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Definition: Two sets A and B have the same cardinality (and write |A| = |B|) if there is a bijection
between A and B.

Say cardinality of A is < cardinality of B (write |A| < |B|) if there is an injection: A — B.
Cardinality is an equivalence relation:
1. |A] = |A] (reflexive) (identity map)
2. |A| =|B| < |B| =|4| (symmetric)
3. |A| =|B| and |B|=|C| = |A| =|C]
ahphc

gof:A—CV

Example: Say A has n elements and |A| = |B|. Here f: A — B is 1-1, onto.
= B has at least n elements, because f is 1-1.
—> B has at most n elements because f is onto.

Thus B has n elements.

On the other hand, if A and B both have n elements then there exists a bijection: A — B.
Say A ={ai,a2,...,an}, B={b1,ba,...,bp}.

Define f(a;) = b;, bijection.

Therefore |A| = |B|.

Example: NCZCQCR

IN| < |Z| < |Q| < |R|

since the embedding maps are injections

f zZ 01 -1 2 -2 3 -3
N1 2 3 4 5 6 7
f:Z — N is a bijection, therefore |N| = |Z|.

Definition: Say a set A is countable if it is either finite or |A| = [N|. Say A is countably infinite if
countable and infinite.

A is uncountable if it is not countable.

e.g., Z is countable.

1>bijection



Countable sets can be written as aq,as,as, ...
Have f: N — A. Put a; = f(j).
Conversely, if there is such a list then just define bijection g: A — N by g(a;) = j.

Q= {p/q :pE€Z,q€eN, (p, Q) Coprime}, |Q| = |N| figure: diagonal
winding through N2
e.g., I[N x N| = |N]

Problem: [R? = |R|

e.g., Any countable union of countable sets is countable. i.e.,

A=JA;  JAl=N|
i=1

then |A| = |N|
Proof:

A; = {agi), agi), a:(,f), ..

={a($,1),a(,2),...}
Proposition: If |A| < |N] then either A is finite or |A] = |N]. figure: diagonal
Corollary: Hence any subset of a countable set is countable. W(ifldi)ng through
al?, ]
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Cardinality
|A| = |B| means there exists a bijection from A to B

|A| < |B| means there exists an injection from A to B

Countable
either finite or cardinality = |N|
eg., N, Z,Q

Proposition: If A is infinite and |A| < |N| then |A| = |N]|.
Lemma: Every infinite subset B of N is countably infinite.

Proof: Claim: Every non-empty subset X of N has a least element.
Why? Pick n € X and look at {k € X : k <n}. This is a finite set of positive integers and has a least
element ki. ki is the least element of X.

B is non-empty so it has a least element, call it b;.

B\ {b1} is non-empty so it has a least element, call it bs.

B\ {b1, b2} is non-empty so it has a least element, call it bs.
Repeat. Produces by < by < by < ---.

Claim: B = {b,},—,

Why? Take b € B. Look at {n € B:n <b}? = {by,by,...,b}
= b, =0

Define f: B — N

} bijection. Hence |B| = |N]|.
b, —n

Proof of Proposition: Have an injection F': A — N.

Let B=F(A) CN.

Note that F': A — B bijection.

2)say k elements



Hence |A| = |B|. Since A is infinite, so is B.
By the lemma |B| = |N|. By transitivity |A| = |N]|.

Example: [0,1) = {z: 0 <z < 1} is uncountable.
Corollary: R is uncountable.

Proof: Assume false.

bijection

0,1) C RSN
injection
injection

= |0, DI < IN| = [[0,1)] = [N])

Proof of Example: Suppose [0, 1) is countable, say = {r;};- .

T =TTl rij € {01,

Let’s write a real number not on this list.

a = .ajasgas - - -

o — 8 ifr;; €{0,1,---,4} )8 ifryp e{0,1,---,4}
YTl i e{5.6,--,9y 0 )1 ifras € {5,6,--,9}

Say a = ry, for some k.

But kth digit of a; does not agree with kth digit of ry so a # ry.

Thus R is a different level of infinity.
IN[=Ro  [R[ =1

(1) Is R the “next level” of infinity?
(2) If A CR, and A is uncountable, is |A] = |R|?
(3) Does there exist a B such that |[N| < |B| < |R|?

Continuum Hypothesis says (2) is yes (and (3) is no).
Answer is independent of set theory axioms.

Given set A, we can define P(A) = {all subsets of A}

eg, A= {Ov l}v P(A) = {0, {0}7 {1}’ {07 1}}
If A has n elements then |P(A4)| = 2"

9}

Cantor’s Theorem: For any set A, |A| <|P(A)| and |4| # |P(4)].

(IP(A)] = 1)

Proof:
Injection: A — P(A)

a— {a}

=

Suppose there is a bijection g: A — P(A): show this leads to a contradiction.
Let B={acA:a¢g(a)}. gla) € P(A), therefore g(a) is a subset of A.

B C A = B € P(A) so there exists z € A such that g(x) = B because g is onto.

Isx € B?
Try yes: say « ¢ g(x) = B: contradiction.
So the answer must be no: Means z € g(x) = B: contradiction.

Either way we get contradiction. So there can be no bijection: A — P(A).

Therefore |A| # |P(A)].

