PM351 Real Analysis Prof. Kathryn Hare MC 5072

Office Hours Wed 2:30–3:30 Thursday 3–4

Wed Sept 16 12–1:30 DC 1302 NSERC Scholarships (due Sept 25)

Definition: Two sets A and B have the same *cardinality* (and write |A| = |B|) if there is a bijection between A and B.

Say cardinality of A is \leq cardinality of B (write $|A| \leq |B|$) if there is an injection: $A \rightarrow B$.

Cardinality is an equivalence relation:

- 1. |A| = |A| (reflexive) (identity map)
- 2. $|A| = |B| \iff |B| = |A|$ (symmetric)
- 3. |A| = |B| and $|B| = |C| \implies |A| = |C|$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

$$a \circ f: A \to C^{(1)}$$

Example: Say A has n elements and |A| = |B|. Here $f: A \to B$ is 1–1, onto.

- \implies B has at least n elements, because f is 1–1.
- \implies B has at most n elements because f is onto.

Thus B has n elements.

On the other hand, if A and B both have n elements then there exists a bijection: $A \to B$. Say $A = \{a_1, a_2, \ldots, a_n\}, B = \{b_1, b_2, \ldots, b_n\}$. Define $f(a_j) = b_j$, bijection. Therefore |A| = |B|.

Example: $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$ $|\mathbb{N}| \le |\mathbb{Z}| \le |\mathbb{Q}| \le |\mathbb{R}|$ since the embedding maps are injections

 $f \qquad \begin{matrix} \mathbb{Z} & 0 & 1 & -1 & 2 & -2 & 3 & -3 & \cdots \\ \mathbb{N} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \end{matrix}$

 $f: \mathbb{Z} \to \mathbb{N}$ is a bijection, therefore $|\mathbb{N}| = |\mathbb{Z}|$.

Definition: Say a set A is *countable* if it is either finite or $|A| = |\mathbb{N}|$. Say A is *countably infinite* if countable and infinite.

A is *uncountable* if it is not countable.

e.g., \mathbb{Z} is countable.

 $^{1)}$ bijection

Countable sets can be written as a_1, a_2, a_3, \ldots

Have $f \colon \mathbb{N} \to A$. Put $a_j = f(j)$.

Conversely, if there is such a list then just define bijection $g: A \to \mathbb{N}$ by $g(a_j) = j$.

$$\mathbb{Q} = \{ p/q : p \in \mathbb{Z}, q \in \mathbb{N}, (p,q) \text{ coprime } \}, |\mathbb{Q}| = |\mathbb{N}|$$

e.g., $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$

Problem:
$$|\mathbb{R}^2| = |\mathbb{R}|$$

e.g., Any countable union of countable sets is countable. i.e.,

$$A = \bigcup_{i=1}^{\infty} A_i \qquad |A_i| = |\mathbb{N}|$$

then $|A| = |\mathbb{N}|$

Proof:

$$A_{i} = \{a_{1}^{(i)}, a_{2}^{(i)}, a_{3}^{(i)}, \ldots\}$$
$$= \{a(i, 1), a(i, 2), \ldots\}$$

Proposition: If $|A| \leq |\mathbb{N}|$ then either A is finite or $|A| = |\mathbb{N}|$. **Corollary:** Hence any subset of a countable set is countable.

PMATH 351 Lecture 2: September 16, 2009

Cardinality

|A| = |B| means there exists a bijection from A to B $|A| \le |B|$ means there exists an injection from A to B

Countable

either finite or cardinality = $|\mathbb{N}|$ e.g., $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$

Proposition: If A is infinite and $|A| \leq |\mathbb{N}|$ then $|A| = |\mathbb{N}|$.

Lemma: Every infinite subset B of \mathbb{N} is countably infinite.

Proof: Claim: Every non-empty subset X of N has a least element. Why? Pick $n \in X$ and look at $\{k \in X : k \leq n\}$. This is a finite set of positive integers and has a least element k_1 . k_1 is the least element of X.

B is non-empty so it has a least element, call it b_1 . $B \setminus \{b_1\}$ is non-empty so it has a least element, call it b_2 . $B \setminus \{b_1, b_2\}$ is non-empty so it has a least element, call it b_3 . Repeat. Produces $b_1 < b_2 < b_3 < \cdots$. Claim: $B = \{b_n\}_{n=1}^{\infty}$ Why? Take $b \in B$. Look at $\{n \in B : n \leq b\}^{2} = \{b_1, b_2, \dots, b_k\}$ $\implies b_k = b$

Define
$$f: B \to \mathbb{N}$$

 $b_n \mapsto n$ bijection. Hence $|B| = |\mathbb{N}|$.

Proof of Proposition: Have an injection $F: A \to \mathbb{N}$. Let $B = F(A) \subseteq \mathbb{N}$. Note that $F: A \to B$ bijection. figure: diagonal winding through a(i, j)

figure: diagonal winding through \mathbb{N}^2

 $^{^{2)}\}mathrm{say}\;k$ elements

Hence |A| = |B|. Since A is infinite, so is B. By the lemma $|B| = |\mathbb{N}|$. By transitivity $|A| = |\mathbb{N}|$.

Example: $[0,1) = \{ x : 0 \le x < 1 \}$ is uncountable.

Corollary: \mathbb{R} is uncountable.

Proof: Assume false.

$$\underbrace{ \underbrace{[0,1)}_{\substack{\text{injection}}} \mathbb{R} \xrightarrow{\text{bijection}} \mathbb{N}}_{\substack{\text{injection}}} \\ \implies |[0,1)| \le |\mathbb{N}| \implies |[0,1)| = |\mathbb{N}|^{3)}$$

Proof of Example: Suppose [0, 1) is countable, say $= \{r_i\}_{i=1}^{\infty}$.

$$r_i = .r_{i1}r_{i2}r_{i3}\cdots r_{ij} \in \{0, 1, \dots, 9\}$$

Let's write a real number not on this list.

$$a = .a_1 a_2 a_3 \cdots$$

$$a_{1} = \begin{cases} 8 & \text{if } r_{11} \in \{0, 1, \cdots, 4\} \\ 1 & \text{if } r_{11} \in \{5, 6, \cdots, 9\} \end{cases} \quad a_{2} = \begin{cases} 8 & \text{if } r_{22} \in \{0, 1, \cdots, 4\} \\ 1 & \text{if } r_{22} \in \{5, 6, \cdots, 9\} \end{cases} \quad \cdots \quad a_{k} = \begin{cases} 8 & \text{if } r_{kk} \in \{0, 1, \cdots, 4\} \\ 1 & \text{if } r_{kk} \in \{5, 6, \cdots, 9\} \end{cases}$$

Say $a = r_k$ for some k.

But kth digit of a_k does not agree with kth digit of r_k so $a \neq r_k$. Thus \mathbb{R} is a different level of infinity.

$$|\mathbb{N}| = \aleph_0 \qquad |\mathbb{R}| = \aleph_1$$

- (1) Is \mathbb{R} the "next level" of infinity?
- (2) If $A \subseteq \mathbb{R}$, and A is uncountable, is $|A| = |\mathbb{R}|$?
- (3) Does there exist a B such that $|\mathbb{N}| < |B| < |\mathbb{R}|$?

Continuum Hypothesis says (2) is yes (and (3) is no). Answer is independent of set theory axioms.

Given set A, we can define $\mathcal{P}(A) = \{\text{all subsets of } A\}$ e.g., $A = \{0, 1\}, \ \mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$ If A has n elements then $|\mathcal{P}(A)| = 2^n$

Cantor's Theorem: For any set A, $|A| \leq |\mathcal{P}(A)|$ and $|A| \neq |\mathcal{P}(A)|$. $(|\mathcal{P}(A)| = 1)$

Proof:

Injection:
$$A \to \mathcal{P}(A)$$

 $a \mapsto \{a\}$

Suppose there is a bijection $g: A \to \mathcal{P}(A)$: show this leads to a contradiction. Let $B = \{a \in A : a \notin g(a)\}$. $g(a) \in \mathcal{P}(A)$, therefore g(a) is a subset of A. $B \subseteq A \implies B \in \mathcal{P}(A)$ so there exists $x \in A$ such that g(x) = B because g is onto. Is $x \in B$? Try yes: say $x \notin g(x) = B$: contradiction. So the answer must be no: Means $x \in g(x) = B$: contradiction. Either way we get contradiction. So there can be no bijection: $A \to \mathcal{P}(A)$. Therefore $|A| \neq |\mathcal{P}(A)|$.

Therefore $|A| \neq |P|$

 $^{^{3)}}$ countable

Start with infinite set A

$$|A| < |\mathcal{P}(A)| < |\mathcal{P}(\mathcal{P}(A))| < \cdots$$

Notation: Given set A, write $2^A=\{\,f:A\to\{0,1\}\,\}$ e.g., $|A|=n,\,|2^A|=2^n=2^{|A|}$

Theorem: $|\mathcal{P}(A)| = |2^A|$

PMATH 351 Lecture 3: September 18, 2009

 $2^{A} = \{ f : A \to \{0, 1\} \}$ If A has n elements then $|\mathcal{P}(A)| = 2^{n}$ and $|2^{A}| = 2^{n}$

Theorem: $|2^A| = |\mathcal{P}(A)|$ for all sets A **Proof:** Need to construct bijection $g: \mathcal{P}(A) \to 2^A$ Define $g(B) = 1_B$ $B \subseteq \mathcal{P}(A)$ i.e., $B \subseteq A$ where $1_B(x) = \begin{cases} 1 & 1 \text{ if } x \in B \\ 0 & 0 \text{ if } x \notin B \end{cases}$ $1_B \in 2^A$ Check g is 1–1 and onto. First, if $B \neq C$ then $1_B \neq 1_C$ so $g(B) \neq g(C) \implies g$ is 1–1 **Onto:** Take $f \in 2^A$ Put $B = \{x \in A : f(x) = 1\} \implies f(x) = 1_B(x)$

Therefore q(B) = f where q is a bijection.

Schroeder–Bernstein Theorem

If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|. **Proof:** Given injections $f: A \to B$ and $g: B \to A$.

Define
$$Q \colon \mathcal{P}(A) \to \mathcal{P}(A)$$

 $E \mapsto (g(f(E)^{\mathbb{C}}))^{\mathbb{C}}$

figure: $D^{C} = g(f(D)^{C})$ and $D = (g(f(E)^{C}))^{C}$

Want to find a set D such that Q(D) = D. First, if $E \subseteq F$ then $Q(E) \subseteq Q(F)$ because $f(E) \subseteq f(F) \Longrightarrow f(E)^{\mathbb{C}} \supseteq f(F)^{\mathbb{C}}$ $\implies g(f(E)^{\mathbb{C}}) \supseteq g(f(F)^{\mathbb{C}}) \Longrightarrow \underbrace{(g(f(E)^{\mathbb{C}}))^{\mathbb{C}}}_{Q(E)} \subseteq \underbrace{(g(f(F)^{\mathbb{C}}))^{\mathbb{C}}}_{Q(F)}$ Let $\mathcal{D} = \{E \subseteq A : E \subseteq Q(E)\}$. Take $D = \bigcup_{E \in \mathcal{D}} E$ If $E \in \mathcal{D}$ then $E \subseteq D$ $\implies Q(E) \subseteq Q(D)$ Also $E \subseteq Q(E) \subseteq Q(D)$ for all $E \in \mathcal{D}$ hence $D = \bigcup_{E \in \mathcal{D}} E \subseteq Q(D)$. So $D \subseteq Q(D) \Longrightarrow Q(D) \subseteq Q(Q(D))$ therefore $Q(D) \in \mathcal{D}$. So $Q(D) \subseteq D$. Hence Q(D) = Di.e., $D = (g(f(D)^{\mathbb{C}}))^{\mathbb{C}}$ or $D^{\mathbb{C}} = g(f(D)^{\mathbb{C}})$. Now define $h: A \to B$ as follows:

$$h(x) = \begin{cases} f(x) & \text{if } x \in D \\ g^{-1}(x) & \text{for } x \in D^{\mathcal{C}} \text{ and this is well defined because } D^{\mathcal{C}} \subseteq \operatorname{Range} g \end{cases}$$

If $x \in D^{\mathbb{C}}$ then $x \in g(f(D)^{\mathbb{C}})$. h is 1–1 since both $f|_D$ and $g^{-1}|_{D^{\mathbb{C}}}$ are 1–1 and similarly is onto by construction. Hence h is a bijection and |A| = |B|. Consequences

1. If
$$A_1 \subseteq A_2 \subseteq A_3$$
 and $|A_1| = |A_3|$ then also $|A_2| = |A_3|$.
Proof: $\underbrace{A_2 \stackrel{\text{inj}}{\rightarrow} A_3}_{\text{embedding}} \implies |A_2| \leq |A_3|$
 $\underbrace{A_3 \stackrel{\text{bij}}{\rightarrow} A_1 \stackrel{\text{inj}}{\rightarrow} A_2}_{f}$

 $f \colon A_3 \to A_2$ is an injection $\implies |A_3| \le |A_2|$ By S–B, $|A_3| = |A_2|$.

- 2. $|(0,1)| = |[0,1)| = |\mathbb{R}|$ $[0,1) \subseteq [0,1) \subseteq \mathbb{R}$. So enough to prove (0,1) and \mathbb{R} have same cardinality. Let $f(x) = \arctan x$ by $f \colon \mathbb{R} \xrightarrow{bij} \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \stackrel{\text{lin}}{bij} (0,1)$
- 3. $|\mathbb{R}| = |2^{\mathbb{N}}|$, another proof that \mathbb{R} is uncountable. Show $|[0,1)| = |2^{\mathbb{N}}|$. Given $r \in [0,1)$ write its binary representation

$$r = .a_1 a_2 a_3 \dots$$
 (where $a_i = 0$ or 1)

Define $f_r(n) = a_n$. Then $f_r \colon \mathbb{N} \to \{0, 1\}$, i.e., $f_r \in 2^{\mathbb{N}}$.

Define
$$\Phi \colon [0,1) \to 2^{\mathbb{N}}$$

 $r \mapsto f_r$

 Φ is 1–1 because $r_1 \neq r_2$, then there exists n such that nth digits are different, so $f_{r_1}(n) \neq f_{r_2}(n) \implies f_{r_1} \neq f_{r_2}$.

But Φ is not onto because of non-uniqueness of binary representation.

Define
$$\Lambda \colon 2^{\mathbb{N}} \to [0, 1)$$

 $f \mapsto .0f(1)0f(2)0f(3) \dots$

 Λ is 1–1, since one of the binary representations of a number with two forms ends with a tail of 1s, and $\Lambda(f)$ never has a tail of 1s.

Therefore, by Schroeder–Bernstein, $|2^{\mathbb{N}}| = |\mathbb{R}|$.

PMATH 351 Lecture 4: September 21, 2009

Definition of \mathbb{R} :

ordered field, $\supseteq \mathbb{Q}$ and which satisfies the *completeness axiom*: Every increasing sequence that is bounded above converges.

Given sequence (x_n) bounded above means exists $r \in \mathbb{R}$ such that $x_n \leq r$ for all n.

Converges means there exists $x_0 \in \mathbb{R}$ such that for all $\epsilon > 0$ there exists N such that $|x_n - x_0| < \epsilon$ for all $n \ge N$.

Consequence: Archimedian Property: Given any $x \in \mathbb{R}$ there exists $n \in \mathbb{Z}$ such that x < n.

Proof: Suppose not. Then there exists a real number r such that $r \ge n$, for all $n \in \mathbb{Z}$. Consider the sequence $\{1^{4}, 2^{5}, 3, \ldots\}$. This is a bounded above increasing sequence so by completeness axiom it

figure: arctan

figure: alternate definition of f, line between point (0, 1) and $r \in \mathbb{R}$, intersects circle with centre (0, 1) and radius 1 at f(r)

 $⁽⁴⁾_{x_1}$

 $^{^{(5)}}x_2$

converges, to say x_0 .

Then $|x_n - x_{n-1}|^{(6)} \le |x_n - x_0| + |x_0 - x_{n+1}| \le \frac{1}{4} + \frac{1}{4}$ for *n* large enough. $1 \le \frac{1}{2}$, contradiction.

Example: Use Archimedian property to prove that for real numbers x < y,

 $\exists p/q \in \mathbb{Q}$ such that $x \leq p/q < y$.

Definition: Given $S \subseteq \mathbb{R}$, by an *upper bound* for S we mean $r \in \mathbb{R}$ such that if $x \in S$ then $x \leq r$.

If a set has an upper bound we say it is bounded above.

Example: \mathbb{Z} has no upper bound.

Example: $S = \{1 - \frac{1}{n} : n = 1, 2, 3, ...\}$, bounded above by 1 (or 2, or, ...), $1 = \sup(S)$

If a set has an upper bound, then there are infinitely many.

Definition: A *least upper bound* for $S \subseteq \mathbb{R}$ is an upper bound for S, call it B, with the property that whenever A < B then A is not an upper bound for S. Notation: LUB(S) or sup(S).

Similarly define greatest lower bound of S, GLB(S) or inf(S).

(Exercise) Facts:

- 1. $\sup(S)$ is unique (if it exists)
- 2. If B is an upper bound for S and $B \in S$, then $B = \sup S$.
- 3. If $(x_n)_{n=1}^{\infty}$ is increasing and bounded above, and if $S = \{x_1, x_2, x_3, \ldots\}$ then $\sup(S) = \lim_{n \to \infty} x_n$
- 4. $B = \sup(S)$ iff B is an upper bound for S and $\forall \epsilon > 0 \exists x \in S$ such that $x > B \epsilon$

Completeness Theorem: If $S \subseteq \mathbb{R}$ is non-empty and bounded above then the sup(S) exists. "no holes" property of \mathbb{R} .

Proof: For this proof use notation $z^{(7)} \ge S^{(8)}$ to mean $z \ge x \forall x \in S$. Since $S \ne \emptyset$ so $\exists y \in S$. Put $x_0 = y - 1$. Proceed inductively to construct a sequence.

By the Archimedian property and the fact that S is bounded above, there exists $N_0 \in \mathbb{Z}$ such that $x_0 + N_0 \geq S$. In fact, let's make N_0 the least integer that does this. $N_0 \geq 1$ since $x_0 + 0 = y - 1$ and $y \in S$.

Put $x_1 = x_0 + N_0 - 1 \ge x_0$.

By definition of N_0 , x_0+N_0-1 fails to be $\geq S$. Hence there exists $s_1 \in S$ such that $s_1 > x_0+N_0-1 = x_1$. Furthermore $x_1 + 1 = x_0 + N_0 \geq S$. Choose smallest integer N_1 such that $x_1 + N_1/2 \geq S$ ($N_1 = 1$ or 2)

Put $x_2 = x_1 + (N_1 - 1)/2$, fails $\geq S$.

i.e., $\exists s_2 \in S$ with $s_2 > x_2$. Also $x_2 + 1/2 = x_1 + N_1/2 \ge S$.

Inductively define $x_n = x_{n-1} + (N_{n-1}-1)/n$ where N_{n-1} = least integer such that $x_{n-1} + N_{n-1}/n \ge S$. By construction $\exists s_n \in S$ such that $x_n < s_n$, but $x_n + 1/n \ge S$.

$$\implies N_{n-1} \ge 1 \implies x_{n+1} \ge x_n$$

Produces a sequence (x_n) that is increasing. If B is an upper bound for S then $x_n \leq B$ hence the sequence is bounded above. By completeness axiom (x_n) converges to say x_0 . **Claim:** $x_0 = \sup(S)$

- 1. (x_n) increasing, therefore $x_n \leq x_0$, $\forall n$. Say $\exists s \in S, s > x_0$. Then $s x_0 > 1/N$ for some $N \in \mathbb{N}$ $\implies s > 1/N + x_0 \geq 1/N + x_n$, contradiction. Therefore x_0 is an upper bound for S.
- $^{6)}|n (n+1)| = 1$

figure: (x_i) on real line

figure: real line

 $^{^{7)} \}in \mathbb{R}$

 $^{^{8)}}$ set

2. Show $\forall \epsilon > 0 \exists x \in S$ such that $x > x_0 - \epsilon$. Get x_n such that $x_n > x_0 - \epsilon$ (since $(x_n) \to x_0$). Know $\exists s_n \in S$ with $s_n > x_n > x_0 - \epsilon$. By our characterization of sup, $x_0 = \sup(S)$.

PMATH 351 Lecture 5: September 23, 2009

Review:

Completeness axiom: Every bounded above, increasing sequence converges.

Completeness Theorem: Every non-empty subset of \mathbb{R} which is bounded above has a LUB or sup.

Definition: A sequence (x_n) is Cauchy if for all $\epsilon > 0$ there exists an N such that for all $n, m \ge N$, $|x_n - x_m| < \epsilon$.

exercise: Cauchy sequences are bounded. Convergent sequences are Cauchy.

Theorem: (Completeness Property)

Every Cauchy sequence in \mathbb{R} converges. Say \mathbb{R} is *complete*.

Limit Inferior and Limit Superior:

 (x_n) bounded sequence.

Consider the sets $\{x_n, x_{n+1}, \ldots\}$: bounded sets

Let $A_n = \inf\{x_n, x_{n+1}, \ldots\}$ (exists by completeness)

(then) $A_n \leq A_{n+1} \implies (A_n)_{n=1}^{\infty}$ increasing sequence.

(and) (A_n) is bounded above (UB for original sequence). By completeness theorem, this sequence converges to

$$\lim_{n \to \infty} A_n = \sup_n A_n,$$

since increasing.

Notation: $\liminf(x_n) \stackrel{\text{def}}{=} \lim_{n \to \infty} A_n = \sup A_n$

 $\lim_{n \to \infty} A_n = \lim_{n \to \infty} (\inf\{x_n, x_{n+1}, \ldots\})$ $= \lim_{n \to \infty} \left(\inf_{j \ge n} x_j\right)$ $\limsup(x_n)^{(9)} \stackrel{\text{def}}{=} \lim_{n \to \infty} (\sup\{x_n, x_{n+1}, \ldots\})$ $= \lim_{n \to \infty} \left(\sup_{j \ge n} x_j\right) = \inf_n \left(\sup_{j \ge n} x_j\right)$ $\limsup(x_n) \ge \liminf(x_n).$

Always these exist for bounded sequence.

Example:
$$x_{2n} = 1 + \frac{1}{2n}, x_{2n+1} = \frac{-1}{2n+1}$$

 $A_1 = x_1$
 $A_2 = x_3$
 $A_3 = x_3$
 $A_4 = x_5$
 $A_5 = x_5$
 $A_5 = x_5$

 $^{9)}\overline{\lim}(x_n)$

(because entire sequence is bounded)

[also written as: $\underline{\lim}(x_n)$] [Reason for terminology \liminf :]

figure: \boldsymbol{x}_i on real line

Similarly, $\limsup(x_n) = 1$.

Theorem: $L = \limsup(x_n)$ if and only if $\forall \epsilon > 0$, $x_n < L + \epsilon$, for all but finitely many n, and $x_n > L - \epsilon$ for infinitely many n.

 $L = \liminf(x_n)$ if and only if $\forall \epsilon > 0$, $x_n > L - \epsilon$, for all but finitely many n, and $x_n < L + \epsilon$ infinitely often.

Problem:

Theorem: A bounded sequence (x_n) converges if and only if $\liminf x_n = \limsup x_n$, and in this case the common value is $\lim x_n$.

Proof: (\Longrightarrow) Say $\lim x_n = L$. This means for all $\epsilon > 0$, there exists N such that

$$|x_n - L| < \epsilon, \qquad \forall n \ge N.$$

i.e., $L - \epsilon < x_n < L + \epsilon$, $\forall n \ge N$. By our characterization, $L = \limsup(x_n) = \liminf(x_n)$.

(\Leftarrow) Suppose $\limsup x_n = \liminf x_n = L$. We'll see that $L = \lim x_n$. For $\epsilon > 0$, want to find N such that $|x_n - L| < \epsilon, \forall n \ge N$.

Since $L = \limsup x_n$, $\exists N_1$ such that $x_n < L + \epsilon$, $\forall n \ge N_1$.

Similarly, since $L = \liminf x_n$, $\exists N_2$ such that $x_n > L - \epsilon$, $\forall n \ge N_2$.

Take $N = \max(N_1, N_2)$. Then $\forall n \ge N, L - \epsilon < x_n < L + \epsilon, \forall n \ge N$. $\implies L = \lim x_n$.

Proposition: Every bounded sequence (x_n) has a subsequence which converges to $\limsup(x_n)$ and (another) subsequence converging to $\liminf(x_n)$.

