longrightarrow Q(D) \subseteq Q(Q(D))$
therefore $Q(D) \in \mathcal{D}$.
So $Q(D) \subseteq D$.
Hence $Q(D)=D$
i.e., $D=\left(g\left(f(D)^{\mathrm{C}}\right)\right)^{\mathrm{C}}$ or $D^{\mathrm{C}}=g\left(f(D)^{\mathrm{C}}\right)$.

Now define $h: A \rightarrow B$ as follows:

$$
h(x)=\left\{\begin{array}{ll}
f(x) & \text { if } x \in D \\
g^{-1}(x) & \text { for } x \in D^{\mathrm{C}}
\end{array} \text { and this is well defined because } D^{\mathrm{C}} \subseteq \text { Range } g\right.
$$

If $x \in D^{\mathrm{C}}$ then $x \in g\left(f(D)^{\mathrm{C}}\right)$.
h is 1-1 since both $\left.f\right|_{D}$ and $\left.g^{-1}\right|_{D^{\mathrm{C}}}$ are 1-1 and similarly is onto by construction.
Hence h is a bijection and $|A|=|B|$.

Consequences

1. If $A_{1} \subseteq A_{2} \subseteq A_{3}$ and $\left|A_{1}\right|=\left|A_{3}\right|$ then also $\left|A_{2}\right|=\left|A_{3}\right|$.

Proof: $\underbrace{A_{2} \stackrel{\text { inj }}{\hookrightarrow} A_{3}}_{\text {embedding }} \Longrightarrow\left|A_{2}\right| \leq\left|A_{3}\right|$

$$
\underbrace{A_{3} \xrightarrow{\text { bij }} A_{1} \stackrel{\text { inj }}{\hookrightarrow} A_{2}}_{f}
$$

$f: A_{3} \rightarrow A_{2}$ is an injection $\Longrightarrow\left|A_{3}\right| \leq\left|A_{2}\right|$
By $\mathrm{S}-\mathrm{B},\left|A_{3}\right|=\left|A_{2}\right|$.
2. $|(0,1)|=|[0,1)|=|\mathbb{R}|$
figure: arctan
$[0,1) \subseteq[0,1) \subseteq \mathbb{R}$.
So enough to prove $(0,1)$ and \mathbb{R} have same cardinality.
Let $f(x)=\arctan x$ by $f: \mathbb{R} \underset{\mathrm{bij}}{\rightarrow}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \underset{\mathrm{bij}}{\mathrm{lin}}(0,1)$
3. $|\mathbb{R}|=\left|2^{\mathbb{N}}\right|$, another proof that \mathbb{R} is uncountable.

Show $|[0,1)|=\left|2^{\mathbb{N}}\right|$.
Given $r \in[0,1)$ write its binary representation

$$
r=. a_{1} a_{2} a_{3} \ldots \quad\left(\text { where } a_{i}=0 \text { or } 1\right)
$$

Define $f_{r}(n)=a_{n}$. Then $f_{r}: \mathbb{N} \rightarrow\{0,1\}$, i.e., $f_{r} \in 2^{\mathbb{N}}$.

$$
\begin{gathered}
\text { Define } \Phi:[0,1) \rightarrow 2^{\mathbb{N}} \\
r \mapsto f_{r}
\end{gathered}
$$

Φ is $1-1$ because $r_{1} \neq r_{2}$, then there exists n such that nth digits are different, so $f_{r_{1}}(n) \neq$ $f_{r_{2}}(n) \Longrightarrow f_{r_{1}} \neq f_{r_{2}}$.

But Φ is not onto because of non-uniqueness of binary representation.

$$
\text { Define } \begin{aligned}
\Lambda: 2^{\mathbb{N}} & \rightarrow[0,1) \\
f & \mapsto .0 f(1) 0 f(2) 0 f(3) \ldots
\end{aligned}
$$

Λ is $1-1$, since one of the binary representations of a number with two forms ends with a tail of 1 s , and $\Lambda(f)$ never has a tail of 1 s .
Therefore, by Schroeder-Bernstein, $\left|2^{\mathbb{N}}\right|=|\mathbb{R}|$.
PMATH 351 Lecture 4: September 21, 2009

Definition of \mathbb{R} :

ordered field, $\supseteq \mathbb{Q}$ and which satisfies the completeness axiom: Every increasing sequence that is bounded above converges.

Given sequence $\left(x_{n}\right)$ bounded above means exists $r \in \mathbb{R}$ such that $x_{n} \leq r$ for all n.
Converges means there exists $x_{0} \in \mathbb{R}$ such that for all $\epsilon>0$ there exists N such that $\left|x_{n}-x_{0}\right|<\epsilon$ for all $n \geq N$.
Consequence: Archimedian Property: Given any $x \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that $x<n$.
Proof: Suppose not. Then there exists a real number r such that $r \geq n$, for all $n \in \mathbb{Z}$. Consider the sequence $\left\{1^{4)}, 2^{5)}, 3, \ldots\right\}$. This is a bounded above increasing sequence so by completeness axiom it

[^3]converges, to say x_{0}.
Then $\left.\left|x_{n}-x_{n-1}\right|^{6}\right) \leq\left|x_{n}-x_{0}\right|+\left|x_{0}-x_{n+1}\right| \leq \frac{1}{4}+\frac{1}{4}$ for n large enough. $1 \leq \frac{1}{2}$, contradiction.
Example: Use Archimedian property to prove that for real numbers $x<y$,
$$
\exists p / q \in \mathbb{Q} \quad \text { such that } \quad x \leq p / q<y .
$$

Definition: Given $S \subseteq \mathbb{R}$, by an upper bound for S we mean $r \in \mathbb{R}$ such that if $x \in S$ then $x \leq r$.
If a set has an upper bound we say it is bounded above.
Example: \mathbb{Z} has no upper bound.
Example: $S=\left\{1-\frac{1}{n}: n=1,2,3, \ldots\right\}$, bounded above by 1 (or 2 , or, \ldots), $1=\sup (S$)
If a set has an upper bound, then there are infinitely many.
Definition: A least upper bound for $S \subseteq \mathbb{R}$ is an upper bound for S, call it B, with the property that whenever $A<B$ then A is not an upper bound for S. Notation: $\operatorname{LUB}(S)$ or $\sup (S)$.

Similarly define greatest lower bound of $S, \operatorname{GLB}(S)$ or $\inf (S)$.

(Exercise) Facts:

1. $\sup (S)$ is unique (if it exists)
2. If B is an upper bound for S and $B \in S$, then $B=\sup S$.
3. If $\left(x_{n}\right)_{n=1}^{\infty}$ is increasing and bounded above, and if $S=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ then $\sup (S)=\lim _{n \rightarrow \infty} x_{n}$
4. $B=\sup (S)$ iff B is an upper bound for S and $\forall \epsilon>0 \exists x \in S$ such that $x>B-\epsilon$

Completeness Theorem: If $S \subseteq \mathbb{R}$ is non-empty and bounded above then the $\sup (S)$ exists. "no holes" property of \mathbb{R}.

Proof: For this proof use notation $z^{7)} \geq S^{8)}$ to mean $z \geq x \forall x \in S$. Since $S \neq \emptyset$ so $\exists y \in S$. Put $x_{0}=y-1$. Proceed inductively to construct a sequence.
By the Archimedian property and the fact that S is bounded above, there exists $N_{0} \in \mathbb{Z}$ such that $x_{0}+N_{0} \geq S$. In fact, let's make N_{0} the least integer that does this. $N_{0} \geq 1$ since $x_{0}+0=y-1$ and $y \in S$.
Put $x_{1}=x_{0}+N_{0}-1 \geq x_{0}$.
By definition of $N_{0}, x_{0}+N_{0}-1$ fails to be $\geq S$. Hence there exists $s_{1} \in S$ such that $s_{1}>x_{0}+N_{0}-1=x_{1}$.
Futhermore $x_{1}+1=x_{0}+N_{0} \geq S$.
Choose smallest integer N_{1} such that $x_{1}+N_{1} / 2 \geq S\left(N_{1}=1\right.$ or 2$)$
figure: $\left(x_{i}\right)$ on real line
Put $x_{2}=x_{1}+\left(N_{1}-1\right) / 2$, fails $\geq S$.
i.e., $\exists s_{2} \in S$ with $s_{2}>x_{2}$. Also $x_{2}+1 / 2=x_{1}+N_{1} / 2 \geq S$.

Inductively define $x_{n}=x_{n-1}+\left(N_{n-1}-1\right) / n$ where $N_{n-1}=$ least integer such that $x_{n-1}+N_{n-1} / n \geq S$ By construction $\exists s_{n} \in S$ such that $x_{n}<s_{n}$, but $x_{n}+1 / n \geq S$.

$$
\Longrightarrow N_{n-1} \geq 1 \Longrightarrow x_{n+1} \geq x_{n}
$$

Produces a sequence $\left(x_{n}\right)$ that is increasing.
If B is an upper bound for S then $x_{n} \leq B$ hence the sequence is bounded above.
By completeness axiom $\left(x_{n}\right)$ converges to say x_{0}.
Claim: $x_{0}=\sup (S)$

1. $\left(x_{n}\right)$ increasing, therefore $x_{n} \leq x_{0}, \forall n$. Say $\exists s \in S, s>x_{0}$. Then $s-x_{0}>1 / N$ for some $N \in \mathbb{N}$ $\Longrightarrow s>1 / N+x_{0} \geq 1 / N+x_{n}$, contradiction. Therefore x_{0} is an upper bound for S.

[^4]2. Show $\forall \epsilon>0 \exists x \in S$ such that $x>x_{0}-\epsilon$.

Get x_{n} such that $x_{n}>x_{0}-\epsilon\left(\right.$ since $\left.\left(x_{n}\right) \rightarrow x_{0}\right)$.
Know $\exists s_{n} \in S$ with $s_{n}>x_{n}>x_{0}-\epsilon$.
By our characterization of $\sup , x_{0}=\sup (S)$.

PMATH 351 Lecture 5: September 23, 2009

Review:

Completeness axiom: Every bounded above, increasing sequence converges.
Completeness Theorem: Every non-empty subset of \mathbb{R} which is bounded above has a LUB or sup.
Definition: A sequence $\left(x_{n}\right)$ is Cauchy if for all $\epsilon>0$ there exists an N such that for all $n, m \geq N$, $\left|x_{n}-x_{m}\right|<\epsilon$.
exercise: Cauchy sequences are bounded.
Convergent sequences are Cauchy.
Theorem: (Completeness Property)
Every Cauchy sequence in \mathbb{R} converges.
Say \mathbb{R} is complete.

Limit Inferior and Limit Superior:

$\left(x_{n}\right)$ bounded sequence.
Consider the sets $\left\{x_{n}, x_{n+1}, \ldots\right\}$: bounded sets
(because entire
sequence is bounded)

Let $A_{n}=\inf \left\{x_{n}, x_{n+1}, \ldots\right\}$ (exists by completeness)
(then) $A_{n} \leq A_{n+1} \Longrightarrow\left(A_{n}\right)_{n=1}^{\infty}$ increasing sequence.
(and) $\left(A_{n}\right)$ is bounded above (UB for original sequence).
By completeness theorem, this sequence converges to

$$
\lim _{n \rightarrow \infty} A_{n}=\sup _{n} A_{n},
$$

since increasing.
Notation: $\liminf \left(x_{n}\right) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} A_{n}=\sup A_{n}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} A_{n} & =\lim _{n \rightarrow \infty}\left(\inf \left\{x_{n}, x_{n+1}, \ldots\right\}\right) \\
& =\lim _{n \rightarrow \infty}\left(\inf _{j \geq n} x_{j}\right)
\end{aligned}
$$

$$
\limsup \left(x_{n}\right)^{9)} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty}\left(\sup \left\{x_{n}, x_{n+1}, \ldots\right\}\right)
$$

$$
=\lim _{n \rightarrow \infty}\left(\sup _{j \geq n} x_{j}\right)=\inf _{n}\left(\sup _{j \geq n} x_{j}\right)
$$

$$
\limsup \left(x_{n}\right) \geq \liminf \left(x_{n}\right)
$$

Always these exist for bounded sequence.
Example: $x_{2 n}=1+\frac{1}{2 n}, x_{2 n+1}=\frac{-1}{2 n+1}$

$$
\left.\begin{array}{l}
A_{1}=x_{1} \\
A_{2}=x_{3} \\
A_{3}=x_{3} \\
A_{4}=x_{5} \\
A_{5}=x_{5}
\end{array}\right\} \lim A_{n}=0 \Longrightarrow \liminf \left(x_{n}\right)=0
$$

[^5]Similarly, $\lim \sup \left(x_{n}\right)=1$.
Theorem: $L=\lim \sup \left(x_{n}\right)$ if and only if $\forall \epsilon>0, x_{n}<L+\epsilon$, for all but finitely many n, and $x_{n}>L-\epsilon$ for infnitely many n.
$L=\liminf \left(x_{n}\right)$ if and only if $\forall \epsilon>0, x_{n}>L-\epsilon$, for all but finitely many n, and $x_{n}<L+\epsilon$ infinitely often.

Problem:

Theorem: A bounded sequence $\left(x_{n}\right)$ converges if and only if $\lim \inf x_{n}=\lim \sup x_{n}$, and in this case the common value is $\lim x_{n}$.
Proof: (\Longrightarrow) Say $\lim x_{n}=L$. This means for all $\epsilon>0$, there exists N such that

$$
\left|x_{n}-L\right|<\epsilon, \quad \forall n \geq N
$$

i.e., $L-\epsilon<x_{n}<L+\epsilon, \forall n \geq N$.

By our characterization, $L=\lim \sup \left(x_{n}\right)=\lim \inf \left(x_{n}\right)$.
($\Longleftarrow)$ Suppose $\lim \sup x_{n}=\lim \inf x_{n}=L$.
We'll see that $L=\lim x_{n}$.
For $\epsilon>0$, want to find N such that $\left|x_{n}-L\right|<\epsilon, \forall n \geq N$.
Since $L=\limsup x_{n}, \exists N_{1}$ such that $x_{n}<L+\epsilon, \forall n \geq N_{1}$.
Similarly, since $L=\liminf x_{n}, \exists N_{2}$ such that $x_{n}>L-\epsilon, \forall n \geq N_{2}$.
Take $N=\max \left(N_{1}, N_{2}\right)$.
Then $\forall n \geq N, L-\epsilon<x_{n}<L+\epsilon, \forall n \geq N$.
$\Longrightarrow L=\lim x_{n}$.
Proposition: Every bounded sequence $\left(x_{n}\right)$ has a subsequence which converges to $\lim \sup \left(x_{n}\right)$ and (another) subsequence converging to $\lim \inf \left(x_{n}\right)$.

Proof: Let $L=\limsup x_{n}$. Know for all $k, x_{n}<L+1 / k, \forall n \geq N_{k}$, and $x_{n}>L-1 / k$, infinitely often.
Construct our subsequence: Pick $n_{1}>N_{1}$ such that $x_{n_{1}}>L-1 / 1$. Since $n_{1}>N_{1}$, we have $x_{n_{1}}<L+1 / 1$.
Pick $n_{2}>\max \left(n_{1}, N_{2}\right)$, such that $x_{n_{2}}>L-1 / 2$, and $x_{n_{2}}<L+1 / 2$.
Repeat: Pick $n_{k}>n_{k-1}$ such that $L+1 / k>x_{n_{k}}>L-1 / k$.
Consider the sequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$. By construction it converges to L.
Bolzano-Weierstrass Theorem (Corollary): Every bounded sequence has a convergent subsequence.

PMATH 351 Lecture 6: September 25, 2009

Metric Spaces

Definition: A metric space is a set X with a metric (or distance function) d with $d: X \times X \rightarrow[0, \infty$) satisfying

1. $d(x, y)=0$ iff $x=y$
2. $d(x, y)=d(y, x) \forall x, y \in X$
3. $d(x, y) \leq d(x, z)+d(z, y) \forall x, y, z \in X$, triangle inequality

Examples:

1. $\mathbb{R}, d(x, y)=|x-y|$
2. $\mathbb{R}^{n}, d(x, y)=d_{2}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}=\|x-y\|$, Euclidean metric
3. $\mathbb{R}^{2}, d_{1}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|, d_{1}((1,0),(0,1))=2$
4. $\mathbb{R}^{2}, d_{\infty}(x, y)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$
triangle inequality:

$$
\begin{aligned}
\left|x_{1}-y_{1}\right| & \leq\left|x_{1}-z_{1}\right|+\left|z_{1}-y_{1}\right| \\
& \leq d_{\infty}(x, z)+d_{\infty}(z, y)
\end{aligned}
$$

Similarly, $\left|x_{2}-y_{2}\right| \leq d_{\infty}(x, z)+d_{\infty}(z, y)$
$\Longrightarrow d_{\infty}(x, y) \leq d_{\infty}(x, z)+d_{\infty}(z, y)$
Think about what $\left\{x: d_{-}(x, 0)<1\right\}$ looks like.
5. X any set, $d=$ discrete metric
figure: ∞-norm
square, 2-norm circle,
1-norm diamond
6. $X=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{i}=0,1\right\}$

- 2 element set $d(x, y)=\#$ indices i where $x_{i} \neq y_{i}$
- exercise, e.g., $d((0,1,0),(1,1,0))=1$

7. $X=\left\{\right.$ bounded sequence $\left.\left(x_{n}\right)\right\}=l^{\infty}$
vector space
$d_{\infty}(x, y)=\sup _{n}\left|x_{n}-y_{n}\right|$
Example: $x=\left(x_{n}\right)=(1-1 / n), y=\left(y_{n}\right), y_{n}=1 / n$
$d_{\infty}(x, y)=\sup _{n}|(1-1 / n)-1 / n|=1$
$c_{0}=\left\{\left(x_{n}\right)\right.$ which converge to 0$\} \subseteq l^{\infty}$
8. $l^{2}=\left\{\left(x_{n}\right)_{n=1}^{\infty}: \sum\left|x_{n}\right|^{2}<\infty\right\}$

$$
d(x, y)=\left(\sum_{i=1}^{\infty}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2} \quad\langle x, y\rangle=\sum x_{i} y_{i}
$$

Define $l^{p}, 1 \leq p \leq \infty$

$$
l^{p}=\left\{\left(x_{n}\right): \sum\left|x_{n}\right|^{p}<\infty\right\}
$$

Problem: $l^{1} \subsetneq l^{p} \subsetneq c_{0} \subsetneq l^{\infty}, 1<p<\infty$
9. $X=$ inner product space

$$
d(x, y)=\sqrt{\langle x-y, x-y\rangle}
$$

Topology: (X, d) metric space
Ball (centred at x_{0} with radius r) in $\left(\mathbb{R}^{2}, d_{2}\right)=\left\{x \in \mathbb{R}^{2}: d\left(x, x_{0}\right)<r\right\}$
Definition: Given metric space (X, d) we let

$$
B\left(x_{0}, r\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}, \quad r>0
$$

ball centred at x_{0}, radius r

Example:

1. In $\mathbb{R},|\cdot|, \quad B\left(x_{0}, r\right)=\left(x_{0}-r, x_{0}+r\right)$
2. In \mathbb{R}^{2}, d_{1}, balls are diamonds
3. X, discrete metric, $B\left(x_{0}, r\right)=\left\{x_{0}\right\}$ for $r \leq 1, B\left(x_{0}, r\right)=X$ for $r>1$

Definition: Let $U \subseteq X$. Say $x_{0} \in U$ is an interior point of U if $\exists r>0$ such that $B\left(x_{0}, r\right) \subseteq U$.
Write int U for set of interior points of U. Say U is open if every point of U is an interior point of U.

Example:

1. \mathbb{R}

$$
\begin{aligned}
U & =[0,1) \\
\operatorname{int} U & =(0,1)
\end{aligned}
$$

Which nonempty intervals are open sets? Open intervals (a, b)
2. \emptyset is always open in any metric space
X is always open
3. \mathbb{R}^{2} open in all d_{1}, d_{2}, d_{∞}

Problem: Show that the same open sets are produced by d_{1}, d_{2} or d_{∞}.
4. X, discrete metric
$U \subseteq X$, int $U=U$, since if $x_{0} \in U$ then $B\left(x_{0}, 1\right)=\left\{x_{0}\right\} \subseteq U$.
Hence every set is open.
Proposition: Balls are open sets.
Proof: Consider the ball $B\left(x_{0}, r\right)$ and let $z \in B\left(x_{0}, r\right)$
Put $\rho=r-d\left(x_{0}, z\right)>0$
Reqired to prove: $B(z, p) \subseteq B\left(x_{0}, r\right)$
Fix $w \in B(z, p)$
Calculate

$$
\begin{aligned}
d\left(w, x_{0}\right) & \leq d(w, z)+d\left(z, x_{0}\right) \\
& <\rho+d\left(z, x_{0}\right) \\
& =r-d\left(x_{0}, z\right)+d\left(z, x_{0}\right)=r
\end{aligned}
$$

$\Longrightarrow d\left(w, x_{0}\right)<r \Longrightarrow w \in B\left(x_{0}, r\right)$

Hence $B(z, \rho) \subseteq B\left(x_{0}, r\right)$, so z is an interior point of $B\left(x_{0}, r\right)$, and since z was an arbitrary point of $B\left(x_{0}, r\right)$, this proves $B\left(x_{0}, r\right)$ is open.

PMATH 351 Lecture 7: September 28, 2009

Ball $B\left(x_{0}, r\right)=\left\{x \in X: d\left(x, x_{0}\right)<r\right\}\left(r>0, x_{0} \in X\right)$
$U \subseteq X$ is open if $\forall u \in U \exists B(u, r) \subseteq U$ for some $r>0$
Proposition: Balls are open sets.

Proposition:

1. If U_{1}, U_{2} are open then $U_{1} \cap U_{2}$ is open.
2. If $\left\{U_{i}\right\}_{i \in I}$ are open then $\bigcup_{i \in I}$ is open.

Proof:

1. Let $x \in U_{1} \cap U_{2}$. Since $x \in U_{i}$ and these are open, $\exists r_{i}>0$ such that $B\left(x, r_{i}\right) \subseteq U_{i}$. Let $r=\min \left(r_{1}, r_{2}\right)>0$ and then $B(x, r) \subseteq B\left(x, r_{1}\right) \subseteq B\left(x, r_{2}\right) \subseteq U_{1} \cap U_{2}$ $U_{1} \cap U_{2}$ is open
2. If $x \in \bigcup_{i \in I} U_{i}$ then $\exists i_{0} \in I$ such that $x \in U_{i_{0}}$. That set is open so $\exists r$ such that $B(x, r) \subseteq U_{i_{0}} \subseteq$ $\bigcup_{i \in I} U_{i}$ $\Longrightarrow \bigcup U_{i}$ is open.

Example: $B\left(0, \frac{1}{n}\right)$ in $\mathbb{R}^{2} . \bigcap_{i=1}^{\infty} B\left(0, \frac{1}{n}\right)=\{0\}$, not open.
This shows an infinite intersection of open sets need not be open.
Proposition: U is open iff U is a union of balls.
Proof: (\Longleftarrow) Any union of balls is a union of open sets, therefore is open.
(\Longrightarrow) Since U is open, $\forall x \in U \exists B\left(x, r_{x}\right) \subseteq U$.
Claim $U=\bigcup_{x \in U} B\left(x, r_{x}\right)$
RHS $\subseteq U$ as each $B\left(x, r_{x}\right) \subseteq U$
But each $x \in U$ belongs to $B\left(x, r_{x}\right)$, therefore $U \subseteq$ RHS
Proposition: int $U=\bigcup_{\substack{V \subseteq U \\ \text { open }}}$: says $\operatorname{int} U$ is the largest open subset of U
Proof: Let $x \in \operatorname{int} U$. By definition $\exists r>0$ such that $B(x, r) \subseteq U$.
$B(x, r)$ is an open set in U therefore $x \in \bigcup_{V}^{V \subseteq U} \underset{\text { open }}{ } V \longrightarrow \operatorname{int} U \subseteq \bigcup_{V \subseteq U}^{V \subseteq U} V$
Pick $x \in \bigcup_{V \subseteq U}^{V \subseteq} V$. Then $x \in V$ some $V \subseteq U$, open.
So $\exists B(x, r) \subseteq V \subseteq U \Longrightarrow x \in \operatorname{int} U \Longrightarrow \bigcup_{V \subseteq U} C \subseteq \operatorname{int} V$
$\operatorname{int}(A \cup B) \neq \operatorname{int} A \cup \operatorname{int} B$
No:

1. $\underbrace{(-1,0]} \cup \underbrace{[0,1)}_{B}$
$\underbrace{-10}_{A} \underbrace{0,1}_{B}$
$\operatorname{int}(A \cup B)=(-1,1)$
$\operatorname{int} A=(-1,0), \operatorname{int} B=(0,1)$
2. $A=\mathbb{Q}, B=\mathbb{R} \backslash \mathbb{Q}$
$\operatorname{int} A=\emptyset=\operatorname{int} B$
$\operatorname{int}(A \cup B)=\operatorname{int} \mathbb{R}=\mathbb{R}$
Definition: $A \subseteq X$ is closed if $A^{\mathrm{C}}=X \backslash A$ is open
Example:
3. \mathbb{R} : which intervals are closed sets?

$$
[a, b],[a, \infty],(-\infty, a],(-\infty, \infty)
$$

2. X, \emptyset are both open and closed
3. $\mathbb{Q} \subseteq \mathbb{R}$ is neither open nor closed
4. $(X, d),\left\{x_{0}\right\}$ is closed

Proof: Let $z \notin\left\{x_{0}\right\}$, i.e., $z \neq x_{0}$
$[a, b)$ is not closed
because
$(-\infty, a) \cup[b,-\infty)$ is
not open as b is not an interior point.

Consider $B\left(z, d\left(z, x_{0}\right)\right)$. Verify that $x_{n} \notin B\left(z, d\left(z, x_{0}\right)\right)$
figure: line between
That's true since $B\left(z, d\left(z, x_{0}\right)\right)=\left\{y: d(y, z)<d\left(z, x_{0}\right)\right\}$ and $y=x_{0}$ does not have that property. Thus $B\left(z, d\left(z, x_{0}\right)\right) \subseteq\left\{x_{0}\right\}^{\mathrm{C}}$. Therefore $\left\{x_{0}\right\}$ is closed.
5. $\left\{x: d\left(x, x_{0}\right)=r_{0}\right\}$ is closed
6. Discrete space: Every set is closed (and open)
7. $\mathbb{Z},|\cdot|, \quad B\left(n, r^{10)}\right)=\{n\}$

Every set is open and closed.