3)countable

if rrg 6{0,1,~~~ ,4}
if i 6{5,6,'“ ,9}



Start with infinite set A
|Al <[P(A)] < [P(P(A)] <---

Notation: Given set A, write 24 = { f: A — {0,1}}
e.g., |A| = n, |24] = 2" = 214

Theorem: |P(A)| = [24]
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24 ={f:A—-{0,1}}
If A has n elements then [P(A)| = 2" and [24| = 2"

Theorem: [2| = |[P(A)| for all sets A
Proof: Need to construct bijection g: P(A4) — 24
Define g(B) = 15
BCP(A)ie, BCA
1 1lifzeB

where 15(z) 0 0ifz¢B
1p € 24

Check g is 1-1 and onto.

First, if B # C then 15 # 1¢ so g(B) # g(C) = gis 1-1
Onto: Take f € 24

PuuB={zecA: f(z)=1} = f(z) =1p(x)

Therefore g(B) = f where g is a bijection.

Schroeder—Bernstein Theorem
If |A| < |B| and |B| < |A| then |A| = |B].
Proof: Given injections f: A — B and g: B — A. figure:
DC =9(f(D)) e
Define Q: P(A) — P(A) = (9(f(E)")

E~ (g(f(B))°

) and
)¢

Want to find a set D such that Q(D) =
First, if £ C F then Q(E) C Q(F') because f( )C f(F) = f(E)° D f(F)°

— 9(F(E)) 2 g(I(F)) = (9(f(E))C C (a(J(F)°))°

Q(E) Q(F)
Let D={ECA:ECQ(E)}.
Take D = Upep B
If E €D then EC D
= Q(E) € Q(D)
Also E C Q(F) C Q(D) all E €D

for
hence D = Jpep £ C Q(D).
So D CQ(D) = Q(D) C Q(Q(D))
therefore Q(D) € D.
So Q(D) € D
Hence Q(D) =D
ie., D= (g(f(D)))€ or D = g(f(D)°).
Now define h: A — B as follows:

h(z) f(x) ifeeD
€Tr) =
g !(x) for z € D® and this is well defined because D¢ C Range g

If x € D€ then z € g(f(D)°).
h is 1-1 since both f|p and g~!|pc are 1-1 and similarly is onto by construction.
Hence h is a bijection and |A| = |B|.



Consequences
1. If A} C Ay C Az and |A;| = |As| then also |As| = |A;].
Proof: Ay &4 Ay —> |Ay| < |As]
N
embedding
A 4, 4,
f
fi As — Ag is an injection = |A3| < |As]
By S-B, |4g| = |As).

2. 1(0,1)] = [[0,1)| = [R|
0,1)C[0,1) CR.
So enough to prove (0,1) and R have same cardinality.
lin

Let f(z) = arctanx by f: R = (=%, %) o (0,1)
ij ij

3. |R| = |2V], another proof that R is uncountable.
Show [[0,1)| = |2M].
Given r € [0,1) write its binary representation

T =.010203 . .. (where a; =0 or 1)
Define f.(n) = a,. Then f,: N — {0,1}, i.e., f,. € 2.

Define &: [0,1) — 2N
r— fr

& is 1-1 because 11 # ro, then there exists n such that nth digits are different, so f,, (n) #
frz(n) = fri # frs-

But @ is not onto because of non-uniqueness of binary representation.

Define A: 2% — [0,1)
f—=.0f(1)0f(2)0f(3)...

A is 1-1, since one of the binary representations of a number with two forms ends with a tail of
1s, and A(f) never has a tail of 1s.

Therefore, by Schroeder-Bernstein, [2V] = |R|.
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Definition of R:
ordered field, 2 Q and which satisfies the completeness axiom: Every increasing sequence that is
bounded above converges.

Given sequence (x,,) bounded above means exists r € R such that z,, < r for all n.

Converges means there exists o € R such that for all € > 0 there exists N such that |z,, — z¢| < € for
alln> N.

Consequence: Archimedian Property: Given any = € R there exists n € Z such that x < n.

Proof: Suppose not. Then there exists a real number r such that r > n, for all n € Z. Consider the
sequence {14), 253, .. .}. This is a bounded above increasing sequence so by completeness axiom it

4)$1
5)$2

figure: arctan

figure: alternate
definition of f, line
between point (0,1)
and r € R, intersects
circle with centre
(0,1) and radius 1 at

f(r)



converges, to say Tg.
Then |z, — 2,_1|% < |20 — 20| + |20 — Zni1] < i + i for n large enough. 1 < %, contradiction.

Example: Use Archimedian property to prove that for real numbers = < y,

dp/q € Q suchthat =z <p/qg<y.

Definition: Given S C R, by an upper bound for S we mean r € R such that if x € S then z < r.
If a set has an upper bound we say it is bounded above.

Example: Z has no upper bound.

Example: S = { 1-— % n=1,2,3,... }, bounded above by 1 (or 2, or, ...), 1 = sup(S)

If a set has an upper bound, then there are infinitely many.

Definition: A least upper bound for S C R is an upper bound for S, call it B, with the property that
whenever A < B then A is not an upper bound for S. Notation: LUB(S) or sup(S).

Similarly define greatest lower bound of S, GLB(S) or inf(.S).

(Exercise) Facts:

1. sup(S) is unique (if it exists)

2. If B is an upper bound for S and B € S, then B =sup S.

3. If ()52, is increasing and bounded above, and if S = {x1, z2, 3, ...} then sup(S) = limy, o0 Tp
4. B =sup(9) iff B is an upper bound for S and Ve > 03z € S such that z > B — ¢

Completeness Theorem: If S C R is non-empty and bounded above then the sup(S) exists.
“no holes” property of R.

Proof: For this proof use notation 27 > S8 to mean z > zVx € S. Since S # 0 so Iy € S. Put
zo =y — 1. Proceed inductively to construct a sequence.