Proof: Let $L = \limsup x_n$. Know for all $k, x_n < L + 1/k, \forall n \ge N_k$, and $x_n > L - 1/k$, infinitely often. Construct our subsequence: Pick $n_1 > N_1$ such that $x_{n_1} > L - 1/1$. Since $n_1 > N_1$, we have $x_{n_1} < L + 1/1$.

Pick $n_2 > \max(n_1, N_2)$, such that $x_{n_2} > L - 1/2$, and $x_{n_2} < L + 1/2$.

Repeat: Pick $n_k > n_{k-1}$ such that $L + 1/k > x_{n_k} > L - 1/k$.

Consider the sequence $(x_{n_k})_{k=1}^{\infty}$. By construction it converges to L.

Bolzano–Weierstrass Theorem (Corollary): Every bounded sequence has a convergent subsequence.

PMATH 351 Lecture 6: September 25, 2009

Metric Spaces

Definition: A *metric space* is a set X with a metric (or distance function) d with $d: X \times X \to [0, \infty)$ satisfying

- 1. d(x, y) = 0 iff x = y
- 2. $d(x,y) = d(y,x) \ \forall x, y \in X$
- 3. $d(x,y) \leq d(x,z) + d(z,y) \ \forall x, y, z \in X$, triangle inequality

Examples:

1.
$$\mathbb{R}$$
, $d(x,y) = |x-y|$
2. \mathbb{R}^n , $d(x,y) = d_2((x_1, \dots, x_n), (y_1, \dots, y_n)) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2} = ||x-y||$, Euclidean metric

- 3. \mathbb{R}^2 , $d_1(x,y) = |x_1 y_1| + |x_2 y_2|$, $d_1((1,0), (0,1)) = 2$
- 4. \mathbb{R}^2 , $d_{\infty}(x, y) = \max(|x_1 y_1|, |x_2 y_2|)$ triangle inequality:

$$\begin{aligned} |x_1 - y_1| &\leq |x_1 - z_1| + |z_1 - y_1| \\ &\leq d_{\infty}(x, z) + d_{\infty}(z, y) \end{aligned}$$

Similarly, $|x_2 - y_2| \le d_{\infty}(x, z) + d_{\infty}(z, y)$ $\implies d_{\infty}(x, y) \le d_{\infty}(x, z) + d_{\infty}(z, y)$ Think about what $\{x : d_{-}(x, 0) < 1\}$ looks like.

5. X any set, d = discrete metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{else} \end{cases}$$

6.
$$X = \{ x = (x_1, \dots, x_n) : x_i = 0, 1 \}$$

- 2 element set d(x, y) = # indices i where $x_i \neq y_i$
- exercise, e.g., d((0, 1, 0), (1, 1, 0)) = 1
- 7. $X = \{\text{bounded sequence } (x_n)\} = l^{\infty}$ vector space $d_{\infty}(x, y) = \sup_n |x_n - y_n|$ **Example:** $x = (x_n) = (1 - 1/n), y = (y_n), y_n = 1/n$ $d_{\infty}(x, y) = \sup_n |(1 - 1/n) - 1/n| = 1$ $c_0 = \{(x_n) \text{ which converge to } 0\} \subseteq l^{\infty}$
- 8. $l^2 = \left\{ (x_n)_{n=1}^{\infty} : \sum |x_n|^2 < \infty \right\}$ $d(x,y) = \left(\sum_{i=1}^{\infty} (x_i - y_i)^2 \right)^{1/2} \qquad \langle x, y \rangle = \sum x_i y_i$

Define $l^p, 1 \le p \le \infty$

$$l^{p} = \left\{ \left. (x_{n}) : \sum |x_{n}|^{p} < \infty \right. \right\}$$

Problem: $l^1 \subsetneq l^p \subsetneq c_0 \subsetneq l^\infty, 1$

9. X = inner product space

$$d(x,y) = \sqrt{\langle x - y, x - y \rangle}$$

Topology: (X, d) metric space

Ball (centred at x_0 with radius r) in $(\mathbb{R}^2, d_2) = \{ x \in \mathbb{R}^2 : d(x, x_0) < r \}$ **Definition:** Given metric space (X, d) we let

$$B(x_0, r) = \{ x \in X : d(x, x_0) < r \}, \qquad r > 0$$

ball centred at x_0 , radius r

Example:

- 1. In \mathbb{R} , $|\cdot|$, $B(x_0, r) = (x_0 r, x_0 + r)$
- 2. In \mathbb{R}^2 , d_1 , balls are diamonds
- 3. X, discrete metric, $B(x_0, r) = \{x_0\}$ for $r \le 1$, $B(x_0, r) = X$ for r > 1

figure: ∞ -norm square, 2-norm circle, 1-norm diamond **Definition:** Let $U \subseteq X$. Say $x_0 \in U$ is an *interior point of* U if $\exists r > 0$ such that $B(x_0, r) \subseteq U$. Write int U for set of interior points of U. Say U is *open* if every point of U is an interior point of U.

Example:

1. \mathbb{R}

U = [0, 1)int U = (0, 1)

Which nonempty intervals are open sets? Open intervals (a, b)

- ∅ is always open in any metric space X is always open
- 3. \mathbb{R}^2 open in all d_1, d_2, d_∞ **Problem:** Show that the same open sets are produced by d_1, d_2 or d_∞ .
- 4. X, discrete metric $U \subseteq X$, int U = U, since if $x_0 \in U$ then $B(x_0, 1) = \{x_0\} \subseteq U$. Hence every set is open.

Proposition: Balls are open sets.

Proof: Consider the ball $B(x_0, r)$ and let $z \in B(x_0, r)$ Put $\rho = r - d(x_0, z) > 0$ Reqired to prove: $B(z, p) \subseteq B(x_0, r)$ Fix $w \in B(z, p)$ Calculate

$$\begin{aligned} d(w, x_0) &\leq d(w, z) + d(z, x_0) \\ &< \rho + d(z, x_0) \\ &= r - d(x_0, z) + d(z, x_0) = r \end{aligned}$$

 $\implies d(w, x_0) < r \implies w \in B(x_0, r)$

Hence $B(z,\rho) \subseteq B(x_0,r)$, so z is an interior point of $B(x_0,r)$, and since z was an arbitrary point of $B(x_0,r)$, this proves $B(x_0,r)$ is open.

PMATH 351 Lecture 7: September 28, 2009

Ball $B(x_0, r) = \{ x \in X : d(x, x_0) < r \} (r > 0, x_0 \in X)$ $U \subseteq X$ is open if $\forall u \in U \exists B(u, r) \subseteq U$ for some r > 0

Proposition: Balls are open sets.

Proposition:

- 1. If U_1, U_2 are open then $U_1 \cap U_2$ is open.
- 2. If $\{U_i\}_{i \in I}$ are open then $\bigcup_{i \in I}$ is open.

Proof:

- 1. Let $x \in U_1 \cap U_2$. Since $x \in U_i$ and these are open, $\exists r_i > 0$ such that $B(x, r_i) \subseteq U_i$. Let $r = \min(r_1, r_2) > 0$ and then $B(x, r) \subseteq B(x, r_1) \subseteq B(x, r_2) \subseteq U_1 \cap U_2$ $U_1 \cap U_2$ is open
- 2. If $x \in \bigcup_{i \in I} U_i$ then $\exists i_0 \in I$ such that $x \in U_{i_0}$. That set is open so $\exists r$ such that $B(x, r) \subseteq U_{i_0} \subseteq \bigcup_{i \in I} U_i \implies \bigcup U_i$ is open.

figure: real line [0, 1)

figure: open strip in \mathbb{R}^2

Example: $B(0, \frac{1}{n})$ in \mathbb{R}^2 . $\bigcap_{i=1}^{\infty} B(0, \frac{1}{n}) = \{0\}$, not open. This shows an infinite intersection of open sets need not be open.

Proposition: U is open iff U is a union of balls.

Proof: (\Leftarrow) Any union of balls is a union of open sets, therefore is open. (\Longrightarrow) Since U is open, $\forall x \in U \exists B(x, r_x) \subseteq U$. Claim $U = \bigcup_{x \in U} B(x, r_x)$ RHS $\subseteq U$ as each $B(x, r_x) \subseteq U$ But each $x \in U$ belongs to $B(x, r_x)$, therefore $U \subseteq \text{RHS}$

Proposition: int $U = \bigcup_{\substack{V \subseteq U \\ \text{open}}}$: says int U is the largest open subset of U

Proof: Let $x \in \operatorname{int} U$. By definition $\exists r > 0$ such that $B(x, r) \subseteq U$. B(x, r) is an open set in U therefore $x \in \bigcup_{\substack{V \subseteq U \\ V \text{ open}}} V \longrightarrow \operatorname{int} U \subseteq \bigcup_{\substack{V \subseteq U \\ V \text{ open}}} V$ Pick $x \in \bigcup_{\substack{V \subseteq U \\ V \text{ open}}} V$. Then $x \in V$ some $V \subseteq U$, open. So $\exists B(x, r) \subseteq V \subseteq U \implies x \in \operatorname{int} U \implies \bigcup_{\substack{V \subseteq U \\ V \text{ open}}} V \subseteq \operatorname{int} V$

 $\operatorname{int}(A \cup B) \neq \operatorname{int} A \cup \operatorname{int} B$ No:

1.
$$\underbrace{(-1,0]}_{A} \cup \underbrace{[0,1)}_{B}$$

int $(A \cup B) = (-1,1)$
int $A = (-1,0)$, int $B = (0,1)$

2. $A = \mathbb{Q}, B = \mathbb{R} \setminus \mathbb{Q}$ int $A = \emptyset = \text{int } B$ int $(A \cup B) = \text{int } \mathbb{R} = \mathbb{R}$

Definition: $A \subseteq X$ is *closed* if $A^{C} = X \setminus A$ is open **Example:**

1. \mathbb{R} : which intervals are closed sets?

$$[a,b], [a,\infty], (-\infty,a], (-\infty,\infty)$$

- 2. X, \emptyset are both open and closed
- 3. $\mathbb{Q} \subseteq \mathbb{R}$ is neither open nor closed
- 4. $(X, d), \{x_0\}$ is closed **Proof:** Let $z \notin \{x_0\}$, i.e., $z \neq x_0$ Consider $B(z, d(z, x_0))$. Verify that $x_n \notin B(z, d(z, x_0))$ That's true since $B(z, d(z, x_0)) = \{y : d(y, z) < d(z, x_0)\}$ and $y = x_0$ does not have that property. Thus $B(z, d(z, x_0)) \subseteq \{x_0\}^{\mathbb{C}}$. Therefore $\{x_0\}$ is closed.
- 5. $\{x : d(x, x_0) = r_0\}$ is closed
- 6. Discrete space: Every set is closed (and open)
- 7. \mathbb{Z} , $|\cdot|$, $B(n, r^{10}) = \{n\}$ Every set is open and closed.

Proposition:

1. Any intersection of closed sets is closed.

[a, b) is not closed because $(-\infty, a) \cup [b, -\infty)$ is not open as b is not an interior point.

figure: line between x_0 and z

figure: n - 1, n, n + 1 on real line

 $⁽¹⁰⁾r \le 1$

2. A finite union of closed sets is closed.

Proof:

1. Let $U = \bigcap U_i, U_i$ closed

$$U^{\rm C} = \left(\bigcap U_i\right)^{\rm C} = \bigcup_{\substack{\bigcup \\ \text{open} \\ \text{open}}} \bigcup_{i \in I} U_i^{\rm C} \quad \text{therefore } U \text{ is closed}$$

Definition: A point $x \in X$ is an *accumulation point*¹¹⁾ of $U \subseteq X$ if $\forall r > 0$, $B(x, r) \cap (U \setminus \{x\}) \neq \emptyset$ (i.e., every ball about x contains a point of U other than x) Equivalently: every open set V containing x satisfies

$$V \cap (U \setminus \{x\}) \neq \emptyset.$$

Equivalently, $\forall r > 0, B(x, r) \cap U$ is infinite.

Take B(x,r): Find $u_1 \in B(x,r) \cap (U \setminus \{x\})$. Consider $B(x, d(x, u_1)) \ni u_2$, where $u_2 \in U \setminus \{x\}$ $(u_2 \neq u_1, \text{ since } u_1 \notin B(x, d(x, u_1)))$ Repeat to find a countably infinite set $\{u_i\} \subseteq U$, with $u_i \in B(x, r)$.

Example:

- 1. U = [0, 1) in \mathbb{R} 1 is an accumulation point of U [but 1 is not in U.] Everything in U is an accumulation point of U. Nothing else.
- 2. $U = [0, 1) \cup \{2\}$ in \mathbb{R} . 2 is not an accumulation point: called *isolated points*.

PMATH 351 Lecture 8: September 30, 2009

Accumulation point: $x \in X$ is an accumulation point of $U \subseteq X$ if $\forall r > 0$, $B(x, r) \cap (U \setminus \{x\}) \neq \emptyset$.

Example:

- 1. $U = [0, 1) \cup \{2\}$ in \mathbb{R} Accumulation points of U = [0, 1]
- 2. \mathbb{Q} in \mathbb{R} : All points of \mathbb{R} are accumulation points.
- 3. $U = B(x_0, 1)$ in \mathbb{R}^2 with any of these metrics d_1, d_2, d_∞ . Take $y \in \mathbb{R}^2$ with $d(x_0, y) = 1$ These points are accumulation points in all 3 cases. Now let $U = B(x_0, 1)$ in X. Take $y \in X$ with $d(x_0, y) = 1$. Is y an accumulation point of U? Not if X is the discrete metric space. Take $B(y, 1/2) = \{y\}$: Does it intersect U? No.
- 4. Any set U in discrete metric space
 - No point is an accumulation point since balls of radius $r \leq 1$ are singletons

Every point in discrete metric space is isolated.

5. \mathbb{Z} : every point is isolated.

figure: radii around point x with u_1 , u_2 , u_3 increasingly closer to x

figure: $\left[0,1\right)$ real line

figure: $[0,1) \cup \{2\}$ real line

figure: U on real line

figures: y on boundard of $B(x_0, 1)$

¹¹⁾(cluster point, limit point)

Theorem: A set U is closed if and only if U contains all its accumulation points.

Corollary:

- 1. Any finite set is closed
- 2. In the discrete metric space every set is closed
- 3. Any set with no accumulation points is closed.

Proof: (\Longrightarrow) Assume U is closed. Take $x \notin U$ and show x is not an accumulation point of U. $x \in U^{\mathbb{C}}$ and this set is open. Hence $\exists r > 0$ such that $B(x,r) \subseteq U^{\mathbb{C}}$. Thus $B(x,r) \cap U = \emptyset$. Therefore x is not an accumulation point of U.

 (\Leftarrow) Assume U contains all its accumulation points.

Show $U^{\mathbb{C}}$ is open. Take $x \in U^{\mathbb{C}}$. By assumption x is not an accumulation point of U. Hence $\exists r > 0$ such that $B(x,r) \cap U = \emptyset$, i.e., $B(x,r) \subseteq U^{\mathbb{C}}$. $\Longrightarrow U^{\mathbb{C}}$ is open $\Longrightarrow U$ is closed.

Notation: \overline{A} = closure of $A = A \cup \{$ accumulation points of $A \}$

Notes: If A is closed then $\overline{A} = A$ If $\overline{A} = A$ then all accumulation points of A are in A, therefore A is closed. e.g., $\overline{\mathbb{Q}}$ in \mathbb{R} is \mathbb{R} .

Theorem:

1. \overline{A} is a closed set

2.
$$\overline{A} = \bigcap_{\substack{B \text{ closed} \\ B \supset A}} B$$

Proof:

1. Show that \overline{A}^{C} is open.

Let $x \in \overline{A}^{\mathbb{C}}$. Then x is not in A and even x is not an accumulation point of A.

Then $\exists r > 0$ such that $B(x, r) \cap A = \emptyset$.

Claim: $B(x,r) \cap \overline{A} = \emptyset$. Say $y \in B(x,r) \cap \overline{A}$.

Then y is an accumulation point of A. Since B(x, r) is an open set containing y, it would have to intersect A. But we know it doesn't.

This proves the claim.

$$\implies B(x,r) \subseteq \overline{A}^{\mathcal{C}} \implies \overline{A}^{\mathcal{C}} \text{ is open } \implies \overline{A} \text{ is closed}$$

2. exercise

Definition: $A \subseteq X$ is *dense* if $\overline{A} = X$ **Definition:** X is *separable* if it has a countable dense set e.g., \mathbb{Q} is dense in \mathbb{R} and \mathbb{R} is separable **Exercise:** Show \mathbb{R}^n is separable for all n

- 1. X discrete metric space: no proper subset is dense since every set is already closed.
- 2. If A is closed and dense in X, what is A? (any metric space)

$$\underbrace{A = \overline{A} = X}_{\text{closed}} \underbrace{\overline{A} = X}_{\text{dense}}$$

Example: $c_0 = \{ (x_n)_{n=1}^{\infty} : x_n \to 0 \} \subseteq l^{\infty} =$ bounded sequences $d(x, y) = \sup_n |x_n - y_n|$ $l^1 = \{ (x_n) : \sum |x_n| < \infty \} \subseteq c_0$ Show l^1 is dense in c_0 . Take $x = (x_n) \in c_0$ and consider B(x, r) Pick N such that $|x_n| < r$ for all $n \ge N$ and put $y = (x_1, x_2, \dots, x_N, 0, 0, \dots)$ $y \in l^1$

$$d(x,y) = \sup_{n} |x_n - y_n|$$
$$= \sup_{n > N} |x_n - y_n|^{12}$$
$$= \sup_{n > N} |x_n|$$
$$< r$$

This proves $x \in \overline{l^1}$. Therefore l^1 is dense in c_0 .

Definition: Bdy $A = \overline{A} \cap \overline{A^{C}}$

- 1. Ball in \mathbb{R}^2 : our "usual" understanding of boundary
- 2. Bdy \mathbb{Q}^{13} = \mathbb{R}
- Bdy A, where A ⊆ X discrete metric space: A = A, A^C = A^C therefore A ∩ A^C = A ∩ A^C = Ø
 PMATH 351 Lecture 9: October 2, 2009

Bounded in \mathbb{R}^n :

 $A \subseteq \mathbb{R}^n$: say A is bounded if $\exists M$ such that $||x|| < M \ \forall x \in A$ $\iff A \subseteq B(0, M)$

Definition: $A \subseteq X$ is bounded if $\exists x_0 \in X$ and M such that $A \subseteq B(x_0, M)$ $\iff \forall x \in X \exists M_X$ such that $A \subseteq B(x, M_X)$

$$(B(x_0, M) \subseteq B(x, M + d(x_0, x)))$$

Discrete metric space X: $X \subseteq B(x_0, 1 + \epsilon)$ for any $\epsilon > 0$ X is bounded

Sequences in metric spaces:

Recall definition of convergence of (x_n) in \mathbb{R}^N $\exists x_0 \in \mathbb{R}^N$ $\forall \epsilon > 0 \; \exists M \text{ such that } \forall n \geq M$ $\|x_n - x_0\|^{14} < \epsilon$

Definition: Say (x_n) in X converges if $\exists x_0 \in X$ such that $\forall \epsilon > 0$ $\exists N$ with $d(x_n, x_0) < \epsilon \ \forall n \ge N$ i.e., $x_n \in B(x_0, \epsilon) \ \forall n \ge N$ Equivalently, the sequence of real numbers $(d(x_n, x_0))_{n=1}^{\infty}$ converges to 0 in \mathbb{R} .

Proposition: $(x_n) \to x_0$ if and only if \forall open set U containing x_0 , $\exists N$ such that $x_n \in U \ \forall n \geq N$.

Proof: (\Longrightarrow) Let U be an open set containing x_0 $\exists \epsilon > 0$ such that $B(x_0, \epsilon) \subseteq U$ (because U is open) Since $x_n \to x_0 \exists N$ such that $x_n \in B(x_0, \epsilon)^{15} \forall n \ge N$

Thus $x_n \in U \ \forall n \ge N$

 $(\iff) B(x_0, \epsilon)$ is an open set containing x_0 .

[figure]

¹²⁾since $x_n = y_n$ for all $n \le N$ ¹³⁾ $\subseteq \mathbb{R}$ ¹⁴⁾ $= d(x_n, x_0)$ ¹⁵⁾ $\subseteq U$

Exercise: Limits are unique. Convergent sequences are bounded, i.e., $\{x_n : n = 1, 2, ...\}$ is a bounded set.

Example: What do convergent sequences in discrete metric spaces look like? Must have $x_n = x_0$ $\forall n \ge N$ for some N

Proposition: $x \in \overline{E}$ iff $x = \lim x_n$ where $x_n \in E$

Proof: $x \in \overline{E}$ iff $\forall n \ B(x, 1/n) \cap E \neq \emptyset$ (\Longrightarrow) If $x \in \overline{E}$ pick $x_n \in B(x, 1/n) \cap E$: Then (x_n) is a sequence in E converging to x. (\Leftarrow) If $x_n \to x$ then $\forall \epsilon > 0$, $B(x, \epsilon)$ contains all $x_n^{(16)}$, for $n \ge N$ $\Longrightarrow B(x, \epsilon) \cap E \neq \emptyset$, $\forall \epsilon > 0$ $\Longrightarrow x \in \overline{E}$

Cauchy sequence: (x_n) is Cauchy if $\forall \epsilon > 0 \exists N$ such that $d(x_n, x_m) < \epsilon \forall n, m \geq N$

Exercise: Every convergent sequence is Cauchy.

If a Cauchy sequence has a convergent subsequence, then the (original) sequence converges to the limit of the subsequence.

Example: $X = \mathbb{Q}, |\cdot|$ Take $x_n \in \mathbb{Q}, x_n \to \sqrt{2}$ in \mathbb{R} . (x_n) is a Cauchy sequence in \mathbb{Q} . But it does not converge (in metric space \mathbb{Q}).

Definition: We say X is *complete* if every Cauchy sequence in X converges. e.g., \mathbb{R}^n is complete \mathbb{Q} is not complete. Discrete metric space is complete.

Proposition: Any closed subset E of a complete metric space is complete.

Proof: Let (x_n) be a Cauchy sequence in EIt's also a Cauchy sequence in X. Hence $\exists x_0 \in X$ such that $\lim x_n = x_0$. By previous proposition $x_0 \in \overline{E} = E$ as E is closed. Therefore (x_n) converges in E.

Compactness:

Definition: An open cover $\{G_{\alpha}\}$ of a set X is a collection of open sets whose union contains X.

By a subcover of an open cover, $\{G_{\alpha}\}$, we mean a subfamily of the G_{α} s whose union still contains X.

Definition: We say X is *compact* if every open cover of X has a finite subcover.

Example: \mathbb{R} : not compact

 $\{(-n,n): n \in \mathbb{N}\}$: open cover with no finite subcover

X infinite discrete metric space: not compact, the open cover by singletons has no finite subcover

PMATH 351 Lecture 10: October 5, 2009

Definition: $A \subseteq X$ is *compact* if every open cover of A has a finite subcover.

e.g., \mathbb{R} not compact: { $(-n, n) : n \in \mathbb{N}$ } is an open cover with no finite subcover.

e.g., (0, 1) not compact: { (1/n, 1 - 1/n) : n = 2, 3, ... }

e.g., X any metric space

 $A = \{a_1, \ldots, a_N\}$ any finite set is compact

Proof: Let $\{G_{\alpha}\}$ be an open cover of A

For each j = 1, ..., N there exists G_{α_j} from the collection such that $a_j \in G_{\alpha_j}$. Then $G_{\alpha_1}, ..., G_{\alpha_N}$ are a finite subcover of A.

 $^{16)} \in E$

e.g., X discrete metric space. Then $A \subseteq X$ is compact if and only if A is finite.

• Saw on Friday that infinite sets in discrete metric space are not compact: just take $\{B(a, 1) : a \in A\}$

Characterization of compactness in \mathbb{R}^n :

Theorem: For $A \subseteq \mathbb{R}^n$ the following are equivalent:

- (1) A is compact
- (2) A is closed and bounded¹⁷⁾
- (3) Every sequence from A has a convergent subsequence with the limit in A^{18}

Heine–Borel Theorem does not hold true in general metric spaces.