Proposition:

1. Any intersection of closed sets is closed.

[^6]2. A finite union of closed sets is closed.

Proof:

1. Let $U=\bigcap U_{i}, U_{i}$ closed

$$
U^{\mathrm{C}}=\left(\bigcap U_{i}\right)^{\mathrm{C}}=\underbrace{\bigcup \underbrace{U_{i}^{\mathrm{C}}}_{\text {open }}}_{\text {open }} \quad \text { therefore } U \text { is closed }
$$

Definition: A point $x \in X$ is an accumulation point ${ }^{11)}$ of $U \subseteq X$ if $\forall r>0, B(x, r) \cap(U \backslash\{x\}) \neq \emptyset$ (i.e., every ball about x contains a point of U other than x) Equivalently: every open set V containing x satisfies

$$
V \cap(U \backslash\{x\}) \neq \emptyset
$$

Equivalently, $\forall r>0, B(x, r) \cap U$ is infinte.
Take $B(x, r)$: Find $u_{1} \in B(x, r) \cap(U \backslash\{x\})$.
figure: radii around point x with u_{1}, u_{2}, u_{3} increasingly closer to x
figure: $[0,1)$ real line
1 is an accumulation point of U [but 1 is not in U.]
Everything in U is an accumulation point of U. Nothing else.
2. $U=[0,1) \cup\{2\}$ in \mathbb{R}.

2 is not an accumulation point: called isolated points.

PMATH 351 Lecture 8: September 30, 2009

Accumulation point: $x \in X$ is an accumulation point of $U \subseteq X$ if $\forall r>0, B(x, r) \cap(U \backslash\{x\}) \neq \emptyset$.

Example:

1. $U=[0,1) \cup\{2\}$ in \mathbb{R} Accumulation points of $U=[0,1]$
2. \mathbb{Q} in \mathbb{R} : All points of \mathbb{R} are accumulation points.
3. $U=B\left(x_{0}, 1\right)$ in \mathbb{R}^{2} with any of these metrics d_{1}, d_{2}, d_{∞}.

Take $y \in \mathbb{R}^{2}$ with $d\left(x_{0}, y\right)=1$
figure: U on real line

These points are accumulation points in all 3 cases.
Now let $U=B\left(x_{0}, 1\right)$ in X.
Take $y \in X$ with $d\left(x_{0}, y\right)=1$.
Is y an accumulation point of U ?
Not if X is the discrete metric space.
Take $B(y, 1 / 2)=\{y\}$: Does it intersect U ? No.
4. Any set U in discrete metric space

- No point is an accumulation point since balls of radius $r \leq 1$ are singletons

Every point in discrete metric space is isolated.
$5 . \mathbb{Z}$: every point is isolated.

[^7]Theorem: A set U is closed if and only if U contains all its accumulation points.

Corollary:

1. Any finite set is closed
2. In the discrete metric space every set is closed
3. Any set with no accumulation points is closed.

Proof: (\Longrightarrow) Assume U is closed. Take $x \notin U$ and show x is not an accumulation point of U. $x \in U^{\mathrm{C}}$ and this set is open. Hence $\exists r>0$ such that $B(x, r) \subseteq U^{\mathrm{C}}$. Thus $B(x, r) \cap U=\emptyset$. Therefore x is not an accumulation point of U.
(\Longleftarrow) Assume U contains all its accumulation points.
Show U^{C} is open. Take $x \in U^{\mathrm{C}}$. By assumption x is not an accumulation point of U. Hence $\exists r>0$ such that $B(x, r) \cap U=\emptyset$, i.e., $B(x, r) \subseteq U^{\mathrm{C}} . \Longrightarrow U^{\mathrm{C}}$ is open $\Longrightarrow U$ is closed.

Notation: $\bar{A}=$ closure of $A=A \cup\{$ accumulation points of $A\}$
Notes: If A is closed then $\bar{A}=A$
If $\bar{A}=A$ then all accumulation points of A are in A, therefore A is closed.
e.g., $\overline{\mathbb{Q}}$ in \mathbb{R} is \mathbb{R}.

Theorem:

1. \bar{A} is a closed set
2. $\bar{A}=\bigcap_{B}^{B \supseteq A} \underset{B}{\text { closed }}$ B

Proof:

1. Show that \bar{A}^{C} is open.

Let $x \in \bar{A}^{\mathrm{C}}$. Then x is not in A and even x is not an accumulation point of A.
Then $\exists r>0$ such that $B(x, r) \cap A=\emptyset$.
Claim: $B(x, r) \cap \bar{A}=\emptyset$. Say $y \in B(x, r) \cap \bar{A}$.
Then y is an accumulation point of A. Since $B(x, r)$ is an open set containing y, it would have to intersect A. But we know it doesn't.
This proves the claim.

$$
\Longrightarrow B(x, r) \subseteq \bar{A}^{\mathrm{C}} \Longrightarrow \bar{A}^{\mathrm{C}} \text { is open } \Longrightarrow \bar{A} \text { is closed }
$$

2. exercise

Definition: $A \subseteq X$ is dense if $\bar{A}=X$
Definition: X is separable if it has a countable dense set
e.g., \mathbb{Q} is dense in \mathbb{R} and \mathbb{R} is separable

Exercise: Show \mathbb{R}^{n} is separable for all n

1. X discrete metric space: no proper subset is dense since every set is already closed.
2. If A is closed and dense in X, what is A ? (any metric space)

$$
\underbrace{A=}_{\text {closed }} \bar{A} \underbrace{=X}_{\text {dense }}
$$

Example: $c_{0}=\left\{\left(x_{n}\right)_{n=1}^{\infty}: x_{n} \rightarrow 0\right\} \subseteq l^{\infty}=$ bounded sequences
$d(x, y)=\sup _{n}\left|x_{n}-y_{n}\right|$
$l^{1}=\left\{\left(x_{n}\right): \sum\left|x_{n}\right|<\infty\right\} \subseteq c_{0}$
Show l^{1} is dense in c_{0}.
Take $x=\left(x_{n}\right) \in c_{0}$ and consider $B(x, r)$

Pick N such that $\left|x_{n}\right|<r$ for all $n \geq N$ and put $y=\left(x_{1}, x_{2}, \ldots, x_{N}, 0,0, \ldots\right)$ $y \in l^{1}$

$$
\begin{aligned}
d(x, y) & =\sup _{n}\left|x_{n}-y_{n}\right| \\
& =\sup _{n>N}\left|x_{n}-y_{n}\right|^{12)} \\
& =\sup _{n>N}\left|x_{n}\right| \\
& <r
\end{aligned}
$$

This proves $x \in \overline{l^{1}}$. Therefore l^{1} is dense in c_{0}.
Definition: Bdy $A=\bar{A} \cap \overline{A^{\mathrm{C}}}$

1. Ball in \mathbb{R}^{2} : our "usual" understanding of boundary
2. $\operatorname{Bdy} \mathbb{Q}^{13)}=\mathbb{R}$
3. Bdy A, where $A \subseteq X$ discrete metric space: $\bar{A}=A, \overline{A^{\mathrm{C}}}=A^{\mathrm{C}}$
therefore $\bar{A} \cap \overline{A^{\mathrm{C}}}=A \cap A^{\mathrm{C}}=\emptyset$

PMATH 351 Lecture 9: October 2, 2009

Bounded in \mathbb{R}^{n} :

$A \subseteq \mathbb{R}^{n}$: say A is bounded if $\exists M$ such that $\|x\|<M \forall x \in A$
$\Longleftrightarrow A \subseteq B(0, M)$
Definition: $A \subseteq X$ is bounded if $\exists x_{0} \in X$ and M such that $A \subseteq B\left(x_{0}, M\right)$
$\Longleftrightarrow \forall x \in X \exists M_{X}$ such that $A \subseteq B\left(x, M_{X}\right)$

$$
\left(B\left(x_{0}, M\right) \subseteq B\left(x, M+d\left(x_{0}, x\right)\right)\right)
$$

Discrete metric space X :
$X \subseteq B\left(x_{0}, 1+\epsilon\right)$ for any $\epsilon>0$
X is bounded
Sequences in metric spaces:
Recall definition of convergence of $\left(x_{n}\right)$ in \mathbb{R}^{N}
$\exists x_{0} \in \mathbb{R}^{N}$
$\forall \epsilon>0 \exists M$ such that $\forall n \geq M$
$\left\|x_{n}-x_{0}\right\|^{14)}<\epsilon$
Definition: Say $\left(x_{n}\right)$ in X converges if $\exists x_{0} \in X$ such that $\forall \epsilon>0$
$\exists N$ with $d\left(x_{n}, x_{0}\right)<\epsilon \forall n \geq N$
i.e., $x_{n} \in B\left(x_{0}, \epsilon\right) \forall n \geq N$

Equivalently, the sequence of real numbers $\left(d\left(x_{n}, x_{0}\right)\right)_{n=1}^{\infty}$ converges to 0 in \mathbb{R}.
Proposition: $\left(x_{n}\right) \rightarrow x_{0}$ if and only if \forall open set U containing $x_{0}, \exists N$ such that $x_{n} \in U \forall n \geq N$.
Proof: (\Longrightarrow) Let U be an open set containing x_{0}
$\exists \epsilon>0$ such that $B\left(x_{0}, \epsilon\right) \subseteq U$ (because U is open)
Since $x_{n} \rightarrow x_{0} \exists N$ such that $x_{n} \in B\left(x_{0}, \epsilon\right)^{15)} \forall n \geq N$
Thus $x_{n} \in U \forall n \geq N$
$(\Longleftarrow) B\left(x_{0}, \epsilon\right)$ is an open set containing x_{0}.

[^8]Exercise: Limits are unique.
Convergent sequences are bounded, i.e., $\left\{x_{n}: n=1,2, \ldots\right\}$ is a bounded set.
Example: What do convergent sequences in discrete metric spaces look like? Must have $x_{n}=x_{0}$ $\forall n \geq N$ for some N

Proposition: $x \in \bar{E}$ iff $x=\lim x_{n}$ where $x_{n} \in E$
Proof: $x \in \bar{E}$ iff $\forall n B(x, 1 / n) \cap E \neq \emptyset$
(\Longrightarrow) If $x \in \bar{E}$ pick $x_{n} \in B(x, 1 / n) \cap E$: Then $\left(x_{n}\right)$ is a sequence in E converging to x.
(\Longleftarrow) If $x_{n} \rightarrow x$ then $\forall \epsilon>0, B(x, \epsilon)$ contains all $x_{n}{ }^{16)}$, for $n \geq N$
$\Longrightarrow B(x, \epsilon) \cap E \neq \emptyset, \forall \epsilon>0$
$\Longrightarrow x \in \bar{E}$
Cauchy sequence: $\left(x_{n}\right)$ is Cauchy if $\forall \epsilon>0 \exists N$ such that $d\left(x_{n}, x_{m}\right)<\epsilon \forall n, m \geq N$
Exercise: Every convergent sequence is Cauchy.
If a Cauchy sequence has a convergent subsequence, then (he (original) sequence converges to the limit of the subsequence.

Example: $X=\mathbb{Q},|\cdot|$
Take $x_{n} \in \mathbb{Q}, x_{n} \rightarrow \sqrt{2}$ in \mathbb{R}.
$\left(x_{n}\right)$ is a Cauchy sequence in \mathbb{Q}.
But it does not converge (in metric space \mathbb{Q}).
Definition: We say X is complete if every Cauchy sequence in X converges.
e.g., \mathbb{R}^{n} is complete
\mathbb{Q} is not complete.
Discrete metric space is complete.
Proposition: Any closed subset E of a complete metric space is complete.
Proof: Let $\left(x_{n}\right)$ be a Cauchy sequence in E
It's also a Cauchy sequence in X. Hence $\exists x_{0} \in X$ such that $\lim x_{n}=x_{0}$.
By previous proposition $x_{0} \in \bar{E}=E$ as E is closed.
Therefore $\left(x_{n}\right)$ converges in E.

Compactness:

Definition: An open cover $\left\{G_{\alpha}\right\}$ of a set X is a collection of open sets whose union contains X.
By a subcover of an open cover, $\left\{G_{\alpha}\right\}$, we mean a subfamily of the G_{α} s whose union still contains X.
Definition: We say X is compact if every open cover of X has a finite subcover.
Example: \mathbb{R} : not compact
$\{(-n, n): n \in \mathbb{N}\}$: open cover with no finite subcover
X infinite discrete metric space: not compact, the open cover by singletons has no finite subcover

PMATH 351 Lecture 10: October 5, 2009

Definition: $A \subseteq X$ is compact if every open cover of A has a finite subcover.
e.g., \mathbb{R} not compact: $\{(-n, n): n \in \mathbb{N}\}$ is an open cover with no finite subcover.
e.g., $(0,1)$ not compact: $\{(1 / n, 1-1 / n): n=2,3, \ldots\}$
e.g., X any metric space
$A=\left\{a_{1}, \ldots, a_{N}\right\}$ any finite set is compact
Proof: Let $\left\{G_{\alpha}\right\}$ be an open cover of A
For each $j=1, \ldots, N$ there exists $G_{\alpha_{j}}$ from the collection such that $a_{j} \in G_{\alpha_{j}}$. Then $G_{\alpha_{1}}, \ldots, G_{\alpha_{N}}$ are a finite subcover of A.
${ }^{16)} \in E$
e.g., X discrete metric space. Then $A \subseteq X$ is compact if and only if A is finite.

- Saw on Friday that infinite sets in discrete metric space are not compact: just take $\{B(a, 1): a \in A\}$

Characterization of compactness in \mathbb{R}^{n} :

Theorem: For $A \subseteq \mathbb{R}^{n}$ the following are equivalent:
(1) A is compact
(2) A is closed and bounded ${ }^{17)}$
(3) Every sequence from A has a convergent subsequence with the limit in $A^{18)}$

Heine-Borel Theorem does not hold true in general metric spaces.
Proposition: Compact sets in metric spaces are alwasys closed.
Proof: Let K be a compact set. Want to prove K^{C} is open.
Let $x \in K^{\mathrm{C}}$.
For all $y \in K$ there exists $r_{y}>0$ such that

$$
B\left(x, r_{y}\right) \cap B\left(y, r_{y}\right)=\emptyset
$$

Consider $\left\{B\left(y, r_{y}\right): y \in K\right\}$: open cover of K
K is compact so there exists a finite subcover, i.e., there exists $B\left(y_{1}, r_{y_{1}}\right), \ldots, B\left(y_{N}, r_{y_{N}}\right)$ such that

$$
\bigcup_{j=1}^{N} B\left(y_{j}, r_{y_{j}}\right) \supseteq K .
$$

Let $r=\min \left(r_{y_{1}}, \ldots, r_{y_{N}}\right)>0$.
Claim $B(x, r) \cap K=\emptyset$.
Say $z \in B(x, r) \cap K$. Then there exists $j \in\{1, \ldots, N\}$ such that $z \in B\left(y_{j}, r_{y_{j}}\right)$. So $z \in B(x, r) \cap$ $B\left(y_{j}, r_{y_{j}}\right)$, but $B(x, r) \subseteq B\left(x, r_{y_{j}}\right)$, i.e., $z \in B\left(x, r_{y_{j}}\right) \cap B\left(y_{j}, r_{y_{j}}\right)=\emptyset$ by construction.
Contradiction. Hence $B(x, r) \subseteq K^{\mathrm{C}} \Longrightarrow K^{\mathrm{C}}$ is open $\Longleftrightarrow K$ is closed.
Proposition: Closed subsets of compact sets are compact.
Proof: Let F be a closed subset of compact set X.
Take an open cover $\left\{G_{\alpha}\right\}$ of F.
Then the collection of sets G_{α} together with the open set F^{C} is an open cover of X. ${ }^{19)}$
Let $G_{\alpha_{1}}, \ldots, G_{\alpha_{N}},\left(F^{\mathrm{C}}\right)^{20)}$ be a finite subcover of X.
Then $G_{\alpha_{1}}, \ldots, G_{\alpha_{N}}$ must cover F.
So the open cover $\left\{G_{\alpha}\right\}$ of F has a finite subcover.
Hence F is compact.
Proposition: Compact sets (in metric spaces) are bounded.
Proof: Let K be compact set and let $x_{0} \in K$.
Consider all balls $B\left(x_{0}, n\right), n=1,2,3, \ldots$
If $k \in K$ then $d\left(x_{0}, k\right)<n_{0}$ for some large enough integer n_{0} i.e., $k \in B\left(x_{0}, n_{0}\right)$. Therefore

$$
\begin{aligned}
& k \in \bigcup_{n=1}^{\infty} B\left(x_{0}, n\right) \\
\Longrightarrow & K \subseteq \bigcup_{n=1}^{\infty} B\left(x_{0}, n\right)
\end{aligned}
$$

[^9]Hence $\left\{B\left(x_{0}, n\right): n=1,2, \ldots\right\}$ is an open cover of K.
Since K is compact there must be a finite subcover, say $B\left(x_{0}, n_{1}\right), \ldots, B\left(x_{0}, n_{L}\right)$.
Say $n_{L}=\max \left(n_{1}, \ldots, n_{L}\right)$
Then $B\left(x_{0}, n_{L}\right) \supseteq B\left(x_{0}, n_{j}\right)$ for $j=1,2, \ldots, L$
$\Longrightarrow K \subseteq B\left(x_{0}, n_{L}\right)=\bigcup_{1}^{L} B\left(x_{0}, n_{j}\right)$
Hence K is bounded.
Definition: ϵ-net: for $A \subseteq$ metric space X is a finite set $x_{1}, \ldots, x_{n} \in X$ such that every element of A has distance at most ϵ from at least one x_{j}.
i.e., for all $a \in A$ there exists $j \in\{1, \ldots, n\}$ such that $d\left(a, x_{j}\right) \leq \epsilon$.

If take $\epsilon^{\prime}>\epsilon$ then $\bigcup_{j=1}^{n} B\left(x_{j}, \epsilon^{\prime}\right) \supseteq A$.
Definition: Say A is totally bounded if for all $\epsilon>0$ there exists ϵ-net for A. e.g., X discrete metric space.

There is a 1-net (consisting of one element)
But no $1-\epsilon$ net if X is infinite.
So if X is infinite it is not totally bounded.
Proposition: Totally bounded \Longrightarrow bounded.
Proof: Take a 1-net for the totally bounded set A, say x_{1}, \ldots, x_{k}.
$\Longrightarrow \bigcup_{j=1}^{k} B\left(x_{j}, 3 / 2\right) \supseteq A$
Take $B(x_{1}, \underbrace{\max _{j=1, \ldots, k} d\left(x_{1}, x_{j}\right)+1+3 / 2}_{r}) \supseteq B\left(x_{j}, 3 / 2\right)$ for all j.
Then $A \subseteq B\left(x_{1}, r\right)$

PMATH 351 Lecture 11: October 7, 2009

Totally bounded

ϵ-net: for a set $A \subseteq X$ is a finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq X$ such that for all $x \in A$ there exists j such that $d\left(x_{j}, a\right) \leq \epsilon$.
Totally bounded means A has an ϵ-net for all $\epsilon>0$.
Totally bounded \Longrightarrow bounded.
Bounded \nRightarrow Totally bounded: as discrete metric space is bounded, but not totally bounded.
Example: $A=$ Ball in $\mathbb{R}^{\mathbf{2}}$
Take the set of bottom left corner points from the squares of the ϵ-grid that intersect the ball A. Call
figure: circle with ϵ-grid this finite set $\left\{x_{1}, \ldots, x_{N}\right\}$.

$$
\overline{B\left(x_{j}, \sqrt{2} \epsilon\right)} \supseteq \text { square that } x_{j} \text { is a corner of }
$$

So $\bigcup_{j=1}^{N} \overline{B\left(x_{j}, \sqrt{2} \epsilon\right)} \supseteq A$
hence $\left\{x_{1}, \ldots, x_{N}\right\}$ are an $\sqrt{2} \epsilon$-net for $A . \rightarrow A$ totally bounded.
Same idea works for a ball in \mathbb{R}^{n}.
Fact: If $U \subseteq V$ and V is totally bounded, then U is totally bounded.
Proof: Take same ϵ-net for U as for V.
Proposition: In \mathbb{R}^{n}, bounded \Longrightarrow totally bounded.
Proof: A bounded set is a subset of a ball, and balls in \mathbb{R}^{n} are totally bounded.
Proposition: Compact \Longrightarrow totally bounded
Proof: Let A be compact. Consider $\{B(x, \epsilon): x \in A\}$. This is an open cover for A, so there is a finite subcover, say $B\left(x_{1}, \epsilon\right), \ldots, B\left(x_{n}, \epsilon\right)$, i.e., $\bigcup_{1}^{n} B\left(x_{j}, \epsilon\right) \supseteq A$
$\Longrightarrow\left\{x_{1}, \ldots, x_{n}\right\}$ are an ϵ-net for A.

Exercise: A bounded $\Longrightarrow \bar{A}$ bounded.
Proposition: A totally bounded, then \bar{A} is totally bounded.
Proof: Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be an ϵ-net for A.
Given $x \in \bar{A}$, there exists $a \in A$ such that $d(x, a)<\epsilon$.
$\exists j$ such that $d\left(x_{j}, a\right) \leq \epsilon$
Therefore $d\left(x, x_{j}\right) \leq d(x, a)+d\left(a, x_{j}\right)<2 \epsilon$
So $\left\{x_{1}, \ldots, x_{n}\right\}$ are an 2ϵ-net for \bar{A}.
Goal is to prove metric spaces are compact if and only if it is complete and totally bounded.
Note: For $A \subseteq \mathbb{R}^{n}, A$ is complete if and only if A is closed
Proof:

1. In any metric space complete implies closed because of the following argument. Let x be an accumulation point of the complete space A. Get $\left\{a_{n}\right\} \subseteq A$ such that $a_{n} \mapsto x$. Then $\left(a_{n}\right)$ is a Cauchy sequence in the complete space A. By definition of completeness there exists $a \in A$ such that $a_{n} \rightarrow a$. By uniqueness of limits, $x=a \in A$.
Therefore A is closed.
2. Any closed subset of a complete metric space is complete. In particular, any closed subset of \mathbb{R}^{n} is complete.
Theorem (Cantor's): If $A_{1} \supseteq A_{2} \supseteq \cdots$ are non-empty, closed sets in a complete metric space X and

$$
\operatorname{diam} A_{n}=\sup \left\{d(x, y): x, y \in A_{n}\right\} \rightarrow 0
$$

then $\bigcap_{n=1}^{\infty} A_{n}$ is exactly one element.
e.g., To see "closed" is necessary, take $A_{n}=(0,1 / n)$. Here $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$.

Proof: Pick $x_{n} \in A_{n}$. If $k \geq N$, then $x_{k} \in A_{k} \subseteq A_{N}$. So $\left\{x_{k}: k \geq N\right\} \subseteq A_{N} \Longrightarrow d\left(x_{j}, x_{k}\right) \leq$ $\operatorname{diam} A_{N}$ if $j, k \geq N$.
i.e., $\left\{x_{n}\right\}$ is Cauchy and therefore converges ${ }^{21)}$ to some $x_{0} \in X$. Consider the subsequence $\left(x_{n}\right)_{n=N}^{\infty} \subseteq$ A_{N} and has the same limit x_{0}. But A_{N} is closed, therefore $x_{0} \in A_{N}$. This is true for all N, therefore $x_{0} \in \bigcap_{N=1}^{\infty} A_{N}$.
Now suppose $x_{0}, y_{0} \in \bigcap_{n=1}^{\infty} A_{n}$.
Then $x_{0}, y_{0} \in A_{n}$ for all n, so $d\left(x_{0}, y_{0}\right) \leq \operatorname{diam} A_{n}{ }^{22)}$ for all n.
$\Longrightarrow d\left(x_{0}, y_{0}\right)=0 \Longrightarrow x_{0}=y_{0}$.
Definition: A collection of sets has the F.I.P. (finite intersection property) if every finite intersection is non-empty.
e.g., nested family of sets.

* Theorem: The following are equivalent for a metric space X :
(1) X is compact.
(2) Every collection of closed subsets of X with the F.I.P. has non-empty intersection.
(3) Every sequence in X has a convergent subsequence (limit in $X)^{23}$)
(4) X is complete and totally bounded.

Corollary: (Heine-Borel): In \mathbb{R}^{n}, compact \Longleftrightarrow closed and bounded.
Corollary: compact \Longrightarrow closed and bounded.
(since complete \Longrightarrow closed, and totally bounded \Longrightarrow bounded).