By the Archimedian property and the fact that S is bounded above, there exists Ny € Z such that
zo + No > S. In fact, let’s make Ny the least integer that does this. Ny > 1 since xg +0 =y — 1 and
yes.

Put I :$0+N0712560.

By definition of Ny, zg+Ng—1 fails to be > S. Hence there exists s; € S such that s; > xg+Ng—1 = z7.
Futhermore z1 +1 =29 + No > S.

Choose smallest integer N; such that 21 + N1 /2> S (N; =1 or 2)

Put xo = 1 + (N1 — 1)/2, fails > S.

ie., Jdso € S with s9 > xa. Also 9 +1/2 =21+ N;/2 > S.

Inductively define z,, = x,,—1+(N,—1—1)/n where N,,_; = least integer such that x,,—1 + N,—1/n > S
By construction 3s,, € S such that z,, < s,, but z,, + 1/n > S.

= Npo121 = 211 > 2y

Produces a sequence (z,) that is increasing.

If B is an upper bound for S then z,, < B hence the sequence is bounded above.
By completeness axiom (x,,) converges to say xg.

Claim: z( = sup(S)

1. (x,) increasing, therefore z, < xg, Vn. Say Is € S, s > x¢. Then s — x¢ > 1/N for some N € N
= $>1/N+x9 > 1/N + x,, contradiction. Therefore z( is an upper bound for S.

Dn — (n+1)] =1
DeRr
8)set

figure: real line

figure: (x;) on real
line



2. Show Ve > 0dz € S such that z > zg —e.
Get z,, such that x, > xg — € (since (x,) — zg).
Know ds,, € S with s, > x,, > 29 — €.
By our characterization of sup, ¢ = sup(.S).
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Review:
Completeness axiom: Every bounded above, increasing sequence converges.

Completeness Theorem: Every non-empty subset of R which is bounded above has a LUB or sup.

Definition: A sequence (x,,) is Cauchy if for all € > 0 there exists an N such that for all n,m > N,
|Tn — Zm| < €.
exercise: Cauchy sequences are bounded.

Convergent sequences are Cauchy.

Theorem: (Completeness Property)
Every Cauchy sequence in R converges.
Say R is complete.

Limit Inferior and Limit Superior:
(zy,) bounded sequence.

Consider the sets {x,, Zn41,...}: bounded sets (because entire

. . sequence is bounded)
Let A,, = inf{x,,xn11,...} (exists by completeness)
n=1

(then) A, < A,+1 = (4,)52, increasing sequence.

(and) (4,) is bounded above (UB for original sequence).
By completeness theorem, this sequence converges to

lim A, =supA4,,

n— oo

since increasing.

. . def ;.
Notation: liminf(z,) = limy, 00 A, = sup 4, [also written as:
nh—>H<§o Ap = nli_)II;O(inf{a:‘n, Tnt,---}) [Reason for
terminology lim inf:]
= lim (inf :Cj)
n—oo \j>n

. def ;.
limsup(z,)? = lim (sup{,,Zni1,...})
n— oo
= lim (supxj) = inf(supxj)

lim sup(z,,) > liminf(z,).

Always these exist for bounded sequence.

. _ 1 -1 .
Example: x5, =1+ 50 T2+l = 547 figure: x; on real line
A =14
A2 = I3

As =23 plimA4,, =0 = liminf(z,) =0
Ay = w5
A5 =I5

) Tm(an)



Similarly, lim sup(z,,) = 1.

Theorem: L = lim sup(x,,) if and only if Ve > 0, z,, < L+e¢, for all but finitely many n, and x,, > L —¢
for infnitely many n.

L = liminf(z,) if and only if Ve > 0, x,, > L — ¢, for all but finitely many n, and x,, < L + € infinitely
often.

Problem:
Theorem: A bounded sequence (z,) converges if and only if lim inf 2,, = lim sup z,,, and in this case
the common value is lim z,,.

Proof: (=) Say limz,, = L. This means for all € > 0, there exists N such that
|z, — L| <€, V¥n > N.

ie, L—e<z,<L+e¢ Vn>N.

By our characterization, L = limsup(x,,) = liminf(z,,).

(«<=) Suppose limsup z,, = liminf z,, = L.
We'll see that L = limx,,.
For € > 0, want to find N such that |z, — L| <€, Vn > N.

Since L = limsup x,,, 3N7 such that x, < L + ¢, Vn > Nj.
Similarly, since L = liminf z,,, 3N5 such that z, > L — €, Yn > Ns.

Take N = max(Ny, N2).
ThenVn > N, L—e<xz, < L+¢ Vn>N.
= L =limx,.

Proposition: Every bounded sequence (x,) has a subsequence which converges to limsup(x,) and
(another) subsequence converging to liminf(x,,).

Proof: Let L = limsup z,,. Know for all k, x,, < L+1/k, Vn > Ny, and z,, > L — 1/k, infinitely often.

Construct our subsequence: Pick m; > N;j such that z,, > L — 1/1. Since n; > Nj, we have
ZTn, < L+1/1.

Pick ny > max(ny, N3), such that z,, > L —1/2, and z,,, < L+ 1/2.
Repeat: Pick ny > ni_y such that L+ 1/k > z,, > L —1/k.
Consider the sequence (z,, )52 ;. By construction it converges to L.