Proposition: Compact sets in metric spaces are always closed. **Proof:** Let K be a compact set. Want to prove K^{C} is open. Let $x \in K^{C}$. For all $y \in K$ there exists $r_{y} > 0$ such that

$$B(x, r_y) \cap B(y, r_y) = \emptyset$$

Consider $\{B(y, r_y) : y \in K\}$: open cover of K K is compact so there exists a finite subcover, i.e., there exists $B(y_1, r_{y_1}), \ldots, B(y_N, r_{y_N})$ such that

$$\bigcup_{j=1}^{N} B(y_j, r_{y_j}) \supseteq K.$$

Let $r = \min(r_{y_1}, \dots, r_{y_N}) > 0.$

Claim $B(x,r) \cap K = \emptyset$.

Say $z \in B(x,r) \cap K$. Then there exists $j \in \{1, \ldots, N\}$ such that $z \in B(y_j, r_{y_j})$. So $z \in B(x,r) \cap B(y_j, r_{y_j})$, but $B(x,r) \subseteq B(x, r_{y_j})$, i.e., $z \in B(x, r_{y_j}) \cap B(y_j, r_{y_j}) = \emptyset$ by construction. Contradiction. Hence $B(x,r) \subseteq K^{\mathbb{C}} \implies K^{\mathbb{C}}$ is open $\iff K$ is closed.

Proposition: Closed subsets of compact sets are compact.

Proof: Let F be a closed subset of compact set X.

Take an open cover $\{G_{\alpha}\}$ of F. Then the collection of sets G_{α} together with the open set F^{C} is an open cover of X.¹⁹⁾ Let $G_{\alpha_{1}}, \ldots, G_{\alpha_{N}}, (F^{C})^{20}$ be a finite subcover of X. Then $G_{\alpha_{1}}, \ldots, G_{\alpha_{N}}$ must cover F. So the open cover $\{G_{\alpha}\}$ of F has a finite subcover. Hence F is compact.

Proposition: Compact sets (in metric spaces) are bounded. **Proof:** Let K be compact set and let $x_0 \in K$. Consider all balls $B(x_0, n)$, n = 1, 2, 3, ...If $k \in K$ then $d(x_0, k) < n_0$ for some large enough integer n_0 i.e., $k \in B(x_0, n_0)$. Therefore

i.e.,
$$\kappa \in D(x_0, n_0)$$
. Therefore

$$k \in \bigcup_{n=1}^{\infty} B(x_0, n)$$
$$\implies K \subseteq \bigcup_{n=1}^{\infty} B(x_0, n)$$

 \sim

 $^{17)}(1)$ and (2): Heine–Borel

 $^{^{18)}(1)}$ and (3): Bolzano–Weierstrass

 $^{^{19)}\}bigcup G_{\alpha} \cup F^{\mathbf{C}} \supseteq F \cup F^{\mathbf{C}} = X$

 $^{^{20)}}$ (because X is compact)

Hence $\{B(x_0, n) : n = 1, 2, ...\}$ is an open cover of K. Since K is compact there must be a finite subcover, say $B(x_0, n_1), ..., B(x_0, n_L)$. Say $n_L = \max(n_1, ..., n_L)$ Then $B(x_0, n_L) \supseteq B(x_0, n_j)$ for j = 1, 2, ..., L $\implies K \subseteq B(x_0, n_L) = \bigcup_1^L B(x_0, n_j)$ Hence K is bounded.

Definition: ϵ -net: for $A \subseteq$ metric space X is a finite set $x_1, \ldots, x_n \in X$ such that every element of A has distance at most ϵ from at least one x_j . i.e., for all $a \in A$ there exists $j \in \{1, \ldots, n\}$ such that $d(a, x_j) \leq \epsilon$. If take $\epsilon' > \epsilon$ then $\bigcup_{i=1}^n B(x_j, \epsilon') \supseteq A$.

Definition: Say A is *totally bounded* if for all $\epsilon > 0$ there exists ϵ -net for A.

e.g., X discrete metric space.

There is a 1-net (consisting of one element)

But no $1 - \epsilon$ net if X is infinite.

So if X is infinite it is not totally bounded.

Proposition: Totally bounded \implies bounded. **Proof:** Take a 1-net for the totally bounded set A, say x_1, \ldots, x_k . $\implies \bigcup_{j=1}^k B(x_j, 3/2) \supseteq A$ Take $B(x_1, \max_{j=1,\ldots,k} d(x_1, x_j) + 1 + 3/2) \supseteq B(x_j, 3/2)$ for all j. Then $A \subseteq B(x_1, r)$

PMATH 351 Lecture 11: October 7, 2009

Totally bounded

 ϵ -net: for a set $A \subseteq X$ is a finite set $\{x_1, \ldots, x_n\} \subseteq X$ such that for all $x \in A$ there exists j such that $d(x_j, a) \leq \epsilon$.

Totally bounded means A has an ϵ -net for all $\epsilon > 0$.

Totally bounded \implies bounded.

Bounded \Rightarrow Totally bounded: as discrete metric space is bounded, but not totally bounded.

Example: $A = \text{Ball in } \mathbb{R}^2$

Take the set of bottom left corner points from the squares of the ϵ -grid that intersect the ball A. Call this finite set $\{x_1, \ldots, x_N\}$.

 $\overline{B(x_j,\sqrt{2}\epsilon)} \supseteq$ square that x_j is a corner of

So $\bigcup_{j=1}^{N} \overline{B(x_j, \sqrt{2}\epsilon)} \supseteq A$

hence $\{x_1, \ldots, x_N\}$ are an $\sqrt{2}\epsilon$ -net for A. $\rightarrow A$ totally bounded. Same idea works for a ball in \mathbb{R}^n .

Fact: If $U \subseteq V$ and V is totally bounded, then U is totally bounded. **Proof:** Take same ϵ -net for U as for V.

Proposition: In \mathbb{R}^n , bounded \implies totally bounded. **Proof:** A bounded set is a subset of a ball, and balls in \mathbb{R}^n are totally bounded.

Proposition: Compact \implies totally bounded **Proof:** Let A be compact. Consider $\{B(x, \epsilon) : x \in A\}$. This is an open cover for A, so there is a finite subcover, say $B(x_1, \epsilon), \ldots, B(x_n, \epsilon)$, i.e., $\bigcup_{i=1}^{n} B(x_j, \epsilon) \supseteq A$ $\implies \{x_1, \ldots, x_n\}$ are an ϵ -net for A. figure: circle with ϵ -grid

Exercise: A bounded $\implies \overline{A}$ bounded.

Proposition: A totally bounded, then \overline{A} is totally bounded. **Proof:** Let $\{x_1, \ldots, x_n\}$ be an ϵ -net for A. Given $x \in \overline{A}$, there exists $a \in A$ such that $d(x, a) < \epsilon$. $\exists j$ such that $d(x_j, a) \leq \epsilon$ Therefore $d(x, x_j) \leq d(x, a) + d(a, x_j) < 2\epsilon$ So $\{x_1, \ldots, x_n\}$ are an 2ϵ -net for \overline{A} .

Goal is to prove metric spaces are compact if and only if it is complete and totally bounded.

Note: For $A \subseteq \mathbb{R}^n$, A is complete if and only if A is closed **Proof:**

- 1. In any metric space complete implies closed because of the following argument. Let x be an accumulation point of the complete space A. Get $\{a_n\} \subseteq A$ such that $a_n \mapsto x$. Then (a_n) is a Cauchy sequence in the complete space A. By definition of completeness there exists $a \in A$ such that $a_n \to a$. By uniqueness of limits, $x = a \in A$. Therefore A is closed.
- 2. Any closed subset of a complete metric space is complete. In particular, any closed subset of \mathbb{R}^n is complete.

Theorem (Cantor's): If $A_1 \supseteq A_2 \supseteq \cdots$ are non-empty, closed sets in a complete metric space X and

$$\operatorname{diam} A_n = \sup\{\, d(x, y) : x, y \in A_n \,\} \to 0,$$

then $\bigcap_{n=1}^{\infty} A_n$ is exactly one element.

e.g., To see "closed" is necessary, take $A_n = (0, 1/n)$. Here $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Proof: Pick $x_n \in A_n$. If $k \ge N$, then $x_k \in A_k \subseteq A_N$. So $\{x_k : k \ge N\} \subseteq A_N \implies d(x_j, x_k) \le \text{diam } A_N \text{ if } j, k \ge N$.

i.e., $\{x_n\}$ is Cauchy and therefore converges²¹⁾ to some $x_0 \in X$. Consider the subsequence $(x_n)_{n=N}^{\infty} \subseteq A_N$ and has the same limit x_0 . But A_N is closed, therefore $x_0 \in A_N$. This is true for all N, therefore $x_0 \in \bigcap_{N=1}^{\infty} A_N$.

Now suppose $x_0, y_0 \in \bigcap_{n=1}^{\infty} A_n$. Then $x_0, y_0 \in A_n$ for all n, so $d(x_0, y_0) \leq \operatorname{diam} A_n^{22}$ for all n. $\implies d(x_0, y_0) = 0 \implies x_0 = y_0$.

Definition: A collection of sets has the F.I.P. (*finite intersection property*) if every finite intersection is non-empty.

e.g., nested family of sets.

* **Theorem:** The following are equivalent for a metric space X:

- (1) X is compact.
- (2) Every collection of closed subsets of X with the F.I.P. has non-empty intersection.
- (3) Every sequence in X has a convergent subsequence (limit in X)²³⁾
- (4) X is complete and totally bounded.

Corollary: (Heine–Borel): In \mathbb{R}^n , compact \iff closed and bounded.

Corollary: compact \implies closed and bounded.

(since complete \implies closed, and totally bounded \implies bounded).

PMATH 351 Lecture 12: October 9, 2009

figure: open sets on real line

 $^{^{21)}{\}rightarrow}~0$ as $N\rightarrow\infty$

 $^{^{22)} \}rightarrow 0$

 $^{^{23)}(1)}$ and (3): Bolzano–Weierstrass Theorem

Theorem: The following are equivalent for a metric space X:

- (1) X is compact
- (2) Every collection of closed subsets of X with the F.I.P. has non-empty intersection.
- (3) Every sequence in X has a convergent subsequence (limit in X)
- (4) X is complete and totally bounded

 $1 \iff 4$: Analogue of the Heine–Borel

 $1 \iff 3$: Bolzano–Weierstrass Theorem

Cantor's Intersection Theorem

If $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$ are non-empty, closed subset of a complete metric space X and

$$\operatorname{diam} A_n \equiv \sup_n \{ d(x, y) : x, y \in A_n \} \to 0$$

then $\bigcap_{n=1}^{\infty} A_n$ is one point.

Proof: $(4 \implies 1)$: Suppose X is not compact. Say $\{U_{\alpha}\}$ is an open cover of X that has no finite subcover.

Notation: $D(x_0, r) = \{ x \in X : d(x, x_0) \le r \}$

Exercise: closed set

X is totally bounded so there is a $\frac{1}{2}$ -net for X, say $\{x_1^{(1)}, \ldots, x_{n_1}^{(1)}\}$

so
$$\bigcup_{j=1}^{n_1} D(x_j^{(1)}, \frac{1}{2}) = X.$$

Since there are only finitely many closed balls $D(x_j^{(1)}, \frac{1}{2}), j = 1, ..., n$, needed to cover X, at least one of these balls cannot be covered by only finitely many U_{α} .

Say $D(x_1^{(1)}, \frac{1}{2}) \equiv X_0$: closed set. Notice diam $X_0 = 1 = \frac{1}{2^0}$. $X_0 \subseteq X$ so X_0 is totally bounded. Let $\{x_1^{(2)}, \ldots, x_{n_2}^{(2)}\}$ be a $\frac{1}{4}$ -net for X_0 . Hence $\bigcup_{j=1}^{n_2} D(x_j^{(2)}, \frac{1}{4}) \cap X_0 = X_0$. At least one of the sets $D(x_j^{(2)}, \frac{1}{4}) \cap X_0$ is not covered by only finitely many U_{α} s, say $D(x_1^{(2)}, \frac{1}{4}) \cap X_0 \equiv X_1$. $X_1^{24} \subseteq X_0$, diam $X_1 \leq \frac{1}{2} = \frac{1}{2^1}$ Repeat to get closed sets $X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots$ diam $X_j \leq \frac{1}{2^j}$ and each set X_j cannot be covered by only finitely many U_{α} . Each X_j is non-empty (else could cover with finitely many U_{α} s).

By Cantor's intersection theorem,

$$\bigcap_{n=1}^{\infty} X_n = \{x_0\} \qquad \text{(singleton)}$$

Since $\bigcup U_{\alpha} = X$, there exists α_0 such that $x_0 \in U_{\alpha_0}$. As U_{α_0} is open there exists $\epsilon > 0$ such that $B(x_0, \epsilon) \subseteq U_{\alpha_0}$. Take *n* such that $\frac{1}{2^n} < \epsilon$ and consider X_n , diam $X_n \leq \frac{1}{2^n}$. If $y \in X_n$ then because $x_0 \in X$ we have $d(x_0, y) \leq \dim X_n \leq \frac{1}{2^n} < \epsilon \implies y \in B(x_0, \epsilon)$. So $X_n \subseteq B(x_0, \epsilon) \subseteq U_{\alpha_0}$. Hence X_n is covered by only one set U_{α_0} : contradiction to choice of X_n . Thus X must be compact.

 $^{^{24)}}$ closed

 $(1 \implies 2)$: Recall the sets $\{U_{\alpha}\}$ have the FIP if any finite intersection of these sets is non-empty.

Let $\{A_{\alpha}\}$ be closed subsets of X and suppose $\bigcap_{\alpha} A_{\alpha} = \emptyset$. We will prove some finite intersection is empty.

$$A_{\alpha}^{C}: \text{ open sets}$$
$$\left(\bigcup A_{\alpha}^{C}\right)^{C} = \bigcap A_{\alpha} = \emptyset$$
$$\implies \bigcup A_{\alpha}^{C} = X$$

hence the sets $\{A_{\alpha}^{C}\}$ are an open cover of X. By compactness (1) there exist infinitely many sets

$$A_{\alpha_{1}}^{C}, \dots, A_{\alpha_{n}}^{C} \text{ such that } \bigcup_{i=1}^{n} A_{\alpha_{i}}^{C} = X$$
$$\implies \bigcap_{i=1}^{n} A_{\alpha_{i}} = \left(\bigcup_{i=1}^{n} A_{\alpha_{i}}^{C}\right)^{C} = \emptyset$$

 $\begin{array}{l} (2 \implies 3): \mbox{ Let } (x_n) \mbox{ be a sequence in } X.\\ \hline \mbox{Define } S_n = \{x_k: k \ge n\} \\ \hline \overline{S_n}: \mbox{ non-empty, closed, } \overline{S_n} \subseteq \overline{S_{n-1}} \\ \hline \mbox{ Exercise: } A \subseteq B \implies \overline{A} \subseteq \overline{B} \\ \bigcap_1^N \overline{S_k} = \overline{S_N}, \mbox{ hence any finite intersection is non-empty. Therefore } \{S_n\} \mbox{ has FIP.} \\ \mbox{ By assumption } (2), \howevert \cap \overline{S_n} \neq \emptyset. \mbox{ Say } x \in \bigcap_1^\infty \overline{S_n} \implies x \in \overline{S_n} \mbox{ for all } n. \mbox{ So given any } \epsilon > 0 \mbox{ and any } n, \\ \mbox{ there exists } y_n \in S_n \mbox{ such that } d(x, y_n) < \epsilon. \mbox{ Note } y_n = x_k \mbox{ for some } k \ge n. \\ \mbox{ Start with } n = 1, \ \epsilon = 1. \mbox{ Get } y_1 \in S_1 \mbox{ such that } d(x, y_1) < 1, \mbox{ say } y_1 = x_{k_1}. \\ \mbox{ Take } n = k_1 + 1, \ \epsilon = \frac{1}{2}. \\ \mbox{ Find } y_n \in S_n \mbox{ such that } d(x, y_n) < \frac{1}{2} \\ \mbox{ } y_n = x_{k_2} \mbox{ with } k_2 \ge n > k_1 \\ \mbox{ Repeat with } n = k_2 + 1, \ \epsilon = \frac{1}{4} \mbox{ and get } x_{k_3} \mbox{ such that } d(x_{k_3}, x) < \frac{1}{4} \mbox{ and } k_3 > k_2. \\ \mbox{ This produces } k_1 < k_2 < \cdots, \mbox{ and terms } x_{k_j} \mbox{ such that } d(x_{k_j}, x) < \frac{1}{2^{j-1}}. \\ \mbox{ } \{x_{k_j}\}_{j=1}^\infty \mbox{ is a subsequence of } \{x_n\}, \mbox{ and clearly } x_{k_j} \to x. \\ \mbox{ Hence the sequence } (x_n) \mbox{ has a convergent subsequence.} \end{array}$

PMATH 351 Lecture 13: October 14, 2009

Theorem: The following are equivalent

- 1. X is compact
- 3. Every sequence X has a convergent subsequence (limit in X)
- 4. X is complete and totally bounded

To finish the proof do $(3 \implies 4)$

(i) Prove X is complete.
Let (x_n) be a Cauchy sequence in X.
By assumption (3), (x_n) has a convergent subsequence. A Cauchy sequence with a convergent subsequence converges.
⇒ X is complete.

(ii) Prove X is totally bounded.

Assume not. Then for some $\epsilon > 0$ there is no ϵ -net. Take $x_1 \in X$. Then $\{x_1\}$ is not an ϵ -net. So there exists $x_2 \in X$ such that $d(x_1, x_2) > \epsilon$. Consider $\{x_1, x_2\}$: not an ϵ -net.

So there exists $x_3 \in X$ such that $d(x_1, x_2) > \epsilon$ and $d(x_2, x_3) > \epsilon$. Repeat: Get $\{x_n\}_{n=1}^{\infty}$ such that $d(x_n, x_j) > \epsilon$ for all $j = 1, \ldots, n-1$, i.e., $d(x_i, x_j) > \epsilon$ for all $i \neq j$. This sequence has no Cauchy subsequence, so no convergent subsequence: contradicting assumption (3).**Example:** Cantor Set $\subseteq [0, 1]$. • compact, empty interior perfect \rightarrow closed set in which every point is an accumulation point. Construction: $C_0 = [0, 1]$ $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ $C_2 =$ union of $4 = 2^2$ intervals of length $\frac{1}{9} = \frac{1}{3^2}$ figures of C_0, C_1, C_2 C_n = union of 2^n closed intervals, each of length 3^{-n} with gap between any two intervals $\geq 3^{-n}$ C_n is closed $\subseteq [0, 1]$, therefore compact. $C_n \subseteq C_{n-1}$ Cantor set $C = \bigcap_{n=1}^{\infty} C_n$: closed $\subseteq [0, 1]$, therefore compact. $0, 1 \in C$. $\frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}, \ldots \in C$: C contains all endpoints of Cantor intervals. Empty interior: Say $I = (a, b) \subseteq C$. $\implies I \subseteq C_n$ for all n. Pick n such that $3^{-n} < b - a = |I|$. But then $I \not\subset C_n$ since the longest intervals in C_n are length 3^{-n} . \implies contradiction **Perfect:** Let $x_0 \in C$. Fix $\epsilon > 0$. Pick n such that $3^{-n} < \epsilon$. $x_0 \in C_n \implies x_0$ lies in a Cantor interval of step n, of length 3^{-n} . $a, b \in C$ x_0 between a and b, $d(x_0, a), d(x_0, b) \le 3^{-n} < \epsilon$ in an interval of length 3^{-n} Hence $B(x_0, \epsilon) \cap (C \setminus \{x_0\})$ is non-empty. Since $B(x_0, \epsilon) \cap C \supseteq \{a, b\}$ **Proposition:** A non-empty, perfect set E in \mathbb{R}^k is uncountable. **Proof:** *E* must be infinite since it has accumulation points. Assume $E = \{x_n\}_{n=1}^{\infty}$ (i.e., E is countably infinite) Put $k_1 = 1$. Look at $B(x_{k_1}, 1) = B(x_1, 1) \equiv V_1$: open set containing x_1 . Since x_1 is an accumulation point of E_1 there exists $e \in V_1 \setminus \{x_1\}, e \in E$ Pick least integer $k_2 > k_1$ such that $x_{k_2} \in V_1 \cap E$, $x_{k_2} \neq x_{k_1}$ Pick V_2 open, contains x_{k_2} and satisfies $\overline{V_2} \subseteq V_1$ and $x_{k_1} \notin \overline{V_2}$ figure: x_{k_1} in V_1 and x_{k_2} in V_2 (e.g., $V_2 = B(x_{k_2}, r)$ where $r = \frac{1}{2} \min(d(x_{k_1}, x_{k_2}), 1 - d(x_{k_1}, x_{k_2})))$ Consider $V_2 \cap E \setminus \{x_{k_2}\}$: non-empty Pick minimal k_3 such that $x_{k_3} \in V_2 \cap E \setminus \{x_{k_2}\}$. By construction $k_3 > k_2$. $x_{k_2} \notin \overline{V_3}$ Assume we have chosen $x_{k_n} \in E \cap V_{n-1} \setminus \{x_{k_{n-1}}\}$ with $k_n > k_{n-1}$ and minimal; open sets $V_n \ni x_{k_n}$. $\overline{V_n} \subset V_{n-1}$ and $x_{k_{n-1}} \notin V_n$. As x_{k_n} is an accumulation point of E, we can choose k_{n+1} minimal such that $x_{k_{n+1}} \in V_n \cap E \setminus \{x_{k_n}\}$. Then $k_{n+1} > k_n$. Get V_{n+1} open such that $\overline{V_{n+1}} \subset V_n$ and $x_{k_n} \notin \overline{V_{n+1}}$ Put $K_n = \overline{V_n} \cap E^{25}$ $\subseteq V_{n-1} \cap E \subseteq \overline{V_{n-1}} \cap E = K_{n-1}$

so $K_1 \supseteq K_2 \supseteq \cdots$

 $^{^{25)}}$ non-empty, closed

$$K_n \subseteq K_1 \subseteq \overline{B(x_0, 1)}^{26}.$$

Since nested, have FIP. By characterization of compactness (2), $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

Now, $x_1 \notin \overline{V_2}$, therefore $x_1 \notin \bigcap K_n$; $x_2 \notin V_1$, therefore $x_2 \notin \bigcap K_n$. $x_{k_2} \notin \overline{V_3}$, therefore $x_{k_3} \notin \bigcap K_n$. $x_{2+1} \notin V_2, \ldots; x_{k_j} \in \overline{V_{j+1}}$, therefore $x_{k_j} \notin \bigcap K_n$. $\implies x_j \notin \bigcap K_n$, for any j, and $K_n \subseteq E$. Therefore $\bigcap K_n = \emptyset$: contradiction.

PMATH 351 Lecture 14: October 16, 2009

Midterm: Friday October 23 here at 1:30. Up to end of compactness.

Not proof of 1) Schroeder–Bernstein, 2) Perfect set in \mathbb{R}^k are uncountable.

Continuity: $f: X \to Y, X, Y$ metric spaces

Definition: Say f is continuous at $x_0 \in X$, if for all $\epsilon > 0$ there exist $\delta > 0$ such that whenever $d_X(x_0, y) < \delta^{27}$ then $d_Y(f(x_0, f(y))) < \epsilon^{28}$.

Say f is *continuous* if it is continuous at every point of its domain.

Examples:

- 1. Constant functions are always continuous.
- 2. Identity map: $X \to X$. Take $\delta = \epsilon$.
- 3. Identity map: $(\mathbb{R}, \text{usual metric})^{29} \to (\mathbb{R}, \text{discrete metric})^{30}$
 - not continuous Take $\epsilon \leq 1$, then $B_Y(\mathrm{Id}(x_0)^{31}), \epsilon) = \{x_0\}$. So to have $\mathrm{Id}(y) = y \in B_Y(x_0, \epsilon)$ means $y = x_0$. But for all $\delta > 0$, $B_X(x_0, \delta)$ contains infinitely many points. So it contains some $y \neq x_0$. But then $\mathrm{Id}(y) \notin B_Y(\mathrm{Id}(x_0), \epsilon)$.
- 4. If x_0 is not an accumulation point of X then any f is continuous at x_0 . **Proof:** If $\delta > 0$ is small enough as $B(x_0, \delta) = \{x_0\}$, then clearly if $y \in B(x_0, \delta)$ then $f(y) \in B(f(x_0), \epsilon)$ for all $\epsilon > 0$ **Corollary:** If $f: X \to Y$ where X is the discrete metric space then f is continuous.
- 5. (X, d) any metric space and $a \in X$. Then f(x) = d(a, x) is continuous, where $f: X \to \mathbb{R}$. **Proof:**

$$f(x) - f(y) = d(a, x) - d(a, y)$$

$$\leq d(a, y) + d(x, y) - d(a, y) = d(x_0, y)$$

$$f(y) - f(x) \leq d(x, y)$$

$$\implies |d(a, x)^{32} - d(a, y)^{33}| \leq d(x, y)$$

So take $\delta = \epsilon$.