PMATH 351 Lecture 12: October 9, 2009

[^10]Theorem: The following are equivalent for a metric space X :
(1) X is compact
(2) Every collection of closed subsets of X with the F.I.P. has non-empty intersection.
(3) Every sequence in X has a convergent subsequence (limit in X)
(4) X is complete and totally bounded
$1 \Longleftrightarrow 4$: Analogue of the Heine-Borel
$1 \Longleftrightarrow 3$: Bolzano-Weierstrass Theorem

Cantor's Intersection Theorem

If $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots$ are non-empty, closed subseteq of a complete metric space X and

$$
\operatorname{diam} A_{n} \equiv \sup _{n}\left\{d(x, y): x, y \in A_{n}\right\} \rightarrow 0
$$

then $\bigcap_{n=1}^{\infty} A_{n}$ is one point.
Proof: $(4 \Longrightarrow 1)$: Suppose X is not compact. Say $\left\{U_{\alpha}\right\}$ is an open cover of X that has no finite subcover.
Notation: $D\left(x_{0}, r\right)=\left\{x \in X: d\left(x, x_{0}\right) \leq r\right\}$
Exercise: closed set
X is totally bounded so there is a $\frac{1}{2}$-net for X, say $\left\{x_{1}^{(1)}, \ldots, x_{n_{1}}^{(1)}\right\}$

$$
\text { so } \bigcup_{j=1}^{n_{1}} D\left(x_{j}^{(1)}, \frac{1}{2}\right)=X
$$

Since there are only finitely many closed balls $D\left(x_{j}^{(1)}, \frac{1}{2}\right), j=1, \ldots, n$, needed to cover X, at least one of these balls cannot be covered by only finitely many U_{α}.
Say $D\left(x_{1}^{(1)}, \frac{1}{2}\right) \equiv X_{0}$: closed set.
Notice $\operatorname{diam} X_{0}=1=\frac{1}{2^{0}}$.
$X_{0} \subseteq X$ so X_{0} is totally bounded.
Let $\left\{x_{1}^{(2)}, \ldots, x_{n_{2}}^{(2)}\right\}$ be a $\frac{1}{4}$-net for X_{0}.
Hence $\bigcup_{j=1}^{n_{2}} D\left(x_{j}^{(2)}, \frac{1}{4}\right) \cap X_{0}=X_{0}$.
At least one of the sets $D\left(x_{j}^{(2)}, \frac{1}{4}\right) \cap X_{0}$ is not covered by only finitely many $U_{\alpha} \mathrm{s}$,
say $D\left(x_{1}^{(2)}, \frac{1}{4}\right) \cap X_{0} \equiv X_{1}$.
$X_{1}{ }^{24)} \subseteq X_{0}, \operatorname{diam} X_{1} \leq \frac{1}{2}=\frac{1}{2^{1}}$
Repeat to get closed sets $X_{0} \supseteq X_{1} \supseteq X_{2} \supseteq \cdots$
$\operatorname{diam} X_{j} \leq \frac{1}{2^{j}}$ and each set X_{j} cannot be covered by only finitely many U_{α}.
Each X_{j} is non-empty (else could cover with finitely many $U_{\alpha} \mathrm{s}$).
By Cantor's intersection theorem,

$$
\bigcap_{n=1}^{\infty} X_{n}=\left\{x_{0}\right\} \quad \text { (singleton) }
$$

Since $\bigcup U_{\alpha}=X$, there exists α_{0} such that $x_{0} \in U_{\alpha_{0}}$.
As $U_{\alpha_{0}}$ is open there exists $\epsilon>0$ such that $B\left(x_{0}, \epsilon\right) \subseteq U_{\alpha_{0}}$.
Take n such that $\frac{1}{2^{n}}<\epsilon$ and consider $X_{n}, \operatorname{diam} X_{n} \leq \frac{1}{2^{n}}$. If $y \in X_{n}$ then because $x_{0} \in X$ we have $d\left(x_{0}, y\right) \leq \operatorname{diam} X_{n} \leq \frac{1}{2^{n}}<\epsilon \Longrightarrow y \in B\left(x_{0}, \epsilon\right)$.
So $X_{n} \subseteq B\left(x_{0}, \epsilon\right) \subseteq U_{\alpha_{0}}$.
Hence X_{n} is covered by only one set $U_{\alpha_{0}}$: contradiction to choice of X_{n}.
Thus X must be compact.

[^11]$(1 \Longrightarrow 2)$: Recall the sets $\left\{U_{\alpha}\right\}$ have the FIP if any finite intersection of these sets is non-empty.
Let $\left\{A_{\alpha}\right\}$ be closed subsets of X and suppose $\bigcap_{\alpha} A_{\alpha}=\emptyset$. We will prove some finite intersection is empty.
\[

$$
\begin{gathered}
A_{\alpha}^{\mathrm{C}}: \text { open sets } \\
\left(\bigcup A_{\alpha}^{\mathrm{C}}\right)^{\mathrm{C}}=\bigcap A_{\alpha}=\emptyset \\
\Longrightarrow \bigcup A_{\alpha}^{\mathrm{C}}=X
\end{gathered}
$$
\]

hence the sets $\left\{A_{\alpha}^{\mathrm{C}}\right\}$ are an open cover of X.
By compactness (1) there exist infinitely many sets

$$
\begin{aligned}
& A_{\alpha_{1}}^{\mathrm{C}}, \ldots, A_{\alpha_{n}}^{\mathrm{C}} \text { such that } \bigcup_{i=1}^{n} A_{\alpha_{i}}^{\mathrm{C}}=X \\
& \quad \Longrightarrow \bigcap_{i=1}^{n} A_{\alpha_{i}}=\left(\bigcup_{i=1}^{n} A_{\alpha_{i}}^{\mathrm{C}}\right)^{\mathrm{C}}=\emptyset
\end{aligned}
$$

$(2 \Longrightarrow 3)$: Let $\left(x_{n}\right)$ be a sequence in X.
Define $S_{n}=\left\{x_{k}: k \geq n\right\}$
$\overline{S_{n}}$: non-empty, closed, $\overline{S_{n}} \subseteq \overline{S_{n-1}}$
Exercise: $A \subseteq B \Longrightarrow \bar{A} \subseteq \bar{B}$
$\bigcap_{1}^{N} \overline{S_{k}}=\overline{S_{N}}$, hence any finite intersection is non-empty. Therefore $\left\{S_{n}\right\}$ has FIP.
By assumption (2), $\bigcap_{n=1}^{\infty} \overline{S_{n}} \neq \emptyset$. Say $x \in \bigcap_{1}^{\infty} \overline{S_{n}} \Longrightarrow x \in \overline{S_{n}}$ for all n. So given any $\epsilon>0$ and any n, there exists $y_{n} \in S_{n}$ such that $d\left(x, y_{n}\right)<\epsilon$. Note $y_{n}=x_{k}$ for some $k \geq n$.
Start with $n=1, \epsilon=1$. Get $y_{1} \in S_{1}$ such that $d\left(x, y_{1}\right)<1$, say $y_{1}=x_{k_{1}}$.
Take $n=k_{1}+1, \epsilon=\frac{1}{2}$.
Find $y_{n} \in S_{n}$ such that $d\left(x, y_{n}\right)<\frac{1}{2}$
$y_{n}=x_{k_{2}}$ with $k_{2} \geq n>k_{1}$
Repeat with $n=k_{2}+1, \epsilon=\frac{1}{4}$ and get $x_{k_{3}}$ such that $d\left(x_{k_{3}}, x\right)<\frac{1}{4}$ and $k_{3}>k_{2}$.
This produces $k_{1}<k_{2}<\cdots$, and terms $x_{k_{j}}$ such that $d\left(x_{k_{j}}, x\right)<\frac{1}{2^{j-1}}$.
$\left\{x_{k_{j}}\right\}_{j=1}^{\infty}$ is a subsequence of $\left\{x_{n}\right\}$, and clearly $x_{k_{j}} \rightarrow x$.
Hence the sequence $\left(x_{n}\right)$ has a convergent subsequence.

PMATH 351 Lecture 13: October 14, 2009

Theorem: The following are equivalent

1. X is compact
2. Every sequence X has a convergent subsequence (limit in X)
3. X is complete and totally bounded

To finish the proof do $(3 \Longrightarrow 4)$
(i) Prove X is complete.

Let $\left(x_{n}\right)$ be a Cauchy sequence in X.
By assumption (3), (x_{n}) has a convergent subsequence. A Cauchy sequence with a convergent subsequence converges.
$\Longrightarrow X$ is complete.
(ii) Prove X is totally bounded.

Assume not. Then for some $\epsilon>0$ there is no ϵ-net.
Take $x_{1} \in X$. Then $\left\{x_{1}\right\}$ is not an ϵ-net.
So there exists $x_{2} \in X$ such that $d\left(x_{1}, x_{2}\right)>\epsilon$.
Consider $\left\{x_{1}, x_{2}\right\}$: not an ϵ-net.

So there exists $x_{3} \in X$ such that $d\left(x_{1}, x_{2}\right)>\epsilon$ and $d\left(x_{2}, x_{3}\right)>\epsilon$.
Repeat: Get $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $d\left(x_{n}, x_{j}\right)>\epsilon$ for all $j=1, \ldots, n-1$, i.e., $d\left(x_{i}, x_{j}\right)>\epsilon$ for all $i \neq j$.
This sequence has no Cauchy subsequence, so no convergent subsequence: contradicting assumption (3).

Example: Cantor Set $\subseteq[0,1]$.

- compact, empty interior
perfect \rightarrow closed set in which every point is an accumulation point.
Construction: $C_{0}=[0,1]$
$C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right] C_{2}=$ union of $4=2^{2}$ intervals of length $\frac{1}{9}=\frac{1}{3^{2}}$
figures of C_{0}, C_{1}, C_{2}
$C_{n}=$ union of 2^{n} closed intervals, each of length 3^{-n} with gap between any two intervals $\geq 3^{-n}$
C_{n} is closed $\subseteq[0,1]$, therefore compact.
$C_{n} \subseteq C_{n-1}$
Cantor set $C=\bigcap_{n=1}^{\infty} C_{n}$: closed $\subseteq[0,1]$, therefore compact.
$0,1 \in C . \frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}, \ldots \in C: C$ contains all endpoints of Cantor intervals.
Empty interior: Say $I=(a, b) \subseteq C$.
$\Longrightarrow I \subseteq C_{n}$ for all n.
Pick n such that $3^{-n}<b-a=|I|$.
But then $I \not \subset C_{n}$ since the longest intervals in C_{n} are length 3^{-n}.
\Longrightarrow contradiction
Perfect: Let $x_{0} \in C$. Fix $\epsilon>0$.
Pick n such that $3^{-n}<\epsilon$.
$x_{0} \in C_{n} \Longrightarrow x_{0}$ lies in a Cantor interval of step n, of length 3^{-n}.
$a, b \in C$
$d\left(x_{0}, a\right), d\left(x_{0}, b\right) \leq 3^{-n}<\epsilon$
Hence $B\left(x_{0}, \epsilon\right) \cap\left(C \backslash\left\{x_{0}\right\}\right)$ is non-empty.
Since $B\left(x_{0}, \epsilon\right) \cap C \supseteq\{a, b\}$
Proposition: A non-empty, perfect set E in \mathbb{R}^{k} is uncountable.
Proof: E must be infinite since it has accumulation points.
Assume $E=\left\{x_{n}\right\}_{n=1}^{\infty}$ (i.e., E is countably infinite)
Put $k_{1}=1$.
Look at $B\left(x_{k_{1}}, 1\right)=B\left(x_{1}, 1\right) \equiv V_{1}$: open set containing x_{1}.
Since x_{1} is an accumulation point of E_{1} there exists $e \in V_{1} \backslash\left\{x_{1}\right\}, e \in E$
Pick least integer $k_{2}>k_{1}$ such that $x_{k_{2}} \in V_{1} \cap E, x_{k_{2}} \neq x_{k_{1}}$
Pick V_{2} open, contains $x_{k_{2}}$ and satisfies $\overline{V_{2}} \subseteq V_{1}$ and $x_{k_{1}} \notin \overline{V_{2}}$.
(e.g., $V_{2}=B\left(x_{k_{2}}, r\right)$ where $\left.r=\frac{1}{2} \min \left(d\left(x_{k_{1}}, x_{k_{2}}\right), 1-d\left(x_{k_{1}}, x_{k_{2}}\right)\right)\right)$

Consider $V_{2} \cap E \backslash\left\{x_{k_{2}}\right\}$: non-empty
Pick minimal k_{3} such that $x_{k_{3}} \in V_{2} \cap E \backslash\left\{x_{k_{2}}\right\}$.
By construction $k_{3}>k_{2}$.
x_{0} between a and b,
in an interval of
length 3^{-n}

Assume we have chosen $x_{k_{n}} \in E \cap V_{n-1} \backslash\left\{x_{k_{n-1}}\right\}$ with $k_{n}>k_{n-1}$ and minimal; open sets $V_{n} \ni x_{k_{n}}$. $\overline{V_{n}} \subset V_{n-1}$ and $x_{k_{n-1}} \notin \overline{V_{n}}$.
As $x_{k_{n}}$ is an accumulation point of E, we can choose k_{n+1} minimal such that $x_{k_{n+1}} \in V_{n} \cap E \backslash\left\{x_{k_{n}}\right\}$. Then $k_{n+1}>k_{n}$.
Get V_{n+1} open such that $\overline{V_{n+1}} \subset V_{n}$ and $x_{k_{n}} \notin \overline{V_{n+1}}$

$$
\text { Put } \begin{aligned}
K_{n} & =\overline{V_{n}} \cap E^{25)} \\
& \subseteq V_{n-1} \cap E \subseteq \overline{V_{n-1}} \cap E=K_{n-1}
\end{aligned}
$$

so $K_{1} \supseteq K_{2} \supseteq \cdots$

[^12]$$
K_{n} \subseteq K_{1} \subseteq{\overline{B\left(x_{0}, 1\right)}}^{26)}
$$

Since nested, have FIP. By characterization of compactness $(2), \bigcap_{n=1}^{\infty} K_{n} \neq \emptyset$.
Now, $x_{1} \notin \overline{V_{2}}$, therefore $x_{1} \notin \bigcap K_{n} ; x_{2} \notin V_{1}$, therefore $x_{2} \notin \bigcap K_{n} . x_{k_{2}} \notin \overline{V_{3}}$, therefore $x_{k_{3}} \notin \bigcap K_{n}$.
$x_{2+1} \notin V_{2}, \ldots ; x_{k_{j}} \in \overline{V_{j+1}}$, therefore $x_{k_{j}} \notin \bigcap K_{n}$.
$\Longrightarrow x_{j} \notin \bigcap K_{n}$, for any j, and $K_{n} \subseteq E$.
Therefore $\bigcap K_{n}=\emptyset:$ contradiction.

PMATH 351 Lecture 14: October 16, 2009

Midterm: Friday October 23 here at 1:30.
Up to end of compactness.

Additional office hours Tuesday 2-3.
figure: f takes a point in a ball in X to one in Y

Examples:

1. Constant functions are always continuous.
2. Identity map: $X \rightarrow X$. Take $\delta=\epsilon$.
3. Identity map: $(\mathbb{R} \text {, usual metric })^{29)} \rightarrow(\mathbb{R} \text {, discrete metric })^{30)}$

- not continuous

Take $\epsilon \leq 1$, then $B_{Y}\left(\operatorname{Id}\left(x_{0}\right)^{31)}, \epsilon\right)=\left\{x_{0}\right\}$.
So to have $\operatorname{Id}(y)=y \in B_{Y}\left(x_{0}, \epsilon\right)$ means $y=x_{0}$.
But for all $\delta>0, B_{X}\left(x_{0}, \delta\right)$ contains infinitely many points.
So it contains some $y \neq x_{0}$. But then $\operatorname{Id}(y) \notin B_{Y}\left(\operatorname{Id}\left(x_{0}\right), \epsilon\right)$.
4. If x_{0} is not an accumulation point of X then any f is continuous at x_{0}.

Proof: If $\delta>0$ is small enough as $B\left(x_{0}, \delta\right)=\left\{x_{0}\right\}$, then clearly if $y \in B\left(x_{0}, \delta\right)$ then $f(y) \in$ $B\left(f\left(x_{0}\right), \epsilon\right)$ for all $\epsilon>0$
Corollary: If $f: X \rightarrow Y$ where X is the discrete metric space then f is continuous.
5. (X, d) any metric space and $a \in X$.

Then $f(x)=d(a, x)$ is continuous, where $f: X \rightarrow \mathbb{R}$.
Proof:

$$
\begin{gathered}
f(x)-f(y)=d(a, x)-d(a, y) \\
\leq d(a, y)+d(x, y)-d(a, y)=d\left(x_{0}, y\right) \\
f(y)-f(x) \leq d(x, y) \\
\Longrightarrow\left|d(a, x)^{32)}-d(a, y)^{33)}\right| \leq d(x, y)
\end{gathered}
$$

So take $\delta=\epsilon$.

[^13]Proposition: f is continuous at x if and only if whenever $\left(x_{n}\right)$ is a sequence in X converging to x; then the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f(x)$.
Proof: (\Longrightarrow) Let $x_{n} \rightarrow x$.
Take $\epsilon>0$. Get δ by continuity so that $d(x, y)<\epsilon \Longrightarrow d(f(x), f(y))<\epsilon$.
Get N such that $d\left(x_{n}, x\right)<\delta$ for all $n \geq N$.
Take $n \geq N$, then $d\left(f\left(x_{n}\right), f(x)\right)<\epsilon$ by definition of N and δ.
(\Longleftarrow) Suppose f is not continuous at x. Then there exists $\epsilon>0$ such that for every $\delta>0$ there exists $y=y(\delta)$ with $d(x, y)<\delta$ but $d(f(x), f(y)) \geq \epsilon$.
Take $\delta=\frac{1}{n}$ and put $x_{n}=y\left(\frac{1}{n}\right)$.
Then $d\left(x, x_{n}\right)<\frac{1}{n}$, so $x_{n} \rightarrow x$.
But $d\left(f(x), f\left(x_{n}\right)\right) \geq \epsilon \Longrightarrow f\left(x_{n}\right) \nrightarrow f(x)$
Contradiction.
Exercise: $f, g: X \rightarrow \mathbb{R}$ continuous then so are $f \pm g, f g, f / g$ if $g(x) \neq 0$.
Alternate way to look at continuity:
f continuous at x_{0} if and only if for all $\epsilon>0$ there exists $\delta>0$ such that

$$
f\left(B\left(x_{0}, \delta\right)\right) \subseteq B\left(f\left(x_{0}\right), \epsilon\right)
$$

if and only if $B\left(x_{0}, \delta\right) \subseteq f^{-134)}\left(B\left(f\left(x_{0}\right), \epsilon\right)\right)$, where $f^{-1}(v)=\{x: f(x) \in V\}$.
$\Longrightarrow x_{0} \in \operatorname{int} f^{-1}\left(B\left(f\left(x_{0}\right), \epsilon\right)\right)$
Theorem: The following are equivalent: for $f: X \rightarrow Y$

1. f is continuous
2. for all V open in $Y, f^{-1}(V)$ is open in X.
3. for all F closed in $Y, f^{-1}(F)$ is closed in X.

Proof: $(1 \Longrightarrow 2)$: Let V be open in Y, and suppose $x_{0} \in f^{-1}(V)$, i.e., $f\left(x_{0}\right) \in V$.
Hence there exists $\epsilon>0$ such that $f\left(B\left(x_{0}, \delta\right)\right) \subseteq B\left(f\left(x_{0}, \epsilon\right)\right) \subseteq V$.
By continuity, there exists $\delta>0$ such that $f\left(B\left(x_{0}, \delta\right)\right) \subseteq B\left(f\left(x_{0}\right), \epsilon\right) \subseteq V$.

$$
\begin{aligned}
\Longrightarrow B\left(x_{0}, \delta\right) \subseteq f^{-1}(V) & \Longrightarrow x_{0} \text { is an interior point of } f^{-1}(V) \\
& \Longrightarrow f^{-1}(V) \text { is open. }
\end{aligned}
$$

PMATH 351 Lecture 15: October 19, 2009

Continuity

$f: X \rightarrow Y$ is continuous at x if $\forall \epsilon>0 \exists \delta>0$ such that $f(B(x, \delta)) \subseteq B(f(x), \epsilon) \Longleftrightarrow B(x, \delta) \subseteq$ $f^{-1}(B(f(x), \epsilon))$

Theorem: $f: X \rightarrow Y$. The following are equivalent:

1. f is continuous
2. $\forall V$ open in $Y, f^{-1}(V)$ is open in X.
3. $\forall F$ closed in $Y, f^{-1}(F)$ is closed in X.

Proof: $(1 \Longrightarrow 2):$
$(2 \Longrightarrow 1)$: For each $x \in X$, check that f is constant at x.
Put $V=B(f(x), \epsilon)$: open in Y
By $(2), f^{-1}(B(f(x), \epsilon))$ is open in X.
$x \in f^{-1}(B(f(x), \epsilon))$ so since the set is open there exists $\delta>0$ such that $B(x, \delta) \subseteq f^{-1}(B(f(x), \epsilon))$, i.e., f is continuous at $x \in X$.

[^14]$(2 \Longrightarrow 3)$: Let F be a closed set in Y.
F^{C} is open set in Y. By (2), $f^{-1}\left(F^{\mathrm{C}}\right)$ is open in X.
$f^{-1}\left(F^{\mathrm{C}}\right)=\left\{x \in X: f(x) \in F^{\mathrm{C}}\right\}=\{x: f(x) \notin F\}=\left\{x: x \notin f^{-1}(F)\right\}=X \backslash f^{-1}(F)=\underbrace{\left(f^{-1}(F)\right)^{\mathrm{C}}}_{\text {open }}$
$\Longrightarrow f^{-1}(F)$ is closed
Corollary: If $f: X \rightarrow Y, g: Y \rightarrow Z$, continuous then $g \circ f: X \rightarrow Z$ is continuous.
Proof: Let $V \subseteq Z$ be open. $(g \circ f)^{-1}(V)=\{x: g(f(x)) \in V\}$
$$
\Longleftrightarrow f(x) \in g^{-1}(C) \Longleftrightarrow x \in f^{-1}(\underbrace{g^{-1}(V)}_{\text {open }})
$$
\rightarrow open as f, g are continuous

Examples:

1. $f:(0,1) \rightarrow \mathbb{R}$ $x \mapsto 1$
2. $f: \underset{\text { closed }}{\mathbb{R}} \rightarrow \underset{\substack{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \text { onto open set }}}{(x)}$

$$
f(x)=\arctan (x)
$$

3. $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \underset{\text { onto }}{\mathbb{R}}$
$f(x)=\tan x$
Theorem: Let $f: K \rightarrow X$ be continuous and K compact. Then $f(K)$ is compact.
Proof: Let $\left\{U_{\alpha}\right\}$ be an open cover of $f(K)$.
Then $f^{-1}\left(U_{\alpha}\right)$ are open because f is continuous.
If $x \in K$, then $f(x) \in f(K)$ so $f(x) \in U_{\alpha}$ for some $\alpha \Longrightarrow x \in f^{-1}\left(U_{\alpha}\right)$. Hence $\left\{f^{-1}\left(U_{\alpha}\right)\right\}$ form an open cover of K.
Since K is compact there is a finite subcover, say $f^{-1}\left(U_{\alpha_{1}}\right), \ldots, f^{-1}\left(U_{\alpha_{n}}\right)$.
Then $U_{\alpha_{1}}, \ldots, U_{\alpha_{n}}$ are a finite subcover of $f(K)$ because if $f(x) \in f(K)$ for some $x \in K$ then $x \in f^{-1}\left(U_{\alpha_{i}}\right)$ (since these cover K), i.e., $f(x) \in U_{\alpha_{i}}$.
Hence $f(K)$ is compact.
Corollary: (E.V.T.) If K is compact and $f: F \rightarrow \mathbb{R}$ is continuous then f attains minimum and maximum values.

Proof: $f(K)$ is compact in \mathbb{R}, i.e., closed and bounded.
Let $a=\sup f(K)$ and $b=\inf f(K)$
$a, b \in f(K)$ since it is closed,
i.e., $\exists x_{1}, x_{2} \in K$ such that $a \in f\left(x_{1}\right), b=f\left(x_{2}\right)$

Corollary: If $f: K \rightarrow \mathbb{R}$ is continuous, K compact and $f>0$ on K then $\exists \delta>0$ such that $f(x)>\delta$ $\forall x \in K$.

Proof: Take $\delta=f\left(x_{1}\right)$ where $f\left(x_{1}\right)=$ minimum value of f on K.
Corollary: If $f: X \rightarrow Y$ continuous bijection, X compact, then f is a homeomorphism, i.e., f^{-1} is also continuous.

Proof: $\left(f^{-1}\right)^{-1}\left(F^{35)}\right)=f(F)$
Let $F \subseteq X$ be closed. But X is compact, therefore F is compact.
figure:
$X \xrightarrow{f} Y \xrightarrow{g} Z \subseteq V$
and $g^{-1}(v)$ takes V
to Y and
$f^{-1}\left(g^{-1}(v)\right)$ takes Y
to X
open does not
necessarily go to
open
closed does not have
to go to closed
bounded \nRightarrow
bounded
(exist as $f(K)$ is bounded)

Here $f(F)$ is compact and hence closed. Thus $\left(f^{-1}\right)^{-1}(F)$ is closed, so f^{-1} is continuous.

Example:

$$
\begin{aligned}
f:[0,2 \pi) & \rightarrow \text { boundary unit ball in } \mathbb{R}^{2} \\
& t \mapsto(\cos t, \sin t)
\end{aligned}
$$

[^15]- bijection
- continuous

But f^{-1} is not continuous
$f^{-1}(1,0)=0$,
but $f^{-1}(\cos (2 \pi-\epsilon), \sin (2 \pi-\epsilon))=2 \pi-\epsilon$.

Uniform Continuity

Definition: f is uniformly continuous if $\forall \epsilon>0, \exists \delta>0$ such that if $d(x, y)<\delta$, then $d(f(x), f(y))<\epsilon$. [i.e., δ is independent of x]
Note: Uniform continuity \Longrightarrow continuity; but not conversely.

Example:

1. $f(x)=\frac{1}{x}$ on $(0,1)$ is continuous, but not uniformly continuous.
2. $f(x)=x^{2}$ on \mathbb{R} is continuous, but not uniformly continuous.

Example 1: Prove it is not uniformly continuous.
Take $\epsilon=1$. Suppose $\delta<1$ worked.
Take $x=\frac{\delta}{2}, y=\frac{\delta}{4}$. Then $d(x, y)<\delta$.
But $|f(x)-f(y)|=\left|\frac{2}{\delta}-\frac{4}{\delta}\right|=\frac{2}{\delta}>1=\epsilon$,
Example 3: $f:[a, 1] \rightarrow \mathbb{R}(a>0)$
$f(x)=\frac{1}{x}$: Is uniformly continuous.

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{y-x}{x y}\right| \leq \frac{|y-x|}{a^{2}} \leq \frac{\delta}{a^{2}} \leq \epsilon
$$

Take $\delta=\epsilon a^{2}$.