Bolzano—Weierstrass Theorem (Corollary): Every bounded sequence has a convergent subse-
quence.
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Metric Spaces

Definition: A metric space is a set X with a metric (or distance function) d with d: X x X — [0, c0)
satisfying

1. d(z,y)=0iffz =y

2. d(z,y) =d(y,x) Yo,y € X

3. d(z,y) < d(x,z)+d(z,y) Va,y,z € X, triangle inequality
Examples:

1. ]Ra d(.’E,y) = |.’E - y|

2. R™, d(x,y) = da((x1, -, 00), (U1, 9n)) = (S0 (s — 9i)?)*

= ||z — y||, Fuclidean metric



3. R27 dl(x7y) = |£U1 - Z/1| + ‘xQ - y2|a dl((lvo)a (07 1)) =2
4. R?, doo(z,y) = max(|z1 — 1, |22 — y2|)
triangle inequality:
21 —y1| < [z1 — 21| + |21 — w1
< doo(,2) + deo(2,y)
Similarly, [z — 32| < doo (¥, 2) + doo (2, )

= doo(@,y) < doo(,2) + doo(2,9)
Think about what {z : d_(x,0) < 1} looks like.

5. X any set, d = discrete metric

6. X ={z=(x1,...,2n):2;=0,1}

e 2 element set
d(x,y) = # indices i where x; # y;

e exercise, e.g., d((0,1,0),(1,1,0)) =1

7. X = {bounded sequence (z,)} =1
vector space
doo (T,Y) = SUP,,[Tn, — Ynl
Example: z = (z,) = (1 —1/n), y = (yn), yn = 1/n
dm(ir?y) = Supn'(l - 1/“) - 1/TL| =1
¢o = {(z,) which converge to 0} C [*°

8. 12 = {(2n)3% : Ylanl” < o0}

o) = (St - y»?)m (,5) = 3w

i=1
Define I, 1 < p <0
P = { (@n) = Y leal’ < oo}
Problem: [' CIP Ccy CI®°, 1< p< o
9. X = inner product space

d(m,y): <1‘—y,$—y>

Topology: (X, d) metric space
Ball (centred at zo with radius 7) in (R?,ds) = {2z € R? : d(z,z9) <r }
Definition: Given metric space (X, d) we let

B(zg,r) ={x € X :d(z,z0) <71}, r>0

ball centred at zg, radius r

Example:
1. nR, ||, B(xg,r)=(xo—120+7)
2. In R?, d;, balls are diamonds

3. X, discrete metric, B(xg,7) = {0} for r <1, B(zg,7) =X for r > 1

figure: oco-norm
square, 2-norm circle,
1-norm diamond



Definition: Let U C X. Say x¢ € U is an interior point of U if Ir > 0 such that B(xg,7) C U.
Write int U for set of interior points of U. Say U is open if every point of U is an interior point of U.

Example:
1. R figure: real line [0, 1)
U=10,1)
intU = (0,1)
Which nonempty intervals are open sets? Open intervals (a, b)

2. () is always open in any metric space
X is always open

3. R? open in all dy,ds, doo figure: open strip in
Problem: Show that the same open sets are produced by di, ds or d. R?

4. X, discrete metric
UCX,intU =U, since if g € U then B(zg,1) = {xq} CU.
Hence every set is open.

Proposition: Balls are open sets.

Proof: Consider the ball B(xg,r) and let z € B(xzg, 1)
Put p=7r —d(zg,2) >0
Reqired to prove: B(z,p) C B(xg,T)
Fix w € B(z,p)
Calculate
d(w, zg) < d(w, z) 4+ d(z,zg)
< p+d(z,zo)
=7 —d(zo,2) +d(z,z0) =71

= d(w,z9) <r = w € B(xo,r)

Hence B(z,p) C B(xg,7), so z is an interior point of B(z,r), and since z was an arbitrary point of
B(xg, ), this proves B(zg,r) is open.
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Ball B(zg,r) ={x € X :d(z,z0) <7} (r >0, 29 € X)
U C X is open if Vu € U 3B(u,r) C U for some r > 0

Proposition: Balls are open sets.
Proposition:
1. If Uy, Us are open then Uy N Us is open.
2. If {U;},c; are open then | J,.; is open.
Proof:

1. Let « € Uy NUsy. Since z € U; and these are open, Ir; > 0 such that B(z,r;) C U;. Let
r = min(ry,r2) > 0 and then B(x,r) C B(x,r1) C B(z,r2) C U NUy
Ui NU; is open

2. If v € J;¢; Ui then Jig € I such that x € Uy,. That set is open so 3r such that B(x,r) C Uy, C

Uiel Ui

= |JU; is open.

10



Example: B(0,1) in R% 2, B(0, 2) = {0}, not open.

This shows an infinite intersection of open sets need not be open.
Proposition: U is open iff U is a union of balls.

Proof: (<=) Any union of balls is a union of open sets, therefore is open.
(=) Since U is open, Yo € U 3B(z,r;) C U.

Claim U = J, ¢y B(z,72)

RHS C U as each B(z,r,) CU

But each € U belongs to B(x,r,), therefore U C RHS

Proposition: int U = Jycy: says int U is the largest open subset of U
open
Proof: Let « € int U. By definition 3r > 0 such that B(z,r) CU.