26) compact in \mathbb{R}^{k} 27) $y \in B(x_{0}, \delta)$ 28) $f(y) \in B(f(x_{0}), \epsilon)$ 29) X30) Y31) x_{0} 32) = f(x)33) = f(y) Additional office hours Tuesday 2–3.

figure: f takes a point in a ball in X to one in Y

Proposition: f is continuous at x if and only if whenever (x_n) is a sequence in X converging to x; then the sequence $(f(x_n))$ converges to f(x).

Proof: (\Longrightarrow) Let $x_n \to x$. Take $\epsilon > 0$. Get δ by continuity so that $d(x, y) < \epsilon \implies d(f(x), f(y)) < \epsilon$. Get N such that $d(x_n, x) < \delta$ for all $n \ge N$. Take $n \ge N$, then $d(f(x_n), f(x)) < \epsilon$ by definition of N and δ . (\Leftarrow) Suppose f is not continuous at x. Then there exists $\epsilon > 0$ such that for every $\delta > 0$ there exists $y = y(\delta)$ with $d(x, y) < \delta$ but $d(f(x), f(y)) \ge \epsilon$.

Take $\delta = \frac{1}{n}$ and put $x_n = y(\frac{1}{n})$. Then $d(x, x_n) < \frac{1}{n}$, so $x_n \to x$. But $d(f(x), f(x_n)) \ge \epsilon \implies f(x_n) \not\to f(x)$ Contradiction.

Exercise: $f, g: X \to \mathbb{R}$ continuous then so are $f \pm g$, fg, f/g if $g(x) \neq 0$.

Alternate way to look at continuity:

f continuous at x_0 if and only if for all $\epsilon > 0$ there exists $\delta > 0$ such that

$$f(B(x_0,\delta)) \subseteq B(f(x_0),\epsilon)$$

if and only if $B(x_0, \delta) \subseteq f^{-134}(B(f(x_0), \epsilon))$, where $f^{-1}(v) = \{x : f(x) \in V\}$. $\implies x_0 \in \operatorname{int} f^{-1}(B(f(x_0), \epsilon))$

Theorem: The following are equivalent: for $f: X \to Y$

- 1. f is continuous
- 2. for all V open in Y, $f^{-1}(V)$ is open in X.
- 3. for all F closed in Y, $f^{-1}(F)$ is closed in X.

Proof: $(1 \implies 2)$: Let V be open in Y, and suppose $x_0 \in f^{-1}(V)$, i.e., $f(x_0) \in V$. Hence there exists $\epsilon > 0$ such that $f(B(x_0, \delta)) \subseteq B(f(x_0, \epsilon)) \subseteq V$. By continuity, there exists $\delta > 0$ such that $f(B(x_0, \delta)) \subseteq B(f(x_0), \epsilon) \subseteq V$.

$$\implies B(x_0, \delta) \subseteq f^{-1}(V) \implies x_0 \text{ is an interior point of } f^{-1}(V)$$
$$\implies f^{-1}(V) \text{ is open.}$$

PMATH 351 Lecture 15: October 19, 2009

Continuity

 $f: X \to Y$ is continuous at x if $\forall \epsilon > 0 \ \exists \delta > 0$ such that $f(B(x, \delta)) \subseteq B(f(x), \epsilon) \iff B(x, \delta) \subseteq f^{-1}(B(f(x), \epsilon))$

Theorem: $f: X \to Y$. The following are equivalent:

- 1. f is continuous
- 2. $\forall V$ open in Y, $f^{-1}(V)$ is open in X.
- 3. $\forall F$ closed in Y, $f^{-1}(F)$ is closed in X.

Proof: $(1 \implies 2)$: \checkmark (2 \implies 1): For each $x \in X$, check that f is constant at x. Put $V = B(f(x), \epsilon)$: open in YBy (2), $f^{-1}(B(f(x), \epsilon))$ is open in X.

 $x \in f^{-1}(B(f(x), \epsilon))$ so since the set is open there exists $\delta > 0$ such that $B(x, \delta) \subseteq f^{-1}(B(f(x), \epsilon))$, i.e., f is continuous at $x \in X$.

³⁴⁾preimage

 $\begin{array}{l} (2 \implies 3): \text{ Let } F \text{ be a closed set in } Y. \\ F^{\mathrm{C}} \text{ is open set in } Y. \text{ By } (2), \ f^{-1}(F^{\mathrm{C}}) \text{ is open in } X. \\ f^{-1}(F^{\mathrm{C}}) = \left\{ x \in X : f(x) \in F^{\mathrm{C}} \right\} = \left\{ x : f(x) \notin F \right\} = \left\{ x : x \notin f^{-1}(F) \right\} = X \setminus f^{-1}(F) = \underbrace{(f^{-1}(F))^{\mathrm{C}}}_{\text{open}} \end{array}$

 $\implies f^{-1}(F)$ is closed

Corollary: If $f: X \to Y$, $g: Y \to Z$, continuous then $g \circ f: X \to Z$ is continuous. **Proof:** Let $V \subseteq Z$ be open. $(g \circ f)^{-1}(V) = \{x: g(f(x)) \in V\}$ $\iff f(x) \in g^{-1}(C) \iff x \in f^{-1}(\underbrace{g^{-1}(V)}_{V})$

 \rightarrow open as f, g are continuous

Examples:

1. $f: (0,1) \to \mathbb{R}$ $x \mapsto 1$ 2. $f: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ onto open set $f(x) = \arctan(x)$

3.
$$f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$$

 $f(x) = \tan x$

Theorem: Let $f: K \to X$ be continuous and K compact. Then f(K) is compact.

Proof: Let $\{U_{\alpha}\}$ be an open cover of f(K).

Then $f^{-1}(U_{\alpha})$ are open because f is continuous. If $x \in K$, then $f(x) \in f(K)$ so $f(x) \in U_{\alpha}$ for some $\alpha \implies x \in f^{-1}(U_{\alpha})$. Hence $\{f^{-1}(U_{\alpha})\}$ form an open cover of K.

Since K is compact there is a finite subcover, say $f^{-1}(U_{\alpha_1}), \ldots, f^{-1}(U_{\alpha_n})$. Then $U_{\alpha_1}, \ldots, U_{\alpha_n}$ are a finite subcover of f(K) because if $f(x) \in f(K)$ for some $x \in K$ then $x \in f^{-1}(U_{\alpha_i})$ (since these cover K), i.e., $f(x) \in U_{\alpha_i}$. Hence f(K) is compact.

Corollary: (E.V.T.) If K is compact and $f: F \to \mathbb{R}$ is continuous then f attains minimum and maximum values.

Proof: f(K) is compact in \mathbb{R} , i.e., closed and bounded. Let $a = \sup f(K)$ and $b = \inf f(K)$ $a, b \in f(K)$ since it is closed, i.e., $\exists x_1, x_2 \in K$ such that $a \in f(x_1), b = f(x_2)$

Corollary: If $f: K \to \mathbb{R}$ is continuous, K compact and f > 0 on K then $\exists \delta > 0$ such that $f(x) > \delta$ $\forall x \in K$.

Proof: Take $\delta = f(x_1)$ where $f(x_1) =$ minimum value of f on K.

Corollary: If $f: X \to Y$ continuous bijection, X compact, then f is a homeomorphism, i.e., f^{-1} is also continuous.

Let
$$F \subseteq X$$
 be closed. But X is compact, therefore F is compact.

Here f(F) is compact and hence closed. Thus $(f^{-1})^{-1}(F)$ is closed, so f^{-1} is continuous.

Example:

Proof: $(f^{-1})^{-1}(F^{35}) = f(F)$

 $f: [0, 2\pi) \to \text{boundary unit ball in } \mathbb{R}^2$ $t \mapsto (\cos t, \sin t)$

$^{35)}$ close	d
----------------	---

 $X \xrightarrow{f} Y \xrightarrow{g} Z \subseteq V$

figure:

(exist as f(K) is bounded)

$$f^{-1} \colon Y \to X \subseteq F \xrightarrow[(f^{-1})(F)]{} Y$$

- bijection
- $\bullet\,$ continuous

But f^{-1} is not continuous $f^{-1}(1,0) = 0$, but $f^{-1}(\cos(2\pi - \epsilon), \sin(2\pi - \epsilon)) = 2\pi - \epsilon$.

Uniform Continuity

Definition: f is uniformly continuous if $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $d(x, y) < \delta$, then $d(f(x), f(y)) < \epsilon$. [i.e., δ is independent of x] **Note:** Uniform continuity \implies continuity; but not conversely.

Example:

- 1. $f(x) = \frac{1}{x}$ on (0, 1) is continuous, but not uniformly continuous.
- 2. $f(x) = x^2$ on \mathbb{R} is continuous, but not uniformly continuous.

Example 1: Prove it is not uniformly continuous.

Take $\epsilon = 1$. Suppose $\delta < 1$ worked. Take $x = \frac{\delta}{2}, y = \frac{\delta}{4}$. Then $d(x, y) < \delta$. But $|f(x) - f(y)| = |\frac{2}{\delta} - \frac{4}{\delta}| = \frac{2}{\delta} > 1 = \epsilon$, **Example 3:** $f: [a, 1] \to \mathbb{R}$ (a > 0) $f(x) = \frac{1}{x}$: Is uniformly continuous.

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{y - x}{xy}\right| \le \frac{|y - x|}{a^2} \le \frac{\delta}{a^2} \le \epsilon.$$

Take $\delta = \epsilon a^2$.

PMATH 351 Lecture 16: October 21, 2009

Proposition: Let X be compact and $f: X \to Y$ continuous. Then f is uniformly continuous.

Proof: Let $\epsilon > 0$. $\forall x \in X \exists \delta_x > 0$ such that if $d(x, y) < \delta_x$ then $d(f(x), f(y)) < \epsilon$. Look at $\{B(x, \delta_x/2) : x \in X\}$: open cover of compact set X. Take a finite subcover, say $B(x_1, \delta_{x_1}/2), \dots, B(x_n, \delta_{x_n}/2)$ Let $\delta = \min(\delta_{x_1}/2, \dots, \delta_{x_n}/2) > 0$ Suppose $d(x, y) < \delta$. There is some i such that $x \in B(x_i, \delta_{x_i}/2) \implies d(x, x_i) < \delta_{x_i}/2 < \delta_{x_i}$ so by choice of δ_{x_i} , $d(f(x), f(x_i)) < \epsilon$. Calculate $d(y, x_i) \leq d(y, x) + d(x, x_i) < \delta_{x_i}/2 + \delta_{x_i}/2 = \delta_{x_i}$ $\implies d(f(y), f(x_i)) < \epsilon$

Hence
$$d(f(x), f(y)) \le d(f(x), f(x_i)) + d(f(y), f(x_i)) < \epsilon + \epsilon = 2\epsilon$$

 \implies f is uniformly continuous.

Connectedness:

Definition: X is not connected if $X = U \cup V$ where U, V are both open and non-empty and $U \cap V = \emptyset$.

Note $U^{\rm C} = V$ and $V^{\rm C} = U$, therefore U, V are closed also.

 $E \subseteq X$ is connected means $E \neq (E \cap U) \cup (E \cap V)$ where U, V open in $X, E \cap U, E \cap V$ are disjoint and $E \cap U, E \cap V$ are both non-empty.

Example:

- 1. $E = (0, 1) \cup (2, 3)$: not connected
- 2. $\mathbb{Q} = (\mathbb{Q} \cap (-\infty, \sqrt{2})) \cup (\mathbb{Q} \cap (\sqrt{2}, \infty))$
- 3. X: discrete metric space: $only^{36}$ singletons are connected

figure: unit circle

4. [a, b] in \mathbb{R} is connected.

Suppose not, say $[a, b] = (U \cap [a, b]) \cup (V \cap [a, b]), U, V$ open, $U \cap [a, b]$ and $V \cap [a, b]$ disjoint, $U \cap [a, b], V \cap [a, b]$ non-empty Without loss of generality $b \in U \cap [a, b]$. Let $t = \sup([a, b] \cap V)$ $([a, b] \cap V)^{C} = (-\infty, a) \cup (b, \infty) \cup U$: open: $[a, b] \cap V$ is closed $t \in [a, b] \cap V$ $t \neq b$ since $b \in U \cap [a, b]$ and the two sets are disjoint. t < b So because V is open $\exists \delta > 0$ such that $t + \delta \in V$ and $t + \delta < b$ $\implies t + \delta \in V \cap [a, b]$: contradicts definition of t as $\sup V \cap [a, b]$

Proposition: If X is connected and $f: X \to Y$ is continuous then f(X) is connected.

Proof: Suppose not, say $f(X) = A \cup B$, A, B open, disjoint and non-empty $f^{-1}(A), f^{-1}(B)$

- open as f is continuous
- non-empty as A, B are non-empty
- disjoint because A, B are disjoint

 $X = f^{-1}(A) \cup f^{-1}(B)$ as $f(X) = A \cup B$: contradicts assumption X is connected

Path Connected

X is path connected if $\forall x \neq y \in X$ there exists an interval [a, b] and continuous function $f: [a, b] \to X$ such that f(a) = x, f(b) = y.

Proposition: path connected implies connected

Proof: Say $X = A \cup B$, A, B open, disjoint and non-empty. Let $x \in A$, $y \in B$. Let $f: [a, b] \to X$ be a path from x to y.

 $\begin{array}{c} f([a,b]) \quad \text{is connected as } f \text{ is continuous and } [a,b] \text{ is connected} \\ \parallel \\ (f[a,b] \cap A) \cup (f[a,b] \cap B) \\ & \cap \\ x \qquad y \\ (\text{as } f(a) = x) \qquad (f(b) = y) \\ \hline \end{array}$

so these sets are non-empty and disjoint because A, B are disjoint contradiction

Example: of a connected set that is not path connected

$$X = \left\{ \left(x, \sin \frac{1}{x} \right) : x > 0 \right\} \cup \left\{ (0, 0) \right\}$$

figure: graph of X

graph of $\sin \frac{1}{r}$ for

x > 0

figure: path between x and y in set X

PMATH 351 Lecture 17: October 26, 2009

Example: $X = \underbrace{\left\{ (x, \sin \frac{1}{x}) : x > 0 \right\}}_{\text{Shown } X \text{ is support } 1 \text{ b} = \underbrace{\mathbb{E}}_{E} \text{ b} \text{ b$

Show X is connected, but not path connected. $X = \overline{E}$

Proof outline:

- 1. E path connected \implies E connected \implies ³⁷⁾ \overline{E} connected
- 2. X is not path connected

³⁶⁾(non-empty sets?)

 $^{^{37)}}$ exercise

1. E path connected

Let $(x_1, \sin \frac{1}{x_1}), (x_2, \sin \frac{1}{x_2}) \in E \ (x_1, x_2 > 0)$

Define
$$f: [0,1] \to E$$

 $t \mapsto \left(\underbrace{tx_1 + (1-t)x_2}_{>0}, \sin \frac{1}{tx_1 + (1-t)x_2}\right) \in E$

f continuous on [0, 1] $f(1) = (x_1, \sin \frac{1}{x_1}), f(0) = (x_2, \sin \frac{1}{x_2}) \implies E$ is path connected

2. X not path connected

Prove no "path" joining (0,0) to $(\frac{1}{\pi},0)$

Suppose $f: [a, b] \to X$ is a path with $f(a) = (0, 0), f(b) = (\frac{1}{\pi}, 0)$ Claim:

$$\left(\frac{1}{\frac{5\pi}{2}},1\right), \left(\frac{1}{\frac{9\pi}{2}},1\right), \dots, \left(\frac{1}{\frac{\pi}{2}+2\pi k},1\right) \in f[a,b]$$

 $k \in \mathbb{N}$

Note: f[a, b] is connected as f is continuous and [a, b] is connected.

Suppose without loss of generality $\left(\frac{1}{\frac{5\pi}{2}}, 1\right) \notin f[a, b]$. Then

$$f[a,b] = \left(\overbrace{f[a,b] \cap \left\{ (x,y) : x > \frac{1}{\frac{5\pi}{2}} \right\}}^{\ni (0,0)} \right) \cup \left(\overbrace{f[a,b] \cap \left\{ (x,y) : x < \frac{1}{\frac{5\pi}{2}} \right\}}^{\ni (0,0)} \right)$$

because only $(x, y) \in X$ with $x = \frac{1}{\frac{5\pi}{2}}$ is the point $\left(\frac{1}{\frac{5\pi}{2}}, 1\right) \notin f[a, b]$

• this contradicts the fact f[a, b] is connected

Also f[a, b] is compact.

The sequence $\left\{ \begin{pmatrix} \frac{1}{\frac{\pi}{2} + 2\pi k}, 1 \end{pmatrix} \right\}_{k=1}^{\infty}$ is Cauchy and therefore converges as f[a, b] is complete. Hence $(0, 1) \in f[a, b] \subseteq X$. But $(0, 1) \notin X$ so contradiction.

Finite Dimensional Normed Vector Spaces over \mathbb{R} (or \mathbb{C})

Norm on a vector space:

- 1. $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0
- 2. $\|\alpha v\| = |\alpha| \|v\|$ for all α scalars, $v \in V$
- 3. $||v_1 + v_2|| \le ||v_1|| + ||v_2||$ for all $v_1, v_2 \in V$

Norms always give metrics by d(x, y) = ||x - y||

Example: Space of polynomials on [0, 1] of degree $\leq n$

- 1. $||p||_{\infty} = \max_{x \in [0,1]} |p(x)|$
- 2. $||p||_1 = \int_0^1 |p(x)| \, \mathrm{d}x$

Theorem: Suppose V is a finite dimensional normed vector space over \mathbb{R} with basis $\{v_1, \ldots, v_n\}$. Then there exists constants A, B > 0 such that for all $(a_1, \ldots, a_n) \in \mathbb{R}^n$.

$$A\|(a_1,\ldots,a_n)\|_{\mathbb{R}^n} \le \left\|\sum_{i=1}^n a_i v_i\right\|_V \le B\|(a_1,\ldots,a_n)\|_{\mathbb{R}^n}$$

Given any $v \in V$ there exists exactly one (a_1, \ldots, a_n) such that $v = \sum_{i=1}^{n} a_i v_i$. Theorem says $||a_1, \ldots, a_n||_{\mathbb{R}^n} \sim ||v||_V$

Proof:

$$\begin{split} \left\|\sum_{i=1}^{n} a_{i} v_{i}\right\|_{V} &\leq \sum_{i=1}^{n} \|a_{i} v_{i}\|_{V} \\ &= \sum_{i=1}^{n} |a_{i}| \|v_{i}\|_{V} \\ &\leq {}^{38)} \left(\sum_{i=1}^{n} |a_{i}|^{2}\right)^{1/2} \left(\sum_{i=1}^{n} \|v_{i}\|^{2}\right)^{1/2} \\ &= \|(a_{1}, \dots, a_{n})\|_{\mathbb{R}^{n}} B \quad \text{where } B = \left(\sum_{i=1}^{n} \|v_{i}\|^{2}\right)^{1/2} \end{split}$$

Define $F \colon \mathbb{R}^n \to \mathbb{R}$ by

$$F(a_1,\ldots,a_n) = \left\|\sum_{i=1}^n a_i v_i\right\|$$

Check ${\cal F}$ is continuous:

$$F(\boldsymbol{x}) - F(\boldsymbol{y}) = \left\| \sum_{i=1}^{n} x_{i} v_{i} \right\| - \left\| \sum_{i=1}^{n} y_{i} v_{i} \right\|$$
$$\leq \left\| \sum x_{i} v_{i} - \sum y_{i} v_{i} \right\| + \left\| \sum y_{i} v_{i} \right\| - \left\| \sum y_{i} v_{i} \right\|$$
$$= \left\| \sum (x_{i} - y_{i}) v_{i} \right\|$$

Similarly $F(y) - F(x) \le \left\|\sum (x_i - y_i)v_i\right\|$

$$\implies |F(x) - F(y)| \leq \left\| \sum (x_i - y_i) v_i \right\|$$

$$\leq \sum |x_i - y_i| \|v_i\|$$

$$\leq \left(\sum |x_i - y_i|^2 \right)^{1/2} \underbrace{\left(\sum \|v_i\|^2 \right)^{1/2}}_{B}$$

$$= B \| \boldsymbol{x} - \boldsymbol{y} \|_{\mathbb{R}^n}$$

$$= B d(x, y)$$

 $\implies F$ is continuous

Restrict F to $S = \{ x \in \mathbb{R}^n : ||x|| = 1 \}$

$$F(x) = 0 \iff x = 0$$

In particular, if $x \in S$ then F(x) > 0. S is compact. By Extreme Value Theorem there exists $\delta > 0$ such that $F(x) \ge \delta$ for all $x \in S$. Take any $a = (a_1, \ldots, a_n) \in \mathbb{R}^n \setminus \{0\}$ $\frac{a}{\|a\|_{\mathbb{R}^n}} \in S$. $F\left(\frac{a}{\|a\|}\right) \ge \delta$. $\|\sum a \|x\|_{\infty} = \|\|a\|_{\infty} \sum_{i=1}^{n} a_i \|$

$$\begin{split} \left| \sum a_i v_i \right|_V &= \left\| \|a\|_{\mathbb{R}^n} \sum \frac{a_i}{\|a_i\|_{\mathbb{R}^n}} v_i \right\|_V \\ &= \|a\|_{\mathbb{R}^n} \left\| \sum \frac{a_i}{\|a\|} v_i \right\|_V \\ &= \|a\|_{\mathbb{R}^n} F\left(\frac{a}{\|a\|}\right) \\ &\geq \|a\|_{\mathbb{R}^n} \delta \end{split}$$

 $^{38)} {\rm Cauchy-Schwartz}$

Take $A = \delta$.

PMATH 351 Lecture 18: October 28, 2009

Theorem: If V an n dimensional normed vector space over \mathbb{R} with basis $\{v_1, \ldots, v_n\}$ then there exists A, B such that

$$A\|(a_1,\ldots,a_n)\|_{\mathbb{R}^n} \le \left\|\sum_{i=1}^n a_i v_i\right\|_V \le B\|(a_1,\ldots,a_n)\|_{\mathbb{R}^n}$$

If $T : \mathbb{R}^n \to V$ $T(a_1, \dots, a_n) = \sum_{i=1}^n a_i v_i^{(39)}$ then $A \|\boldsymbol{a}\| \le \|T(\boldsymbol{a})\|_V \le B \|\boldsymbol{a}\|_{\mathbb{R}^n}$

$$A||a - b||_{\mathbb{R}^n} \le ||T(a - b)||_V = ||T(a) - T(b)||_V \le B||a - b||_{\mathbb{R}^n}$$

$$Ad(a,b) \le d(T(a),T(b)) \le Bd(a,b)$$

See that $x_k \to x_0$ if and only if $T(x_k) \to T(x_0)$

So topologies are the same.

Boundedness if the same.

Both T and T^{-1} are continuous so V is homeomorphic to \mathbb{R}^n

Corollary: Subset of a finite dimensional vector space is compact if and only if it is closed and bounded. **Corollary:** Any finite dimensional subspace of a normed vector space is complete.

Proof: Let V be normed vector space and W finite dimensional subspace. Let $T \colon \mathbb{R}^n \to W$ be a homeomorphism as above.

Let $\{w_k\}$ be a Cauchy sequence in W.

Then $\{x_k = T^{-1}(w_k)\}$ is a Cauchy sequence in \mathbb{R}^n . So there exists x_0 such that $x_k \to x_0$. But then $T(x_k) \to T(x_0) \in W$. Hence W is complete.

Function Spaces

Convergence: $f_n, f: X \to Y$. X, Y metric spaces. Say $f_n \to f$ pointwise if for all $\epsilon > 0$ and for all $x \in X$ there exists N such that $d_Y(f_n(x), f(x)) < \epsilon$ for all $n \ge N$. i.e., $(f_n(x)) \to f(x)$ for each $x \in X$ (as sequences in Y)

Say $f_n \to f$ uniformly if for all $\epsilon > 0$ there exists N such that $d_Y(f_n(x), f(x)) < \epsilon$ for all $x \in X$ and for all $n \ge N$.