PMATH 351 Lecture 16: October 21, 2009

Proposition: Let X be compact and $f: X \rightarrow Y$ continuous. Then f is uniformly continuous.
Proof: Let $\epsilon>0 . \forall x \in X \exists \delta_{x}>0$ such that if $d(x, y)<\delta_{x}$ then $d(f(x), f(y))<\epsilon$.
Look at $\left\{B\left(x, \delta_{x} / 2\right): x \in X\right\}$: open cover of compact set X.
Take a finite subcover, say $B\left(x_{1}, \delta_{x_{1}} / 2\right), \ldots, B\left(x_{n}, \delta_{x_{n}} / 2\right)$
Let $\delta=\min \left(\delta_{x_{1}} / 2, \ldots, \delta_{x_{n}} / 2\right)>0$
Suppose $d(x, y)<\delta$. There is some i such that $x \in B\left(x_{i}, \delta_{x_{i}} / 2\right) \Longrightarrow d\left(x, x_{i}\right)<\delta_{x_{i}} / 2<\delta_{x_{i}}$ so by choice of $\delta_{x_{i}}, d\left(f(x), f\left(x_{i}\right)\right)<\epsilon$.
Calculate $d\left(y, x_{i}\right) \leq d(y, x)+d\left(x, x_{i}\right)<\delta_{x_{i}} / 2+\delta_{x_{i}} / 2=\delta_{x_{i}}$
$\Longrightarrow d\left(f(y), f\left(x_{i}\right)\right)<\epsilon$

$$
\text { Hence } d(f(x), f(y)) \leq d\left(f(x), f\left(x_{i}\right)\right)+d\left(f(y), f\left(x_{i}\right)\right)<\epsilon+\epsilon=2 \epsilon
$$

$\Longrightarrow f$ is uniformly continuous.

Connectedness:

Definition: X is not connected if $X=U \cup V$ where U, V are both open and non-empty and $U \cap V=\emptyset$.
Note $U^{\mathrm{C}}=V$ and $V^{\mathrm{C}}=U$, therefore U, V are closed also.
$E \subseteq X$ is connected means $E \neq(E \cap U) \cup(E \cap V)$ where U, V open in $X, E \cap U, E \cap V$ are disjoint and $E \cap U, E \cap V$ are both non-empty.

Example:

1. $E=(0,1) \cup(2,3)$: not connected
2. $\mathbb{Q}=(\mathbb{Q} \cap(-\infty, \sqrt{2})) \cup(\mathbb{Q} \cap(\sqrt{2}, \infty))$
3. X : discrete metric space: only ${ }^{36)}$ singletons are connected
4. $[a, b]$ in \mathbb{R} is connected.

Suppose not, say $[a, b]=(U \cap[a, b]) \cup(V \cap[a, b]), U, V$ open, $U \cap[a, b]$ and $V \cap[a, b]$ disjoint, $U \cap[a, b], V \cap[a, b]$ non-empty
Without loss of generality $b \in U \cap[a, b]$. Let $t=\sup ([a, b] \cap V)$
$([a, b] \cap V)^{\mathrm{C}}=(-\infty, a) \cup(b, \infty) \cup U$: open: $[a, b] \cap V$ is closed
$t \in[a, b] \cap V \quad t \neq b$ since $b \in U \cap[a, b]$ and the two sets are disjoint.
$t<b \quad$ So because V is open $\exists \delta>0$ such that $t+\delta \in V$ and $t+\delta<b$
$\Longrightarrow t+\delta \in V \cap[a, b]:$ contradicts definition of t as $\sup V \cap[a, b]$
Proposition: If X is connected and $f: X \rightarrow Y$ is continuous then $f(X)$ is connected.
Proof: Suppose not, say $f(X)=A \cup B, A, B$ open, disjoint and non-empty
$f^{-1}(A), f^{-1}(B)$

- open as f is continuous
- non-empty as A, B are non-empty
- disjoint because A, B are disjoint
$X=f^{-1}(A) \cup f^{-1}(B)$ as $f(X)=A \cup B$: contradicts assumption X is connected

Path Connected

X is path connected if $\forall x \neq y \in X$ there exists an interval $[a, b]$ and continuous function $f:[a, b] \rightarrow X$ such that $f(a)=x, f(b)=y$.
Proposition: path connected implies connected
figure: path between x and y in set X

Proof: Say $X=A \cup B, A, B$ open, disjoint and non-empty.
Let $x \in A, y \in B$. Let $f:[a, b] \rightarrow X$ be a path from x to y.

$f([a, b])$	is connected as f is continuous and $[a, b]$ is connected	
$\\|$		
$(f[a, b] \cap A) \cup(f[a, b] \cap B)$		
Π	\cap	
x	y	
$($ as $f(a)=x)$	$(f(b)=y)$	

so these sets are non-empty and disjoint because A, B are disjoint contradiction

Example: of a connected set that is not path connected

$$
X=\left\{\left(x, \sin \frac{1}{x}\right): x>0\right\} \cup\{(0,0)\}
$$

PMATH 351 Lecture 17: October 26, 2009

Example: $X=\underbrace{\left\{\left(x, \sin \frac{1}{x}\right): x>0\right\}}_{\equiv E} \cup\{(0,0)\}$
Show X is connected, but not path connected.
graph of $\sin \frac{1}{x}$ for $x>0$
$X=E$

Proof outline:

1. E path connected $\Longrightarrow E$ connected $\Longrightarrow{ }^{37)} \bar{E}$ connected
2. X is not path connected
[^16]1. E path connected

Let $\left(x_{1}, \sin \frac{1}{x_{1}}\right),\left(x_{2}, \sin \frac{1}{x_{2}}\right) \in E\left(x_{1}, x_{2}>0\right)$
Define $f:[0,1] \rightarrow E$

$$
t \mapsto(\underbrace{t x_{1}+(1-t) x_{2}}_{>0}, \sin \frac{1}{\left.t x_{1}+(1-t) x_{2}\right)}) \in E
$$

f continuous on $[0,1]$
$f(1)=\left(x_{1}, \sin \frac{1}{x_{1}}\right), f(0)=\left(x_{2}, \sin \frac{1}{x_{2}}\right) \Longrightarrow E$ is path connected
2. X not path connected

Prove no "path" joining $(0,0)$ to $\left(\frac{1}{\pi}, 0\right)$
Suppose $f:[a, b] \rightarrow X$ is a path with $f(a)=(0,0), f(b)=\left(\frac{1}{\pi}, 0\right)$
Claim:

$$
\left(\frac{1}{\frac{5 \pi}{2}}, 1\right),\left(\frac{1}{\frac{9 \pi}{2}}, 1\right), \ldots,\left(\frac{1}{\frac{\pi}{2}+2 \pi k}, 1\right) \in f[a, b]
$$

Note: $f[a, b]$ is connected as f is continuous and $[a, b]$ is connected.
Suppose without loss of generality $\left(\frac{1}{\frac{5 \pi}{2}}, 1\right) \notin f[a, b]$.
Then

$$
f[a, b]=(\overbrace{f[a, b] \cap\left\{(x, y): x>\frac{1}{\frac{5 \pi}{2}}\right\}}^{\ni\left(\frac{1}{\pi}, 0\right)}) \cup(\overbrace{f[a, b] \cap\left\{(x, y): x<\frac{1}{\frac{5 \pi}{2}}\right\}}^{\ni(0,0)})
$$

because only $(x, y) \in X$ with $x=\frac{1}{\frac{5 \pi}{2}}$ is the point $\left(\frac{1}{\frac{5 \pi}{2}}, 1\right) \notin f[a, b]$

- this contradicts the fact $f[a, b]$ is connected

Also $f[a, b]$ is compact.
The sequence $\left\{\left(\frac{1}{\frac{\pi}{2}+2 \pi k}, 1\right)\right\}_{k=1}^{\infty}$ is Cauchy and therefore converges as $f[a, b]$ is complete.
Hence $(0,1) \in f[a, b] \subseteq X$.
But $(0,1) \notin X$ so contradiction.

Finite Dimensional Normed Vector Spaces over \mathbb{R} (or \mathbb{C})

Norm on a vector space:

1. $\|v\| \geq 0$ and $\|v\|=0$ if and only if $v=0$
2. $\|\alpha v\|=|\alpha|\|v\|$ for all α scalars, $v \in V$
3. $\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\|$ for all $v_{1}, v_{2} \in V$

Norms always give metrics by $d(x, y)=\|x-y\|$
Example: Space of polynomials on $[0,1]$ of degree $\leq n$

1. $\|p\|_{\infty}=\max _{x \in[0,1]}|p(x)|$
2. $\|p\|_{1}=\int_{0}^{1}|p(x)| \mathrm{d} x$

Theorem: Suppose V is a finite dimensional normed vector space over \mathbb{R} with basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Then there exists constants $A, B>0$ such that for all $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$.

$$
A\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathbb{R}^{n}} \leq\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|_{V} \leq B\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathbb{R}^{n}}
$$

Given any $v \in V$ there exists exactly one $\left(a_{1}, \ldots, a_{n}\right)$ such that $v=\sum_{1}^{n} a_{i} v_{i}$. Theorem says $\left\|a_{1}, \ldots, a_{n}\right\|_{\mathbb{R}^{n}} \sim\|v\|_{V}$
Proof:

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|_{V} & \leq \sum_{i=1}^{n}\left\|a_{i} v_{i}\right\|_{V} \\
& =\sum_{i=1}^{n}\left|a_{i}\right|\left\|v_{i}\right\|_{V} \\
& \leq{ }^{38)}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}\right)^{1 / 2} \\
& =\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathbb{R}^{n}} B \quad \text { where } B=\left(\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

Define $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
F\left(a_{1}, \ldots, a_{n}\right)=\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|
$$

Check F is continuous:

$$
\begin{aligned}
F(\boldsymbol{x})-F(\boldsymbol{y}) & =\left\|\sum_{i=1}^{n} x_{i} v_{i}\right\|-\left\|\sum_{i=1}^{n} y_{i} v_{i}\right\| \\
& \leq\left\|\sum x_{i} v_{i}-\sum y_{i} v_{i}\right\|+\left\|\sum y_{i} v_{i}\right\|-\left\|\sum y_{i} v_{i}\right\| \\
& =\left\|\sum\left(x_{i}-y_{i}\right) v_{i}\right\|
\end{aligned}
$$

Similarly $F(y)-F(x) \leq\left\|\sum\left(x_{i}-y_{i}\right) v_{i}\right\|$

$$
\begin{aligned}
\Longrightarrow|F(x)-F(y)| & \leq\left\|\sum\left(x_{i}-y_{i}\right) v_{i}\right\| \\
& \leq \sum\left|x_{i}-y_{i}\right|\left\|v_{i}\right\| \\
& \leq\left(\sum\left|x_{i}-y_{i}\right|^{2}\right)^{1 / 2} \underbrace{\left(\sum\left\|v_{i}\right\|^{2}\right)^{1 / 2}}_{B} \\
& =B\|\boldsymbol{x}-\boldsymbol{y}\|_{\mathbb{R}^{n}} \\
& =B d(x, y)
\end{aligned}
$$

$\Longrightarrow F$ is continuous
Restrict F to $S=\left\{x \in \mathbb{R}^{n}:\|\boldsymbol{x}\|=1\right\}$

$$
F(x)=0 \Longleftrightarrow x=0
$$

In particular, if $x \in S$ then $F(x)>0$.
S is compact. By Extreme Value Theorem there exists $\delta>0$ such that $F(x) \geq \delta$ for all $x \in S$
Take any $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \backslash\{0\}$
$\frac{a}{\|a\|_{\mathbb{R}^{n}}} \in S$.
$F\left(\frac{a}{\|a\|}\right) \geq \delta$.

$$
\begin{aligned}
\left\|\sum a_{i} v_{i}\right\|_{V} & =\| \| a\left\|_{\mathbb{R}^{n}} \sum \frac{a_{i}}{\left\|a_{i}\right\|_{\mathbb{R}^{n}}} v_{i}\right\|_{V} \\
& =\|a\|_{\mathbb{R}^{n}}\left\|\sum \frac{a_{i}}{\|a\|} v_{i}\right\|_{V} \\
& =\|a\|_{\mathbb{R}^{n}} F\left(\frac{a}{\|a\|}\right) \\
& \geq\|a\|_{\mathbb{R}^{n}} \delta
\end{aligned}
$$

[^17]Take $A=\delta$.

PMATH 351 Lecture 18: October 28, 2009

Theorem: If V an n dimensional normed vector space over \mathbb{R} with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ then there exists A, B such that

$$
A\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathbb{R}^{n}} \leq\left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|_{V} \leq B\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|_{\mathbb{R}^{n}}
$$

If $T: \mathbb{R}^{n} \rightarrow V$
$T\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i} v_{i}{ }^{39)}$
then $A\|\boldsymbol{a}\| \leq\|T(\boldsymbol{a})\|_{V} \leq B\|\boldsymbol{a}\|_{\mathbb{R}^{n}}$

$$
\begin{gathered}
A\|a-b\|_{\mathbb{R}^{n}} \leq\|T(\boldsymbol{a}-\boldsymbol{b})\|_{V}=\|T(a)-T(b)\|_{V} \leq B\|a-b\|_{\mathbb{R}^{n}} \\
A d(a, b) \leq d(T(a), T(b)) \leq B d(\boldsymbol{a}, \boldsymbol{b})
\end{gathered}
$$

See that $x_{k} \rightarrow x_{0}$ if and only if $T\left(x_{k}\right) \rightarrow T\left(x_{0}\right)$
So topologies are the same.
Boundedness if the same.
Both T and T^{-1} are continuous so V is homeomorphic to \mathbb{R}^{n}
Corollary: Subset of a finite dimensional vector space is compact if and only if it is closed and bounded.
Corollary: Any finite dimensional subspace of a normed vector space is complete.
Proof: Let V be normed vector space and W finite dimensional subspace. Let $T: \mathbb{R}^{n} \rightarrow W$ be a homeomorphism as above.
Let $\left\{w_{k}\right\}$ be a Cauchy sequence in W.
Then $\left\{x_{k}=T^{-1}\left(w_{k}\right)\right\}$ is a Cauchy sequence in \mathbb{R}^{n}.
So there exists x_{0} such that $x_{k} \rightarrow x_{0}$. But then $T\left(x_{k}\right) \rightarrow T\left(x_{0}\right) \in W$.
Hence W is complete.

Function Spaces

Convergence: $f_{n}, f: X \rightarrow Y$. X, Y metric spaces.
Say $f_{n} \rightarrow f$ pointwise if for all $\epsilon>0$ and for all $x \in X$ there exists N such that $d_{Y}\left(f_{n}(x), f(x)\right)<\epsilon$ for all $n \geq N$.
i.e., $\left(f_{n}(x)\right) \rightarrow f(x)$ for each $x \in X$ (as sequences in Y)

Say $f_{n} \rightarrow f$ uniformly if for all $\epsilon>0$ there exists N such that $d_{Y}\left(f_{n}(x), f(x)\right)<\epsilon$ for all $x \in X$ and for all $n \geq N$.

Example: $f_{n}:[0,1] \rightarrow \mathbb{R}$
$f_{n}(x)=x^{n}$

$$
f_{n} \rightarrow f= \begin{cases}0 & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}
$$

graph of $f_{n}(x)$ for n increasing

- convergence is pointwise, but not uniform

Note: each f_{n} is continuous, but f is not
Theorem: If f_{n} are continuous, and $f_{n} \rightarrow f$ uniformly, then f is continuous.
Proof: Fix $\epsilon>0$ and $x \in X$. Need to find δ such that $d_{X}(x, y)<\delta \Longrightarrow d_{Y}(f(x), f(y))<\epsilon$
Pick N such that $d\left(f_{n}(y), f(y)\right)<\epsilon / 3$ for all $n \geq N$ and for all $y \in X$.
Get $\delta>0$ such that $d(x, y)<\delta \Longrightarrow d\left(f_{N}(x), f_{N}(y)\right)<\epsilon / 3$.
Check if this δ works.
Suppose $d(x, y)<\delta$ and look at $d(f(x), f(y)) \leq d\left(f(x), f_{N}(x)\right)+d\left(f_{N}(x), f_{N}(y)\right)+d\left(f_{N}(y), f(y)\right)<$ $\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon$

Corollary: If g_{k} are continuous and $\sum g_{k}$ converges uniformly to g, then g is continuous.
Proof: $S_{N}=\sum_{1}^{N} g_{k}$ is continuous and $S_{N} \rightarrow g$ uniformly by assumption.

[^18]Definition: A sequence $f_{n}: X \rightarrow Y$ is uniformly Cauchy if for all $\epsilon>0$ there exists N such that $d\left(f_{n}(x), f_{m}(x)\right)<\epsilon$ for all $n, m \geq N$ and for all $x \in X$.

Theorem: Suppose X, Y are metric spaces and Y is complete. Then the sequence $f_{n}: X \rightarrow Y$ is uniformly Cauchy if and only if $\left(f_{n}\right)$ is uniformly convergent.
Proof: (\Longleftarrow) Say $f_{n} \rightarrow f$ uniformly and pick N such that $d\left(f_{n}(x), f(x)\right)<\epsilon / 2$ for all $n \geq N$ and for all $x \in X$.
Then

$$
\begin{aligned}
d\left(f_{n}(x), f_{m}(x)\right) & \leq d\left(f_{n}(x), f(x)\right)+d\left(f(x), f_{m}(x)\right) \\
& <\epsilon / 2+\epsilon / 2 \quad \text { if } n, m \geq N
\end{aligned}
$$

(\Longrightarrow) Since $\left(f_{n}\right)$ is uniformly Cauchy, then $\left(f_{n}(x)\right)$ is Cauchy in Y for each $x \in X$.
Y is complete so there exists $a_{x} \in Y$ such that $f_{n}(x) \rightarrow a_{x}$.
Put $f(x)=a_{x}$ so $f: X \rightarrow Y$.
Show $f_{n} \rightarrow f$ uniformly.
For $\epsilon>0$, get N such that $d\left(f_{n}(x), f_{m}(x)\right)<\epsilon / 2$ for all $x \in X, \forall n, m \geq N$ (by uniform Cauchy)
Let $n \geq N$ and look at $d\left(f_{n}(x), f(x)\right)$ (for arbitrary x)
Get $m>N$ such that $d\left(f_{m}(x), f(x)\right)<\epsilon / 2^{40)}$
So

$$
\begin{aligned}
d\left(f_{n}(x), f(x)\right) & \leq d\left(f_{n}(x), f_{m}(x)\right)+d\left(f_{m}(x), f(x)\right) \\
& <\epsilon / 2+\epsilon / 2=\epsilon \quad(\text { as } n, m \geq N)
\end{aligned}
$$

PMATH 351 Lecture 19: October 30, 2009

Corollary: Weierstrass M-test

Let $f_{n}: X \rightarrow \mathbb{R}$. If there exists a sequence M_{k} such that $\left|f_{k}(x)\right| \leq M_{k}$ for all $x \in X$ and for all k and if $\sum_{1}^{\infty} M_{k}$ converges, then $\sum_{k=1}^{\infty} f_{k}$ converges uniformly.

Example:

$$
f_{k}(x)=\frac{\sin k x}{k^{2}} \quad\left|f_{k}(x)\right| \leq \frac{1}{k^{2}} \quad 0 \leq \sum \frac{1}{k^{2}}<\infty
$$

$\Longrightarrow \sum \frac{\sin k x}{k^{2}}$ is a continuous function.
Proof: Let $S_{N}(x)=\sum_{1}^{N} f_{k}(x)$. Show $\left\{S_{N}\right\}$ converges uniformly. It's enough to prove $\left\{S_{N}\right\}$ is uniformly Cauchy.

$$
\left|S_{N}-S_{M}(x)\right|=\left|\sum_{N+1}^{M} f_{k}(x)\right| \leq \sum_{k=N+1}^{M}\left|f_{k}(x)\right| \leq \sum_{k=N+1}^{M} M_{k} \rightarrow 0 \text { as } M>N \rightarrow \infty
$$

$\Longrightarrow\left\{S_{N}\right\}$ is uniformly Cauchy.
Dini's Theorem: Suppose K is compact and $f_{n}: K \rightarrow \mathbb{R}$ converges pointwise to f. If f_{n}, f are continuous and $f_{n+1}(x) \leq f_{n}(x)$ for all n, for all $x \in K$, then $f_{n} \rightarrow f$ uniformly.
Proof: Let $g_{n}=f_{n}-f$
g_{n} is continuous
$g_{n} \rightarrow 0$ pointwise
$g_{n}(x) \geq g_{n+1}(x)$
$g_{n} \geq 0$ since $f(x) \leq f_{n}(x)$ as $f_{n}(x)$ decreases
Prove $g_{n} \rightarrow 0$ uniformly to conclude $f_{n} \rightarrow f$ uniformly.
Let $\epsilon>0$. Find N such that $\left|g_{n}(x)\right|<\epsilon$ for all $n \geq N$ and for all $x \in K$,
$\Longleftrightarrow 0 \leq g_{n}(x) \leq \epsilon$ for all $n \geq N$ and for all $x \in K$.
Since $g_{n} \rightarrow 0$ pointwise, for all $t \in K$ there exists N_{t} such that $0 \leq g_{n}(t)<\frac{\epsilon}{2}$ for all $n \geq N_{t}$.
In particular, $g_{N_{t}}(t)<\frac{\epsilon}{2}$.

[^19]Because $g_{N_{t}}$ is continuous at t so there exists $\delta_{t}>0$ such that if $d(t, x)<\delta_{t}$ then $\left|g_{N_{t}}(t)-g_{N_{t}}(x)\right|<\frac{\epsilon}{2}$. The balls $B\left(t, \delta_{t}\right), t \in K$ are an open cover of the compact set K. Take a finite subcover say $B\left(t_{1}, \delta_{t_{1}}\right), \ldots, B\left(t_{L}, \delta_{t_{L}}\right)$.

If $x \in K$ there exists i such that $x \in B\left(t_{i}, \delta_{t_{i}}\right)$

$$
\begin{aligned}
\Longrightarrow d\left(x, t_{i}\right) & <\delta_{t_{i}} \Longrightarrow\left|g_{N_{t_{i}}}\left(t_{i}\right)-g_{N_{t_{i}}}(x)\right|<\frac{\epsilon}{2} \\
\Longrightarrow\left|g_{N_{t_{i}}}(x)\right| & \leq\left|g_{N_{t_{i}}}(x)-g_{N_{t_{i}}}\left(t_{i}\right)\right|+\left|g_{N_{t_{i}}}\left(t_{i}\right)\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Take $N=\max \left(N_{t_{1}}, \ldots, N_{t_{L}}\right)$.
Let $n \geq N$ and $x \in K$. Get t_{i} as before.

$$
0 \leq g_{n}(x) \leq^{41)} g_{N}(x) \leq g_{N_{t_{i}}}(x)<\epsilon
$$

This is uniform convergence.

Examples:

1. See need K compact

$$
f_{n}(x)=\frac{1}{n x+1} \text { on } K=(0,1]
$$

$f_{n}(x) \rightarrow 0^{42)}$ pointwise
$f_{n+1}(x) \leq f_{n}(x)$
f_{n}, f continuous
$f_{n}(1 / n)=1 / 2$ for all n so there does not exist N such that for all $n \geq N$ and for all $x \in(0,1]$, $\left|f_{n}(x)\right|<1 / 2$.
2. $f_{n}(x)=x^{n}$ on $[0,1]$

Everything satisfied except continuity of f.
3. $f_{n} \rightarrow 0$ pointwise
$f_{n}(1 / n)=n$ so convergence is not uniform
f_{n} are not decreasing pointwise.
Function Spaces $C(X)=$ continuous functions $f: X \rightarrow \mathbb{R}$ vector spaces
$C_{b}(X)=$ continuous, bounded functions $f: X \rightarrow \mathbb{R}$ subspaces
When X is compact $C(X)=C_{b}(X)$
$C(\mathbb{R}) \backslash C_{b}(\mathbb{R}): f(x)=x$
Define $\|f\|=\sup _{x \in X}|f(x)|$ when $f \in C_{b}(X)$
"sup norm" or "uniform" norm (exercise)
$|f(x)| \leq\|f\|$ for all $x \in X$
Defines a metric on $C_{b}(x)$ by $d(f, g)=\|f-g\|$
Ball $B(f, r)$:
Take $f_{n}, f \in C_{n}(X)$
Recall $f_{n} \rightarrow f$ uniformly means for all $\epsilon>0$ there exists N such that $\left|f_{n}(x)-f(x)\right| \leq \epsilon$ for all $n \geq N$ and for all $x \in X$.

$$
\begin{aligned}
& \Longleftrightarrow \sup _{x \in X}\left|f_{n}(x)-f(x)\right| \leq \epsilon \quad \forall n \geq N \\
& \Longleftrightarrow\left\|f_{n}-f\right\| \leq \epsilon \quad \forall n \geq N \\
& \Longleftrightarrow d\left(f_{n}, f\right) \leq \epsilon \quad \forall n \geq N \\
& \Longleftrightarrow f_{n} \rightarrow f \text { in metric space } C_{b}(x)
\end{aligned}
$$

[^20]graph of $f_{n}(x)$: peak of height n at $x=1 / n$
figure: g within a ϵ-tube of f
figure: $d(f, g)=\|f-g\|$
$\left\{f_{n}\right\}$ in $C_{b}(x)$ is Cauchy if and only if $\left\{f_{n}\right\}$ is uniformly Cauchy
Theorem: $C_{b}(X)$ is a complete metric space
Proof: Suppose $\left\{f_{n}\right\}$ in $C_{b}(X)$ is a Cauchy sequence. Then $\left\{f_{n}\right\}$ is uniformly Cauchy and so it converges uniformly to some $f \in C(X)$.
Get N such that $\left|f(x)-F_{N}(x)\right| \leq 1$ for all $x \in X$
\[

$$
\begin{aligned}
& \Longrightarrow|f(x)| \leq 1+\left|f_{N}(x)\right| \leq 1+\left\|f_{N}\right\| \\
& \Longrightarrow\|f\|=\sup _{x \in X}|f(x)| \leq 1+\left\|f_{N}\right\|<\infty \\
& \Longrightarrow f \in C_{b}(X)
\end{aligned}
$$
\]

Hence $f_{n} \rightarrow f$ in uniform norm.
Therefore $C_{b}(X)$ is complete.
$C_{b}(X)$ is a complete normed vector space, i.e., a Banach space.