B(x,r) is an open set in U therefore z € |Jycy V —intU CJ vey V
V open V open
Pickz € J vcy V. Then x € V some V C U, open.
V open
So3dB(z,r) CVCU = zcintU = | vcy VCintV
V open

int(A U B);Z int AUint B
No:
1. (=1,0]U[0,1)

——
A B

int(AU B) = (-1,1)
int A= (-1,0), int B=(0,1)

2. A=Q, B=R\Q
intA=0=intB
int(AUB) =intR=R

Definition: A C X is closed if A° = X \ A is open
Example:

1. R: which intervals are closed sets?

[a,b], [a, 0], (—o0, a], (—oo, 00)

2. X, 0 are both open and closed
3. Q@ C R is neither open nor closed

4. (X,d), {zo} is closed
Proof: Let z ¢ {xo}, i.e., z # xg
Consider B(z,d(z,xg)). Verify that =, ¢ B(z,d(z,xg))

That’s true since B(z, d(z,x9)) = {y : d(y,z) < d(z,20) } and y = xy does not have that property.

Thus B(z,d(z,x0)) € {z0}°. Therefore {z,} is closed.
5. {x:d(x,x9) =10 } is closed
6. Discrete space: Every set is closed (and open)

7. Z, |, Bnr%) = {n}
Every set is open and closed.

Proposition:

1. Any intersection of closed sets is closed.

10y <1

11

[a,b) is not closed
because

(—00,a) U [b, —o0) is
not open as b is not
an interior point.

figure: line between
xo and z

figure: n — 1, n,
n + 1 on real line



2. A finite union of closed sets is closed.
Proof:
1. Let U = N U;, U; closed

UC — (ﬂ Ui)c = U\Ui therefore U is closed

open

open

Definition: A point = € X is an accumulation point'V) of U C X if ¥r > 0, B(x,r) N (U \ {z}) # 0
(i-e., every ball about x contains a point of U other than z)
Equivalently: every open set V' containing x satisfies

VN (U\{z}) # 0.
Equivalently, Vr > 0, B(z,r) N U is infinte.
Take B(:L‘,T): Find u; € B(Z‘J‘) N (U \ {x}) figure: radii around
Consider B(x,d(x,u1)) 3 ug, where ug € U \ {z} point = with u1, ug,
(u2 7& uy, since u; ¢ B(a:,d(a:,ul))) ?s ;ncreasmgly closer
Repeat to find a countably infinite set {u;} C U, with u; € B(z,r).
Example:
1. U = [0, 1) in R figure: [0, 1) real line
1 is an accumulation point of U [but 1 is not in U]
Everything in U is an accumulation point of U. Nothing else.
2. U=10,1)U{2} in R. figure: [0,1) U {2}
2 is mot an accumulation point: called isolated points. real line
PMATH 351 Lecture 8: September 30, 2009
Accumulation point: z € X is an accumulation point of U C X if Vr > 0, B(z,7) N (U \ {z}) # 0.
Example:
1. U=1[0,1)U{2} in R
Accumulation points of U = [0, 1] figure: U on real line
2. Q in R: All points of R are accumulation points.
3. U = B(xg,1) in R? with any of these metrics dy, ds, doo. figures: y on
Take y € R? with d(xg,y) =1 boundard of B(zo,1)

These points are accumulation points in all 3 cases.
Now let U = B(zo,1) in X.

Take y € X with d(zo,y) = 1.

Is y an accumulation point of U?

Not if X is the discrete metric space.

Take B(y,1/2) = {y}: Does it intersect U? No.

4. Any set U in discrete metric space
e No point is an accumulation point since balls of radius r < 1 are singletons
Every point in discrete metric space is isolated.

5. Z: every point is isolated.

1) (cluster point, limit point)
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Theorem: A set U is closed if and only if U contains all its accumulation points.
Corollary:

1. Any finite set is closed

2. In the discrete metric space every set is closed

3. Any set with no accumulation points is closed.

Proof: (=) Assume U is closed. Take = ¢ U and show x is not an accumulation point of U.

x € UC and this set is open. Hence 3r > 0 such that B(x,r) C U®. Thus B(z,r) NU = ().

Therefore z is not an accumulation point of U.

(«<=) Assume U contains all its accumulation points.

Show U€ is open. Take x € UC. By assumption z is not an accumulation point of U. Hence 3r > 0
such that B(z,r)NU =0, i.e., B(z,r) CU®. = U® is open = U is closed.

Notation: A = closure of A = A U {accumulation points of A}

Notes: If A is closed then A=A
If A= A then all accumulation points of A are in A, therefore A is closed.
eg.,Qin R is R.

Theorem:

1. A is a closed set
2. A= osed B
(5 glgspa
Proof:

1. Show that 2% s open.
Let z € ac Then « is not in A and even z is not an accumulation point of A.
Then 3r > 0 such that B(z,r) N A = 0.
Claim: B(z,7)NA={. Say y € B(x,r)N A.
Then y is an accumulation point of A. Since B(z,r) is an open set containing y, it would have to
intersect A. But we know it doesn’t.
This proves the claim.

= B(z,r) CA = A isopen = A is closed

2. exercise

Definition: A C X is dense if A = X

Definition: X is separable if it has a countable dense set
e.g., Q is dense in R and R is separable

Exercise: Show R" is separable for all n

1. X discrete metric space: no proper subset is dense since every set is already closed.

2. If A is closed and dense in X, what is A? (any metric space)

A=A=X
<~ =~

closed dense
Example: ¢ = { ()52,
d(z,y) = Sup, |Tn — yn|
= {(zn) : Ylan| <00} C o
Show ! is dense in cg.
Take x = (x,,) € ¢o and consider B(z,r)

i 2, — 0} C 1% = bounded sequences

13



Pick N such that |z,| <7 for all n > N and put y = (z1,z2,...,2n,0,0,...)
y el

d(z,y) = Sup|xn - yn|
n

= sup Imn - yn|12)
n>N

sup |z, |
n>N

<r
This proves z € [1. Therefore ! is dense in .
Definition: Bdy A = AN AC
1. Ball in R?: our “usual” understanding of boundary
2. Bdy Q' =R