Example: $f_n \colon [0,1] \to \mathbb{R}$ $f_n(x) = x^n$

 $f_n \to f = \begin{cases} 0 & \text{if } x \neq 1 \\ 1 & \text{if } x = 1 \end{cases}$

graph of $f_n(x)$ for n increasing

• convergence is pointwise, but not uniform

Note: each f_n is continuous, but f is not

Theorem: If f_n are continuous, and $f_n \to f$ uniformly, then f is continuous. **Proof:** Fix $\epsilon > 0$ and $x \in X$. Need to find δ such that $d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \epsilon$ Pick N such that $d(f_n(y), f(y)) < \epsilon/3$ for all $n \ge N$ and for all $y \in X$. Get $\delta > 0$ such that $d(x, y) < \delta \implies d(f_N(x), f_N(y)) < \epsilon/3$. Check if this δ works. Suppose $d(x, y) < \delta$ and look at $d(f(x), f(y)) \le d(f(x), f_N(x)) + d(f_N(x), f_N(y)) + d(f_N(y), f(y)) < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$

Corollary: If g_k are continuous and $\sum g_k$ converges uniformly to g, then g is continuous. **Proof:** $S_N = \sum_{1}^{N} g_k$ is continuous and $S_N \to g$ uniformly by assumption.

³⁹⁾linear, bijection

Definition: A sequence $f_n: X \to Y$ is uniformly Cauchy if for all $\epsilon > 0$ there exists N such that $d(f_n(x), f_m(x)) < \epsilon$ for all $n, m \ge N$ and for all $x \in X$.

Theorem: Suppose X, Y are metric spaces and Y is complete. Then the sequence $f_n: X \to Y$ is uniformly Cauchy if and only if (f_n) is uniformly convergent.

Proof: (\Leftarrow) Say $f_n \to f$ uniformly and pick N such that $d(f_n(x), f(x)) < \epsilon/2$ for all $n \ge N$ and for all $x \in X$.

Then

$$d(f_n(x), f_m(x)) \le d(f_n(x), f(x)) + d(f(x), f_m(x))$$

$$< \epsilon/2 + \epsilon/2 \quad \text{if } n, m \ge N$$

 $(\Longrightarrow) \text{ Since } (f_n) \text{ is uniformly Cauchy, then } (f_n(x)) \text{ is Cauchy in } Y \text{ for each } x \in X.$ $Y \text{ is complete so there exists } a_x \in Y \text{ such that } f_n(x) \to a_x.$ $\text{Put } f(x) = a_x \text{ so } f \colon X \to Y.$ $\text{Show } f_n \to f \text{ uniformly.}$ $\text{For } \epsilon > 0, \text{ get } N \text{ such that } d(f_n(x), f_m(x)) < \epsilon/2 \text{ for all } x \in X, \forall n, m \ge N \text{ (by uniform Cauchy)}$ $\text{Let } n \ge N \text{ and look at } d(f_n(x), f(x)) \text{ (for arbitrary } x)$ $\text{Get } m > N \text{ such that } d(f_m(x), f(x)) < \epsilon/2^{40}$ So

$$d(f_n(x), f(x)) \le d(f_n(x), f_m(x)) + d(f_m(x), f(x))$$

$$< \epsilon/2 + \epsilon/2 = \epsilon \quad (\text{as } n, m \ge N)$$

PMATH 351 Lecture 19: October 30, 2009

Corollary: Weierstrass M-test

Let $f_n: X \to \mathbb{R}$. If there exists a sequence M_k such that $|f_k(x)| \leq M_k$ for all $x \in X$ and for all k and if $\sum_{1}^{\infty} M_k$ converges, then $\sum_{k=1}^{\infty} f_k$ converges uniformly.

Example:

$$f_k(x) = \frac{\sin kx}{k^2}$$
 $|f_k(x)| \le \frac{1}{k^2}$ $0 \le \sum \frac{1}{k^2} < \infty$

 $\implies \sum \frac{\sin kx}{k^2}$ is a continuous function.

Proof: Let $S_N(x) = \sum_{1}^{N} f_k(x)$. Show $\{S_N\}$ converges uniformly. It's enough to prove $\{S_N\}$ is uniformly Cauchy.

$$|S_N - S_M(x)| = \left|\sum_{N+1}^M f_k(x)\right| \le \sum_{k=N+1}^M |f_k(x)| \le \sum_{k=N+1}^M M_k \to 0 \text{ as } M > N \to \infty$$

 $\implies \{S_N\}$ is uniformly Cauchy.

Dini's Theorem: Suppose K is compact and $f_n: K \to \mathbb{R}$ converges pointwise to f. If f_n, f are continuous and $f_{n+1}(x) \leq f_n(x)$ for all n, for all $x \in K$, then $f_n \to f$ uniformly. **Proof:** Let $g_n = f_n - f$

 g_n is continuous $g_n \to 0$ pointwise $g_n(x) \ge g_{n+1}(x)$ $g_n \ge 0$ since $f(x) \le f_n(x)$ as $f_n(x)$ decreases

Prove $g_n \to 0$ uniformly to conclude $f_n \to f$ uniformly. Let $\epsilon > 0$. Find N such that $|g_n(x)| < \epsilon$ for all $n \ge N$ and for all $x \in K$, $\iff 0 \le g_n(x) \le \epsilon$ for all $n \ge N$ and for all $x \in K$. Since $g_n \to 0$ pointwise, for all $t \in K$ there exists N_t such that $0 \le g_n(t) < \frac{\epsilon}{2}$ for all $n \ge N_t$. In particular, $g_{N_t}(t) < \frac{\epsilon}{2}$.

 $^{^{40)}}$ depends on x temporarily looking at

Because g_{N_t} is continuous at t so there exists $\delta_t > 0$ such that if $d(t, x) < \delta_t$ then $|g_{N_t}(t) - g_{N_t}(x)| < \frac{\epsilon}{2}$. The balls $B(t, \delta_t), t \in K$ are an open cover of the compact set K. Take a finite subcover say $B(t_1, \delta_{t_1}), \ldots, B(t_L, \delta_{t_L}).$

If $x \in K$ there exists *i* such that $x \in B(t_i, \delta_{t_i})$

$$\implies d(x,t_i) < \delta_{t_i} \implies |g_{N_{t_i}}(t_i) - g_{N_{t_i}}(x)| < \frac{\epsilon}{2}$$
$$\implies |g_{N_{t_i}}(x)| \le |g_{N_{t_i}}(x) - g_{N_{t_i}}(t_i)| + |g_{N_{t_i}}(t_i)|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Take $N = \max(N_{t_1}, \ldots, N_{t_L}).$

Let $n \geq N$ and $x \in K$. Get t_i as before.

$$0 \le g_n(x) \le g_N(x) \le g_{N_{t_i}}(x) < \epsilon$$

This is uniform convergence. **Examples:**

> 1. See need K compact $f_n(x) = \frac{1}{nx+1}$ on K = (0,1] $f_n(x) \to 0^{42}$ pointwise $f_{n+1}(x) \le f_n(x)$ f_n, f continuous

 $f_n(1/n) = 1/2$ for all n so there does not exist N such that for all $n \ge N$ and for all $x \in (0, 1]$, $|f_n(x)| < 1/2.$

- 2. $f_n(x) = x^n$ on [0, 1]Everything satisfied except continuity of f.
- 3. $f_n \to 0$ pointwise $f_n(1/n) = n$ so convergence is not uniform f_n are not decreasing pointwise.

Function Spaces C(X) = continuous functions $f: X \to \mathbb{R}$ vector spaces $C_b(X) =$ continuous, bounded functions $f: X \to \mathbb{R}$ subspaces When X is compact $C(X) = C_b(X)$ $C(\mathbb{R}) \setminus C_b(\mathbb{R}): f(x) = x$

Define $||f|| = \sup_{x \in X} |f(x)|$ when $f \in C_b(X)$ "sup norm" or "uniform" norm (exercise) $|f(x)| \leq ||f||$ for all $x \in X$ Defines a metric on $C_b(x)$ by d(f,g) = ||f - g||

Ball B(f,r):

Take $f_n, f \in C_n(X)$ figure: Recall $f_n \to f$ uniformly means for all $\epsilon > 0$ there exists N such that $|f_n(x) - f(x)| \le \epsilon$ for all $n \ge N$ $d(f,g) = \|f - g\|$ and for all $x \in X$.

$$\iff \sup_{x \in X} |f_n(x) - f(x)| \le \epsilon \quad \forall n \ge N$$
$$\iff \|f_n - f\| \le \epsilon \quad \forall n \ge N$$
$$\iff d(f_n, f) \le \epsilon \quad \forall n \ge N$$
$$\iff f_n \to f \text{ in metric space } C_b(x)$$

⁴¹⁾ by g_n decreasing $^{42)} = f$

graph of $f_n(x)$: peak of height n at x = 1/n

figure: g within a ϵ -tube of f

 $\{f_n\}$ in $C_b(x)$ is Cauchy if and only if $\{f_n\}$ is uniformly Cauchy

Theorem: $C_b(X)$ is a complete metric space **Proof:** Suppose $\{f_n\}$ in $C_b(X)$ is a Cauchy sequence. Then $\{f_n\}$ is uniformly Cauchy and so it converges uniformly to some $f \in C(X)$. Get N such that $|f(x) - F_N(x)| \leq 1$ for all $x \in X$

$$\implies |f(x)| \le 1 + |f_N(x)| \le 1 + ||f_N||$$
$$\implies ||f|| = \sup_{x \in X} |f(x)| \le 1 + ||f_N|| < \infty$$
$$\implies f \in C_b(X)$$

Hence $f_n \to f$ in uniform norm. Therefore $C_b(X)$ is complete.

 $C_b(X)$ is a complete normed vector space, i.e., a Banach space.

PMATH 351 Lecture 20: November 2, 2009

 $C(X), C_b(X)$ $\|f\| = \sup_{x \in X} |f(x)| \text{ for any } f \in C_b(X)$ $d(f,g) = \|f - g\|$ $(C_b(X), d) \text{ is a complete metric space}$

1. Example of an open set in C[0, 1]

$$B = \{ f \in C[0,1] : f(x) > 0 \quad \forall x \in [0,1] \}$$

Take $\epsilon = \inf_{x \in [0,1]} f(x), > 0$ by E.V.T. If $g \in B(f, \epsilon) \iff |g(x) - f(x)| < \epsilon \quad \forall x \in [0,1]$

$$\implies g(x) > f(x) - \epsilon \qquad \forall x \in [0, 1]$$
$$\geq \inf f - \epsilon \implies g \in B$$

2.

$$C = \{ f \in C_b(\mathbb{R}) : f(x) > 0 \quad \forall x \}$$

 $D = \{ f \in C_b(\mathbb{R}) : f(x) \le 0 \quad \forall x \}$

Claim: If $f \in C$ and $\inf_{x \in \mathbb{R}} f = 0$ then f is not an interior point of C. (e.g., $f(x) = \frac{1}{|x|+1}$) Take any $\epsilon > 0$. Take $g = f - \frac{\epsilon}{2} \in B(f, \epsilon)$ Choose any x such that $f(x) < \frac{\epsilon}{2}$ and then g(x) < 0 so $g \notin C$.

Claim: D is closed. Let $f_n \in D$ and suppose $f_n \to f$, i.e., $f_n \to f$ uniformly. But then $f_n \to f$ pointwise. So if $f_n \leq 0$ at every x then $f(x) \leq 0 \quad \forall x$ so $f \in D$.

Compactness in $C_b(X)$

Compact \implies closed and bounded $E \subset C_b(X)$ is bounded means $\exists f \in C_b(X)$ and M constant such that $E \subseteq B(f, M)$ Then $E \subseteq B(0, M + ||f||)$ because if $g \in B(f, M)$ then $||g|| \leq ||g - f|| + ||f|| < M + ||f|| \implies B(f, M) \subseteq B(0, ||f|| + M)$

• call this uniformly bounded

Restate: E is bounded iff $\exists M_0$ such that $||f|| \leq M_0 \quad \forall f \in E$ **Example:** In C[0, 1] closed and bounded \Rightarrow compact.

$$E = \left\{ f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2} : n = 1, 2, 3, \dots \right\}$$

figure: ϵ -tube around f

If $f \in E$, then $0 \leq f(x) \leq 1 \ \forall x$ so $E \subseteq B(0, 1 + \epsilon)$. So E is bounded. Closed? Say g is an accumulation point of E. Get $f_{n_k} \to g$ with $f_{n_k} \in E$, $n_1 < n_2 < \cdots$ $f_{n_k} = \frac{x^2}{x^2 + (1 - n_k x)^2} \to 0$ pointwise. Look at $f_{n_k}(\frac{1}{n_k}) = 1$ so $\sup_x |f_{n_k} - 0|^{43} = 1 \ \forall n_k$ Thus $f_{n_k} \not\rightarrow 0$ uniformly. Hence there is no accumulation point g. In fact, no subsequence of (f_n) converges uniformly. Hence E is closed as it has no accumulation points and E is not compact because fails B–W characteri-

Equicontinuity

zation of compactness.

Definition: Let $E \subseteq C(X)$. We say E is *equicontinuous* if $\forall \epsilon > 0 \exists \delta > 0$ such that $\forall f \in E$ and $\forall x, y \in X$ such that $d(x, y) < \delta$, we have $|f(x) - f(y)| < \epsilon$.

If $E = \{f\}$ then equicontinuity is uniform continuity. If $E = \{f_1, \ldots, f_n\}$ then E is equicontinuous if and only if each f_i is uniformly continuous (just take minimum δ that works for f_1, \ldots, f_n)

E equiconinuous \implies each $f \in E$ is uniformly continuous. Not equicontinuous means $\exists \epsilon > 0$ such that $\forall \delta > 0 \ \exists f \in E$ and $x, y \in X$ such that $d(x, y) < \delta$ but $|f(x) - f(y)| \ge \epsilon$.

Example:

- 1. $E = \{ x^n : n = 1, 2, 3, ... \} \subseteq C[0, 1]$: not equicontinuous Take $\epsilon = \frac{1}{2}$ and take any δ . Take $x = 1, y = 1 - \frac{\delta}{2}$. Pick n so $(1 - \frac{\delta}{2})^n < \frac{1}{2}$. Then $|f_n(y^{44}) - f_n(x^{45})| > 1 - \frac{1}{2} = \epsilon$.
- 2. $E = \left\{ f_n(x) = \frac{x^2}{x^2 + (1 nx)^2} : n = 1, 2, \dots \right\}$ $|f_n(\frac{1}{n}) - f_n(0)| = 1 \ \forall n$ So *E* is not equicontinuous.

graph of x^n for n large

- 3. C[0,1] is not equicontinuous, since it contains subsets that are not equicontinuous.
- 4. Fix M. $E = \{ f \in C[0,1] : |f(x) f(y)| \le M|x-y| \quad \forall x, y \in [0,1] \}$ is equicontinuous. Take $\delta = \frac{\epsilon}{M}$.
- 5. $E_0 = \{ f \in C[0,1] : |f'(x)| \le M \quad \forall x \in [0,1] \} \subseteq E \text{ (above, in 4.), so it is equicontinuous.}$ PMATH 351 Lecture 21: November 4, 2009

Equicontinuity

Definition: Say $E \subseteq C(X)$ is equicontinuous if $\forall \epsilon > 0 \ \exists \delta > 0$ such that if $d(x,y) < \delta$ then $|f(x) - f(y)| < \epsilon \ \forall f \in E$.

Example: $E = \{ f \in C(\mathbb{R}) : f' \text{ exists and } |f'(x)| \leq M \forall x \in X \text{ and } \forall f \in E \}.$ Then E is equicontinuous. **Proof:** By Mean Value Theorem $|f(x) - f(y)|^{46} \leq M|x - y| \forall x, y$ Given ϵ we take $\delta = \frac{\epsilon}{M}$.

Proposition: If $E \subseteq C(X)$ is equicontinuous then so is \overline{E} . **Proof:** Let $f \in \overline{E} \setminus E$ and let $\epsilon > 0$. Get $f_n \in E$ such that $f_n \to f$, i.e., $f_n \to f$ uniformly.

 $^{(43)} = \|f_{n_k}\| = 1$

 $^{44)} = 1 - \frac{\delta}{2}$

 $^{45)}=1$

 $^{46)} = |f'(z)||x - y|$ for some z

So $\exists N$ such that $||f_N - f||^{47} < \epsilon$. Get δ that works for ϵ and E. Let $x, y \in X$ with $d(x, y) < \delta$, then

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < \epsilon + \epsilon + \epsilon = 3\epsilon.$$

This proves \overline{E} is equicontinuous.

Proposition: Suppose X is compact and $f_n \in C(X)$. If $f_n \to f$ uniformly, then $E = \{f_n : n = 1, 2, ...\}$ is equicontinuous. f is continuous being uniform limit of continuous functions. **Proof:** f is uniformly continuous being continuous on a compact set of X. Let $\epsilon > 0$. Get δ for f. Get N such that $||f_n - f|| < \epsilon \ \forall n \ge N$. For any $n \ge N$ and x, y such that $d(x, y) < \delta$, $||f_n(x) - f_n(y)| \le |f_n(x) - f(x)| + |f(x) - f(y)| + |f(y) - f_n(y)|$ $< 3\epsilon$

For each f_i , i = 1, ..., N-1 get $\delta_i > 0$ such that $d(x, y) < \delta_i \implies |f_i(x) - f_i(y)| < 3\epsilon$ (can do as each f_i is uniformly continuous)

Take $\delta_0 = \min(\delta, \delta_1, \dots, \delta_{N-1})$. If $d(x, y) < \delta_0$ then $|f_n(x) - f_n(y)| < 3\epsilon \ \forall n$. So E is equicontinuous.

Example: $E = \left\{ f_n(x) = \frac{\sin nx}{\sqrt{n}} : x \in [0, 2\pi] \right\}$ $|f_n(x)| \leq \frac{1}{\sqrt{n}} \to 0 \text{ so } f_n \to 0 \text{ uniformly.} \Longrightarrow E \text{ is equicontinuous.}$ But $f'_n(x) = \frac{n \cos nx}{\sqrt{n}} = \sqrt{n} \cos nx \text{ so } f'_n(0) = \sqrt{n} \to \infty.$

Uniformly Bounded

 $E \subseteq C(X)$ is uniformly bounded if $E \subseteq B(0, M)$ for some M, equivalently $\exists M$ such that $||f|| \leq M$ $\forall f \in E$.

Definition: Say $E \subseteq C(X)$ is pointwise bounded if $\forall x \in X \exists M_x$ such that $|f(x)| \leq M_x \forall f \in E$.

Uniformly bounded \implies pointwise bounded, but not conversely. Fix $x \neq 0$. Have $f_n(x) \neq 0 \ \forall n \geq N$ where $\frac{1}{N} < x$.

$$\sup|f_n(x)| \le \max(|f_1(x)|, \dots, |f_N(x)|)$$

graph: $f_n(x)$ has peak of n and is zero for $x > \frac{1}{n}$

So $\{f_n\}$ is pointwise bounded, but not uniformly bounded.

Proposition: If X is compact and E is equicontinuous and pointwise bounded, then E is uniformly bounded.

Proof: Take $\epsilon = 1$. Get δ by equicontinuity so $d(x, y) < \delta \implies |f(x) - f(y)| < 1 \quad \forall f \in E$ Look at balls $B(x, \delta)$ for $x \in X$. This is an open cover of compact X so take a finite subcover, say $B(x_1, \delta), \ldots, B(x_n, \delta)$.

Let $M_i = \sup\{ |f(x_i)| : f \in E \}$ (< ∞ by pointwise boundedness of E) Take $M = (\max_{i=1,...,n} M_i) + 1$.

Let $x \in X$. There is a ball $B(x_i, \delta)$ containing x.

$$\implies d(x, x_i) < \delta \implies |f(x)| \le |f(x) - f(x_i)| + |f(x_i)|$$
$$\le 1 + M_i$$
$$\le M$$

Theorem: Let X be compact. Let $\{f_n\}_{n=1}^{\infty} \subseteq C(X)$ be a pointwise bounded, equicontinuous family. Then

 $^{^{47)} = \}sup_{x \in X} |f_N(x) - f(x)|$

- (1) $\{f_n\}$ is uniformly bounded. (already done)
- (2) There is a subsequence of the sequence (f_n) which converges uniformly.

Corollary: (Arzela–Ascoli Theorem)

Let X be compact. $E \subseteq C(X)$ is compact if and only if E is pointwise (uniformly) bounded, closed and equicontinuous.

Proof: (\Longrightarrow) *E* compact \Longrightarrow *E* bounded (meaning uniformly bounded) and closed

Suppose E is not equicontinuous. This means $\exists \epsilon > 0$ such that $\forall \delta = \frac{1}{n}$ there are $x_n, y_n \in X$ with $d(x_n, y_n) < \frac{1}{n}$ and $\exists f_n \in E$ with $|f_n(x_n) - f_n(y_n)| \ge \epsilon^{48}$. Since E is compact the Bolzano–Weierstrass characterization of compactness says there is a subsequence

 $f_{n_k} \to^{49} f \in E.$

Hence the set $\{f_{n_k}\}$ is equicontinuous and hence $\exists \delta_0$ such that $d(x, y) < \delta_0 \implies |f_{n_k}(x) - f_{n_k}(y)| <^{50} \epsilon$ $\forall n_k.$

Take n_k such that $\delta_0 > \frac{1}{n_k}$ so $d(x_{n_k}, y_{n_k}) < \frac{1}{n_k} < \delta_0$ so $|f_{n_k}(x_{n_k}) - f_{n_k}(y_{n_k})| < \epsilon$ by (1) and this contradicts (2).

PMATH 351 Lecture 22: November 6, 2009

Theorem: X compact. $\{f_n\} \subseteq C(X)$ be a pointwise bounded and equicontinuous set. Then

- (a) $\{f_n\}$ uniformly bounded
- (b) there exists a subsequence of $\{f_n\}$ which converges uniformly

Corollary: (Arzela–Ascoli Theorem): For X compact, $E \subseteq C(X)$ is compact if and only if E is pointwise bounded, closed and equicontinuous.

Proof: (\Leftarrow) Let $\{f_n\}$ be a sequence in E.

Since E is pointwise bounded and equicontinuous, the same is true for $\{f_n\}$. By theorem there exists a uniformly convergent subsequence and the limit must belong to E since E is closed. By Bolzano–Weierstrass characterization of compactness this implies E is compact.

Lemma 1: Let K be a countable set. Let $f_n: K \to \mathbb{R}, n = 1, 2, ...$ be a pointwise bounded family. There there exists subsequence (g_n) of (f_n) which converges pointwise.

Proof: Let $K = \{x_1, x_2, x_3, \ldots\}.$

Start by looking at $\{f_n(x_1)\}_{n=1}^{\infty}$

Since $\{f_n\}$ are pointwise bounded, the sequence $\{f_n(x_1)\}$ is a bounded sequence of real numbers and so by Bolzano–Weierstrass there exists a convergent subsequence, say $f_{1,1}(x_1), f_{1,2}(x_1), \ldots$

Thus $\{f_{1,n}\}_{n=1}^{\infty}$ is a subsequence of $\{f_n\}$ converging at x_1 .

Look at $\{f_{1,n}(x_2)\}_{n=1}^{\infty}$: bounded sequence of real numbers therefore convergent subsequence, say $f_{2,1}(x_2), f_{2,2}(x_2), \ldots$

In general, given $(f_{k,n})$ a subsequence of (f_n) which converges at x_1, x_2, \ldots, x_k , consider $(f_{k,n}(x_{k+1}))$: Get a convergent subsequence $(f_{k+1,n}(x_{k+1}))$. So $(f_{k+1,n})$ converges at $x_1, x_2, \ldots, x_{k+1}$. Put $g_n = f_{n,n}$. (g_n) is a subsequence of (f_n) .

⁽⁴⁸⁾⁽²⁾

⁴⁹⁾uniform convergence

⁵⁰⁾⁽¹⁾

Furthermore $(g_n)_{n=k}^{\infty}$ is a subsequence of $(f_{k,n})$ and hence converges at x_k . So (g_n) converges pointwise on K.