PMATH 351 Lecture 20: November 2, 2009

$C(X), C_{b}(X)$
$\|f\|=\sup _{x \in X}|f(x)|$ for any $f \in C_{b}(X)$
$d(f, g)=\|f-g\|$
$\left(C_{b}(X), d\right)$ is a complete metric space
figure: ϵ-tube around f

1. Example of an open set in $C[0,1]$

$$
B=\{f \in C[0,1]: f(x)>0 \quad \forall x \in[0,1]\}
$$

Take $\epsilon=\inf _{x \in[0,1]} f(x),>0$ by E.V.T.
If $g \in B(f, \epsilon) \Longleftrightarrow|g(x)-f(x)|<\epsilon \quad \forall x \in[0,1]$

$$
\begin{aligned}
\Longrightarrow g(x) & >f(x)-\epsilon \quad \forall x \in[0,1] \\
& \geq \inf f-\epsilon \Longrightarrow g \in B
\end{aligned}
$$

2.

$$
C=\left\{f \in C_{b}(\mathbb{R}): f(x)>0 \quad \forall x\right\}
$$

Claim: If $f \in C$ and $\inf _{x \in \mathbb{R}} f=0$ then f is not an interior point of C. (e.g., $f(x)=\frac{1}{|x|+1}$)
Take any $\epsilon>0$. Take $g=f-\frac{\epsilon}{2} \in B(f, \epsilon)$
Choose any x such that $f(x)<\frac{\epsilon}{2}$ and then $g(x)<0$ so $g \notin C$.
3.

$$
D=\left\{f \in C_{b}(\mathbb{R}): f(x) \leq 0 \quad \forall x\right\}
$$

Claim: D is closed.
Let $f_{n} \in D$ and suppose $f_{n} \rightarrow f$, i.e., $f_{n} \rightarrow f$ uniformly.
But then $f_{n} \rightarrow f$ pointwise. So if $f_{n} \leq 0$ at every x then $f(x) \leq 0 \quad \forall x$ so $f \in D$.

Compactness in $C_{b}(X)$

Compact \Longrightarrow closed and bounded
$E \subset C_{b}(X)$ is bounded means $\exists f \in C_{b}(X)$ and M constant such that $E \subseteq B(f, M)$
Then $E \subseteq B(0, M+\|f\|)$ because if $g \in B(f, M)$ then $\|g\| \leq\|g-f\|+\|f\|<M+\|f\| \Longrightarrow B(f, M) \subseteq$ $B(0,\|f\|+M)$

- call this uniformly bounded

Restate: E is bounded iff $\exists M_{0}$ such that $\|f\| \leq M_{0} \quad \forall f \in E$
Example: In $C[0,1]$ closed and bounded \nRightarrow compact.

$$
E=\left\{f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}: n=1,2,3, \ldots\right\}
$$

If $f \in E$, then $0 \leq f(x) \leq 1 \forall x$ so $E \subseteq B(0,1+\epsilon)$.
So E is bounded.
Closed? Say g is an accumulation point of E.
Get $f_{n_{k}} \rightarrow g$ with $f_{n_{k}} \in E, n_{1}<n_{2}<\cdots$
$f_{n_{k}}=\frac{x^{2}}{x^{2}+\left(1-n_{k} x\right)^{2}} \rightarrow 0$ pointwise.
Look at $f_{n_{k}}\left(\frac{1}{n_{k}}\right)=1$ so $\sup _{x}\left|f_{n_{k}}-0\right|^{43)}=1 \forall n_{k}$
Thus $f_{n_{k}} \nrightarrow 0$ uniformly.
Hence there is no accumulation point g.
In fact, no subsequence of $\left(f_{n}\right)$ converges uniformly.
Hence E is closed as it has no accumulation points and E is not compact because fails $\mathrm{B}-\mathrm{W}$ characterization of compactness.

Equicontinuity

Definition: Let $E \subseteq C(X)$. We say E is equicontinuous if $\forall \epsilon>0 \exists \delta>0$ such that $\forall f \in E$ and $\forall x, y \in X$ such that $d(x, y)<\delta$, we have $|f(x)-f(y)|<\epsilon$.
If $E=\{f\}$ then equicontinuity is uniform continuity.
If $E=\left\{f_{1}, \ldots, f_{n}\right\}$ then E is equicontinuous if and only if each f_{i} is uniformly continuous (just take minimum δ that works for f_{1}, \ldots, f_{n})
E equiconinuous \Longrightarrow each $f \in E$ is uniformly continuous.
Not equicontinuous means $\exists \epsilon>0$ such that $\forall \delta>0 \exists f \in E$ and $x, y \in X$ such that $d(x, y)<\delta$ but $|f(x)-f(y)| \geq \epsilon$.

Example:

1. $E=\left\{x^{n}: n=1,2,3, \ldots\right\} \subseteq C[0,1]$: not equicontinuous

Take $\epsilon=\frac{1}{2}$ and take any δ. Take $x=1, y=1-\frac{\delta}{2}$.
Pick n so $\left(1-\frac{\delta}{2}\right)^{n}<\frac{1}{2}$.
Then $\left|f_{n}\left(y^{44)}\right)-f_{n}\left(x^{45)}\right)\right|>1-\frac{1}{2}=\epsilon$.
graph of x^{n} for n large
2. $E=\left\{f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}: n=1,2, \ldots\right\}$
$\left|f_{n}\left(\frac{1}{n}\right)-f_{n}(0)\right|=1 \forall n$
So E is not equicontinuous.
3. $C[0,1]$ is not equicontinuous, since it contains subsets that are not equicontinuous.
4. Fix M. $E=\{f \in C[0,1]:|f(x)-f(y)| \leq M|x-y| \quad \forall x, y \in[0,1]\}$ is equicontinuous.

Take $\delta=\frac{\epsilon}{M}$.
5. $E_{0}=\left\{f \in C[0,1]:\left|f^{\prime}(x)\right| \leq M \quad \forall x \in[0,1]\right\} \subseteq E$ (above, in 4.), so it is equicontinuous.

PMATH 351 Lecture 21: November 4, 2009

Equicontinuity

Definition: Say $E \subseteq C(X)$ is equicontinuous if $\forall \epsilon>0 \exists \delta>0$ such that if $d(x, y)<\delta$ then $|f(x)-f(y)|<\epsilon \forall f \in E$.
Example: $E=\left\{f \in C(\mathbb{R}): f^{\prime}\right.$ exists and $\left|f^{\prime}(x)\right| \leq M \forall x \in X$ and $\left.\forall f \in E\right\}$.
Then E is equicontinuous.
Proof: By Mean Value Theorem $|f(x)-f(y)|^{46)} \leq M|x-y| \forall x, y$
Given ϵ we take $\delta=\frac{\epsilon}{M}$.
Proposition: If $E \subseteq C(X)$ is equicontinuous then so is \bar{E}.
Proof: Let $f \in \bar{E} \backslash E$ and let $\epsilon>0$.
Get $f_{n} \in E$ such that $f_{n} \rightarrow f$, i.e., $f_{n} \rightarrow f$ uniformly.

[^21]So $\exists N$ such that $\left\|f_{N}-f\right\|^{47)}<\epsilon$. Get δ that works for ϵ and E.
Let $x, y \in X$ with $d(x, y)<\delta$, then

$$
\begin{aligned}
|f(x)-f(y)| & \leq\left|f(x)-f_{N}(x)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f(y)\right| \\
& <\epsilon+\epsilon+\epsilon=3 \epsilon
\end{aligned}
$$

This proves \bar{E} is equicontinuous.
Proposition: Suppose X is compact and $f_{n} \in C(X)$.
If $f_{n} \rightarrow f$ uniformly, then $E=\left\{f_{n}: n=1,2, \ldots\right\}$ is equicontinuous.
f is continuous being uniform limit of continuous functions.
Proof: f is uniformly continuous being continuous on a compact set of X.
Let $\epsilon>0$. Get δ for f.
Get N such that $\left\|f_{n}-f\right\|<\epsilon \forall n \geq N$.
For any $n \geq N$ and x, y such that $d(x, y)<\delta$,

$$
\begin{aligned}
\left|f_{n}(x)-f_{n}(y)\right| & \leq\left|f_{n}(x)-f(x)\right|+|f(x)-f(y)|+\left|f(y)-f_{n}(y)\right| \\
& <3 \epsilon
\end{aligned}
$$

For each $f_{i}, i=1, \ldots, N-1$ get $\delta_{i}>0$ such that $d(x, y)<\delta_{i} \Longrightarrow\left|f_{i}(x)-f_{i}(y)\right|<3 \epsilon$ (can do as each f_{i} is uniformly continuous)
Take $\delta_{0}=\min \left(\delta, \delta_{1}, \ldots, \delta_{N-1}\right)$.
If $d(x, y)<\delta_{0}$ then $\left|f_{n}(x)-f_{n}(y)\right|<3 \epsilon \forall n$.
So E is equicontinuous.
Example: $E=\left\{f_{n}(x)=\frac{\sin n x}{\sqrt{n}}: x \in[0,2 \pi]\right\}$
$\left|f_{n}(x)\right| \leq \frac{1}{\sqrt{n}} \rightarrow 0$ so $f_{n} \rightarrow 0$ uniformly. $\Longrightarrow E$ is equicontinuous.
But $f_{n}^{\prime}(x)=\frac{n \cos n x}{\sqrt{n}}=\sqrt{n} \cos n x$ so $f_{n}^{\prime}(0)=\sqrt{n} \rightarrow \infty$.
Uniformly Bounded
$E \subseteq C(X)$ is uniformly bounded if $E \subseteq B(0, M)$ for some M, equivalently $\exists M$ such that $\|f\| \leq M$ $\forall f \in E$.
Definition: Say $E \subseteq C(X)$ is pointwise bounded if $\forall x \in X \exists M_{x}$ such that $|f(x)| \leq M_{x} \forall f \in E$.
Uniformly bounded \Longrightarrow pointwise bounded, but not conversely.
Fix $x \neq 0$. Have $f_{n}(x) \neq 0 \forall n \geq N$ where $\frac{1}{N}<x$.

$$
\sup \left|f_{n}(x)\right| \leq \max \left(\left|f_{1}(x)\right|, \ldots,\left|f_{N}(x)\right|\right)
$$

graph: $f_{n}(x)$ has peak of n and is zero for $x>\frac{1}{n}$

So $\left\{f_{n}\right\}$ is pointwise bounded, but not uniformly bounded.
Proposition: If X is compact and E is equicontinuous and pointwise bounded, then E is uniformly bounded.
Proof: Take $\epsilon=1$. Get δ by equicontinuity so $d(x, y)<\delta \Longrightarrow|f(x)-f(y)|<1 \forall f \in E$
Look at balls $B(x, \delta)$ for $x \in X$. This is an open cover of compact X so take a finite subcover, say $B\left(x_{1}, \delta\right), \ldots, B\left(x_{n}, \delta\right)$.
Let $M_{i}=\sup \left\{\left|f\left(x_{i}\right)\right|: f \in E\right\}(<\infty$ by pointwise boundedness of $E)$
Take $M=\left(\max _{i=1, \ldots, n} M_{i}\right)+1$.
Let $x \in X$. There is a ball $B\left(x_{i}, \delta\right)$ containing x.

$$
\begin{aligned}
\Longrightarrow d\left(x, x_{i}\right)<\delta \Longrightarrow|f(x)| & \leq\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)\right| \\
& \leq 1+M_{i} \\
& \leq M
\end{aligned}
$$

Theorem: Let X be compact. Let $\left\{f_{n}\right\}_{n=1}^{\infty} \subseteq C(X)$ be a pointwise bounded, equicontinuous family. Then

[^22](1) $\left\{f_{n}\right\}$ is uniformly bounded. (already done)
(2) There is a subsequence of the sequence $\left(f_{n}\right)$ which converges uniformly.

Corollary: (Arzela-Ascoli Theorem)
Let X be compact. $E \subseteq C(X)$ is compact if and only if E is pointwise (uniformly) bounded, closed and equicontinuous.
Proof: $(\Longrightarrow) E$ compact $\Longrightarrow E$ bounded (meaning uniformly bounded) and closed
Suppose E is not equicontinuous. This means $\exists \epsilon>0$ such that $\forall \delta=\frac{1}{n}$ there are $x_{n}, y_{n} \in X$ with $d\left(x_{n}, y_{n}\right)<\frac{1}{n}$ and $\exists f_{n} \in E$ with $\left|f_{n}\left(x_{n}\right)-f_{n}\left(y_{n}\right)\right| \geq \epsilon^{48)}$.
Since E is compact the Bolzano-Weierstrass characterization of compactness says there is a subsequence $f_{n_{k}} \rightarrow{ }^{49)} f \in E$.
Hence the set $\left\{f_{n_{k}}\right\}$ is equicontinuous and hence $\exists \delta_{0}$ such that $d(x, y)<\delta_{0} \Longrightarrow\left|f_{n_{k}}(x)-f_{n_{k}}(y)\right|<{ }^{50)} \epsilon$ $\forall n_{k}$.
Take n_{k} such that $\delta_{0}>\frac{1}{n_{k}}$ so $d\left(x_{n_{k}}, y_{n_{k}}\right)<\frac{1}{n_{k}}<\delta_{0}$ so $\left|f_{n_{k}}\left(x_{n_{k}}\right)-f_{n_{k}}\left(y_{n_{k}}\right)\right|<\epsilon$ by (1) and this contradicts (2).

PMATH 351 Lecture 22: November 6, 2009

Theorem: X compact. $\left\{f_{n}\right\} \subseteq C(X)$ be a pointwise bounded and equicontinuous set. Then
(a) $\left\{f_{n}\right\}$ uniformly bounded
(b) there exists a subsequence of $\left\{f_{n}\right\}$ which converges uniformly

Corollary: (Arzela-Ascoli Theorem): For X compact, $E \subseteq C(X)$ is compact if and only if E is pointwise bounded, closed and equicontinuous.
Proof: (\Longleftarrow) Let $\left\{f_{n}\right\}$ be a sequence in E.
Since E is pointwise bounded and equicontinuous, the same is true for $\left\{f_{n}\right\}$. By theorem there exists a uniformly convergent subsequence and the limit must belong to E since E is closed. By Bolzano-Weierstrass characterization of compactness this implies E is compact.

Lemma 1: Let K be a countable set. Let $f_{n}: K \rightarrow \mathbb{R}, n=1,2, \ldots$ be a pointwise bounded family. There there exists subsequence $\left(g_{n}\right)$ of $\left(f_{n}\right)$ which converges pointwise.
Proof: Let $K=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.
Start by looking at $\left\{f_{n}\left(x_{1}\right)\right\}_{n=1}^{\infty}$.
Since $\left\{f_{n}\right\}$ are pointwise bounded, the sequence $\left\{f_{n}\left(x_{1}\right)\right\}$ is a bounded sequence of real numbers and so by Bolzano-Weierstrass there exists a convergent subsequence, say $f_{1,1}\left(x_{1}\right), f_{1,2}\left(x_{1}\right), \ldots$.
Thus $\left\{f_{1, n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{f_{n}\right\}$ converging at x_{1}.
Look at $\left\{f_{1, n}\left(x_{2}\right)\right\}_{n=1}^{\infty}$: bounded sequence of real numbers therefore convergent subsequence, say $f_{2,1}\left(x_{2}\right), f_{2,2}\left(x_{2}\right), \ldots$

f_{1}	f_{2}	f_{3}	f_{4}	\cdots	f_{k}	
f_{11}	f_{12}	f_{13}	f_{14}	\cdots	$f_{1 k}$	converges at x_{1}
f_{21}	f_{22}	f_{23}	f_{24}	\cdots	$f_{2 k}$	converges at x_{1}, x_{2}
f_{31}	f_{32}	f_{33}	f_{34}	\cdots	$f_{3 k}$	converges at x_{1}, x_{2}, x_{3}
\vdots						
$f_{k 1}$	$f_{k 2}$	$f_{k 3}$	$f_{k 4}$	\cdots	$f_{k k}$	converges at $x_{1}, x_{2}, \ldots, x_{k}$

In general, given $\left(f_{k, n}\right)$ a subsequence of $\left(f_{n}\right)$ which converges at $x_{1}, x_{2}, \ldots, x_{k}$, consider $\left(f_{k, n}\left(x_{k+1}\right)\right)$: Get a convergent subsequence $\left(f_{k+1, n}\left(x_{k+1}\right)\right)$. So $\left(f_{k+1, n}\right)$ converges at $x_{1}, x_{2}, \ldots, x_{k+1}$.
Put $g_{n}=f_{n, n} .\left(g_{n}\right)$ is a subsequence of $\left(f_{n}\right)$.

[^23]Furthermore $\left(g_{n}\right)_{n=k}^{\infty}$ is a subsequence of $\left(f_{k, n}\right)$ and hence converges at x_{k}.
So $\left(g_{n}\right)$ converges pointwise on K.
Lemma 2: Any compact metric space X is separable (i.e., countable dense set)
Proof: For each n, the balls $B\left(x, \frac{1}{n}\right), x \in X$ cover X. Get a finite subcover $B\left(x_{n, 1}, \frac{1}{n}\right), \ldots, B\left(x_{n, k_{n}}, \frac{1}{n}\right)$.
Put $K_{n}=\left\{x_{n, 1}, \ldots, x_{n, k_{n}}\right\}$ and $K=\bigcup_{n=1}^{\infty} K_{n}: K$ is countable.
Given $y \in X$ and $\epsilon>0$. Take n such that $\frac{1}{n}<\epsilon$. Have $y \in B\left(x_{n, j}, \frac{1}{n}\right)$ for some j.
Therefore $x_{n, j} \in B\left(y, \frac{1}{n}\right) \subset B(y, \epsilon)$, so $y \in \bar{K}$, therefore K is dense.
Proof of Theorem (b): Let K be a countable dense set on X.
Think about $f_{n}: K \rightarrow \mathbb{R}$: Pointwise bounded.
By Lemma 1 there exists a pointwise convergent (on K) subsequence $\left(g_{n}\right)$.
We'll prove $\left(g_{n}\right)$ converges uniformly on all of X.
Suffices to prove $\left(g_{n}\right)$ is uniformly Cauchy.
Take $\epsilon>0$. Find N such that $\forall n, m \geq N$,

$$
\left|g_{n}(x)-g_{m}(x)\right|<\epsilon \quad \forall x \in X
$$

By equicontinuity $\exists \delta>0$ such that

$$
d(x, y)<\delta \Longrightarrow\left|g_{n}(x)-g_{n}(y)\right|<\epsilon \quad \forall n
$$

Notice balls $B(x, \delta), x \in K$ cover X because K is dense. By compactness of $X, \exists x_{1}, \ldots, x_{M}$ such that $\bigcup_{1}^{M} B\left(x_{i}, \delta\right)$ covers X.
If $y \in X$ then $y \in B\left(x_{i}, \delta\right)$ for some x_{i}.
By choice of $\delta,\left|g_{n}(y)-g_{n}\left(x_{i}\right)\right|<\epsilon \forall n$.
$\left\{g_{n}\left(x_{i}\right)\right\}$ converges for each i and so is Cauchy.
Hence $\exists N_{i}$ such that if $n, m \geq N$, then $\left|g_{n}\left(x_{i}\right)-g_{m}\left(x_{i}\right)\right|<\epsilon(2)$.
Let $N=\max \left(N_{1}, \ldots, N_{M}\right)$.
Let $y \in X$ and $n, m \geq N$. Get i such that $y \in B\left(x_{i}, \delta\right)$ so

$$
\begin{gather*}
\left|g_{k}(y)-g_{k}\left(x_{i}\right)\right|<\epsilon \quad \forall k . \tag{1}\\
\left|g_{n}(y)-g_{m}(y)\right| \leq\left|g_{n}(y)-g_{n}\left(x_{i}\right)\right|+\left|g_{n}\left(x_{i}\right)-g_{m}\left(x_{i}\right)\right|+\left|g_{m}\left(x_{i}\right)-g_{m}(y)\right| \\
<\epsilon^{51)}+\epsilon^{52)}+\epsilon^{53)}=3 \epsilon
\end{gather*}
$$

Therefore $\left(g_{n}\right)$ is uniformly Cauchy.

PMATH 351 Lecture 23: November 9, 2009

Taylor Series

$\exists f \in C^{\infty}$ where Taylor polynomials do not converge to f.

$$
f(x)= \begin{cases}e^{-1 / x^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

$f^{(k)}(0)=0 \forall k$. All Taylor polynomials (centred at 0) are identically 0 . So they don't converge to f except at 0 .

Inner Product Spaces

$C[0,1]$: Define inner product $\langle f, g\rangle=\int_{0}^{1} f g$.

$$
\left.\begin{array}{c}
\|f\|_{2}=\sqrt{\langle f, f\rangle}=\left(\int_{0}^{1} f^{2}\right)^{1 / 2} \\
d_{2}(f, g)=\left(\int_{0}^{1}(f-g)\right)^{1 / 2}
\end{array}\right\} L_{2}
$$

51) (1)
${ }^{52)}(2)$
${ }^{53)}(1)$

- metric on $C[0,1]$
- not complete

Apply Gram Schmidt process to $\left\{1, x, x^{2}, \ldots\right\}$, to get the Legendre polynomials $\left\{p_{n}\right\}$.
Given $f \in C[0,1]$, let $f_{N}=\sum_{n=1}^{N}\left\langle f, p_{n}\right\rangle p_{n}$. Then $f_{N} \rightarrow f$ in $\|\cdot\|_{2}$. (PMATH 354!)
Example: $f(x)=\sqrt{x}$ on $[0,1]$. Put $p_{1}(t)=0, p_{n+1}(t)=p_{n}(t)+\frac{1}{2}\left(t-p_{n}^{2}(t)\right)$
Claim: $p_{n} \rightarrow f$ uniformly.

$$
\begin{aligned}
& p_{2}(t)=0+\frac{1}{2}(t-0)=\frac{1}{2} t \\
& p_{3}(t)=\frac{1}{2} t+\frac{1}{2}\left(t-\frac{1}{4} t^{2}\right)
\end{aligned}
$$

Show $p_{n} \rightarrow f$ pointwise

$$
p_{n}(t) \leq p_{n+1}(t) \quad \forall n, t
$$

Show p_{n}, f are continuous. Dini's theorem implies $p_{n} \rightarrow f$ uniformly.
Proceed by induction. Assume $0 \leq p_{1}(t) \leq p_{2}(t) \leq \cdots \leq p_{n}(t) \leq \sqrt{t}$.
$n=1$: Free.

$$
\begin{aligned}
\sqrt{t}-p_{n+1}(t) & =\sqrt{t}-\left(p_{n}(t)+\frac{1}{2}\left(t-p_{n}^{2}(t)\right)\right) \\
& =\sqrt{t}-p_{n}(t)-\frac{1}{2}\left(\sqrt{t}-p_{n}(t)\right)\left(\sqrt{t}+p_{n}(t)\right) \\
& =\left(\sqrt{t}-p_{n}(t)\right)\left(1-\frac{1}{2}\left(\sqrt{t}+p_{n}(t)\right)\right)
\end{aligned}
$$

But $p_{n}(t) \leq \sqrt{t}$, so $\geq\left(\sqrt{t}-p_{n}(t)\right)(1-\sqrt{t}) \geq 0$.
$\Longrightarrow p_{n+1}(t) \leq \sqrt{t}, p_{n+1}(t)=p_{n}(t)+\frac{1}{2}\left(t-p_{n}^{2}(t)\right)^{54)}$
so $p_{n+1}(t) \geq p_{n}(t)$.
So $\left\{p_{n}(t)\right\}$ is increasing and bounded above for fixed $t \in[0,1]$, hence it converges by Bolzano-Weierstrass, say $\left\{p_{n}(t)\right\} \rightarrow f(t)$ (pointwise convergence)

$$
\begin{aligned}
p_{n+1}(t) & =p_{n}(t)+\frac{1}{2}\left(t-p_{n}^{2}(t)\right) \\
f(t) & =f(t)+\frac{1}{2}\left(t-f^{2}(t)\right) \Longrightarrow t=f^{2}(t), \text { so } \sqrt{t}=f(t)
\end{aligned}
$$

By Dini's theorem convergence is uniform.
Weierstrass Theorem: Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and let $\epsilon>0$. Then there exists a polynomial p such that $\|f-p\|<\epsilon$.
In fact, the Bernstein polynomials

$$
p_{n}(f)=\sum_{k=0}^{n}\binom{n}{k} f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k}
$$

converge uniformly to f.
Intuitive Identity: Toss a coin n times; probability of heads x, probability of tails $1-x$. Probability of k heads in n tosses:

$$
\binom{n}{k} x^{k}(1-x)^{n-k}
$$

Suppose pay $f\left(\frac{k}{n}\right)$ dollars for k heads in n tosses. Expected pay off over n tosses: $\sum_{k=0}^{n}\binom{n}{k} f\left(\frac{k}{n}\right) x^{k}(1-$ $x)^{n-k}=p_{n}(x)$.
In long run we expect $x n$ heads in n tosses, so expect pay off of $f\left(\frac{x n}{n}\right)=f(x)$. So intuitively $p_{n}(x) \rightarrow f(x)$.