3. Bdy A, where A C X discrete metric space: A = A, AC = AC
therefore AN A€ = AN A® =)

PMATH 351 Lecture 9: October 2. 2009

Bounded in R":
A CR™: say A is bounded if 3M such that ||z|| < M Vz € A
<~ ACB(0,M) [figure]

Definition: A C X is bounded if 3zo € X and M such that A C B(zq, M)
<= Vz € X IMx such that A C B(z, Mx)

(B(zo, M) C B(x, M + d(zg,x)))

Discrete metric space X:
X C B(xg,1+¢) for any € >0
X is bounded

Sequences in metric spaces:

Recall definition of convergence of (x,,) in RV
dxg € RYN

Ve > 0 dM such that Vn > M

|zn — zo||*® < €

Definition: Say (z,,) in X converges if 3z¢ € X such that Ve > 0

AN with d(zp,x0) <eV¥n >N

ie., x, € B(xg,e) Vn > N

Equivalently, the sequence of real numbers (d(x,,,z())32,; converges to 0 in R.

Proposition: (z,) — x if and only if V open set U containing xg, AN such that x,, € U Vn > N.

Proof: (=) Let U be an open set containing
Je > 0 such that B(xg,€) C U (because U is open)
Since x,, — xo 3N such that x,, € B(zg,€)'® Vn > N

Thus z,, € U Vn > N

(«<=) B(zo,¢) is an open set containing xg.

12)gince Ty =yp foralln < N
13)g R

4) = d(xna .1’())

15)g U
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Exercise: Limits are unique.
Convergent sequences are bounded, i.e., {x, :n=1,2,...} is a bounded set.

Example: What do convergent sequences in discrete metric spaces look like? Must have x,, = xq
Vn > N for some N

Proposition: = € F iff z = limz,, where z,, € F

Proof: © € E iff Vn B(z,1/n) NE # 0

(=) If z € E pick x, € B(x,1/n) N E: Then (x,) is a sequence in F converging to z.
(<=) If &, — x then Ve > 0, B(z, €) contains all z,,'9, for n > N

= B(z,e)NE#0,Ve>0

= xzck

Cauchy sequence: (z,) is Cauchy if Ve > 0 AN such that d(z,,zn) < € ¥n,m > N

Exercise: Every convergent sequence is Cauchy.
If a Cauchy sequence has a convergent subsequence, then the (original) sequence converges to the limit
of the subsequence.

Example: X = Q, ||

Take z,, € Q, x,, = V2 in R.

(z,,) is a Cauchy sequence in Q.

But it does not converge (in metric space Q).

Definition: We say X is complete if every Cauchy sequence in X converges.
e.g., R™ is complete

Q is not complete.

Discrete metric space is complete.

Proposition: Any closed subset E of a complete metric space is complete.

Proof: Let (x,) be a Cauchy sequence in E

It’s also a Cauchy sequence in X. Hence dzy € X such that lim x,, = zg.
By previous proposition g € E = E as E is closed.

Therefore (x,,) converges in E.

Compactness:

Definition: An open cover {G,} of a set X is a collection of open sets whose union contains X.

By a subcover of an open cover, {G,}, we mean a subfamily of the G,s whose union still contains X.
Definition: We say X is compact if every open cover of X has a finite subcover.

Example: R: not compact
{(=n,n) : n € N}: open cover with no finite subcover
X infinite discrete metric space: not compact, the open cover by singletons has no finite subcover

PMATH 351 Lecture 10: October 5, 2009

Definition: A C X is compact if every open cover of A has a finite subcover.
e.g., R not compact: {(—n,n) :n € N} is an open cover with no finite subcover.
e.g., (0,1) not compact: {(1/n,1—1/n):n=2,3,...}

e.g., X any metric space

A ={ay,...,an} any finite set is compact

Proof: Let {G,} be an open cover of A

For each j = 1,..., N there exists G, from the collection such that a; € G,. Then G, ,...,Gq, are
a finite subcover of A.

e g
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e.g., X discrete metric space. Then A C X is compact if and only if A is finite.
e Saw on Friday that infinite sets in discrete metric space are not compact: just take { B(a,1) :a € A}

Characterization of compactness in R™:
Theorem: For A C R" the following are equivalent:

(1) A is compact

(2) Ais closed and bounded!”

(3) Every sequence from A has a convergent subsequence with the limit in A'S)
Heine-Borel Theorem does not hold true in general metric spaces.

Proposition: Compact sets in metric spaces are alwasys closed.
Proof: Let K be a compact set. Want to prove K is open.
Let z € KC.

For all y € K there exists 7, > 0 such that

B(z,ry) N B(y,ry) =10

Consider { B(y,ry) : y € K }: open cover of K

K is compact so there exists a finite subcover,

i.e., there exists B(y1,7y,), ..., B(yn,ryy) such that
N
U B(yj,ry;) 2 K.
j=1

Let r = min(ry,,...,7yy) > 0.

Claim B(z,r)N K = 0.

Say z € B(x,r) N K. Then there exists j € {1,..., N} such that z € B(y;,r,,). So z € B(z,r) N
B(y;,ry,), but B(z,r) C B(x,ry,), i.e., z € B(x,r,,) N B(y;,ry,,) = 0 by construction.

Contradiction. Hence B(z,7) C K¢ = K€ is open <= K is closed.

Proposition: Closed subsets of compact sets are compact.