Lemma 2: Any compact metric space X is separable (i.e., countable dense set) **Proof:** For each n, the balls $B(x, \frac{1}{n}), x \in X$ cover X. Get a finite subcover $B(x_{n,1}, \frac{1}{n}), \ldots, B(x_{n,k_n}, \frac{1}{n})$. Put $K_n = \{x_{n,1}, \ldots, x_{n,k_n}\}$ and $K = \bigcup_{n=1}^{\infty} K_n$: K is countable. Given $y \in X$ and $\epsilon > 0$. Take n such that $\frac{1}{n} < \epsilon$. Have $y \in B(x_{n,j}, \frac{1}{n})$ for some j. Therefore $x_{n,j} \in B(y, \frac{1}{n}) \subset B(y, \epsilon)$, so $y \in \overline{K}$, therefore K is dense. **Proof of Theorem (b):** Let K be a countable dense set on X. Think about $f_n \colon K \to \mathbb{R}$: Pointwise bounded. By Lemma 1 there exists a pointwise convergent (on K) subsequence (g_n) .

We'll prove (g_n) converges uniformly on all of X.

Suffices to prove (g_n) is uniformly Cauchy.

Take $\epsilon > 0$. Find N such that $\forall n, m \ge N$,

$$|g_n(x) - g_m(x)| < \epsilon \qquad \forall x \in X.$$

By equicontinuity $\exists \delta > 0$ such that

$$d(x,y) < \delta \implies |g_n(x) - g_n(y)| < \epsilon \qquad \forall n$$

Notice balls $B(x, \delta)$, $x \in K$ cover X because K is dense. By compactness of $X, \exists x_1, \ldots, x_M$ such that $\bigcup_{i=1}^{M} B(x_i, \delta)$ covers X.

If $y \in X$ then $y \in B(x_i, \delta)$ for some x_i .

By choice of δ , $|g_n(y) - g_n(x_i)| < \epsilon \ \forall n$.

 $\{g_n(x_i)\}\$ converges for each *i* and so is Cauchy.

Hence $\exists N_i$ such that if $n, m \geq N$, then $|g_n(x_i) - g_m(x_i)| < \epsilon$ (2). Let $N = \max(N_1, \ldots, N_M)$. Let $y \in X$ and $n, m \geq N$. Get *i* such that $y \in B(x_i, \delta)$ so

$$|g_k(y) - g_k(x_i)| < \epsilon \quad \forall k.$$

$$|g_n(y) - g_m(y)| \le |g_n(y) - g_n(x_i)| + |g_n(x_i) - g_m(x_i)| + |g_m(x_i) - g_m(y)|$$

$$< \epsilon^{51} + \epsilon^{52} + \epsilon^{53} = 3\epsilon$$
(1)

Therefore (g_n) is uniformly Cauchy.

PMATH 351 Lecture 23: November 9, 2009

Taylor Series

 $\exists f \in C^{\infty}$ where Taylor polynomials do not converge to f.

$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

 $f^{(k)}(0) = 0 \ \forall k$. All Taylor polynomials (centred at 0) are identically 0. So they don't converge to f except at 0.

Inner Product Spaces

C[0,1]: Define inner product $\langle f,g\rangle = \int_0^1 fg$.

$$||f||_{2} = \sqrt{\langle f, f \rangle} = \left(\int_{0}^{1} f^{2}\right)^{1/2} \\ d_{2}(f, g) = \left(\int_{0}^{1} (f - g)\right)^{1/2} \begin{cases} L_{2} \\ L_{3} \end{cases}$$

 $^{51)}(1)$

 $^{52)}(2)$

 $^{53)}(1)$

- metric on C[0,1]
- not complete

Apply Gram Schmidt process to $\{1, x, x^2, \ldots\}$, to get the Legendre polynomials $\{p_n\}$. Given $f \in C[0,1]$, let $f_N = \sum_{n=1}^N \langle f, p_n \rangle p_n$. Then $f_N \to f$ in $\|\cdot\|_2$. (PMATH 354!) **Example:** $f(x) = \sqrt{x}$ on [0, 1]. Put $p_1(t) = 0$, $p_{n+1}(t) = p_n(t) + \frac{1}{2}(t - p_n^2(t))$ **Claim:** $p_n \to f$ uniformly.

$$p_2(t) = 0 + \frac{1}{2}(t-0) = \frac{1}{2}t$$
$$p_3(t) = \frac{1}{2}t + \frac{1}{2}(t-\frac{1}{4}t^2)$$

Show $p_n \to f$ pointwise

$$p_n(t) \le p_{n+1}(t) \qquad \forall n, t$$

Show p_n , f are continuous. Dini's theorem implies $p_n \to f$ uniformly. Proceed by induction. Assume $0 \le p_1(t) \le p_2(t) \le \cdots \le p_n(t) \le \sqrt{t}$. n = 1: Free.

$$\begin{split} \sqrt{t} - p_{n+1}(t) &= \sqrt{t} - (p_n(t) + \frac{1}{2}(t - p_n^2(t))) \\ &= \sqrt{t} - p_n(t) - \frac{1}{2}(\sqrt{t} - p_n(t))(\sqrt{t} + p_n(t)) \\ &= (\sqrt{t} - p_n(t))(1 - \frac{1}{2}(\sqrt{t} + p_n(t))) \end{split}$$

But $p_n(t) \leq \sqrt{t}$, so $\geq (\sqrt{t} - p_n(t))(1 - \sqrt{t}) \geq 0$. $\implies p_{n+1}(t) \le \sqrt{t}, \ p_{n+1}(t) = p_n(t) + \frac{1}{2}(t - p_n^2(t))^{54}$ so $p_{n+1}(t) \ge p_n(t)$.

So $\{p_n(t)\}\$ is increasing and bounded above for fixed $t \in [0, 1]$, hence it converges by Bolzano–Weierstrass, say $\{p_n(t)\} \to f(t)$ (pointwise convergence)

$$p_{n+1}(t) = p_n(t) + \frac{1}{2}(t - p_n^2(t))$$

$$f(t) = f(t) + \frac{1}{2}(t - f^2(t)) \implies t = f^2(t), \text{ so } \sqrt{t} = f(t)$$

By Dini's theorem convergence is uniform.

Weierstrass Theorem: Let $f: [0,1] \to \mathbb{R}$ be continuous and let $\epsilon > 0$. Then there exists a polynomial p such that $||f - p|| < \epsilon$.

In fact, the Bernstein polynomials

$$p_n(f) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

converge uniformly to f.

Intuitive Identity: Toss a coin n times; probability of heads x, probability of tails 1 - x. Probability of k heads in n tosses: . .

$$\binom{n}{k} x^k (1-x)^{n-k}$$

Suppose pay $f(\frac{k}{n})$ dollars for k heads in n tosses. Expected pay off over n tosses: $\sum_{k=0}^{n} {n \choose k} f(\frac{k}{n}) x^{k} (1-1) x^{$ $x)^{n-k} = p_n(x).$

In long run we expect xn heads in n tosses, so expect pay off of $f(\frac{xn}{n}) = f(x)$. So intuitively $p_n(x) \to f(x).$

Proof of Theorem: Technical Calculations:

(1)
$$(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}$$
. Differentiate with respect to x , leave y fixed.
(2) $n(x+y)^{n-1} = \sum_{k=0}^n {n \choose k} kx^{k-1} y^{n-k}$
(3) $n(n-1)(x+y)^{n-2} = \sum_{k=0}^n {n \choose k} k(k-1)x^{k-2}y^{n-k}$
(2') $x \cdot (2)$: $nx(x+y)^{n-1} = \sum_{k=0}^n {n \choose k} kx^k y^{n-k}$
(3') $x^2 \cdot (3)$: $n(n-1)x^2(x+y)^{n-2} = \sum_{k=0}^n {n \choose k} k(k-1)x^k y^{n-k}$
Put $r_k(x) = {n \choose k} x^k (1-x)^{n-k}$
 $p_n(x) = \sum_{k=0}^n f(\frac{k}{n})r_k(x)$
Take $y = 1-x$
(1) $1 = \sum_{k=0}^n r_k(x)$
(2') $nx = \sum_{k=0}^n kr_k(x)$
(3') $n(n-1)x^2 = \sum_{k=0}^n k(k-1)r_k(x) = \sum k^2 r_k(x) - \sum kr_k(x) = \sum_{k=0}^n k^2 r_k(x) - nx$
 $\sum (k-nx)^2 r_k(x) = \sum k^2 r_k(x) - 2\sum nkxr_k(x) + \sum (nx)^2 r_k(x) = n(n-1)^2 x^2 + nx - 2nxnx + (nx)^2$

 $f(x, y) = (x + y)^{n}$ $\frac{\partial f}{\partial x}(x, y) = n(x + y)^{n-1}$

PMATH 351 Lecture 24: November 11, 2009

Weierstrass Theorem

Polynomials are dense in C[0, 1].

i.e.,
$$\forall f \in C[0,1]$$
 and $\forall \epsilon > 0$ there exists polynomial p
such that $||f - p|| = \sup_{x \in [0,1]} |f(x) - p(x)| < \epsilon$

Bernstein Proof

Show $p_n(x) = \sum_{k=0}^n {n \choose k} f(\frac{k}{n}) x^k (1-x)^{n-k}$ converges uniformly to f.

- (1) $\sum_{k=0}^{n} r_k(x) = 1$ where $r_k(x) = \binom{n}{k} x^k (1-x)^{n-k}$
- (2) $\sum_{k=0}^{n} (k nx)^2 r_k(x) = nx(1 x)$

Let $f \in C[0, 1]$, say $|f(x)| \leq M \ \forall x \in [0, 1]$ Also f is uniformly continuous, so given $\epsilon > 0$ get $\delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$ Take N such that $\frac{2M}{\delta^2 N} < \epsilon$. Let $n \geq N$. Fix $x \in [0, 1]$.

$$|p_n(x) - f(x)| = \left| \sum_{k=0}^n f(\frac{k}{n}) r_k(x) - f(x) \sum_{k=0}^n r_k(x) \right|$$
$$= \left| \sum_{k=0}^n (f(\frac{k}{n}) - f(x)) r_k(x) \right|$$

 $^{54)} \ge 0$ by induction assumption

Divide ks into 2 classes

$$A = \left\{ k : \left| \frac{k}{n} - x \right| < \delta \iff |k - nx| < \delta n \right\}$$

$$B = \left\{ k : \left| \frac{k}{n} - x \right| \ge \delta \iff |k - nx| \ge \delta n \right\}$$

$$\leq \sum_{k=0}^{n} |f(\frac{k}{n}) - f(x)|r_{k}(x)$$

$$\leq \sum_{k\in A} |f(\frac{k}{n}) - f(x)|r_{k}(x) + \sum_{k\in B} |f(\frac{k}{n}) - f(x)|r_{k}(x)$$

$$\leq \sum_{k\in A} \epsilon r_{k}(x) + \sum_{|k - nx| \ge \delta n} 2Mr_{k}(x) \frac{(k - nx)^{2}}{(k - nx)^{2}}$$

$$\leq \sum_{k\in A} \epsilon r_{k}(x)^{55} + \sum_{k=0}^{n} \frac{2Mr_{k}(x)(k - nx)^{2}}{(\delta n)^{2}}$$

$$\leq \epsilon + \frac{2M}{(\delta n)^{2}} nx(1 - x) \quad \text{by (2)}$$

$$= \epsilon + \frac{2M}{\delta^{2}} \cdot \frac{1}{n} \le \epsilon + \frac{2M}{\delta^{2}N} < 2\epsilon$$

This shows $||p_n - f|| \le 2\epsilon \ \forall n \ge N$ i.e., $p_n \to f$ uniformly.

Approximation by trigonometric polynomials

$$\sum_{n=0}^{N} a_n \sin nx + b_n \cos nx = \sum_{n=-N}^{N} c_n e^{inx}$$

$$a_n, b_n \in \mathbb{C}, c_n \in \mathbb{C}$$

$$e^{ixn} = \cos xn + i \sin xn$$

$$\frac{e^{ixn} + e^{-ixn}}{2} = \cos xn$$

$$\frac{e^{ixn} - e^{-ixn}}{2i} = \sin xn$$

• uniformly approximate continuous, 2π periodic functions = $C[0, 2\pi]$ with $f(0) = f(2\pi)$

Inner product spaces:

$$\langle f,g\rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x)\overline{g(x)} \,\mathrm{d}x$$
$$\|f\|_2 = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 \,\mathrm{d}x\right)^{1/2}$$

 $\frac{\{e^{inx}\}_{n=-\infty}^{\infty} \text{ are orthonormal}}{}$

 $^{55)} = \epsilon$

Check:

$$\langle e^{inx}, e^{imx} \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{inx} e^{-imx} \, \mathrm{d}x$$

$$= \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-m)x} \, \mathrm{d}x$$

$$= \frac{56}{2\pi} \frac{1}{2\pi} \frac{e^{i(n-m)x}}{i(n-m)} \Big|_0^{2\pi}$$

$$= 0$$

"Best" approximation (in inner product sense) to f from

$$\operatorname{span}\left\{e^{inx}:n=-N,\ldots,N\right\} = \sum_{n=-N}^{N} \langle f, e^{-inx} \rangle e^{inx} = \sum_{n=-N}^{N} \hat{f}(n)e^{inx} = f_N$$
$$\langle f, e^{inx} \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} \,\mathrm{d}x$$
$$\equiv \hat{f}(n)^{57}$$

Big Theorem (PM354) $f_N \to f$ in $\|\cdot\|_2$ i.e., $\left(\frac{1}{2\pi}\int_{0}^{2\pi}|f_{N}-f|^{2}\right)^{1/2} \to 0$ This does not even guarantee pointwise convergence (Big Theorem PM354).

Let $K_n(t)^{58} = \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) e^{ijt}$. Put $f_n(x) = \frac{1}{2\pi} \int_0^{2\pi} K_n(t) f(x-t) \, \mathrm{d}t = K_n * f(x)$

Theorem: $f_n \to f$ uniformly and f_n are trigonometric polynomials First, show f_n are trigonometric polynomials:

$$f_n(x) = \frac{1}{2\pi} \int_0^{2\pi} \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) e^{ijt} f(x-t) dt$$
$$= \frac{1}{2\pi} \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) \int_0^{2\pi} e^{ijt} f(x-t) dt$$

Change of variable: Let u = x - t, dt = du

$$= \frac{1}{2\pi} \sum_{j=-n}^{n} \left(1 - \frac{|j|}{n+1}\right) \underbrace{\int_{0}^{2\pi} e^{ij(x-u)} f(u) \, \mathrm{d}u}_{\int_{0}^{2\pi} e^{ijx} e^{-iju} f(u) \, \mathrm{d}u}$$
$$= \sum_{-n}^{n} \left(1 - \frac{|j|}{n+1}\right) e^{ijx} \underbrace{\left(\frac{1}{2\pi} \int_{0}^{2\pi} e^{-iju} f(u) \, \mathrm{d}u\right)}_{=\hat{f}(j)}_{=\hat{f}(j)}$$

⁵⁶⁾ if $n \neq m$

 $^{^{57)}}n{\rm th}$ Fourier coefficients of f

 $^{^{58)}\}mathrm{Fejer's}$ kernel

So f_n is a trigonometric polynomial of degree $\leq n$.

$$\hat{f}_n(j) = \left(1 - \frac{|j|}{n+1}\right)\hat{f}(j)$$
$$= \hat{K}_n(j)\hat{f}(j)$$

so, $f_n(x) = \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) \hat{f}(j) e^{ijx}$

PMATH 351 Lecture 25: November 13, 2009

Theorem: Trigonometric polynomials are uniformly dense in 2π -periodic, continuous functions. Given f continuous and 2π periodic define

$$f_n(t) = \sum_{j=-n}^n \hat{f}(j)^{59} \left(1 - \frac{|j|}{n+1}\right) e^{ijt}$$

Then $f_n \to f$ uniformly.

Also
$$f_n(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x-t) K_n(t) dt$$

where $K_n^{60}(t) = \sum_{j=-n}^n \left(1 - \frac{|j|}{n+1}\right) e^{ijt}$

Sketch of Proof

- (1) $\frac{1}{2\pi} \int_0^{2\pi} K_n(t) dt = \frac{1}{2\pi} \sum_{j=-n}^n \left(1 \frac{|j|}{n+1}\right) \int_0^{2\pi} e^{ijt} dt = 1$ (2) $K_n(t) = \frac{1}{n+1} \frac{\sin^2(\frac{n+1}{2})t}{\sin^2 \frac{t}{2}} \ge 0$
- (3) If fix $\delta > 0$ and let $\delta < t < 2\pi \delta$ then $K_n(t) \le \frac{1}{n+1}c(\delta) \to 0$ as $n \to \infty$. Fix δ .

figure: functions approximation Dirac's delta

$$\frac{1}{2\pi} \int_{\delta}^{2\pi-\delta} K_n(t) \, \mathrm{d}t \le \frac{1}{2\pi} \int_{\delta}^{2\pi-\delta} \frac{c(\delta)}{n+1} \, \mathrm{d}t$$
$$\le \frac{c(\delta)}{n+1} \to 0 \text{ as } n \to \infty$$

$$|f_n(x) - f(x)| = \left| \frac{1}{2\pi} \int_0^{2\pi} f(x - t) K_n(t) \, \mathrm{d}t - f(x) \right|$$

$$\leq \left| \frac{1}{2\pi} \int_0^{2\pi} (f(x - t) - f(x)) K_n(t) \, \mathrm{d}t \right| \qquad (by (1))$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} |(f(x - t) - f(x))| K_n(t) \, \mathrm{d}t$$

Fix $\epsilon > 0$. Pick $\delta > 0$ by uniform continuity so $|t| < \delta \implies |f(x-t) - f(x)| < \epsilon$. Get M such that $|f(x)| < M \ \forall x$.

$$\frac{1}{2\pi} \left(\int_0^\delta (1) + \int_{2\pi-\delta}^{2\pi} (2) + \int_{\delta}^{2\pi-\delta} (3) \right) \le \epsilon + \epsilon + \epsilon = 3\epsilon \qquad \forall n \ge N$$

(3)
$$\leq \int_{\delta}^{2\pi-\delta} 2MK_n(t) \, \mathrm{d}t \leq 2M \frac{c(\delta)}{n+1} < \epsilon$$

 $^{59)}\langle f, e^{ijx} \rangle$

⁶⁰⁾Feijer kernel

if $n \ge N$ where $\frac{2Mc(\delta)}{N} < \epsilon$

(1)
$$\leq \frac{1}{2\pi} \int_0^\delta \epsilon K_n(t) \, \mathrm{d}t \leq \frac{1}{2\pi} \int_0^{2\pi} \epsilon K_n(t) \, \mathrm{d}t = \epsilon$$

(2) $t = 2\pi - u$ where $u \in [0, \delta]$ when $t \in [2\pi - \delta, 2\pi]$

$$\frac{1}{2\pi} \int_0^\delta |f(x - 2\pi + u)^{61} - f(x)| K_n(2\pi - u) \, \mathrm{d}u \le \frac{1}{2\pi} \int_0^\delta \epsilon K_n(2\pi - u) \, \mathrm{d}u \le \epsilon$$

 $|-u| \leq \delta$ Thus $f_n \to f$ uniformly.

Stone–Weierstrass Theorem

Terminology: A family \mathcal{A} of functions (on X) is called an *algebra* if $f, g \in \mathcal{A} \implies f + g \in \mathcal{A}, fg \in \mathcal{A}$, $cf \in \mathcal{A}$ for all scalars c

Examples: Polynomials, C(X), Differentiable functions on \mathbb{R} .

Say \mathcal{A} separates points if $\forall x \neq y \in X$ then $\exists f \in \mathcal{A}$ such that $f(x) \neq f(y)$.

Example: polynomials on [0, 1]

C(X) separates points: f(z) = d(x, z), continuous function, f(x) = 0, but $f(y) = d(x, y) \neq 0$ if $x \neq y$.

Stone–Weierstrass Theorem: Let X be compact and let $\mathcal{A} \subseteq C(X)$ be an algebra that separates points. Assume constant functions belong to \mathcal{A} . Then \mathcal{A} is dense in C(X).

i.e., $\forall \epsilon > 0 \& \forall f \in C(X) \exists q \in \mathcal{A} \text{ such that } ||q - f|| < \epsilon.$

Corollary: Polynomials are dense in C[0, 1].

Separation of points is necessary for \mathcal{A} to be dense

If $\exists x \neq y$ such that $f(x) = f(y) \ \forall f \in \mathcal{A}$ then if $f_n \in \mathcal{A}$ and $f_n \to g$ uniformly, we must have g(x) = g(y). But $\exists q \in C(X)$ such that $g(x) \neq g(y)$

Lemma 1: Suppose B is any algebra $\subseteq C(X)$ containing all constant functions. If $f \in B$, then $|f| \in \overline{B}.$

Proof: Let c = ||f|| > 0. We know there exists polynomials p_n such that $p_n \to \sqrt{x}$ uniformly on [0, 1]. Suppose $g \in B$, $0 \le g(x) \le 1 \ \forall x \in X$.

Then $p_n \circ g(x)^{62}$ is defined $\forall x \in X$. If $p_n(t) = a_k^{(n)} t^k + \dots + a_1^{(n)} t + a_0^{(n)}$ then $p_n \circ g(x) = a_k^{(n)} g(x)^k + \dots + a_1^{(n)} g(x) + a_0^{(n)}$ Also $f \in B$ so $\frac{f^2}{c^2} \in B$ and $0 \le \frac{f^2}{c^2} \le 1$. Therefore $p_n \circ \left(\frac{f^2}{c^2}\right) \in B$. Know $\forall \epsilon > 0 \exists N$ such that $|p_n(t) - \sqrt{t}| < \epsilon \; \forall t \in [0, 1]$ and $\forall n \geq N$ So $\forall x \in X$

$$\underbrace{p_n\left(\frac{f^2(x)}{c^2}\right)}_{=-f_-(x)} - \sqrt{\frac{f^2(x)}{c^2}}_{63)} \left| < \epsilon \right|$$

 $\implies ||f_n - \frac{|f|}{c}|| \le \epsilon \ \forall n \ge N$ $f_n \in B \text{ and } f_n \to \frac{|f|}{c} \text{ uniformly}$ **Exercise:** $\underbrace{cf_n}_{\in B} \to |f| \text{ uniformly} \implies |f| \in \overline{B}$

PMATH 351 Lecture 26: November 16, 2009

 $f^{(61)} = f(x - (-u))$

Stone–Weierstrass Theorem

Algebra $\mathcal{A}: f, g \in \mathcal{A} \implies f + g \in \mathcal{A}$ $fg \in \mathcal{A}$ $cf \in \mathcal{A}$ $\mathcal{A} \subseteq C(X, F), F = \mathbb{R} \text{ or } \mathbb{C} \text{ separates points}$ if whenever $x \neq y \in X$ $\exists f \in \mathcal{A} \text{ such that } f(x) \neq f(y)$

Let X be compact, metric space and let $\mathcal{A} \subseteq C(X)$ be an algebra that separates points. Assume constant functions belong to \mathcal{A} . Then \mathcal{A} is dense in C(X).

Lemma 1: Suppose *B* an algebra $\subseteq C(X)$ that contains the constants. If $f \in B$ then $|f| \in \overline{B}$. **Lemma 2:** If $f, g \in \overline{\mathcal{A}}$ then $\max(f, g)^{64}$ and $\min(f, g) \in \overline{\mathcal{A}}$ **Proof:** First check \mathcal{A} is an algebra.

Let $f, g \in \overline{\mathcal{A}}$, say $f_n^{(65)} \to f, g_n^{(65)} \to g, f_n + g_n \in \mathcal{A}$ since \mathcal{A} is an algebra.

$$\begin{array}{cc} f_n + g_n \to f + g \\ c^{65)} f_n \to cf \end{array} \implies \begin{array}{c} f + g \in \mathcal{A} \\ cf \in \overline{\mathcal{A}} \end{array}$$

By Lemma, $|f - g| \in \overline{\mathcal{A}}$.

$$\max(f,g) = \frac{1}{2}(f+g+|f-g|) \in \overline{\mathcal{A}}$$
$$\min(f,g) = \frac{1}{2}(f+g+|f-g|) \in \overline{\mathcal{A}}$$

Lemma 3: Given $x \neq y \in X$, $a, b \in \mathbb{R}$, there exists $f \in \mathcal{A}$ such that f(x) = a, f(y) = b**Proof:** Since \mathcal{A} separates points there exists $g \in \mathcal{A}$ such that $g(x) \neq g(y)$

Put
$$f(t^{66}) = a + (b-a) \left(\frac{g(t) - g(x)^{67}}{\underbrace{g(y) - g(x)}_{\neq 0}} \right)$$
$$= \alpha_1 + \alpha_2 g(t) \in \mathcal{A}$$
$$f(x) = a, f(y) = b \checkmark$$

Lemma 4: If $f \in C(X)$, $x_0 \in X$ and $\epsilon > 0$ then there exists $g^{68} \in \overline{\mathcal{A}}$ such that $g(x_0) = f(x_0)$ and $g(z) \leq f(z) + \epsilon \ \forall z \in X$ **Proof:** Apply lemma 3 with $x = x_0$, y fixed⁶⁹ but arbitrary, $a = f(x_0)$, b = f(y).