Proof of Theorem: Technical Calculations:

(1) $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$. Differentiate with respect to x, leave y fixed.
(2) $n(x+y)^{n-1}=\sum_{k=0}^{n}\binom{n}{k} k x^{k-1} y^{n-k}$
(3) $n(n-1)(x+y)^{n-2}=\sum_{k=0}^{n}\binom{n}{k} k(k-1) x^{k-2} y^{n-k}$

$$
\begin{aligned}
f(x, y) & =(x+y)^{n} \\
\frac{\partial f}{\partial x}(x, y) & =n(x+y)^{n-1}
\end{aligned}
$$

$\left(2^{\prime}\right) x \cdot(2): n x(x+y)^{n-1}=\sum_{k=0}^{n}\binom{n}{k} k x^{k} y^{n-k}$
$\left(3^{\prime}\right) x^{2} \cdot(3): n(n-1) x^{2}(x+y)^{n-2}=\sum_{k=0}^{n}\binom{n}{k} k(k-1) x^{k} y^{n-k}$
Put $r_{k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$
$p_{n}(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) r_{k}(x)$
Take $y=1-x$
(1) $1=\sum_{k=0}^{n} r_{k}(x)$
(2') $n x=\sum_{k=0}^{n} k r_{k}(x)$
$\left(3^{\prime}\right) n(n-1) x^{2}=\sum_{k=0}^{n} k(k-1) r_{k}(x)=\sum k^{2} r_{k}(x)-\sum k r_{k}(x)=\sum_{k=0}^{n} k^{2} r_{k}(x)-n x$

$$
\begin{aligned}
\sum(k-n x)^{2} r_{k}(x) & =\sum k^{2} r_{k}(x)-2 \sum n k x r_{k}(x)+\sum(n x)^{2} r_{k}(x) \\
& =n(n-1)^{2} x^{2}+n x-2 n x n x+(n x)^{2}
\end{aligned}
$$

PMATH 351 Lecture 24: November 11, 2009

Weierstrass Theorem

Polynomials are dense in $C[0,1]$.

$$
\begin{aligned}
& \text { i.e., } \forall f \in C[0,1] \text { and } \forall \epsilon>0 \text { there exists polynomial } p \\
& \text { such that }\|f-p\|=\sup _{x \in[0,1]}|f(x)-p(x)|<\epsilon
\end{aligned}
$$

Bernstein Proof

Show $p_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k}$ converges uniformly to f.
(1) $\sum_{k=0}^{n} r_{k}(x)=1$ where $r_{k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}$
(2) $\sum_{k=0}^{n}(k-n x)^{2} r_{k}(x)=n x(1-x)$

Let $f \in C[0,1]$, say $|f(x)| \leq M \forall x \in[0,1]$
Also f is uniformly continuous, so given $\epsilon>0$ get $\delta>0$ such that $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon$ Take N such that $\frac{2 M}{\delta^{2} N}<\epsilon$.
Let $n \geq N$. Fix $x \in[0,1]$.

$$
\begin{aligned}
\left|p_{n}(x)-f(x)\right| & =\left|\sum_{k=0}^{n} f\left(\frac{k}{n}\right) r_{k}(x)-f(x) \sum_{k=0}^{n} r_{k}(x)\right| \\
& =\left|\sum_{k=0}^{n}\left(f\left(\frac{k}{n}\right)-f(x)\right) r_{k}(x)\right|
\end{aligned}
$$

[^24]Divide k s into 2 classes

$$
\begin{aligned}
A= & \left\{k:\left|\frac{k}{n}-x\right|<\delta \Longleftrightarrow|k-n x|<\delta n\right\} \\
B= & \left\{k:\left|\frac{k}{n}-x\right| \geq \delta \Longleftrightarrow|k-n x| \geq \delta n\right\} \\
& \leq \sum_{k=0}^{n}\left|f\left(\frac{k}{n}\right)-f(x)\right| r_{k}(x) \\
& \leq \sum_{k \in A}\left|f\left(\frac{k}{n}\right)-f(x)\right| r_{k}(x)+\sum_{k \in B}\left|f\left(\frac{k}{n}\right)-f(x)\right| r_{k}(x) \\
& \leq \sum_{k \in A} \epsilon r_{k}(x)+\sum_{|k-n x| \geq \delta n} 2 M r_{k}(x) \frac{(k-n x)^{2}}{(k-n x)^{2}} \\
& \leq \sum_{k \in A} \epsilon r_{k}(x)^{55)}+\sum_{k=0}^{n} \frac{2 M r_{k}(x)(k-n x)^{2}}{(\delta n)^{2}} \\
& \leq \epsilon+\frac{2 M}{(\delta n)^{2}} n x(1-x) \quad \text { by }(2) \\
& =\epsilon+\frac{2 M}{\delta^{2}} \cdot \frac{1}{n} \leq \epsilon+\frac{2 M}{\delta^{2} N}<2 \epsilon
\end{aligned}
$$

This shows $\left\|p_{n}-f\right\| \leq 2 \epsilon \forall n \geq N$
i.e., $p_{n} \rightarrow f$ uniformly.

Approximation by trigonometric polynomials

$$
\sum_{n=0}^{N} a_{n} \sin n x+b_{n} \cos n x=\sum_{n=-N}^{N} c_{n} e^{i n x}
$$

$a_{n}, b_{n} \in \mathbb{C}, c_{n} \in \mathbb{C}$

$$
\begin{aligned}
& e^{i x n}=\cos x n+i \sin x n \\
& \frac{e^{i x n}+e^{-i x n}}{2}=\cos x n \\
& \frac{e^{i x n}-e^{-i x n}}{2 i}=\sin x n
\end{aligned}
$$

$$
\begin{aligned}
& z \in \mathbb{C} \\
& |z|=1 \\
& z=e^{i x}
\end{aligned}
$$

- uniformly approximate continuous, 2π periodic functions $=C[0,2 \pi]$ with $f(0)=f(2 \pi)$

Inner product spaces:

$$
\begin{gathered}
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \overline{g(x)} \mathrm{d} x \\
\|f\|_{2}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}
\end{gathered}
$$

$\left\{e^{i n x}\right\}_{n=-\infty}^{\infty}$ are orthonormal
${ }^{55)}=\epsilon$

Check:

$$
\begin{aligned}
\left\langle e^{i n x}, e^{i m x}\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i n x} e^{-i m x} \mathrm{~d} x \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(n-m) x} \mathrm{~d} x \\
& =\left.{ }^{56)} \frac{1}{2 \pi} \frac{e^{i(n-m) x}}{i(n-m)}\right|_{0} ^{2 \pi} \\
& =0
\end{aligned}
$$

"Best" approximation (in inner product sense) to f from

$$
\begin{aligned}
\operatorname{span}\left\{e^{i n x}: n=-N, \ldots, N\right\} & =\sum_{n=-N}^{N}\left\langle f, e^{-i n x}\right\rangle e^{i n x}=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x}=f_{N} \\
\left\langle f, e^{i n x}\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} \mathrm{~d} x \\
& \equiv \hat{f}(n)^{57)}
\end{aligned}
$$

Big Theorem (PM354)

$f_{N} \rightarrow f$ in $\|\cdot\|_{2}$
i.e., $\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{N}-f\right|^{2}\right)^{1 / 2} \rightarrow 0$

This does not even guarantee pointwise convergence (Big Theorem PM354).
Let $K_{n}(t)^{58)}=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) e^{i j t}$.
Put $f_{n}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} K_{n}(t) f(x-t) \mathrm{d} t=K_{n} * f(x)$
Theorem: $f_{n} \rightarrow f$ uniformly and f_{n} are trigonometric polynomials
First, show f_{n} are trigonometric polynomials:

$$
\begin{aligned}
f_{n}(x) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) e^{i j t} f(x-t) \mathrm{d} t \\
& =\frac{1}{2 \pi} \sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) \int_{0}^{2 \pi} e^{i j t} f(x-t) \mathrm{d} t
\end{aligned}
$$

Change of variable: Let $u=x-t, \mathrm{~d} t=\mathrm{d} u$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) \underbrace{\int_{0}^{2 \pi} e^{i j(x-u)} f(u) \mathrm{d} u}_{\int_{0}^{2 \pi} e^{i j x} e^{-i j u} f(u) \mathrm{d} u} \\
& =\sum_{-n}^{n}\left(1-\frac{|j|}{n+1}\right) e^{i j x} \underbrace{\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i j u} f(u) \mathrm{d} u\right)}_{=\hat{f}(j)} \\
& =\sum_{j=-n}^{n} \underbrace{\left(1-\frac{|j|}{n+1}\right) \hat{f}(j)}_{=c_{j}} e^{i j x}
\end{aligned}
$$

[^25]So f_{n} is a trigonometric polynomial of degree $\leq n$.

$$
\begin{aligned}
\hat{f}_{n}(j) & =\left(1-\frac{|j|}{n+1}\right) \hat{f}(j) \\
& =\hat{K}_{n}(j) \hat{f}(j)
\end{aligned}
$$

so, $f_{n}(x)=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) \hat{f}(j) e^{i j x}$
PMATH 351 Lecture 25: November 13, 2009
Theorem: Trigonometric polynomials are uniformly dense in 2π-periodic, continuous functions.
Given f continuous and 2π periodic define

$$
f_{n}(t)=\sum_{j=-n}^{n} \hat{f}(j)^{59)}\left(1-\frac{|j|}{n+1}\right) e^{i j t}
$$

Then $f_{n} \rightarrow f$ uniformly.

$$
\begin{aligned}
& \text { Also } f_{n}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x-t) K_{n}(t) \mathrm{d} t \\
& \text { where } K_{n}{ }^{60)}(t)=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) e^{i j t}
\end{aligned}
$$

Sketch of Proof

(1) $\frac{1}{2 \pi} \int_{0}^{2 \pi} K_{n}(t) \mathrm{d} t=\frac{1}{2 \pi} \sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) \int_{0}^{2 \pi} e^{i j t} \mathrm{~d} t=1$
(2) $K_{n}(t)=\frac{1}{n+1} \frac{\sin ^{2}\left(\frac{n+1}{2}\right) t}{\sin ^{2} \frac{t}{2}} \geq 0$
(3) If fix $\delta>0$ and let $\delta<t<2 \pi-\delta$ then $K_{n}(t) \leq \frac{1}{n+1} c(\delta) \rightarrow 0$ as $n \rightarrow \infty$. Fix δ.
figure: functions approximation Dirac's delta

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{\delta}^{2 \pi-\delta} K_{n}(t) \mathrm{d} t & \leq \frac{1}{2 \pi} \int_{\delta}^{2 \pi-\delta} \frac{c(\delta)}{n+1} \mathrm{~d} t \\
& \leq \frac{c(\delta)}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty \\
\left|f_{n}(x)-f(x)\right| & =\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x-t) K_{n}(t) \mathrm{d} t-f(x)\right| \\
& \leq\left|\frac{1}{2 \pi} \int_{0}^{2 \pi}(f(x-t)-f(x)) K_{n}(t) \mathrm{d} t\right| \quad \quad(\text { by }(1)) \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|(f(x-t)-f(x))| K_{n}(t) \mathrm{d} t
\end{aligned}
$$

Fix $\epsilon>0$. Pick $\delta>0$ by uniform continuity so $|t|<\delta \Longrightarrow|f(x-t)-f(x)|<\epsilon$. Get M such that $|f(x)|<M \forall x$.

$$
\begin{gather*}
\frac{1}{2 \pi}\left(\int_{0}^{\delta}(1)+\int_{2 \pi-\delta}^{2 \pi}(2)+\int_{\delta}^{2 \pi-\delta}(3)\right) \leq \epsilon+\epsilon+\epsilon=3 \epsilon \quad \forall n \geq N \\
\leq \int_{\delta}^{2 \pi-\delta} 2 M K_{n}(t) \mathrm{d} t \leq 2 M \frac{c(\delta)}{n+1}<\epsilon \tag{3}
\end{gather*}
$$

[^26]if $n \geq N$ where $\frac{2 M c(\delta)}{N}<\epsilon$
\[

$$
\begin{equation*}
\leq \frac{1}{2 \pi} \int_{0}^{\delta} \epsilon K_{n}(t) \mathrm{d} t \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \epsilon K_{n}(t) \mathrm{d} t=\epsilon \tag{1}
\end{equation*}
$$

\]

(2) $t=2 \pi-u$ where $u \in[0, \delta]$ when $t \in[2 \pi-\delta, 2 \pi]$

$$
\frac{1}{2 \pi} \int_{0}^{\delta}\left|f(x-2 \pi+u)^{61)}-f(x)\right| K_{n}(2 \pi-u) \mathrm{d} u \leq \frac{1}{2 \pi} \int_{0}^{\delta} \epsilon K_{n}(2 \pi-u) \mathrm{d} u \leq \epsilon
$$

$|-u| \leq \delta$
Thus $f_{n} \rightarrow f$ uniformly.

Stone-Weierstrass Theorem

Terminology: A family \mathcal{A} of functions (on X) is called an algebra if $f, g \in \mathcal{A} \Longrightarrow f+g \in \mathcal{A}, f g \in \mathcal{A}$, $c f \in \mathcal{A}$ for all scalars c
Examples: Polynomials, $C(X)$, Differentiable functions on \mathbb{R}.
Say \mathcal{A} separates points if $\forall x \neq y \in X$ then $\exists f \in \mathcal{A}$ such that $f(x) \neq f(y)$.
Example: polynomials on $[0,1]$
$C(X)$ separates points: $f(z)=d(x, z)$, continuous function, $f(x)=0$, but $f(y)=d(x, y) \neq 0$ if $x \neq y$.
Stone-Weierstrass Theorem: Let X be compact and let $\mathcal{A} \subseteq C(X)$ be an algebra that separates points. Assume constant functions belong to \mathcal{A}. Then \mathcal{A} is dense in $C(X)$.

$$
\text { i.e., } \forall \epsilon>0 \& \forall f \in C(X) \exists g \in \mathcal{A} \text { such that }\|g-f\|<\epsilon \text {. }
$$

Corollary: Polynomials are dense in $C[0,1]$.

Separation of points is necessary for \mathcal{A} to be dense

If $\exists x \neq y$ such that $f(x)=f(y) \forall f \in \mathcal{A}$ then if $f_{n} \in \mathcal{A}$ and $f_{n} \rightarrow g$ uniformly, we must have $g(x)=g(y)$. But $\exists g \in C(X)$ such that $g(x) \neq g(y)$
Lemma 1: Suppose B is any algebra $\subseteq C(X)$ containing all constant functions. If $f \in B$, then $|f| \in \bar{B}$.
Proof: Let $c=\|f\|>0$. We know there exists polynomials p_{n} such that $p_{n} \rightarrow \sqrt{x}$ uniformly on $[0,1]$.
Suppose $g \in B, 0 \leq g(x) \leq 1 \forall x \in X$.
Then $p_{n} \circ g(x)^{62)}$ is defined $\forall x \in X$.
If $p_{n}(t)=a_{k}^{(n)} t^{k}+\cdots+a_{1}^{(n)} t+a_{0}^{(n)}$ then $p_{n} \circ g(x)=a_{k}^{(n)} g(x)^{k}+\cdots+a_{1}^{(n)} g(x)+a_{0}^{(n)}$
Also $f \in B$ so $\frac{f^{2}}{c^{2}} \in B$ and $0 \leq \frac{f^{2}}{c^{2}} \leq 1$.
Therefore $p_{n} \circ\left(\frac{f^{2}}{c^{2}}\right) \in B$.
Know $\forall \epsilon>0 \exists N$ such that $\left|p_{n}(t)-\sqrt{t}\right|<\epsilon \forall t \in[0,1]$ and $\forall n \geq N$
So $\forall x \in X$

$$
\Longrightarrow\left\|f_{n}-\frac{|f|}{c}\right\| \leq \epsilon \forall n \geq N
$$

$$
\left\lvert\, \underbrace{p_{n}\left(\frac{f^{2}(x)}{c^{2}}\right)}_{=f_{n}(x)}-\sqrt{\frac{f^{2}(x)}{c^{2}}} 63\right.) \mid<\epsilon
$$

$f_{n} \in B$ and $f_{n} \rightarrow \frac{|f|}{c}$ uniformly
Exercise: $\underbrace{c f_{n}}_{\in B} \rightarrow|f|$ uniformly $\Longrightarrow|f| \in \bar{B}$
PMATH 351 Lecture 26: November 16, 2009

[^27]
Stone-Weierstrass Theorem

Algebra $\mathcal{A}: f, g \in \mathcal{A} \Longrightarrow f+g \in \mathcal{A}$
$f g \in \mathcal{A}$
$c f \in \mathcal{A}$
$\mathcal{A} \subseteq C(X, F), F=\mathbb{R}$ or \mathbb{C} separates points
if whenever $x \neq y \in X$
$\exists f \in \mathcal{A}$ such that $f(x) \neq f(y)$
Let X be compact, metric space and let $\mathcal{A} \subseteq C(X)$ be an algebra that separates points. Assume constant functions belong to \mathcal{A}. Then \mathcal{A} is dense in $C(X)$.
Lemma 1: Suppose B an algebra $\subseteq C(X)$ that contains the constants. If $f \in B$ then $|f| \in \bar{B}$.
Lemma 2: If $f, g \in \overline{\mathcal{A}}$ then $\max (f, g)^{64)}$ and $\min (f, g) \in \overline{\mathcal{A}}$
Proof: First check \mathcal{A} is an algebra.
Let $f, g \in \overline{\mathcal{A}}$, say $f_{n}{ }^{65)} \rightarrow f, g_{n}{ }^{65)} \rightarrow g, f_{n}+g_{n} \in \mathcal{A}$ since \mathcal{A} is an algebra.

$$
\begin{gathered}
f_{n}+g_{n} \rightarrow f+g \\
c^{65)} f_{n} \rightarrow c f
\end{gathered} \Longrightarrow \begin{gathered}
f+g \in \overline{\mathcal{A}} \\
c f \in \overline{\mathcal{A}}
\end{gathered}
$$

By Lemma, $|f-g| \in \overline{\mathcal{A}}$.

$$
\begin{aligned}
\max (f, g) & =\frac{1}{2}(f+g+|f-g|) \in \overline{\mathcal{A}} \\
\min (f, g) & =\frac{1}{2}(f+g+|f-g|) \in \overline{\mathcal{A}}
\end{aligned}
$$

Lemma 3: Given $x \neq y \in X, a, b \in \mathbb{R}$, there exists $f \in \mathcal{A}$ such that $f(x)=a, f(y)=b$
Proof: Since \mathcal{A} separates points there exists $g \in \mathcal{A}$ such that $g(x) \neq g(y)$

$$
\text { Put } \begin{aligned}
& f\left(t^{66)}\right)=a+(b-a)(\frac{g(t)-g(x)^{67)}}{\underbrace{g(y)-g(x)}_{\neq 0}}) \\
&=\alpha_{1}+\alpha_{2} g(t) \in \mathcal{A} \\
& f(x)=a, f(y)=b \checkmark
\end{aligned}
$$

Lemma 4: If $f \in C(X), x_{0} \in X$ and $\epsilon>0$ then there exists $g^{68)} \in \overline{\mathcal{A}}$ such that $g\left(x_{0}\right)=f\left(x_{0}\right)$ and $g(z) \leq f(z)+\epsilon \forall z \in X$
Proof: Apply lemma 3 with $x=x_{0}, y$ fixed ${ }^{69)}$ but arbitrary, $a=f\left(x_{0}\right), b=f(y)$.
Get $h_{y} \in \mathcal{A}$ such that $h_{y}\left(x_{0}\right)=f\left(x_{0}\right), h_{y}(y)=f(y)$.
If $y=x_{0}$ just take $h_{x_{0}}(t)=f\left(x_{0}\right)$ (constant function)
Look at $\left(h_{y}-f\right)(y)=0$.
$h_{y}-f$ is continuous so $\exists \delta y>0$ such that $\left|h_{y}(z)-f(z)\right|<\epsilon$ if $d(y, z)<\delta_{y}$.
Look at balls $\left\{B\left(y, \delta_{y}\right): y \in X\right\}$: open cover of compact set X, so there is a finite subcover, say

$$
B\left(y_{1}, \delta y_{1}\right), \ldots, B\left(y_{k}, \delta y_{k}\right)
$$

Take $g=\min \left(h_{y_{1}}, \ldots, h_{y_{k}}\right) \in \overline{\mathcal{A}}$ by lemma 2 .
$g\left(x_{0}\right)=f\left(x_{0}\right)$ as all $h_{y}\left(x_{0}\right)=f\left(x_{0}\right)$.
If $z \in X$, then $z \in B\left(y_{j}, \delta_{y_{j}}\right)$ for some j
$\Longrightarrow d\left(y_{j}, z\right)<\delta_{y_{j}}$
By definition of $\delta_{y_{j}}$, this implies $h_{y_{j}}(z)<f(z)+\epsilon$

$$
\begin{aligned}
& \hline{ }^{64)}=h, h(x)=\max (f(x), g(x)) \\
& { }^{65)} \in \mathcal{A} \\
& { }^{66)} \in X \\
& { }^{67)} \in \mathbb{R} \\
& { }^{68)}=g\left(x_{0}, \epsilon\right) \\
& { }^{69)} y \neq x_{0}
\end{aligned}
$$

$\Longrightarrow g(z) \leq h_{y_{j}}(z)<f(z)+\epsilon$
Lemma 5: If $f \in C(X)$ and $\epsilon>0$ there exists $g \in \overline{\mathcal{A}}$ such that $\|g-f\|<\epsilon$.
Proof: For each $x \in X$ by Lemma 4 we get $g_{x} \in \overline{\mathcal{A}}$ such that $g_{x}(x)=f(x)$ and

$$
\begin{equation*}
g_{x}(z) \leq f(z)+\epsilon \quad \forall z \in X \tag{2}
\end{equation*}
$$

Know $g_{x}-f(x)=0$ so there exists $\delta_{x}>0$ such that

$$
d(x, z)<\delta_{x} \Longrightarrow\left|g_{x}(z)-f(z)\right|<\epsilon
$$

Balls $B\left(x, \delta_{x}\right): x \in X$ open cover of X
Take a finite subcover, say $B\left(x_{1}, \delta_{x_{1}}\right), \ldots, B\left(x_{L}, \delta_{x_{L}}\right)$
Put $g=\max \left(g_{x_{1}}, \ldots, g_{x_{L}}\right) \in \overline{\mathcal{A}}$
Take $y \in X$ say $y \in B\left(x_{i}, \delta_{x_{i}}\right)$
$\Longrightarrow\left|g_{x_{i}}-f(y)\right|<\epsilon$

$$
\begin{aligned}
f(y)-\epsilon \underset{(1)}{<} g_{x_{i}}(y) & <f(y)+\epsilon \\
f(y)-\epsilon \underset{(1)}{<} g_{x_{i}}(y) \leq g(y) & =g_{x_{j}}(y) \text { (some index) } \\
& \leq f(y)+\epsilon \text { by }(2) \\
\Longrightarrow|g(y)-f(y)| & \leq \epsilon \quad \forall y \in X \\
\Longrightarrow\|g-f\| & \leq \epsilon
\end{aligned}
$$

Proof of S-W Theorem

Let $f \in C(X)$, and $\epsilon>0$
By lemma 5 get $g \in \overline{\mathcal{A}}$ such that $\|g-f\| \leq \epsilon / 2$.
Get $h \in \mathcal{A}$ such that $\|g-h\| \leq \epsilon / 2$.
By triangle inequality

$$
\begin{aligned}
\|f-h\| & \leq\|f-g\|+\|g-h\| \\
& \leq \epsilon
\end{aligned}
$$

PMATH 351 Lecture 27: November 18, 2009

Complex-Valued Continuous Functions

\mathbb{C} metric space
$d(z, w)=|z-w|$

$$
\begin{aligned}
|z| & =|\operatorname{Re} z+i \operatorname{Im} z|=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}} \\
& =\|(\operatorname{Re} z, \operatorname{Im} z)\|_{\mathbb{R}^{2}}
\end{aligned}
$$

$f: X \rightarrow \mathbb{C}$
f is continuous at x means whenever

$$
\underbrace{x_{n} \rightarrow x}_{\text {converges in } X} \quad \text { then } \underbrace{f\left(x_{n}\right) \rightarrow f(x)}_{\text {converges in } \mathbb{C}}
$$

$$
\begin{aligned}
& f=g+i h \\
& f=\operatorname{Re} f+i \operatorname{Im} f \\
& \operatorname{Re} f(x)=\operatorname{Re}(f(x)) \\
& g(x)=\operatorname{Re}(f(x)) \\
& f \text { is continuous iff } \operatorname{Re} f \text { and } \operatorname{Im} f \text { are continuous where } \operatorname{Re} f, \operatorname{Im} f: X \rightarrow \mathbb{R} . \\
& \bar{f}: X \rightarrow \mathbb{C}
\end{aligned} \quad \begin{aligned}
\bar{f}(z) & =\overline{f(z)} \\
& =\operatorname{Re} f(z)-i \operatorname{Im} f(z)
\end{aligned}
$$

f is continuous iff \bar{f} is continuous
Theorem: (S-W for complex-valued continuous functions)
Let X be a compact metric space and let \mathcal{A} be a subalgebra (scalars from \mathbb{C}) of

$$
C(X, \mathbb{C})=\{f: X \rightarrow \mathbb{C}: f \text { continuous }\}
$$

which contains all constants (from \mathbb{C}), separates points and is closed under conjugation (meaning $f \in \mathcal{A} \Longrightarrow \bar{f} \in \mathcal{A})$.
Then \mathcal{A} is (uniformly) dense in $C(X, \mathbb{C})$.
Example: $X=\{z \in \mathbb{C}:|z|=1\}$
$\mathcal{A}=\left\{\sum_{n=-N}^{N} a_{n} z^{n}: a_{n} \in \mathbb{C}, N \in \mathbb{N}\right\}$ trigonometric polynomials
For $z \in X, \bar{z}=z^{-1}=\frac{1}{z}$
$z=e^{i \theta}, \theta \in[0,2 \pi]$
$f(z)=f\left(e^{i \theta}\right)=g(\theta)$
figure: unit circle in \mathbb{C}

If $f^{70)}=\sum_{n=-N}^{N} a_{n} z^{n}, \bar{f}(z)=\sum \overline{a_{n} z^{n}}=\sum_{n=-N}^{N} a_{n} z^{-n} \in \mathcal{A}$
So \mathcal{A} is an algebra that contains the constants, separates points and is closed under conjugation.
$C(X, \mathbb{C}) \approx C([0,2 \pi], \mathbb{C})$ and 2π periodic
$\mathcal{A}=\left\{\sum_{n=-N}^{N} a_{n} e^{i n \theta}\right\}$
Let $B=\left\{\sum_{n=0}^{N} a_{n} z^{n}: a_{n} \in \mathbb{C}, n \in \mathbb{N}\right\}$

- algebra, contains constants, separates points
- B is not dense: $f(z)=\frac{1}{z} \notin$ closure B yet $\frac{1}{z} \in C(X, \mathbb{C})$

Say $f=\lim f_{n}, f_{n} \in B$
$f\left(e^{i \theta}\right)=\lim f_{n}\left(e^{i \theta}\right)$ uniformly in θ

$$
\int_{0}^{2 \pi} \bar{f} f_{n} \mathrm{~d} \theta=\int_{0}^{2 \pi} e^{i \theta} \sum_{k=0}^{N_{n}} a_{k}^{(n)} e^{i k \theta} \mathrm{~d} \theta
$$

$\bar{f}(z)=z$

$$
\begin{aligned}
&=\sum_{k=0}^{N_{n}} a_{k}^{(n)} \int_{0}^{2 \pi} e^{i(k+1) \theta} \mathrm{d} \theta=0 \\
&\left|\int_{0}^{2 \pi} \bar{f} f_{n}-\int_{0}^{2 \pi} \bar{f} f \mathrm{~d} \theta\right|=\int_{0}^{2 \pi}\left|\bar{f}\left(f_{n}-f\right)\right| \mathrm{d} \theta \\
& \leq \int_{0}^{2 \pi}|\bar{f}|\left|f_{n}-f\right| \mathrm{d} \theta \\
& \leq M \int_{0}^{2 \pi}\left|f_{n}-f\right| \mathrm{d} \theta \\
&<M \epsilon \cdot 2 \pi \text { for } n \text { sufficiently large } \\
& \Longrightarrow{ }^{71)} \int_{0}^{2 \pi} \bar{f} f_{n} \mathrm{~d} \theta \rightarrow \int_{0}^{2 \pi}|f|^{2} \mathrm{~d} \theta \\
&=\int_{0}^{2 \pi} 1 \mathrm{~d} \theta \\
&=2 \pi
\end{aligned}
$$

[^28]- contradiction

Proof of S-W for complex-valued functions

$$
\text { Let } \begin{aligned}
\mathcal{A}_{\mathbb{R}} & =\{\text { real-valued functions in } \mathcal{A}\} \\
& \subseteq C(X)
\end{aligned}
$$

- contains all real valued constant functions
\mathcal{A}-algebra over \mathbb{R}
If $f \in \mathcal{A}$ then $\bar{f} \in \mathcal{A} \Longrightarrow f+\bar{f}=2 \operatorname{Re} f \in \mathcal{A}$
$\Longrightarrow \operatorname{Re} f \in \mathcal{A} \Longrightarrow \operatorname{Re} f \in \mathcal{A}_{\mathbb{R}}$
Similarly $\operatorname{Im} f \in \mathcal{A} \Longrightarrow \operatorname{Im} f \in \mathcal{A}_{\mathbb{R}}$.
If $x \neq y$ then there exists $f \in \mathcal{A}$ such that $f(x) \neq f(y)$
\Longrightarrow At least one of $\operatorname{Re} f(x) \neq \operatorname{Re} f(y)$ or $\operatorname{Im} f(x) \neq \operatorname{Im} f(y)$
Therefore $\mathcal{A}_{\mathbb{R}}$ separates points.
By S-W Theorem, $\mathcal{A}_{\mathbb{R}}$ is dense in $C(X)$
Let $f \in C(X, \mathbb{C})$ and let $\epsilon>0$.
Then $\operatorname{Re} f, \operatorname{Im} f \in C(X)$ so there exist $g, h \in \mathcal{A}_{\mathbb{R}}$ such that $\|\operatorname{Re} f-g\|<\epsilon$ and $\|\operatorname{Im} f-h\|<\epsilon$
Also $g+i h \in \mathcal{A}$: Calculate $\|f-(g+i h)\|$

$$
=\|\underbrace{\operatorname{Re} f+i \operatorname{Im} f}_{=f}-(g+i h)\| \leq\|\operatorname{Re} f-g\|+\|i(\operatorname{Im} f-h)\|<2 \epsilon
$$

Applications

1. Let $f \in C(X), f 1-1$

Then $\left\{\sum_{n=0}^{N} a_{n} f^{n}(x): a_{n} \in \mathbb{R}, n \in \mathbb{N}\right\}$ is dense in $C(X)$
2. Suppose $f \in C[0,1]$ and $\int_{0}^{1} f(x) x^{n} \mathrm{~d} x=0$ for all $n=0,1,2, \ldots$.