Proof: Let F be a closed subset of compact set X.

Take an open cover {G,} of F.

Then the collection of sets G, together with the open set FC is an open cover of X.19)
Let Gu,y ..., Gay, (F€)?% be a finite subcover of X.

) N

Then G,,,...,Gq, must cover F.
So the open cover {G,} of F has a finite subcover.

Hence F' is compact.

Proposition: Compact sets (in metric spaces) are bounded.
Proof: Let K be compact set and let 2y € K.

Consider all balls B(zg,n), n=1,2,3,...

If k € K then d(zg, k) < ng for some large enough integer ng
i.e., k € B(xg,ng). Therefore

ke U B(zg,n)
n=1

— K C

(@

B(zg,n)

n=1

17)(1) and (2): Heine-Borel

18)(1) and (3): Bolzano-Weierstrass
O JG,UFC D FUFC =X

20) (because X is compact)
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Hence { B(zg,n) : n=1,2,...} is an open cover of K.

Since K is compact there must be a finite subcover, say B(zg,n1),..., B(zg,nr).
Say ny = max(ny,...,nr)

Then B(zo,nr) 2 B(zg,n;) for j=1,2,...,L

— K C B(zo,nz) = Uy B(zo,nj)

Hence K is bounded.

Definition: e-net: for A C metric space X is a finite set x1,...,2z, € X such that every element of A
has distance at most € from at least one z;.

i.e., for all a € A there exists j € {1,...,n} such that d(a,z;) <e.

If take € > e then J]_, B(z;,¢) 2 A.

Definition: Say A is totally bounded if for all € > 0 there exists e-net for A.
e.g., X discrete metric space.

There is a 1-net (consisting of one element)

But no 1 — € net if X is infinite.

So if X is infinite it is not totally bounded.

Proposition: Totally bounded = bounded.

Proof: Take a 1-net for the totally bounded set A, say x1,...,Tk.
= Uj_i B(e;,3/2) 2 4

Take B(fl,szlland($1,$j) +1+3/2) D B(xj,3/2) for all j.

T

Then A C B(x1,7)

PMATH 351 Lecture 11: October 7, 2009

Totally bounded
e-net: for a set A C X is a finite set {x1,...,2,} C X such that for all 2 € A there exists j such that
d(zj,a) <e.

Totally bounded means A has an e-net for all € > 0.

Totally bounded = bounded.

Bounded =& Totally bounded: as discrete metric space is bounded, but not totally bounded.

Example: A = Ball in R? figure: circle with

e-grid
Take the set of bottom left corner points from the squares of the e-grid that intersect the ball A. Call

this finite set {x1,...,2n}.

B(xj,V2¢) D square that z; is a corner of

So Uy, B(x;,v2€) 2 A
hence {z1,...,2x} are an v/2e-net for A. — A totally bounded.
Same idea works for a ball in R".

Fact: If U C V and V is totally bounded, then U is totally bounded.
Proof: Take same e-net for U as for V.

Proposition: In R”, bounded = totally bounded.
Proof: A bounded set is a subset of a ball, and balls in R™ are totally bounded.

Proposition: Compact = totally bounded

Proof: Let A be compact. Consider { B(x,¢€) : © € A}. This is an open cover for A, so there is a finite
subcover, say B(z1,€),...,B(zn,€), i.e., U] B(zj,€) 2 A

= {z1,...,2,} are an e-net for A.

17



Exercise: A bounded = A bounded.

Proposition: A totally bounded, then A is totally bounded.

Proof: Let {z1,...,2,} be an e-net for A.

Given z € A, there exists a € A such that d(z,a) < e.

3j such that d(z;,a) <€

Therefore d(z, ;) < d(z,a) + d(a, z;) < 2¢

So {z1,...,7,} are an 2e-net for A.

Goal is to prove metric spaces are compact if and only if it is complete and totally bounded.

Note: For A CR", A is complete if and only if A is closed
Proof:

1. In any metric space complete implies closed because of the following argument. Let x be an
accumulation point of the complete space A. Get {a,} C A such that a, — x. Then (a,) is a
Cauchy sequence in the complete space A. By definition of completeness there exists a € A such
that a,, — a. By uniqueness of limits, x = a € A.

Therefore A is closed.

2. Any closed subset of a complete metric space is complete. In particular, any closed subset of R"
is complete.

Theorem (Cantor’s): If A1 O As O --- are non-empty, closed sets in a complete metric space X and
diam A,, = sup{d(z,y) : z,y € A, } =0,

then (N~ A, is exactly one element.

e.g., To see “closed” is necessary, take A, = (0,1/n). Here 2, A, = 0.

Proof: Pick z, € A,. If k > N, then 2, € Ay C Ay. So {zp:k>N} C Ay = d(zj, 1) <
diam Ay if 7,k > N.

i.e., {x,} is Cauchy and therefore converges?!) to some zo € X. Consider the subsequence (z,,)3% 5 C
Ap and has the same limit xg. But Ay is closed, therefore xg € Ay. This is true for all N, therefore
o € ﬂ?:l Apn.

Now suppose Zg, Yo € [)r—; An.

Then xg,y0 € Ay, for all n, so d(zg,y) < diam A,%? for all n.

= d(w0,90) =0 = 7o = yo.

Definition: A collection of sets has the F.I.P. (finite intersection property) if every finite intersection
is non-empty.
e.g., nested family of sets.