Get $h_y \in \mathcal{A}$ such that $h_y(x_0) = f(x_0)$, $h_y(y) = f(y)$. If $y = x_0$ just take $h_{x_0}(t) = f(x_0)$ (constant function) Look at $(h_y - f)(y) = 0$. $h_y - f$ is continuous so $\exists \delta y > 0$ such that $|h_y(z) - f(z)| < \epsilon$ if $d(y, z) < \delta_y$.

Look at balls $\{B(y, \delta_y) : y \in X\}$: open cover of compact set X, so there is a finite subcover, say

$$B(y_1, \delta y_1), \ldots, B(y_k, \delta y_k)$$

Take $g = \min(h_{y_1}, \ldots, h_{y_k}) \in \overline{\mathcal{A}}$ by lemma 2. $g(x_0) = f(x_0)$ as all $h_y(x_0) = f(x_0)$. If $z \in X$, then $z \in B(y_j, \delta_{y_j})$ for some j $\implies d(y_j, z) < \delta_{y_j}$ By definition of δ_{y_j} , this implies $h_{y_j}(z) < f(z) + \epsilon$

 $\stackrel{67)}{\in} \mathbb{R}$

 ${}^{68)}_{69)} = g(x_0, \epsilon)$

⁶⁴⁾ = h, $h(x) = \max(f(x), g(x))$

 $^{^{65)} \}in \mathcal{A}$

 $^{^{66)} \}in X$

 $\implies g(z) \le h_{y_j}(z) < f(z) + \epsilon$

Lemma 5: If $f \in C(X)$ and $\epsilon > 0$ there exists $g \in \overline{\mathcal{A}}$ such that $||g - f|| < \epsilon$. **Proof:** For each $x \in X$ by Lemma 4 we get $g_x \in \overline{\mathcal{A}}$ such that $g_x(x) = f(x)$ and

$$g_x(z) \le f(z) + \epsilon \quad \forall z \in X \tag{2}$$

Know $g_x - f(x) = 0$ so there exists $\delta_x > 0$ such that

$$d(x,z) < \delta_x \implies |g_x(z) - f(z)| < \epsilon$$

Balls $B(x, \delta_x)$: $x \in X$ open cover of XTake a finite subcover, say $B(x_1, \delta_{x_1}), \dots, B(x_L, \delta_{x_L})$ Put $g = \max(g_{x_1}, \dots, g_{x_L}) \in \overline{\mathcal{A}}$ Take $y \in X$ say $y \in B(x_i, \delta_{x_i})$ $\implies |g_{x_i} - f(y)| < \epsilon$ $f(y) - \epsilon < g_{x_i}(y) < f(y) + \epsilon$

$$f(y) - \epsilon \underset{(1)}{<} g_{x_i}(y) \le g(y) = g_{x_j}(y) \text{ (some index)}$$
$$\le f(y) + \epsilon \text{ by (2)}$$
$$\implies |g(y) - f(y)| \le \epsilon \quad \forall y \in X$$
$$\implies ||g - f|| \le \epsilon$$

Proof of S–W Theorem

Let $f \in C(X)$, and $\epsilon > 0$ By lemma 5 get $g \in \overline{\mathcal{A}}$ such that $||g - f|| \le \epsilon/2$. Get $h \in \mathcal{A}$ such that $||g - h|| \le \epsilon/2$. By triangle inequality

$$\|f - h\| \le \|f - g\| + \|g - h\|$$
$$\le \epsilon$$

PMATH 351 Lecture 27: November 18, 2009

Complex-Valued Continuous Functions

 \mathbb{C} metric space d(z, w) = |z - w|

$$\begin{split} |z| &= |\operatorname{Re} z + i \operatorname{Im} z| = \sqrt{(\operatorname{Re} z)^2 + (\operatorname{Im} z)^2} \\ &= \|(\operatorname{Re} z, \operatorname{Im} z)\|_{\mathbb{R}^2} \end{split}$$

 $f\colon X\to \mathbb{C}$

f is continuous at x means whenever

$$\underbrace{x_n \to x}_{\text{converges in } X} \quad \text{then} \quad \underbrace{f(x_n) \to f(x)}_{\text{converges in } \mathbb{C}}$$

$$\begin{split} &f = g + ih \\ &f = \operatorname{Re} f + i\operatorname{Im} f \\ &\operatorname{Re} f(x) = \operatorname{Re}(f(x)) \\ &g(x) = \operatorname{Re}(f(x)) \\ &\frac{f}{f} \text{ is continuous iff } \operatorname{Re} f \text{ and } \operatorname{Im} f \text{ are continuous where } \operatorname{Re} f, \operatorname{Im} f \colon X \to \mathbb{R}. \end{split}$$

$$\overline{f}(z) = \overline{f(z)}$$
$$= \operatorname{Re} f(z) - i \operatorname{Im} f(z)$$

f is continuous iff \overline{f} is continuous

Theorem: (S–W for complex-valued continuous functions) Let X be a compact metric space and let \mathcal{A} be a subalgebra (scalars from \mathbb{C}) of

$$C(X, \mathbb{C}) = \{ f \colon X \to \mathbb{C} : f \text{ continuous} \}$$

which contains all constants (from \mathbb{C}), separates points and is closed under conjugation (meaning $f \in \mathcal{A} \implies \overline{f} \in \mathcal{A}$).

Then \mathcal{A} is (uniformly) dense in $C(X, \mathbb{C})$.

Example:
$$X = \{ z \in \mathbb{C} : |z| = 1 \}$$

 $\mathcal{A} = \left\{ \sum_{n=-N}^{N} a_n z^n : a_n \in \mathbb{C}, N \in \mathbb{N} \right\}$ trigonometric polynomials
For $z \in X$, $\overline{z} = z^{-1} = \frac{1}{z}$
If $f^{70} = \sum_{n=-N}^{N} a_n z^n$, $\overline{f}(z) = \sum \overline{a_n z^n} = \sum_{n=-N}^{N} a_n z^{-n} \in \mathcal{A}$
So \mathcal{A} is an algebra that contains the constants, separates points and is closed under conjugation.
 $C(X, \mathbb{C}) \approx C([0, 2\pi], \mathbb{C})$ and 2π periodic
 $\mathcal{A} = \left\{ \sum_{n=-N}^{N} a_n e^{in\theta} \right\}$

Let $B = \left\{ \sum_{n=0}^{N} a_n z^n : a_n \in \mathbb{C}, n \in \mathbb{N} \right\}$

- algebra, contains constants, separates points
- B is not dense: $f(z) = \frac{1}{z} \notin \text{closure } B \text{ yet } \frac{1}{z} \in C(X, \mathbb{C})$

Say $f = \lim f_n, f_n \in B$ $f(e^{i\theta}) = \lim f_n(e^{i\theta})$ uniformly in θ

$$\int_0^{2\pi} \overline{f} f_n \,\mathrm{d}\theta = \int_0^{2\pi} e^{i\theta} \sum_{k=0}^{N_n} a_k^{(n)} e^{ik\theta} \,\mathrm{d}\theta$$

 $\overline{f}(z) = z$

$$=\sum_{k=0}^{N_n} a_k^{(n)} \int_0^{2\pi} e^{i(k+1)\theta} \,\mathrm{d}\theta = 0$$

$$\left| \int_{0}^{2\pi} \overline{f} f_n - \int_{0}^{2\pi} \overline{f} f \, \mathrm{d}\theta \right| = \int_{0}^{2\pi} |\overline{f}(f_n - f)| \, \mathrm{d}\theta$$
$$\leq \int_{0}^{2\pi} |\overline{f}| |f_n - f| \, \mathrm{d}\theta$$
$$\leq M \int_{0}^{2\pi} |f_n - f| \, \mathrm{d}\theta$$

 $< M\epsilon \cdot 2\pi$ for *n* sufficiently large

$$\implies ^{71)} \int_0^{2\pi} \overline{f} f_n \, \mathrm{d}\theta \to \int_0^{2\pi} |f|^2 \, \mathrm{d}\theta$$
$$= \int_0^{2\pi} 1 \, \mathrm{d}\theta$$
$$= 2\pi$$

 $^{70)} \in \mathcal{A}$

 $\begin{array}{l} z=e^{i\theta},\,\theta\in[0,2\pi]\\ f(z)=f(e^{i\theta})=g(\theta) \end{array}$

figure: unit circle in $\mathbb C$

 \bullet contradiction

Proof of S-W for complex-valued functions

Let
$$\mathcal{A}_{\mathbb{R}} = \{ \text{real-valued functions in } \mathcal{A} \}$$

 $\subseteq C(X)$

• contains all real valued constant functions

 $\begin{array}{l} \mathcal{A}\text{-algebra over } \mathbb{R} \\ \text{If } f \in \mathcal{A} \text{ then } \overline{f} \in \mathcal{A} \implies f + \overline{f} = 2 \operatorname{Re} f \in \mathcal{A} \\ \Longrightarrow \operatorname{Re} f \in \mathcal{A} \implies \operatorname{Re} f \in \mathcal{A}_{\mathbb{R}} \\ \text{Similarly Im } f \in \mathcal{A} \implies \operatorname{Im} f \in \mathcal{A}_{\mathbb{R}}. \end{array}$

If $x \neq y$ then there exists $f \in \mathcal{A}$ such that $f(x) \neq f(y)$ \implies At least one of Re $f(x) \neq$ Re f(y) or Im $f(x) \neq$ Im f(y)Therefore $\mathcal{A}_{\mathbb{R}}$ separates points.

By S–W Theorem, $\mathcal{A}_{\mathbb{R}}$ is dense in C(X)Let $f \in C(X, \mathbb{C})$ and let $\epsilon > 0$. Then Re f, Im $f \in C(X)$ so there exist $g, h \in \mathcal{A}_{\mathbb{R}}$ such that $\|\operatorname{Re} f - g\| < \epsilon$ and $\|\operatorname{Im} f - h\| < \epsilon$ Also $g + ih \in \mathcal{A}$: Calculate $\|f - (g + ih)\|$

$$= \|\underbrace{\operatorname{Re} f + i\operatorname{Im} f}_{=f} - (g + ih)\| \le \|\operatorname{Re} f - g\| + \|i(\operatorname{Im} f - h)\| < 2\epsilon$$

Applications

1. Let
$$f \in C(X)$$
, f 1–1
Then $\left\{ \sum_{n=0}^{N} a_n f^n(x) : a_n \in \mathbb{R}, n \in \mathbb{N} \right\}$ is dense in $C(X)$

2. Suppose $f \in C[0,1]$ and $\int_0^1 f(x)x^n dx = 0$ for all n = 0, 1, 2, ...Then f = 0. **Proof:** $\int_0^1 f(x)p(x) dx = 0$ for p(x) =polynomial Know there exists $p_N \to f$ uniformly for polynomials p_N and so $\int_0^1 \underbrace{f \cdot p_N}_{=0} dx \to \int_0^1 f \cdot f dx =$

$$\int_0^1 ||f||^2 dx$$

$$\implies f = 0.$$

PMATH 351 Lecture 28: November 20, 2009

Applications of S–W Theorem

(1)
$$\int_0^1 f(x)x^n \, \mathrm{d}x = 0 \qquad \forall n = 0, 1, 2, \dots$$
$$\implies f = 0$$

Uniqueness Theorem

(2) If $f \ 2\pi$ -periodic, continuous function and $\hat{f}(j) = 0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ijx} dx \ \forall j \in \mathbb{Z}$ then $f \equiv 0$. **Proof:** Let $p(x) = \sum_{n=-N}^N a_k e^{ikx}$ for any trigonometric polynomials Then $\frac{1}{2\pi} \int_0^{2\pi} f(x) p(x) dx = 0$ Take $p_N \to \overline{f}$ uniformly.

$$\frac{1}{2\pi} \int_0^{2\pi} f \cdot p_N^{(72)} \to \frac{1}{2\pi} \int_0^{2\pi} f \cdot \overline{f} = \frac{1}{2\pi} \int_0^{2\pi} |f|^2 \implies f = 0$$

71) = 0

(3) $C([0,1] \times [0,1])$

Take
$$\mathcal{A} = \left\{ \sum_{i=1}^{N} f_i(x) g_i(y) : f_i, g_i : [0,1] \to \mathbb{R}, \text{ continuous} \right\}$$

- algebra
- contains constants
- separates points

By S–W, \mathcal{A} is dense in $C([0,1] \times [0,1])$

- HW (4) C[a, b] is separable, i.e., countable dense set
 - (5) **Proposition:** Let X be compact and suppose $\mathcal{A} \subseteq C(X)$ is a subalgebra that separates points, but $\overline{\mathcal{A}} \neq C(X)$.

Then there exists $x_0 \in X$ such that $f(x_0) = 0 \ \forall f \in \mathcal{A}$.

Proof: Suppose not. Then $\forall x \in X \ \exists f_x \in \mathcal{A}$ such that $f_x(x) \neq 0$. By multiplying by a suitable scalar, without loss of generality $f_x(x) = 2$. By continuity there exists $\delta_x > 0$ such that if $y \in B(x, \delta_x)$ then $f_x(y) \ge 1$.

X is compact so take a finite subcover, say

$$B(x_1, \delta_{x_1}), \dots, B(x_{\kappa}, \delta_{x_{\kappa}})$$

Put $f(y) = \sum_{i=1}^{\kappa} f_{x_i}^2(y) \in \mathcal{A}$

If $y \in X$, then there exists *i* such that $y \in B(x_i, \delta_{x_i})$ $\stackrel{\rightarrow}{\Longrightarrow} \begin{array}{l} f_{x_i}^2(y) \geq 1 \\ \implies f(y) \geq f_{x_i}^2(y) \geq 1 \implies \frac{1}{f} \in C(X) \end{array}$

Consider
$$\mathcal{A} + \mathbb{R} \equiv \{ g + \lambda : g \in \mathcal{A}, \lambda \in \mathbb{R} \} \subseteq C(X)$$

 $\mathcal{A} + \mathbb{R}$ is an algebra: Take $g_1 + \lambda_1, g_2 + \lambda_2$

$$(g_1 + \lambda_1)(g_2 + \lambda_2) = \underbrace{g_1g_2 + \lambda_2g_1 + \lambda_1g_2}_{\in \mathcal{A}} + \underbrace{\lambda_1\lambda_2}_{\in \mathbb{R}}$$

Contains constants because $g = 0 \in \mathcal{A}$

 $\mathcal{A} + \mathbb{R}$ separates points since \mathcal{A} separates points

By S–W Theorem $\mathcal{A} + \mathbb{R}$ is dense in C(X).

So there exists $g_n + \lambda_n \to \frac{1}{f}$ uniformly where $g_n \in \mathcal{A}, \lambda_n \in \mathbb{R}$

$$|f(y) \cdot g_n(y) + f(y)\lambda_n - 1| = |f(y)| \left| g_n(y) + \lambda_n - \frac{1}{f(y)} \right|$$
$$\leq ||f||_{\infty} \left| g_n(y) + \lambda_n - \frac{1}{f(y)} \right|$$
$$\to 0 \text{ uniformly}$$

Hence $\underbrace{fg_n + \lambda_n f}_{\in \mathcal{A}} \to 1$ uniformly

 $\implies 1 \in \overline{\mathcal{A}}$

So $\overline{\mathcal{A}}$ is a subalgebra of C(X) that contains constants and separates points. By S-W: $\overline{\mathcal{A}}$ is dense in C(X). But $\overline{\mathcal{A}}$ is closed, therefore $\overline{\mathcal{A}} = C(X)$: contradiction.

Remark: Evaluation map $\phi_{x_0} \colon C(X) \to \mathbb{R}, f \mapsto f(x_0)$ ϕ_{x_0} linear, multiplicative, continuous onto \mathbb{R}

$$\ker \phi_{x_0} = \{ f : f(x_0) = 0 \} = \phi_{x_0}^{-1}\{0\}$$

 $\overline{}^{72)} = 0$

[optional]

- closed set
- ideal
- proper ideal

 $C(X)/\ker\phi_{x_0}\cong\mathbb{R}\implies$ maximal ideal

Theorem: { ker $\phi_{x_0} : x_0 \in X$ }: all the maximal ideals in C(X)Previous proposition says $\mathcal{A} \subseteq \ker \phi_{x_0}$ Suppose B algebra with no $x_0 \in X$ such that $f(x_0) = 0 \ \forall f \in B$ Apply previous argument to B we see there exists $f \in B$ such that $f(y) \ge 1 \ \forall y$ $\implies \frac{1}{f} \in C(X) \implies B$ is not contained in any proper ideal

• Banach algebra.

PMATH 351 Lecture 29: November 23, 2009

Baire Category Theory

Definition: $A \subseteq X$ is called *nowhere dense* if int $\overline{A} = \emptyset$.

e.g., \mathbb{Z} in \mathbb{R} : nowhere dense

 $\mathbb Q$ in $\mathbb R:$ fails to be nowhere dense

A is nowhere dense if and only if \overline{A} is nowhere dense

A is called *first category* if $A = \bigcup_{n=1}^{\infty} A_n$ where each A_n is nowhere dense.

e.g., $\mathbb{Q} = \bigcup_{n=1}^{\infty} \{r_n\}$: first category

A is called *second category* otherwise.

If A is nowhere dense then A^{C} is dense.

Why? A set is dense if and only if it intersects every non-empty open set.

Suppose A^{C} is not dense. Then there exists U open, $\neq \emptyset$ such that $U \cap A^{C} = \emptyset$ $\implies U \subseteq A \implies \operatorname{int} \overline{A} \neq \emptyset$: contradiction.

Proposition: A closed and nowhere dense $\iff A^{C}$ is open and dense Proof: $\implies: \checkmark$

 \Leftarrow : Suppose int $\overline{A}^{73} = \emptyset$. Hence int $A \cap A^{\mathbb{C}} = \emptyset$: contradicts $A^{\mathbb{C}}$ dense.

Proposition: X is second category if and only if the intersection of every countable family of dense open sets in X is non-empty.

Proof: (\Longrightarrow) Let G_j , j = 1, 2, ... be open and dense. Then G_j^C are closed and nowhere dense.

Since X is 2nd category
$$X \neq \bigcup_{1}^{\infty} G_{j}^{C} \Longrightarrow \underbrace{\left(\bigcup_{1}^{\infty} G_{j}^{C}\right)^{C}}_{=\bigcap_{j=1}^{\infty} G_{j}} \neq \emptyset.$$

 (\Leftarrow) Suppose X is not 2nd category.

Then $X = \bigcup_{1}^{\infty} \overline{F_j}$ where F_j are closed and nowhere dense.

$$\left(\bigcup_{1}^{\infty} F_{j}\right)^{\mathcal{C}} = \emptyset = \bigcap_{j=1}^{\infty} \underbrace{F_{j}^{\mathcal{C}}}_{\text{open \& dense}}$$

Baire Category Theorem

A complete metric space is second category. **Proof:** Let $\{A_n\}_{n=1}^{\infty}$ be open and dense Show $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$ Let $x_1 \in A_1$ and let U_1 be an open ball⁷⁴ containing $x_1, U_1 \subseteq A_1$. A_2 is dense so there exists $x_2 \in \underbrace{A_2 \cap U_1}_{\text{open}}$.

 $^{73)} = A$

 $^{74)} = B(x_1, r_1)$

Since $A_2 \cap U_1$ is open there exists an open set $U_2 \ni x_2$, $U_2 \subseteq A_2 \cap U_1^{(75)}$ and diam $U_2 \leq \frac{1}{2} \operatorname{diam} U_1$ and $\overline{U}_2 \subseteq U_1$

$$(B(x_2,r) \subseteq B(x_1,r_1) \implies \overline{B(x_2,\frac{r}{2})} \subseteq B(x_2,r) \subseteq B(x_1,r_1))$$

Proceed inductively to get open sets $U_n \ni x_n$, $U_n \subseteq \bigcap_1^n A_j$, $\overline{U_n} \subseteq U_{n-1}$, diam $U_n \leq \frac{1}{2} \operatorname{diam} U_{n-1}$ (so diam $U_n \to 0$)

Claim $\{x_n\}_1^{\infty}$ is a Cauchy sequence. Let $\epsilon > 0$. Pick N such that diam $U_N < \epsilon$. If $n, m \ge N$ then $x_n, x_m \in U_N$ (as U_j s are nested) $\implies d(x_n, x_m) \le \text{diam } U_N < \epsilon$. Since the space is complete, $x_n \to x$. Notice $x_n \in \overline{U}_N$ for all $n \ge N \implies x \in \overline{U}_N \subseteq U_{N-1} \subseteq \bigcap_1^{N-1} A_j$ This is true for all $N \implies x \in \bigcap_1^{\infty} A_j \implies \bigcap_1^{\infty} A_j \neq \emptyset \implies X$ is second category. **Corollary:** \mathbb{R} is uncountable **Proof:** \mathbb{R} is second category.

Corollary: A non-empty perfect set E in a complete metric space is uncountable.

Proof: Say $E = \bigcup_{n=1}^{\infty} \{r_n\}$. *E* being a closed subset of a complete metric space is complete. Therefore *E* is second category. This implies $\{r_n\}$ is open for some *n*.

So there exists $\epsilon > 0$ such that $B(r_n, \epsilon) = \{r_n\}$

But r_n is an accumulation point of $E \implies B(r_n, \epsilon) \cap B(E \setminus \{r_n\}) \neq \emptyset$

contradiction

Proposition: The set E of functions in C[0, 1] which have a derivative at (even) one point of (0, 1) is first category.

Corollary: The set of nowhere differentiable continuous functions is second category.

Proof: (exercise) Union of two first category sets is first category.