Then $f=0$.
Proof: $\int_{0}^{1} f(x) p(x) \mathrm{d} x=0$ for $p(x)=$ polynomial
Know there exists $p_{N} \rightarrow f$ uniformly for polynomials p_{N} and so $\int_{0}^{1} \underbrace{f \cdot p_{N}}_{=0} \mathrm{~d} x \rightarrow \int_{0}^{1} f \cdot f \mathrm{~d} x=$ $\int_{0}^{1}\|f\|^{2} \mathrm{~d} x$ $\Longrightarrow f=0$.

PMATH 351 Lecture 28: November 20, 2009

Applications of S-W Theorem

$$
\begin{gather*}
\int_{0}^{1} f(x) x^{n} \mathrm{~d} x=0 \quad \forall n=0,1,2, \ldots \tag{1}\\
\Longrightarrow f=0
\end{gather*}
$$

Uniqueness Theorem
(2) If $f 2 \pi$-periodic, continuous function and $\hat{f}(j)=0=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i j x} \mathrm{~d} x \forall j \in \mathbb{Z}$ then $f \equiv 0$.

Proof: Let $p(x)=\sum_{n=-N}^{N} a_{k} e^{i k x}$ for any trigonometric polynomials
Then $\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) p(x) \mathrm{d} x=0$
Take $p_{N} \rightarrow \bar{f}$ uniformly.

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} f \cdot p_{N}{ }^{72)} \rightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} f \cdot \bar{f}=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f|^{2} \Longrightarrow f=0
$$

${ }^{71)}=0$
(3) $C([0,1] \times[0,1])$

$$
\text { Take } \mathcal{A}=\left\{\sum_{i=1}^{N} f_{i}(x) g_{i}(y): f_{i}, g_{i}:[0,1] \rightarrow \mathbb{R}, \text { continuous }\right\}
$$

- algebra
- contains constants
- separates points

By S-W, \mathcal{A} is dense in $C([0,1] \times[0,1])$
HW (4) $C[a, b]$ is separable, i.e., countable dense set
(5) Proposition: Let X be compact and suppose $\mathcal{A} \subseteq C(X)$ is a subalgebra that separates points, but $\overline{\mathcal{A}} \neq C(X)$.
Then there exists $x_{0} \in X$ such that $f\left(x_{0}\right)=0 \forall f \in \mathcal{A}$.
Proof: Suppose not. Then $\forall x \in X \exists f_{x} \in \mathcal{A}$ such that $f_{x}(x) \neq 0$. By multiplying by a suitable scalar, without loss of generality $f_{x}(x)=2$. By continuity there exists $\delta_{x}>0$ such that if $y \in B\left(x, \delta_{x}\right)$ then $f_{x}(y) \geq 1$.
X is compact so take a finite subcover, say

$$
\begin{aligned}
& B\left(x_{1}, \delta_{x_{1}}\right), \ldots, B\left(x_{\kappa}, \delta_{x_{\kappa}}\right) \\
& \operatorname{Put} f(y)=\sum_{i=1}^{\kappa} f_{x_{i}}^{2}(y) \in \mathcal{A}
\end{aligned}
$$

If $y \in X$, then there exists i such that $y \in B\left(x_{i}, \delta_{x_{i}}\right)$
$\Longrightarrow f_{x_{i}}^{2}(y) \geq 1$
$\Longrightarrow f(y) \geq f_{x_{i}}^{2}(y) \geq 1 \Longrightarrow \frac{1}{f} \in C(X)$
Consider $\mathcal{A}+\mathbb{R} \equiv\{g+\lambda: g \in \mathcal{A}, \lambda \in \mathbb{R}\} \subseteq C(X)$
$\mathcal{A}+\mathbb{R}$ is an algebra: Take $g_{1}+\lambda_{1}, g_{2}+\lambda_{2}$

$$
\left(g_{1}+\lambda_{1}\right)\left(g_{2}+\lambda_{2}\right)=\underbrace{g_{1} g_{2}+\lambda_{2} g_{1}+\lambda_{1} g_{2}}_{\in \mathcal{A}}+\underbrace{\lambda_{1} \lambda_{2}}_{\in \mathbb{R}}
$$

Contains constants because $g=0 \in \mathcal{A}$
$\mathcal{A}+\mathbb{R}$ separates points since \mathcal{A} separates points
By S-W Theorem $\mathcal{A}+\mathbb{R}$ is dense in $C(X)$.
So there exists $g_{n}+\lambda_{n} \rightarrow \frac{1}{f}$ uniformly where $g_{n} \in \mathcal{A}, \lambda_{n} \in \mathbb{R}$

$$
\begin{aligned}
\left|f(y) \cdot g_{n}(y)+f(y) \lambda_{n}-1\right| & =|f(y)|\left|g_{n}(y)+\lambda_{n}-\frac{1}{f(y)}\right| \\
& \leq\|f\|_{\infty}\left|g_{n}(y)+\lambda_{n}-\frac{1}{f(y)}\right|
\end{aligned}
$$

$\rightarrow 0$ uniformly
Hence $\underbrace{f g_{n}+\lambda_{n} f}_{\in \mathcal{A}} \rightarrow 1$ uniformly
$\Longrightarrow 1 \in \overline{\mathcal{A}}$
So $\overline{\mathcal{A}}$ is a subalgebra of $C(X)$ that contains constants and separates points.
By S-W: $\overline{\mathcal{A}}$ is dense in $C(X)$. But $\overline{\mathcal{A}}$ is closed, therefore $\overline{\mathcal{A}}=C(X)$: contradiction.
Remark: Evaluation map $\phi_{x_{0}}: C(X) \rightarrow \mathbb{R}, f \mapsto f\left(x_{0}\right)$ $\phi_{x_{0}}$ linear, multiplicative, continuous onto \mathbb{R}

$$
\operatorname{ker} \phi_{x_{0}}=\left\{f: f\left(x_{0}\right)=0\right\}=\phi_{x_{0}}^{-1}\{0\}
$$

[^29]- closed set
- ideal
- proper ideal

$$
C(X) / \operatorname{ker} \phi_{x_{0}} \cong \mathbb{R} \Longrightarrow \text { maximal ideal }
$$

Theorem: $\left\{\operatorname{ker} \phi_{x_{0}}: x_{0} \in X\right\}$: all the maximal ideals in $C(X)$
Previous proposition says $\mathcal{A} \subseteq \operatorname{ker} \phi_{x_{0}}$
Suppose B algebra with no $x_{0} \in X$ such that $f\left(x_{0}\right)=0 \forall f \in B$
Apply previous argument to B we see there exists $f \in B$ such that $f(y) \geq 1 \forall y$
$\Longrightarrow \frac{1}{f} \in C(X) \Longrightarrow B$ is not contained in any proper ideal

- Banach algebra.

PMATH 351 Lecture 29: November 23, 2009

Baire Category Theory

Definition: $A \subseteq X$ is called nowhere dense if $\operatorname{int} \bar{A}=\emptyset$.
e.g., \mathbb{Z} in \mathbb{R} : nowhere dense
\mathbb{Q} in \mathbb{R} : fails to be nowhere dense
A is nowhere dense if and only if \bar{A} is nowhere dense
A is called first category if $A=\bigcup_{n=1}^{\infty} A_{n}$ where each A_{n} is nowhere dense.
e.g., $\mathbb{Q}=\bigcup_{n=1}^{\infty}\left\{r_{n}\right\}$: first category
A is called second category otherwise.
If A is nowhere dense then A^{C} is dense.
Why? A set is dense if and only if it intersects every non-empty open set.
Suppose A^{C} is not dense. Then there exists U open, $\neq \emptyset$ such that $U \cap A^{\mathrm{C}}=\emptyset$
$\Longrightarrow U \subseteq A \Longrightarrow \operatorname{int} \bar{A} \neq \emptyset$: contradiction.
Proposition: A closed and nowhere dense $\Longleftrightarrow A^{\mathrm{C}}$ is open and dense
Proof: \Longrightarrow : \checkmark
\Longleftarrow : Suppose int $\bar{A}^{73)}=\emptyset$. Hence $\operatorname{int} A \cap A^{\mathrm{C}}=\emptyset$: contradicts A^{C} dense.
Proposition: X is second category if and only if the intersection of every countable family of dense open sets in X is non-empty.
Proof: (\Longrightarrow) Let $G_{j}, j=1,2, \ldots$ be open and dense.
Then G_{j}^{C} are closed and nowhere dense.
Since X is 2nd category $X \neq \bigcup_{1}^{\infty} G_{j}^{\mathrm{C}} \Longrightarrow \underbrace{\left(\bigcup_{1}^{\infty} G_{j}^{\mathrm{C}}\right)^{\mathrm{C}}}_{=\bigcap_{j=1}^{\infty} G_{j}} \neq \emptyset$.
(\Longleftarrow) Suppose X is not 2nd category.
Then $X=\bigcup_{1}^{\infty} \overline{F_{j}}$ where F_{j} are closed and nowhere dense.

$$
\left(\bigcup_{1}^{\infty} F_{j}\right)^{\mathrm{C}}=\emptyset=\bigcap_{j=1}^{\infty} \underbrace{F_{j}^{\mathrm{C}}}_{\text {open \& dense }}
$$

Baire Category Theorem

A complete metric space is second category.
Proof: Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be open and dense
Show $\bigcap_{n=1}^{\infty} A_{n} \neq \emptyset$
Let $x_{1} \in A_{1}$ and let U_{1} be an open ball ${ }^{74)}$ containing $x_{1}, U_{1} \subseteq A_{1}$.
A_{2} is dense so there exists $x_{2} \in \underbrace{A_{2} \cap U_{1}}_{\text {open }}$.
73) $=A$
${ }^{74)}=B\left(x_{1}, r_{1}\right)$

Since $A_{2} \cap U_{1}$ is open there exists an open set $U_{2} \ni x_{2}, U_{2} \subseteq A_{2} \cap U_{1}{ }^{75)}$ and $\operatorname{diam} U_{2} \leq \frac{1}{2} \operatorname{diam} U_{1}$ and $\bar{U}_{2} \subseteq U_{1}$

$$
\left(B\left(x_{2}, r\right) \subseteq B\left(x_{1}, r_{1}\right) \Longrightarrow \overline{B\left(x_{2}, \frac{r}{2}\right)} \subseteq B\left(x_{2}, r\right) \subseteq B\left(x_{1}, r_{1}\right)\right)
$$

Proceed inductively to get open sets $U_{n} \ni x_{n}, U_{n} \subseteq \bigcap_{1}^{n} A_{j}, \overline{U_{n}} \subseteq U_{n-1}$, $\operatorname{diam} U_{n} \leq \frac{1}{2} \operatorname{diam} U_{n-1}$ (so $\operatorname{diam} U_{n} \rightarrow 0$)
Claim $\left\{x_{n}\right\}_{1}^{\infty}$ is a Cauchy sequence.
Let $\epsilon>0$. Pick N such that $\operatorname{diam} U_{N}<\epsilon$.
If $n, m \geq N$ then $x_{n}, x_{m} \in U_{N}$ (as $U_{j} \mathrm{~s}$ are nested)
$\Longrightarrow d\left(x_{n}, x_{m}\right) \leq \operatorname{diam} U_{N}<\epsilon$.
Since the space is complete, $x_{n} \rightarrow x$.
Notice $x_{n} \in \bar{U}_{N}$ for all $n \geq N \Longrightarrow x \in \bar{U}_{N} \subseteq U_{N-1} \subseteq \bigcap_{1}^{N-1} A_{j}$
This is true for all $N \Longrightarrow x \in \bigcap_{1}^{\infty} A_{j} \Longrightarrow \bigcap_{1}^{\infty} A_{j} \neq \emptyset \Longrightarrow X$ is second category.
Corollary: \mathbb{R} is uncountable
Proof: \mathbb{R} is second category.
Corollary: A non-empty perfect set E in a complete metric space is uncountable.
Proof: Say $E=\bigcup_{n=1}^{\infty}\left\{r_{n}\right\}$. E being a closed subset of a complete metric space is complete. Therefore E is second category. This implies $\left\{r_{n}\right\}$ is open for some n.
So there exists $\epsilon>0$ such that $B\left(r_{n}, \epsilon\right)=\left\{r_{n}\right\}$
But r_{n} is an accumulation point of $E \Longrightarrow B\left(r_{n}, \epsilon\right) \cap B\left(E \backslash\left\{r_{n}\right\}\right) \neq \emptyset$

- contradiction

Proposition: The set E of functions in $C[0,1]$ which have a derivative at (even) one point of $(0,1)$ is first category.
Corollary: The set of nowhere differentiable continuous functions is second category.
Proof: (exercise) Union of two first category sets is first category.
Proof of proposition:

$$
\text { Put } E_{n}=\left\{f \in C[0,1]: \exists x \in\left[0,1-\frac{1}{n}\right] \text { such that } \forall h \in\left(0, \frac{1}{n}\right], \frac{|f(x+h)-f(x)|}{h} \leq n\right\} .
$$

If f is differentiable at $x_{0} \in(0,1)$ then there exists n_{1} such that $x_{0} \in\left[0,1-\frac{1}{n_{1}}\right]$ and there exists n_{2} such that if $0<h \leq \frac{1}{n_{2}}$ then

$$
\begin{aligned}
\left|\frac{f(x+h)-f(x)}{h}\right| & \leq\left|f^{\prime}\left(x_{0}\right)\right|+1 \\
& \leq n_{3}
\end{aligned}
$$

Take $n=\max \left(n_{1}, n_{2}, n_{3}\right) \Longrightarrow f \in E_{n}$
Shown $E \subseteq \bigcup_{n=1}^{\infty} E_{n}$

PMATH 351 Lecture 30: November 25, 2009

Proposition: The set of functions $E \subseteq C[0,1]$ which have a derivative at one point of $(0,1)$ is first category.
Proof:

$$
\text { Put } E_{n}=\left\{f \in C[0,1]: \exists x \in[0,1-1 / n] \text { such that } \forall h \in(0,1 / n], \frac{|f(x+h)-f(x)|}{h} \leq n\right\}
$$

Show
(1) $E \subseteq \bigcup_{n=1}^{\infty} E_{n}$
(2) E_{n} closed

[^30](3) E_{n} have empty intersection
\[

$$
\begin{aligned}
& \text { Then } E \stackrel{(1)}{=} \bigcup_{n=1}^{\infty}\left(E_{n} \cap E\right) \\
& \overline{E_{n} \cap E} \subseteq \overline{E_{n}} \stackrel{(2)}{=} E_{n} \\
& \operatorname{int}\left(\overline{E_{n} \cap E}\right) \subseteq \operatorname{int} E_{n} \stackrel{(3)}{=} \emptyset
\end{aligned}
$$
\]

$\Longrightarrow E_{n} \cap E$ are nowhere dense
E is first category
Step 1: Let $f \in E$, say $f^{\prime}\left(x_{0}\right)$ exists for $x_{0} \in(0,1)$
Then there exists n_{1} such that $x \in\left[0,1-1 / n_{1}\right]$
There exists n_{2} such that $|h|<1 / n_{2}$ then $\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-f^{\prime}\left(x_{0}\right)\right| \leq 1$

$$
\begin{aligned}
\Longrightarrow \frac{\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right|}{h} & \leq 1+f^{\prime}\left(x_{0}\right) \quad \forall 0<h \leq 1 / n_{2} \\
& \leq n_{3}
\end{aligned}
$$

Put $n=\max \left(n_{1}, n_{2}, n_{3}\right) \Longrightarrow f \in E_{n}$
$\Longrightarrow E \subseteq \bigcup_{n=1}^{\infty} E_{n}$
(3) Let $f \in E_{n}$ and let $\epsilon>0$

Show there exists $g \in C[0,1]$ such that $g \in B(f, \epsilon)$, i.e., $\|g-f\|<\epsilon$, but $g \notin E_{n}$.
i.e., for all $x \in[0,1-1 / n]$, there exists $h \in(0,1 / n]$ such that

$$
\left|\frac{g(x+h)-g(x)}{h}\right|>n
$$

Get polynomial P such that $\|f-P\|<\epsilon / 2$ (by S-W)
Let $M>\sup _{x \in[0,1]}\left|P^{\prime}(x)\right|$ (can do as $P^{\prime} \in C[0,1]$)
Let Q be continuous piecewise linear with slope $\pm(M+n+1)$ and $0 \leq Q \leq \epsilon / 2$
Put $g=P+Q \in C[0,1]$

$$
\left.\begin{array}{rl}
\|g-f\| & =\|P+Q-f\| \\
& \leq\|P-f\|+\|Q\| \\
<\epsilon / 2+\epsilon / 2=\epsilon
\end{array}\right] \begin{aligned}
\frac{|g(x+h)-g(x)|}{h} & =\frac{|P(x+h)-P(x)+Q(x+h)-Q(x)|}{h} \\
& \geq \frac{|Q(x+h)-Q(x)|}{h}-\frac{|P(x+h)-P(x)|}{h} \\
& \geq M+n+1-M \quad(\text { for small } h) \\
& =n+1>n
\end{aligned}
$$

figure: periodic sawtooth between 0 and 1 ; peak of $\epsilon / 2$
$\Longrightarrow g \notin E_{n}$
(2) Prove E_{n} is closed.

Suppose $f_{m} \in E_{n}$ and $f_{m} \rightarrow f$ (uniformly)
Need to prove $f \in E_{n}$.
For each m, there exists $x_{m} \in[0,1-1 / n]$ such that for all $h \in(0,1 / n]$

$$
\begin{equation*}
\frac{\left|f_{m}\left(x_{m}+h\right)-f_{m}\left(x_{m}\right)\right|}{h} \leq n \tag{3}
\end{equation*}
$$

By B-W there exists $x_{m_{j}} \rightarrow x_{0} \in[0,1-1 / n]$
By relabeling, if necessary, (and throwing away functions not in the subsequent $f_{m_{j}}$) we can
assume $x_{m} \rightarrow x_{0}$.
Fix $h \in(0,1 / n]$. Fix $\epsilon>0$.
Pick M_{1} such that $\left\|f_{m}-f\right\|<\frac{\epsilon h}{4}$ for all $m \geq M_{1}$ (2)
f is uniformly continuous. There exists $\delta>0$ such that $|x-y|<\delta$
$\Longrightarrow|f(x)-f(y)|<\frac{\epsilon h}{4}(1)$
Pick M_{2} such that $\left|x_{m}-x_{0}\right|<\delta$ if $m \geq M_{2}$ and then let $M=\max \left(M_{1}, M_{2}\right)$

$$
\begin{aligned}
\frac{\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right|}{h} \leq & \frac{\left|f\left(x_{0}+h\right)-f\left(x_{M}+h\right)\right|}{h}+\frac{\left|f\left(x_{M}+h\right)-f_{M}\left(x_{M}+h\right)\right|}{h} \\
& \quad+\frac{\left|f_{M}\left(x_{M}+h\right)-f_{M}\left(x_{M}\right)\right|}{h}+\frac{\left|f_{M}\left(x_{M}\right)-f\left(x_{M}\right)\right|}{h}+\frac{\left|f\left(x_{M}\right)-f\left(x_{0}\right)\right|}{h} \\
< & \left.\left.\frac{\epsilon h / 4}{h} 76\right)+\frac{\left.\left\|f-f_{M}\right\|^{7} 77\right)}{h}+n^{78)}+\left\|f_{M}-f\right\|^{79)}+\frac{\epsilon h / 4}{h} 80\right) \\
< & \epsilon / 4+\frac{\epsilon h / 4}{h}+n+\epsilon / 4+\epsilon / 4 \\
= & n+\epsilon
\end{aligned}
$$

$$
\begin{aligned}
& \left|x_{0}+h-\left(x_{M}+h\right)\right|= \\
& \left|x_{0}-x_{M}\right|<\delta
\end{aligned}
$$

$$
\left|x_{0}-x_{M}\right|<\delta
$$

True for all $\epsilon>0$, therefore $\frac{\left|f\left(x_{0}+h\right)-f\left(x_{0}\right)\right|}{h} \leq n$ for all $h \in(0,1 / n]$ $\Longrightarrow f \in E_{n}$. Therefore E_{n} is closed.

Banach Contraction Mapping Principle

Let X be a complete metric space and let $T: X \rightarrow X$ be a contraction i.e., exists $r<1$ such that $d(T(x), T(y)) \leq r d(x, y)$ for all $x, y \in X$
Then T is continuous and has a unique fixed point i.e., point x such that $T(x)=x$.

PMATH 351 Lecture 31: November 27, 2009

Banach Contraction Mapping Principle

$T: X \rightarrow X$ is a contraction if there exists $r<1$ such that $d(T(x), T(y)) \leq r d(x, y)$ for all $x, y \in X$
Theorem: If X is a complete metric space and $T: X \rightarrow X$ is a contraction, then T is a continuous map and has a unique fixed point, i.e., there exists $x \in X$ such that $T(x)=x$.
Proof: In fact a contraction is uniformly continuous.
Given $\epsilon>0$ take $\delta=\epsilon / r$ and then $d(x, y)<\delta$
$\Longrightarrow d(T(x), T(y)) \leq r \cdot d=\epsilon$
Take $x_{0} \in X$. Look at $T\left(x_{0}\right), T\left(T\left(x_{0}\right)\right)=T^{2}\left(x_{0}\right)$
...
Let $x_{1}=T\left(x_{0}\right), x_{n+1}=T\left(x_{n}\right)=T^{2}\left(x_{n-1}\right)=\cdots=T^{n+1}\left(x_{0}\right)$
First check $\left\{x_{n}\right\}_{1}^{\infty}$ is a Cauchy sequence.
Start by looking at $d\left(x_{n}, x_{n+1}\right)=d\left(T\left(x_{n-1}\right), T\left(x_{n}\right)\right)$

$$
\leq r d\left(x_{n-1}, x_{n}\right)=r d\left(T\left(x_{n-2}\right), T\left(x_{n-1}\right)\right) \leq r^{2} d\left(x_{n-2}, x_{n-1}\right)=\cdots=r^{n} d\left(x_{0}, x_{1}\right)
$$

Assume $m>n$. Say $m=n+k$.