Proof of proposition:

Put
$$E_n = \left\{ f \in C[0,1] : \exists x \in [0,1-\frac{1}{n}] \text{ such that } \forall h \in (0,\frac{1}{n}], \frac{|f(x+h) - f(x)|}{h} \le n \right\}.$$

If f is differentiable at $x_0 \in (0, 1)$ then there exists n_1 such that $x_0 \in [0, 1 - \frac{1}{n_1}]$ and there exists n_2 such that if $0 < h \le \frac{1}{n_2}$ then

$$\left|\frac{f(x+h) - f(x)}{h}\right| \le |f'(x_0)| + 1$$
$$\le n_3$$

Take $n = \max(n_1, n_2, n_3) \implies f \in E_n$ Shown $E \subseteq \bigcup_{n=1}^{\infty} E_n$

PMATH 351 Lecture 30: November 25, 2009

Proposition: The set of functions $E \subseteq C[0,1]$ which have a derivative at one point of (0,1) is first category. **Proof:**

Put
$$E_n = \left\{ f \in C[0,1] : \exists x \in [0,1-1/n] \text{ such that } \forall h \in (0,1/n], \frac{|f(x+h) - f(x)|}{h} \le n \right\}$$

Show

- (1) $E \subseteq \bigcup_{n=1}^{\infty} E_n$
- (2) E_n closed

 $^{75)} \subseteq A_2 \cap A_1$

(3) E_n have empty intersection

Then
$$E \stackrel{(1)}{=} \bigcup_{n=1}^{\infty} (E_n \cap E)$$

 $\overline{E_n \cap E} \subseteq \overline{E_n} \stackrel{(2)}{=} E_n$
 $\operatorname{int}(\overline{E_n \cap E}) \subseteq \operatorname{int} E_n \stackrel{(3)}{=} \emptyset$

 $\implies E_n \cap E$ are nowhere dense E is first category **Step 1:** Let $f \in E$, say $f'(x_0)$ exists for $x_0 \in (0, 1)$

Then there exists n_1 such that $x \in [0, 1 - 1/n_1]$ There exists n_2 such that $|h| < 1/n_2$ then $\left|\frac{f(x_0+h)-f(x_0)}{h} - f'(x_0)\right| \le 1$

$$\implies \frac{|f(x_0+h) - f(x_0)|}{h} \le 1 + f'(x_0) \quad \forall 0 < h \le 1/n_2$$
$$\le n_3$$

Put $n = \max(n_1, n_2, n_3) \implies f \in E_n$ $\implies E \subseteq \bigcup_{n=1}^{\infty} E_n$

(3) Let $f \in E_n$ and let $\epsilon > 0$ Show there exists $g \in C[0, 1]$ such that $g \in B(f, \epsilon)$, i.e., $||g - f|| < \epsilon$, but $g \notin E_n$. i.e., for all $x \in [0, 1 - 1/n]$, there exists $h \in (0, 1/n]$ such that

$$\left|\frac{g(x+h) - g(x)}{h}\right| > n$$

Get polynomial P such that $||f - P|| < \epsilon/2$ (by S–W) Let $M > \sup_{x \in [0,1]} |P'(x)|$ (can do as $P' \in C[0,1]$) Let Q be continuous piecewise linear with slope $\pm (M + n + 1)$ and $0 \le Q \le \epsilon/2$ Put $g = P + Q \in C[0,1]$

$$\begin{split} \|g - f\| &= \|P + Q - f\| \leq \|P - f\| + \|Q\| \\ &< \epsilon/2 + \epsilon/2 = \epsilon \end{split}$$

$$\frac{|g(x+h) - g(x)|}{h} = \frac{|P(x+h) - P(x) + Q(x+h) - Q(x)|}{h}$$
$$\geq \frac{|Q(x+h) - Q(x)|}{h} - \frac{|P(x+h) - P(x)|}{h}$$
$$\geq M + n + 1 - M \quad \text{(for small } h)$$
$$= n + 1 > n$$

 $\implies g \notin E_n$

(2) Prove E_n is closed. Suppose $f_m \in E_n$ and $f_m \to f$ (uniformly) Need to prove $f \in E_n$. For each m, there exists $x_m \in [0, 1 - 1/n]$ such that for all $h \in (0, 1/n]$

$$\frac{|f_m(x_m+h) - f_m(x_m)|}{h} \le n \tag{3}$$

By B–W there exists $x_{m_j} \rightarrow x_0 \in [0, 1 - 1/n]$

By relabeling, if necessary, (and throwing away functions not in the subsequent f_{m_j}) we can

figure: periodic sawtooth between 0 and 1; peak of $\epsilon/2$

assume
$$x_m \to x_0$$
.
Fix $h \in (0, 1/n]$. Fix $\epsilon > 0$.
Pick M_1 such that $||f_m - f|| < \frac{\epsilon h}{4}$ for all $m \ge M_1$ (2)
 f is uniformly continuous. There exists $\delta > 0$ such that $|x - y| < \delta$
 $\implies |f(x) - f(y)| < \frac{\epsilon h}{4}$ (1)
Pick M_2 such that $|x_m - x_0| < \delta$ if $m \ge M_2$ and then let $M = \max(M_1, M_2)$

$$\frac{|f(x_0 + h) - f(x_0)|}{h} \le \frac{|f(x_0 + h) - f(x_M + h)|}{h} + \frac{|f(x_M + h) - f_M(x_M + h)|}{h} + \frac{|f(x_M) - f(x_M)|}{h} + \frac{|f(x_M) - f(x_M)|}{h} + \frac{|f(x_M) - f(x_0)|}{h} + \frac{|x_0 + h - (x_M + h)| = \epsilon \frac{\epsilon h/4}{h} \epsilon^{(6)} + \frac{||f - f_M||}{h} \epsilon^{(7)} + n^{78} + ||f_M - f||^{79}) + \frac{\epsilon h/4}{h} \epsilon^{(6)}$$

$$< \epsilon/4 + \frac{\epsilon h/4}{h} + n + \epsilon/4 + \epsilon/4$$

$$= n + \epsilon$$

True for all $\epsilon > 0$, therefore $\frac{|f(x_0+h)-f(x_0)|}{h} \le n$ for all $h \in (0, 1/n]$ $\implies f \in E_n$. Therefore E_n is closed.

Banach Contraction Mapping Principle

Let X be a complete metric space and let $T: X \to X$ be a contraction i.e., exists r < 1 such that $d(T(x), T(y)) \le rd(x, y)$ for all $x, y \in X$

Then T is continuous and has a unique fixed point i.e., point x such that T(x) = x.

PMATH 351 Lecture 31: November 27, 2009

Banach Contraction Mapping Principle

 $T: X \to X$ is a contraction if there exists r < 1 such that $d(T(x), T(y)) \leq rd(x, y)$ for all $x, y \in X$

Theorem: If X is a complete metric space and $T: X \to X$ is a contraction, then T is a continuous map and has a unique fixed point, i.e., there exists $x \in X$ such that T(x) = x.

Proof: In fact a contraction is uniformly continuous. Given $\epsilon > 0$ take $\delta = \epsilon/r$ and then $d(x, y) < \delta$ $\implies d(T(x), T(y)) \le r \cdot d = \epsilon$

Take $x_0 \in X$. Look at $T(x_0), T(T(x_0)) = T^2(x_0)$

. . .

Let $x_1 = T(x_0), x_{n+1} = T(x_n) = T^2(x_{n-1}) = \cdots = T^{n+1}(x_0)$ First check $\{x_n\}_1^\infty$ is a Cauchy sequence. Start by looking at $d(x_n, x_{n+1}) = d(T(x_{n-1}), T(x_n))$

$$\leq rd(x_{n-1}, x_n) = rd(T(x_{n-2}), T(x_{n-1})) \leq r^2 d(x_{n-2}, x_{n-1}) = \dots = r^n d(x_0, x_1)$$

Assume m > n. Say m = n + k.

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{n+k-1}, x_{n+k})$$

$$\le r^n d(x_0, x_1) + r^{n+1} d(x_0, x_1) + \dots + r^{n+k-1} d(x_0, x_1)$$

$$= d(x_0, x_1) (r^n + r^{n+1} + \dots + r^{n+k-1})$$

$$\le d(x_0, x_1) \sum_{n=1}^{\infty} r^j \to 0 \text{ as } n \to \infty$$

 $^{76)}$ by (1)

 $^{77}(2)$

 $^{78)}$ by (3) $^{79)}(2)$

 $^{^{80)}}$ by (1)

Hence $\{x_n\}$ is Cauchy As X is complete there exists $y \in X$ such that $x_n \to y$

By continuity
$$T(x_n) \to T(y)$$

 \parallel
 $x_{n+1} \to y$

Therefore T(y) = y. So y is a fixed point of T. Suppose z was also a fixed point of T

$$d(z, y) = d(T(z), T(y)) \le rd(z, y)$$

Since $r < 1 \implies d(z, y) = 0$, i.e., z = y

Application to Solving an Integral Equation

Suppose $k(x, y) \colon [0, 1] \times [0, 1] \to \mathbb{R}$, continuous Consider the equation

$$f(x) = A + \int_0^x k(x, y) f(y) \, \mathrm{d}y.$$
 (*)

Find continuous f which satisfies this. e.g., k = 1, A = 1, $f(x) = 1 + \int_0^x f(y) \, dy$

$$g(x) = \int_0^x f(y) \, \mathrm{d}y$$
 is differentiable $\implies f$ is differentiable

g'(x) = f(x) by Fundamental Theorem of Calculus $\implies f'(x) = 0 + f(x) \implies f(x) = ce^x$ Furthermore $f(0) = 1 + \int_0^0 f(y) = 1 \implies c = 1, f(x) = e^x$

Theorem: If $\sup_{x \in [0,1]} \int_0^1 |k(x,y)| \, dy = \lambda < 1$ then (*) has a unique solution. **Proof:** Define $T: C[0,1] \to C[0,1]$ by $T(f)(x) = A + \int_0^x k(x,y)f(y) \, dy$. We want a fixed point for T. Verify $T(f)(x) \in C[0,1]$.

Without loss of generality x > z

$$\begin{aligned} |Tf(x) - Tf(z)| &= \left| \int_0^x k(x, y) f(y) \, \mathrm{d}y - \int_0^z k(z, y) f(y) \, \mathrm{d}y \right| \\ &\leq \left| \int_0^z (k(x, y) - k(z, y)) f(y) \, \mathrm{d}y \right| + \left| \int_z^x k(x, y) f(y) \, \mathrm{d}y \right| \\ &\leq \int_0^z \underbrace{|k(x, y) - k(z, y)|}_{(1)} |f(y)| \, \mathrm{d}y + \int_z^x \underbrace{|k(x, y)|}_{(2)} |f(y)| \, \mathrm{d}y \end{aligned}$$

k is uniformly continuous. Given $\epsilon > 0$ get δ , i.e., $||(x,y) - (z,y)|| < \delta \implies |k(x,y) - k(z,y)| < \epsilon$. f is bounded, say ||f|| < M.

Let
$$|x - z| < \min(\overline{\delta, \epsilon})^{2}$$

Then $||(x, y) - (z, y)|| = |x - z| < \delta$
 $\implies |k(x, y) - k(z, y)| < \epsilon$.
 $\implies (1) \le \int_{0}^{z} \epsilon \cdot M \, \mathrm{d}y = z\epsilon M \le \epsilon M$
(2): Also $||k|| \le M' \implies (2) \le \int_{z}^{x} M' M \, \mathrm{d}y = |x - z| M' M < \delta M' M \le \epsilon M' M$.

 $|Tf(x) - Tf(z)| \le (1) + (2) \le \epsilon M + \epsilon M'M = \epsilon (\text{constant})$

 $\implies Tf(x)$ is continuous

 ${\cal C}[0,1]$ is a complete metric space.

figure: 0 < z < x

Verify T is a contraction.

$$\begin{split} d(Tf,Tg) &= \|Tf - Tg\| \\ &= \sup_{x \in [0,1]} |Tf(x) - Tg(x)| \\ |Tf(x) - Tg(x)| &= \left| \int_0^x k(x,y)f(y) \, \mathrm{d}y - \int_0^x k(x,y)g(y) \, \mathrm{d}y \right| \\ &\leq \left| \int_0^x k(x,y)(f(y) - g(y)) \, \mathrm{d}y \right| \\ &\leq \int_0^x |k(x,y)| |f(y) - g(y)| \, \mathrm{d}y \\ &\leq \|f - g\| \int_0^1 |k(x,y)| \, \mathrm{d}y \\ &\leq \lambda^{81} \|f - g\| = \lambda d(f,g) \end{split}$$

Therefore $||Tf - Tg|| \le \lambda ||f - g||$

Thus T is a contraction and therefore the integral equation has a unique solution in C[0, 1] by Banach Contraction Mapping Principle.

PMATH 351 Lecture 32: November 30, 2009

Example: $T: [1, \infty) \to [1, \infty)$

$$T(x) = x + 1/x$$

$$|T(x) - T(y)| = |x - y - \frac{1}{y} + \frac{1}{x}|$$

$$= |x - y - \frac{x - y}{xy}|$$

$$= |x - y||1 - \frac{1}{xy}|$$

$$< |x - y|$$

But $T(x) \neq x$ so no fixed point.

Picard's Theorem

Terminology: Say $\Phi: [a, b] \times \mathbb{R} \to \mathbb{R}$ is Lipschitz in y-variable if there exists a constant L such that

$$|\varPhi(x,y) - \varPhi(x,z)| \le L|y-z| \qquad \forall x \in [a,b] \& \forall y,z \in \mathbb{R}$$

Global Picard Theorem

Suppose $\Phi: [a, b] \times \mathbb{R} \to \mathbb{R}$ is continuous and Lipschitz in *y*-variable. Then the differential equation

$$F'(x) = \Phi(x, F(x)), \quad F(a) = c$$

has a unique solution. **Proof:** Define $T: C[a, b] \to C[a, b]$

by
$$TF(x) = c + \int_{a}^{x} \Phi(t, F(t)) dt$$
.

If $F \in C[a, b]$ then $G(t) = \Phi(t, F(t))$ is continuous.

By the Fundamental Theorem of Calculus TF(x) is differentiable, so $TF \in C[a, b]$ as claimed. $(TF)'(x) = \Phi(x, F(x))$ by Fundamental Theorem of Calculus. Suppose F is a fixed point of T.

$$TF(x) = F(x)$$

 $F'(x) = (TF)'(x) = \Phi(x, F(x)) \text{ and } TF(a)^{82} = F(a)$

 $^{^{81)}}$ contraction factor

Thus F satisfies the initial value differential equation.

Conversely, if $F'(x) = \Phi(x, F(x))$ and F(a) = c then $(TF)'(x) = F'(x) \ \forall x \in [a, b]$

$$\implies TF(x) = F(x) + \text{constant}$$
$$\implies TF(a)^{82)} = F(a)^{82)} + \text{constant}$$

so constant = $0 \implies TF(x) = F(x)$ so F is a fixed point of T.

Can't call on BCMP directly, because T might not be a contraction. But we use same method of proof. Start with $F_0(x) = c$. Put $F_{k+1}(x) = TF_k(x)$.

Let L be the Lipschitz factor of Φ Let $M = \max_{a \le x \le b} |\Phi(x, c)|$

$$|F_1(x) - F_0(x)| = |Tc(x) - c|$$

= $\left| c + \int_a^x \Phi(t, c) \, \mathrm{d}t - c \right|$
 $\leq \int_a^x |\Phi(t, c)| \, \mathrm{d}t \leq M(x - a)$

Inductively, we assume $|F_k(x) - F_{k-1}(x)| \le \frac{L^{k-1}M(x-a)^k}{k!} \ \forall x \in [a,b]$

Then
$$|F_{k+1}(x) - F_k(x)| = |T(F_k)(x) - T(F_{k-1})(x)|$$

$$= \left| c + \int_a^x \Phi(t, F_k(t)) \, \mathrm{d}t - \left(c + \int_a^x \Phi(t, F_{k-1}(t)) \, \mathrm{d}t \right) \right|$$

$$\leq \int_a^x |\Phi(t, F_k(t)) - \Phi(t, F_{k-1}(t))| \, \mathrm{d}t$$

$$\leq \int_a^x L |F_k(t) - F_{k-1}(t)| \, \mathrm{d}t \qquad \text{by Lipschitz property}$$

$$\leq \int_a^x L \frac{L^{k-1}M(t-a)^k}{k!} \, \mathrm{d}t \qquad (\text{by inductive assumption})$$

$$= \frac{L^k M}{k!} \cdot \frac{(t-a)^{k+1}}{k+1} \Big|_a^x = \frac{L^k M(x-a)^{k+1}}{(k+1)!}$$

That completes the inductive step. Next, verify $\{F_n\}$ is uniformly Cauchy. Fix $x \in [a, b]$ temporarily.

$$|F_{n}(x) - F_{m}(x)| \leq |F_{n}(x) - F_{n+1}(x)| + |F_{n+1}(x) - F_{n+2}(x)| + \dots + |F_{m-1}(x) - F_{m}(x)|$$
$$\leq \frac{L^{n}M}{(n+1)!}(x-a)^{n+1} + \dots + \frac{L^{m-1}M}{m!}(x-a)^{m}$$
$$\leq \frac{M}{L}\sum_{j=n+1}^{\infty} \frac{(L(x-a))^{j}}{j!} \leq \underbrace{\frac{M}{L}\sum_{j=n+1}^{\infty} \frac{(L(b-a))^{j}}{j!}}_{\text{Tail of convergent series}^{83)} \text{ so } < \epsilon \text{ if } n \geq N}$$

Therefore $\{F_n\}$ is a Cauchy sequence in C[a, b] so $F_n \to F$ uniformly.

 ${}^{82)} = c$ ${}^{83)} \left(\exp(L(b-a)) = \sum_{0}^{\infty} \frac{(L(b-a))^j}{j!} \right)$ Need to prove T is a continuous function

$$\begin{split} |TF(x) - TG(x)| &\leq \left| \int_{a}^{x} |\Phi(t, F(t)) - \Phi(t, G(t))| \, \mathrm{d}t \right| \\ &\leq \int_{a}^{x} L |F(t) - G(t)| \, \mathrm{d}t \\ &\leq L \|F - G\| \int_{a}^{x} \, \mathrm{d}t \\ &\leq L(b-a) \|F - G\| \end{split}$$

So $||TF - TG|| \leq L(b-a)||F - G||$ $\implies T$ is continuous. $T(F_n)^{84} \rightarrow T(F)$ by continuity of TTherefore TF = F. So F solves the initial-value differential equation. Suppose G is another solution to differential equation. Then also TG = G.

$$\|F - G\| = \|TF - TG\| = \|T^k F - T^k G\|$$

$$\leq \|F - G\| \underbrace{\frac{(L(b-a))^k}{k!}}_{\to 0 \text{ as } k \to \infty} \qquad \text{(by similar arguments)}$$

$$\implies \|F - G\| = 0 \implies F = G$$

Actually valid for $\Phi \colon [a, b] \times \mathbb{R}^n \to \mathbb{R}^n$. Example:

$$y'' + y + \sqrt{y^2 + (y')^2} = 0$$

y(0) = a_0, y'(0) = a_1

Let $Y = (y_0, y_1)$ Define $\Phi(x, y_0, y_1)^{85} = (y_1, -y_0 - \sqrt{y_0^2 + y_1^2}) = (y_1, -y_0 - ||Y||)$ $Y'^{86} = \Phi(x, Y) = (y_1, -y_0 - \sqrt{y_0^2 + y_1^2})$

 $\implies y'_0 = y_1$

$$y_0'' = y_1'' = -y_0 - \sqrt{y_0^2 + y_1^2} = -y_0 - \sqrt{y_0^2 + (y_0')^2}$$
$$y_0'' + y_0 + \sqrt{y_0^2 + (y_0')^2} = 0$$

PMATH 351 Lecture 33: December 2, 2009

Global Picard Theorem

 $\Phi: [a, b] \times \mathbb{R} \to \mathbb{R}$, continuous and Lipschitz in y variable. Then the differential equation

$$F'(x) = \Phi(x, F(x)), \qquad F(a) = c$$

has a unique solution. **Example:** $y'' + y + \sqrt{y^2 + (y')^2} = 0$, $y(0) = a_0$, $y'(0) = a_1$ Let $Y = (y_0, y_1)$, and $\Phi(x, Y) = (y_1, -y_0 - ||Y||)$ (*) $Y(0) = (a_0, a_1)$ $Y' = (y'_0, y'_1)$

• Saw if $Y = (y_0, y_1)$ solves (*), then y_0 solves the initial differential equation, and $y_1 = y'_0$. Check if Φ is Lipschitz in Y-variable.

$$\begin{split} \|\Phi(x,Y) - \Phi(x,Z)\| &= \left\| (y_1, -y_0 - \|Y\|) - (z_1, -z_0 - \|Z\|) \right\| \\ &= \left\| (y_1 - z_1, -y_0 + z_0 - \|Y\| + \|Z\|) \right\| \\ &= \left\| (y_1 - z_1, -y_0 + z_0) + (0, -\|Y\| + \|Z\|) \right\| \\ &\leq \left\| (y_1 - z_1, -y_0 + z_0) \right\| + \left\| (0, -\|Y\| + \|Z\|) \right\| \\ &= \left\| (y_1 - z_1, y_0 - z_0) \right\| + \left\| \|Z\| - \|Y\| \right\| \\ &\leq \|Y - Z\| + \|Z - Y\| \\ &= 2\|Y - Z\| \end{aligned}$$

So Φ is Lipschitz in Y-variable.

By Global Picard Theorem, there exists a unique solution to the differential equation.

Reminder: In proof of Picard Theorem, Lipschitz condition was used here:

$$\|F_{k+1}(x) - F_k(x)\| = \left\| \int_a^x \Phi(t, F_k(t)) - \Phi(t, F_{k-1}(t)) \, \mathrm{d}t \right\|$$

Local Picard Theorem

Suppose $\Phi: [a, b] \times [c - \epsilon, c + \epsilon] \to \mathbb{R}$ is continuous, and satisfies a Lipschitz condition in $y \in [c - \epsilon, c + \epsilon]$. Then the differential equation

$$F'(x) = \Phi(x, F(x)), \qquad F(a) = c$$

has a unique solution for $x \in [a, a + h]$, where $a + h = \min(b, a + \frac{\epsilon}{\|\mathbf{\Phi}\|})$.

Proof: Just check that the iterates $F_k(x)$ stay in $[c - \epsilon, c + \epsilon]$, for all $x \in [a, a + h]$, so we can use the Lipschitz property in exactly the same way as in the proof of the global theorem. **Check:** $F_0(x) = c \in [c - \epsilon, c + \epsilon]$

$$|F_{k+1}(x) - c| = \left| c + \int_{a}^{x} \Phi(t, F_{k}(t)) dt - c \right|$$

$$\leq \int_{u}^{x} |\Phi(t, F_{k}(t))| dt$$

$$\leq \|\Phi\| \int_{a}^{x} dt$$

$$= \|\Phi\| (x - a)$$

$$\leq h \|\Phi\|$$

$$\leq \frac{\epsilon}{\|\Phi\|} \|\Phi\|$$

$$\Longrightarrow F_{k+1}(x) \in [c - \epsilon, c + \epsilon], \quad \forall x \in [a, a + h].$$

Continuation Theorem

Suppose $\Phi: [a, b] \times \mathbb{R} \to \mathbb{R}$ is Lipschitz in *y*-variable on each compact set $[a, b] \times [-N, N]$, for all N, then the differential equation $F'(x) = \Phi(x, F(x)), F(a) = c$

either has a unique solution on [a, b]

or there exists $z \in (a, b)$ such that the differential equation has a unique solution on [a, z), and $\lim_{x\to z^-} |F(x)| = +\infty$.

Example: $y' = y^2$, y(0) = 1, for $x \in [0, 2]$

 $\varPhi(x,y)=y^2 {:}$ have Lipschitz condition on every compact set

Solution (by separation of variables) is $y = \frac{1}{1-x}$: get blow up at 1.

PMATH 351 Lecture 34: December 4, 2009

Metric Completion

Definition: Let (X, d_X) be a metric space.

By a completion of (X, d_X) we mean a complete metric space (Y, d_Y) and a map $T: X \to Y$ such that $d_Y(T(x_1), T(x_2)) = d_X(x_1, x_2)$ and T(X) is dense in Y.

e.g.,

- (1) $\mathbb{Q} \subseteq \mathbb{R}$ T = Identity map
- (2) If $X \subseteq X_0$ complete metric space Take Id: $X \to \overline{X}$ to see \overline{X} is completion of X

Theorem: Every metric space (X, d_X) has a completion **Proof:** Fix $x_0 \in X$. Define a family of functions

$$f_x \colon X \to \mathbb{R}$$
 by $f_x(z) = d_X(x, z) - d_X(x_0, z), \quad \forall x \in X.$

e.g., $f_{x_0}(z) = 0 \ \forall z \in X$. Note:

$$\begin{aligned} d(x,y_1) - d(x,y_2) &\leq d(x,y_2) + d(y_2,y_1) - d(x,y_2) \\ &= d(y_2,y_1) \\ \implies |d(x,y_1) - d(x,y_2)| \leq d(y_1,y_2) \\ \text{So } |f_x(z_1) - f_x(z_2)| &= |d(x,z_1) - d(x_0,z_1) - d(x,z_2)^{87)} + d(x_0,z_2)^{88)}| \\ &\leq |d(x,z_1) - d(x,z_2)| + |d(x_0,z_1) - d(x_0,z_2)| \leq 2d(z_1,z_2) \end{aligned}$$

Thus f_x is (uniformly) continuous.

Look at
$$|f_{x_1}(y) - f_{x_2}(y)| = |d(x_1, y) - d(x_2, y)|$$

 $\leq d(x_1, x_2) \quad \forall y \in X$
 $\implies ||f_{x_1} - f_{x_2}|| = \sup_{y \in X} |f_{x_1}(y) - f_{x_2}(y)| \leq d(x_1, x_2)$
But $|f_{x_1}(x_2) - f_{x_2}(x_2)| = |d(x_1, x_2) - d(x_2, x_2)^{89}|$
 $= d(x_1, x_2)$
Therefore $||f_{x_1} - f_{x_2}|| = d(x_1, x_2)$

In particular, $||f_{x_1}|| = ||f_{x_1} - f_{x_0}^{(89)}|| = d(x_1, x_0) < \infty$ so f_{x_1} is bounded for any $x_1 \in X$. i.e., $f_x \in C_b(X) \leftarrow$ complete metric space

Consider the map
$$T: X \to C_b(X)$$

 $x \mapsto f_x$
 $d_{C_b(X)}(T(x_1)^{90}, T(x_2)^{91}) = ||f_{x_1} - f_{x_2}|| = d_X(x_1, x_2)$

Put $Y = \overline{T(X)}$. Y is complete, being a closed subset of a complete metric space. Y is the completion of X.

 $^{^{87)}\}mathrm{arrow}$ from first term

⁸⁸⁾arrow from second term

 $^{^{89)} = 0}$

 $g_{01}^{(90)} = f_{x_1}$

 $^{^{91)} =} f_{x_2}$