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+k-1}, x_{n+k}\right) \\
& \leq r^{n} d\left(x_{0}, x_{1}\right)+r^{n+1} d\left(x_{0}, x_{1}\right)+\cdots+r^{n+k-1} d\left(x_{0}, x_{1}\right) \\
& =d\left(x_{0}, x_{1}\right)\left(r^{n}+r^{n+1}+\cdots+r^{n+k-1}\right) \\
& \leq d\left(x_{0}, x_{1}\right) \sum_{n}^{\infty} r^{j} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

${ }^{76)}$ by (1)
77) (2)
${ }^{78)}$ by (3)
79) (2)
${ }^{80)}$ by (1)

Hence $\left\{x_{n}\right\}$ is Cauchy
As X is complete there exists $y \in X$ such that $x_{n} \rightarrow y$

$$
\begin{gathered}
\text { By continuity } T\left(x_{n}\right) \rightarrow T(y) \\
\| \\
x_{n+1} \rightarrow y
\end{gathered}
$$

Therefore $T(y)=y$. So y is a fixed point of T.
Suppose z was also a fixed point of T

$$
d(z, y)=d(T(z), T(y)) \leq r d(z, y)
$$

Since $r<1 \Longrightarrow d(z, y)=0$, i.e., $z=y$

Application to Solving an Integral Equation

Suppose $k(x, y):[0,1] \times[0,1] \rightarrow \mathbb{R}$, continuous
Consider the equation

$$
\begin{equation*}
f(x)=A+\int_{0}^{x} k(x, y) f(y) \mathrm{d} y \tag{*}
\end{equation*}
$$

Find continuous f which satisfies this.
e.g., $k=1, A=1, f(x)=1+\int_{0}^{x} f(y) \mathrm{d} y$

$$
g(x)=\int_{0}^{x} f(y) \mathrm{d} y \text { is differentiable } \Longrightarrow f \text { is differentiable }
$$

$g^{\prime}(x)=f(x)$ by Fundamental Theorem of Calculus
$\Longrightarrow f^{\prime}(x)=0+f(x) \Longrightarrow f(x)=c e^{x}$
Furthermore $f(0)=1+\int_{0}^{0} f(y)=1 \Longrightarrow c=1, f(x)=e^{x}$
Theorem: If $\sup _{x \in[0,1]} \int_{0}^{1}|k(x, y)| \mathrm{d} y=\lambda<1$ then $(*)$ has a unique solution.
Proof: Define $T: C[0,1] \rightarrow C[0,1]$ by $T(f)(x)=A+\int_{0}^{x} k(x, y) f(y) \mathrm{d} y$.
We want a fixed point for T.
Verify $T(f)(x) \in C[0,1]$.
figure: $0<z<x$
Without loss of generality $x>z$

$$
\begin{aligned}
|T f(x)-T f(z)| & =\left|\int_{0}^{x} k(x, y) f(y) \mathrm{d} y-\int_{0}^{z} k(z, y) f(y) \mathrm{d} y\right| \\
& \leq\left|\int_{0}^{z}(k(x, y)-k(z, y)) f(y) \mathrm{d} y\right|+\left|\int_{z}^{x} k(x, y) f(y) \mathrm{d} y\right| \\
& \leq \int_{0}^{z} \underbrace{|k(x, y)-k(z, y)|}_{(1)} f(y)|\mathrm{d} y+\int_{z}^{x} \underbrace{|k(x, y)|}_{(2)}| f(y) \mid \mathrm{d} y
\end{aligned}
$$

k is uniformly continuous. Given $\epsilon>0$ get δ, i.e., $\|(x, y)-(z, y)\|<\delta \Longrightarrow|k(x, y)-k(z, y)|<\epsilon$. f is bounded, say $\|f\|<M$.
Let $|x-z|<\underline{\min (\delta, \epsilon)} .^{\delta}$
Then $\|(x, y)-(z, y)\|=|x-z|<\delta$
$\Longrightarrow|k(x, y)-k(z, y)|<\epsilon$.
$\Longrightarrow(1) \leq \int_{0}^{z} \epsilon \cdot M \mathrm{~d} y=z \epsilon M \leq \epsilon M$
(2): Also $\|k\| \leq M^{\prime} \Longrightarrow(2) \leq \int_{z}^{x} M^{\prime} M \mathrm{~d} y=|x-z| M^{\prime} M<\delta M^{\prime} M \leq \epsilon M^{\prime} M$.

$$
|T f(x)-T f(z)| \leq(1)+(2) \leq \epsilon M+\epsilon M^{\prime} M=\epsilon(\text { constant })
$$

$\Longrightarrow T f(x)$ is continuous
$C[0,1]$ is a complete metric space.

Verify T is a contraction.

$$
\begin{aligned}
d(T f, T g) & =\|T f-T g\| \\
& =\sup _{x \in[0,1]}|T f(x)-T g(x)| \\
|T f(x)-T g(x)| & =\left|\int_{0}^{x} k(x, y) f(y) \mathrm{d} y-\int_{0}^{x} k(x, y) g(y) \mathrm{d} y\right| \\
& \leq\left|\int_{0}^{x} k(x, y)(f(y)-g(y)) \mathrm{d} y\right| \\
& \leq \int_{0}^{x}|k(x, y)||f(y)-g(y)| \mathrm{d} y \\
& \leq\|f-g\| \int_{0}^{1}|k(x, y)| \mathrm{d} y \\
& \left.\leq \lambda^{81}\right)\|f-g\|=\lambda d(f, g)
\end{aligned}
$$

Therefore $\|T f-T g\| \leq \lambda\|f-g\|$
Thus T is a contraction and therefore the integral equation has a unique solution in $C[0,1]$ by Banach Contraction Mapping Principle.

PMATH 351 Lecture 32: November 30, 2009

Example: $T:[1, \infty) \rightarrow[1, \infty)$

$$
\begin{aligned}
T(x) & =x+1 / x \\
|T(x)-T(y)| & =\left|x-y-\frac{1}{y}+\frac{1}{x}\right| \\
& =\left|x-y-\frac{x-y}{x y}\right| \\
& =|x-y|\left|1-\frac{1}{x y}\right| \\
& <|x-y|
\end{aligned}
$$

But $T(x) \neq x$ so no fixed point.

Picard's Theorem

Terminology: Say $\Phi:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz in y-variable if there exists a constant L such that

$$
|\Phi(x, y)-\Phi(x, z)| \leq L|y-z| \quad \forall x \in[a, b] \& \forall y, z \in \mathbb{R}
$$

Global Picard Theorem

Suppose $\Phi:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and Lipschitz in y-variable. Then the differential equation

$$
F^{\prime}(x)=\Phi(x, F(x)), \quad F(a)=c
$$

has a unique solution.
Proof: Define $T: C[a, b] \rightarrow C[a, b]$

$$
\text { by } T F(x)=c+\int_{a}^{x} \Phi(t, F(t)) \mathrm{d} t
$$

If $F \in C[a, b]$ then $G(t)=\Phi(t, F(t))$ is continuous.
By the Fundamental Theorem of Calculus $T F(x)$ is differentiable, so $T F \in C[a, b]$ as claimed. $(T F)^{\prime}(x)=\Phi(x, F(x))$ by Fundamental Theorem of Calculus.
Suppose F is a fixed point of T.

$$
\begin{aligned}
T F(x) & =F(x) \\
F^{\prime}(x) & =(T F)^{\prime}(x)=\Phi(x, F(x)) \text { and } T F(a)^{82)}=F(a)
\end{aligned}
$$

[^31]Thus F satisfies the initial value differential equation.
Conversely, if $F^{\prime}(x)=\Phi(x, F(x))$ and $F(a)=c$ then $(T F)^{\prime}(x)=F^{\prime}(x) \forall x \in[a, b]$

$$
\begin{aligned}
\Longrightarrow T F(x) & =F(x)+\text { constant } \\
\Longrightarrow T F(a)^{82)} & =F(a)^{82)}+\mathrm{constant}
\end{aligned}
$$

so constant $=0 \Longrightarrow T F(x)=F(x)$ so F is a fixed point of T.
Can't call on BCMP directly, because T might not be a contraction. But we use same method of proof.
Start with $F_{0}(x)=c$. Put $F_{k+1}(x)=T F_{k}(x)$.
Let L be the Lipschitz factor of Φ
Let $M=\max _{a \leq x \leq b}|\Phi(x, c)|$

$$
\begin{aligned}
\left|F_{1}(x)-F_{0}(x)\right| & =|T c(x)-c| \\
& =\left|c+\int_{a}^{x} \Phi(t, c) \mathrm{d} t-c\right| \\
& \leq \int_{a}^{x}|\Phi(t, c)| \mathrm{d} t \leq M(x-a)
\end{aligned}
$$

Inductively, we assume $\left|F_{k}(x)-F_{k-1}(x)\right| \leq \frac{L^{k-1} M(x-a)^{k}}{k!} \forall x \in[a, b]$

$$
\text { Then } \begin{aligned}
\left|F_{k+1}(x)-F_{k}(x)\right| & =\left|T\left(F_{k}\right)(x)-T\left(F_{k-1}\right)(x)\right| \\
& =\left|c+\int_{a}^{x} \Phi\left(t, F_{k}(t)\right) \mathrm{d} t-\left(c+\int_{a}^{x} \Phi\left(t, F_{k-1}(t)\right) \mathrm{d} t\right)\right| \\
& \leq \int_{a}^{x}\left|\Phi\left(t, F_{k}(t)\right)-\Phi\left(t, F_{k-1}(t)\right)\right| \mathrm{d} t \\
& \leq \int_{a}^{x} L\left|F_{k}(t)-F_{k-1}(t)\right| \mathrm{d} t \quad \text { by Lipschitz property } \\
& \leq \int_{a}^{x} L \frac{L^{k-1} M(t-a)^{k}}{k!} \mathrm{d} t \quad \text { (by inductive assumption) } \\
& =\left.\frac{L^{k} M}{k!} \cdot \frac{(t-a)^{k+1}}{k+1}\right|_{a} ^{x}=\frac{L^{k} M(x-a)^{k+1}}{(k+1)!}
\end{aligned}
$$

That completes the inductive step.
Next, verify $\left\{F_{n}\right\}$ is uniformly Cauchy.
Fix $x \in[a, b]$ temporarily.

$$
\begin{aligned}
\left|F_{n}(x)-F_{m}(x)\right| & \leq\left|F_{n}(x)-F_{n+1}(x)\right|+\left|F_{n+1}(x)-F_{n+2}(x)\right|+\cdots+\left|F_{m-1}(x)-F_{m}(x)\right| \\
& \leq \frac{L^{n} M}{(n+1)!}(x-a)^{n+1}+\cdots+\frac{L^{m-1} M}{m!}(x-a)^{m} \\
& \leq \frac{M}{L} \sum_{j=n+1}^{\infty} \frac{(L(x-a))^{j}}{j!} \leq \underbrace{\frac{M}{L} \sum_{j=n+1}^{\infty} \frac{(L(b-a))^{j}}{j!}}_{\text {Tail of convergent series }{ }^{83)} \text { so }<\epsilon \text { if } n \geq N}
\end{aligned}
$$

Therefore $\left\{F_{n}\right\}$ is a Cauchy sequence in $C[a, b]$ so $F_{n} \rightarrow F$ uniformly.

[^32]Need to prove T is a continuous function

$$
\begin{aligned}
|T F(x)-T G(x)| & \leq\left|\int_{a}^{x}\right| \Phi(t, F(t))-\Phi(t, G(t))|\mathrm{d} t| \\
& \leq \int_{a}^{x} L|F(t)-G(t)| \mathrm{d} t \\
& \leq L\|F-G\| \int_{a}^{x} \mathrm{~d} t \\
& \leq L(b-a)\|F-G\|
\end{aligned}
$$

So $\|T F-T G\| \leq L(b-a)\|F-G\|$
$\Longrightarrow T$ is continuous.
$T\left(F_{n}\right)^{84)} \rightarrow T(F)$ by continuity of T
Therefore $T F=F$.
So F solves the initial-value differential equation.
Suppose G is another solution to differential equation.
Then also $T G=G$.

$$
\begin{aligned}
&\|F-G\|=\|T F-T G\|=\left\|T^{k} F-T^{k} G\right\| \\
& \leq\|F-G\| \underbrace{\frac{(L(b-a))^{k}}{k!}}_{\rightarrow 0 \text { as } k \rightarrow \infty} \quad \text { (by similar arguments) } \\
& \Longrightarrow\|F-G\|=0 \Longrightarrow F=G
\end{aligned}
$$

Actually valid for $\Phi:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Example:

$$
\begin{gathered}
y^{\prime \prime}+y+\sqrt{y^{2}+\left(y^{\prime}\right)^{2}}=0 \\
y(0)=a_{0}, \quad y^{\prime}(0)=a_{1}
\end{gathered}
$$

Let $Y=\left(y_{0}, y_{1}\right)$
Define $\Phi\left(x, y_{0}, y_{1}\right)^{85)}=\left(y_{1},-y_{0}-\sqrt{y_{0}^{2}+y_{1}^{2}}\right)=\left(y_{1},-y_{0}-\|Y\|\right)$

$$
Y^{\prime 86)}=\Phi(x, Y)=\left(y_{1},-y_{0}-\sqrt{y_{0}^{2}+y_{1}^{2}}\right)
$$

$\Longrightarrow y_{0}^{\prime}=y_{1}$

$$
\begin{gathered}
y_{0}^{\prime \prime}=y_{1}^{\prime \prime}=-y_{0}-\sqrt{y_{0}^{2}+y_{1}^{2}}=-y_{0}-\sqrt{y_{0}^{2}+\left(y_{0}^{\prime}\right)^{2}} \\
y_{0}^{\prime \prime}+y_{0}+\sqrt{y_{0}^{2}+\left(y_{0}^{\prime}\right)^{2}}=0
\end{gathered}
$$

PMATH 351 Lecture 33: December 2, 2009

Global Picard Theorem

$\Phi:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$, continuous and Lipschitz in y variable. Then the differential equation

$$
F^{\prime}(x)=\Phi(x, F(x)), \quad F(a)=c
$$

has a unique solution.
Example: $y^{\prime \prime}+y+\sqrt{y^{2}+\left(y^{\prime}\right)^{2}}=0, y(0)=a_{0}, y^{\prime}(0)=a_{1}$
Let $Y=\left(y_{0}, y_{1}\right)$, and

$$
\begin{equation*}
\Phi(x, Y)=\left(y_{1},-y_{0}-\|Y\|\right) \tag{*}
\end{equation*}
$$

$Y(0)=\left(a_{0}, a_{1}\right)$
$Y^{\prime}=\left(y_{0}^{\prime}, y_{1}^{\prime}\right)$

[^33]- Saw if $Y=\left(y_{0}, y_{1}\right)$ solves $(*)$, then y_{0} solves the initial differential equation, and $y_{1}=y_{0}^{\prime}$.

Check if Φ is Lipschitz in Y-variable.

$$
\begin{aligned}
\|\Phi(x, Y)-\Phi(x, Z)\| & =\left\|\left(y_{1},-y_{0}-\|Y\|\right)-\left(z_{1},-z_{0}-\|Z\|\right)\right\| \\
& =\left\|\left(y_{1}-z_{1},-y_{0}+z_{0}-\|Y\|+\|Z\|\right)\right\| \\
& =\left\|\left(y_{1}-z_{1},-y_{0}+z_{0}\right)+(0,-\|Y\|+\|Z\|)\right\| \\
& \leq\left\|\left(y_{1}-z_{1},-y_{0}+z_{0}\right)\right\|+\|(0,-\|Y\|+\|Z\|)\| \\
& =\left\|\left(y_{1}-z_{1}, y_{0}-z_{0}\right)\right\|+\mid\|Z\|-\|Y\| \| \\
& \leq\|Y-Z\|+\|Z-Y\| \\
& =2\|Y-Z\|
\end{aligned}
$$

So Φ is Lipschitz in Y-variable.
By Global Picard Theorem, there exists a unique solution to the differential equation.
Reminder: In proof of Picard Theorem, Lipschitz condition was used here:

$$
\left\|F_{k+1}(x)-F_{k}(x)\right\|=\left\|\int_{a}^{x} \Phi\left(t, F_{k}(t)\right)-\Phi\left(t, F_{k-1}(t)\right) \mathrm{d} t\right\|
$$

Local Picard Theorem

Suppose $\Phi:[a, b] \times[c-\epsilon, c+\epsilon] \rightarrow \mathbb{R}$ is continuous, and satisfies a Lipschitz condition in $y \in[c-\epsilon, c+\epsilon]$. Then the differential equation

$$
F^{\prime}(x)=\Phi(x, F(x)), \quad F(a)=c
$$

has a unique solution for $x \in[a, a+h]$, where $a+h=\min \left(b, a+\frac{\epsilon}{\|\Phi\|}\right)$.
Proof: Just check that the iterates $F_{k}(x)$ stay in $[c-\epsilon, c+\epsilon]$, for all $x \in[a, a+h]$, so we can use the Lipschitz property in exactly the same way as in the proof of the global theorem.
Check: $F_{0}(x)=c \in[c-\epsilon, c+\epsilon]$

$$
\begin{aligned}
&\left|F_{k+1}(x)-c\right|=\left|c+\int_{a}^{x} \Phi\left(t, F_{k}(t)\right) \mathrm{d} t-c\right| \\
& \leq \int_{u}^{x}\left|\Phi\left(t, F_{k}(t)\right)\right| \mathrm{d} t \\
& \leq\|\Phi\| \int_{a}^{x} \mathrm{~d} t \\
&=\|\Phi\|(x-a) \\
& \leq h\|\Phi\| \\
& \leq \frac{\epsilon}{\|\Phi\|}\|\Phi\| \\
& \Longrightarrow F_{k+1}(x) \in[c-\epsilon, c+\epsilon], \quad \forall x \in[a, a+h] .
\end{aligned}
$$

Continuation Theorem

Suppose $\Phi:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz in y-variable on each compact set $[a, b] \times[-N, N]$, for all N, then the differential equation $F^{\prime}(x)=\Phi(x, F(x)), F(a)=c$
either has a unique solution on $[a, b]$
or there exists $z \in(a, b)$ such that the differential equation has a unique solution on $[a, z)$, and $\lim _{x \rightarrow z^{-}}|F(x)|=+\infty$.
Example: $y^{\prime}=y^{2}, y(0)=1$, for $x \in[0,2]$
$\Phi(x, y)=y^{2}$: have Lipschitz condition on every compact set
Solution (by separation of variables) is $y=\frac{1}{1-x}$: get blow up at 1 .

Metric Completion

Definition: Let $\left(X, d_{X}\right)$ be a metric space.
By a completion of $\left(X, d_{X}\right)$ we mean a complete metric space $\left(Y, d_{Y}\right)$ and a map $T: X \rightarrow Y$ such that $d_{Y}\left(T\left(x_{1}\right), T\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)$ and $T(X)$ is dense in Y.
e.g.,
(1) $\mathbb{Q} \subseteq \mathbb{R} \quad T=$ Identity map
(2) If $X \subseteq X_{0}$ complete metric space

Take Id: $X \rightarrow \bar{X}$ to see \bar{X} is completion of X
Theorem: Every metric space $\left(X, d_{X}\right)$ has a completion
Proof: Fix $x_{0} \in X$. Define a family of functions

$$
f_{x}: X \rightarrow \mathbb{R} \text { by } f_{x}(z)=d_{X}(x, z)-d_{X}\left(x_{0}, z\right), \quad \forall x \in X
$$

e.g., $f_{x_{0}}(z)=0 \forall z \in X$.

Note:

$$
\left.\begin{array}{rl}
d\left(x, y_{1}\right)-d\left(x, y_{2}\right) & \leq d\left(x, y_{2}\right)+d\left(y_{2}, y_{1}\right)-d\left(x, y_{2}\right) \\
& =d\left(y_{2}, y_{1}\right)
\end{array}\right] \begin{aligned}
& \Longrightarrow\left|d\left(x, y_{1}\right)-d\left(x, y_{2}\right)\right| \leq d\left(y_{1}, y_{2}\right) \\
& \text { So }\left|f_{x}\left(z_{1}\right)-f_{x}\left(z_{2}\right)\right|=\left|d\left(x, z_{1}\right)-d\left(x_{0}, z_{1}\right)-d\left(x, z_{2}\right)^{87)}+d\left(x_{0}, z_{2}\right)^{88)}\right| \\
& \leq\left|d\left(x, z_{1}\right)-d\left(x, z_{2}\right)\right|+\left|d\left(x_{0}, z_{1}\right)-d\left(x_{0}, z_{2}\right)\right| \leq 2 d\left(z_{1}, z_{2}\right)
\end{aligned}
$$

Thus f_{x} is (uniformly) continuous.

$$
\begin{aligned}
& \text { Look at }\left|f_{x_{1}}(y)-f_{x_{2}}(y)\right|=\left|d\left(x_{1}, y\right)-d\left(x_{2}, y\right)\right| \\
& \qquad \begin{array}{r}
\leq d\left(x_{1}, x_{2}\right) \quad \forall y \in X
\end{array} \\
& \begin{array}{r}
\Rightarrow\left\|f_{x_{1}}-f_{x_{2}}\right\|=\sup _{y \in X}\left|f_{x_{1}}(y)-f_{x_{2}}(y)\right| \leq d\left(x_{1}, x_{2}\right)
\end{array} \\
& \text { But }\left|f_{x_{1}}\left(x_{2}\right)-f_{x_{2}}\left(x_{2}\right)\right|=\left|d\left(x_{1}, x_{2}\right)-d\left(x_{2}, x_{2}\right)^{89)}\right| \\
& \quad=d\left(x_{1}, x_{2}\right) \\
& \text { Therefore }\left\|f_{x_{1}}-f_{x_{2}}\right\|=d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

In particular, $\left.\left\|f_{x_{1}}\right\|=\| f_{x_{1}}-f_{x_{0}}{ }^{89}\right) \|=d\left(x_{1}, x_{0}\right)<\infty$ so $f_{x_{1}}$ is bounded for any $x_{1} \in X$. i.e., $f_{x} \in C_{b}(X) \leftarrow$ complete metric space

$$
\begin{aligned}
& \text { Consider the map } T: X \rightarrow C_{b}(X) \\
& x \mapsto f_{x} \\
& d_{C_{b}(X)}\left(T\left(x_{1}\right)^{90)}, T\left(x_{2}\right)^{91)}\right)=\left\|f_{x_{1}}-f_{x_{2}}\right\|=d_{X}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Put $Y=\overline{T(X)} . Y$ is complete, being a closed subset of a complete metric space. Y is the completion of X.

[^34]
[^0]: ${ }^{1)}$ bijection

[^1]: ${ }^{2)}$ say k elements

[^2]: ${ }^{3)}$ countable

[^3]: ${ }^{4)} x_{1}$
 ${ }^{5)} x_{2}$

[^4]: ${ }^{6)}|n-(n+1)|=1$
 ${ }^{7)} \in \mathbb{R}$
 ${ }^{8)}$ set

[^5]: $\left.{ }^{9}\right) \overline{\lim }\left(x_{n}\right)$

[^6]: ${ }^{10)} r \leq 1$

[^7]: ${ }^{11)}$ (cluster point, limit point)

[^8]: ${ }^{12)}$ since $x_{n}=y_{n}$ for all $n \leq N$
 ${ }^{13)} \subseteq \mathbb{R}$
 14) $=d\left(x_{n}, x_{0}\right)$
 ${ }^{15)} \subseteq U$

[^9]: 17) (1) and (2): Heine-Borel
 ${ }^{18)}$ (1) and (3): Bolzano-Weierstrass
 ${ }^{19)} \cup G_{\alpha} \cup F^{\mathrm{C}} \supseteq F \cup F^{\mathrm{C}}=X$
 ${ }^{20)}$ (because X is compact)
[^10]: 21) $\rightarrow 0$ as $N \rightarrow \infty$
 22) $\rightarrow 0$
 ${ }^{23)}(1)$ and (3): Bolzano-Weierstrass Theorem
[^11]: ${ }^{24)}$ closed

[^12]: ${ }^{25)}$ non-empty, closed

[^13]: ${ }^{26)}$ compact in \mathbb{R}^{k}
 27) $y \in B\left(x_{0}, \delta\right)$
 ${ }^{28)} f(y) \in B\left(f\left(x_{0}\right), \epsilon\right)$
 29) X
 ${ }^{30)} Y$
 ${ }^{31)} x_{0}$
 ${ }^{32)}=f(x)$
 ${ }^{33)}=f(y)$

[^14]: ${ }^{34)}$ preimage

[^15]: ${ }^{35)}$ closed

[^16]: 36) (non-empty sets?)
 37) exercise
[^17]: ${ }^{38)}$ Cauchy-Schwartz

[^18]: ${ }^{39)}$ linear, bijection

[^19]: ${ }^{40)}$ depends on x temporarily looking at

[^20]: ${ }^{41)}$ by g_{n} decreasing
 ${ }^{42)}=f$

[^21]: ${ }^{43)}=\left\|f_{n_{k}}\right\|=1$
 44) $=1-\frac{\delta}{2}$
 ${ }^{45)}=1$
 46) $=\left|f^{\prime}(z)\right||x-y|$ for some z

[^22]: ${ }^{47)}=\sup _{x \in X}\left|f_{N}(x)-f(x)\right|$

[^23]: 48) (2)
 ${ }^{49)}$ uniform convergence
 ${ }^{50)}(1)$
[^24]: ${ }^{54)} \geq 0$ by induction assumption

[^25]: ${ }^{56)}$ if $n \neq m$
 ${ }^{57)} n$th Fourier coefficients of f
 ${ }^{58)}$ Fejer's kernel

[^26]: ${ }^{59)}\left\langle f, e^{i j x}\right\rangle$
 ${ }^{60)}$ Feijer kernel

[^27]: ${ }^{61)}=f(x-(-u))$
 62) $=p_{n}(g(x))$
 63) $=\frac{|f(x)|}{c}$

[^28]: ${ }^{70)} \in \mathcal{A}$

[^29]: ${ }^{72)}=0$

[^30]: ${ }^{75)} \subseteq A_{2} \cap A_{1}$

[^31]: ${ }^{81)}$ contraction factor

[^32]: ${ }^{82)}=c$
 ${ }^{83)}\left(\exp (L(b-a))=\sum_{0}^{\infty} \frac{(L(b-a))^{j}}{j!}\right)$

[^33]: ${ }^{84)} F_{n+1} \rightarrow F$
 ${ }^{85)}=\Phi(x, Y), \Phi:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
 ${ }^{86)}=\left(y_{0}^{\prime}, y_{1}^{\prime}\right)$

[^34]: ${ }^{87)}$ arrow from first term
 ${ }^{88)}$ arrow from second term
 ${ }^{89)}=0$
 ${ }^{90)}=f_{x_{1}}$
 ${ }^{91)}=f_{x_{2}}$