* Theorem: The following are equivalent for a metric space X:
(1) X is compact.
(2) Every collection of closed subsets of X with the F.I.P. has non-empty intersection.
(3) Every sequence in X has a convergent subsequence (limit in X)??)
(4) X is complete and totally bounded.
Corollary: (Heine-Borel): In R”, compact <= closed and bounded.

Corollary: compact = closed and bounded.
(since complete = closed, and totally bounded = bounded).

PMATH 351 Lecture 12: October 9, 2009

2D 5 0as N — oo
22) 50
23)(1) and (3): Bolzano-Weierstrass Theorem
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figure: open sets on
real line



Theorem: The following are equivalent for a metric space X:
(1) X is compact
(2) Every collection of closed subsets of X with the F.I.P. has non-empty intersection.
(3) Every sequence in X has a convergent subsequence (limit in X)
(4) X is complete and totally bounded

1 <= 4: Analogue of the Heine-Borel
1 <= 3: Bolzano—Weierstrass Theorem

Cantor’s Intersection Theorem
If Ay O Ay O A3 O --- are non-empty, closed subseteq of a complete metric space X and

diam A,, = sup{d(z,y) :z,y € A, } =0

then ()~ A, is one point.

Proof: (4 = 1): Suppose X is not compact. Say {U,} is an open cover of X that has no finite
subcover.
Notation: D(zg,r) ={x € X : d(z,z9) <r}
Exercise: closed set
1 (1)}

X is totally bounded so there is a 5-net for X, say {xgl), R

Since there are only finitely many closed balls D(z;", 5), j = 1,...,n, needed to cover X, at least one
of these balls cannot be covered by only finitely many Ul,.

Say D(mgl), ) = Xo: closed set.

Notice diam Xg =1 = 2%

Xy C X so Xj is totally bounded.

Let {m?), . 7365122)} be a +-net for Xo.

Hence J;2, D(m§-2), 1) N Xo = Xo.

At least one of the sets D(z§2), i) N X is not covered by only finitely many U,,s,

say D(x?), 1) NXo =Xy,

X1?Y C Xo, diam X; < 1 =%
Repeat to get closed sets Xg 2 X1 D X9 D ---

diam X; < 2% and each set X; cannot be covered by only finitely many Ul,.
Each X is non-empty (else could cover with finitely many U,s).

By Cantor’s intersection theorem,

1721) 1

ﬂ X, ={x0} (singleton)
n=1

Since |JU, = X, there exists ag such that zg € U,,.

As U,, is open there exists € > 0 such that B(xg,€) C U,,.

Take n such that 2% < € and consider X,,, diam X,, < 2% If y € X,, then because zg € X we have
d(xo,y) < diam X, < 2% <e = y € B(xo,e).

So X,, C B(xg,€) C Usy,-

Hence X, is covered by only one set U,,: contradiction to choice of X,,.

Thus X must be compact.

24) closed
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(1 = 2): Recall the sets {U,} have the FIP if any finite intersection of these sets is non-empty.

Let {An} be closed subsets of X and suppose [, Ao = . We will prove some finite intersection is
empty.

AS: open sets

(UAS)C =NAa =0

— UAS:X

hence the sets { A} are an open cover of X.
By compactness (1) there exist infinitely many sets

C
AC ..

. Acn such that U Agi =X

«
=1

n n C
= ﬂAai:(UAi) =0
i=1

i=1

(2 = 3): Let (z,) be a sequence in X.
Define S,, = {zx:k>n}
Sp: non-empty, closed, S,, C S,,_1

Exercise: ACB = ACRB

ﬂf[ Sk = Sn, hence any finite intersection is non-empty. Therefore {S,} has FIP.

By assumption (2), (o, Sy, # 0. Say 2 € ;°S,, = z € S, for all n. So given any € > 0 and any n,
there exists y, € S, such that d(z,y,) < e. Note y,, = x for some k > n.

Start with n =1, e = 1. Get y; € Sy such that d(z,y1) < 1, say y1 = T, -

Taken:kl—kl,e:%.

Find y,, € S, such that d(z,y,) <
Yn = Tk, With ko >n > k;
Repeat with n = ko 4+ 1, e = % and get xy, such that d(zk,,x) < i and k3 > ko.
This produces ky < kp < ---, and terms xy; such that d(zy,,x) < 27—1_1

{z, };)il is a subsequence of {x,}, and clearly x), — z.

Hence the sequence (z,) has a convergent subsequence.

PMATH 351 Lecture 13: October 14, 2009

Theorem: The following are equivalent

1
2

1. X is compact
3. Every sequence X has a convergent subsequence (limit in X)
4. X is complete and totally bounded

To finish the proof do (3 = 4)

(i) Prove X is complete.
Let (z,,) be a Cauchy sequence in X.
By assumption (3), (z,) has a convergent subsequence. A Cauchy sequence with a convergent
subsequence converges.
—> X is complete.

(ii) Prove X is totally bounded.
Assume not. Then for some € > 0 there is no e-net.
Take 1 € X. Then {1} is not an e-net.
So there exists x5 € X such that d(z1,z2) > €.
Consider {z1,x2}: not an e-net.

20



So there exists z3 € X such that d(z1,x2) > € and d(x2,z3) > €.

Repeat: Get {z,}, ., such that d(z,,z;) > eforall j =1,...,n—1, ie., d(z;,x;) > € for all
1% ],

This sequence has no Cauchy subsequence, so no convergent subsequence: contradicting assumption
(3).

Example: Cantor Set C [0, 1].

e compact, empty interior
perfect — closed set in which every point is an accumulation point.

Construction: Cjy = [0, 1]
C1 = [0,3]U[2,1] Cz = union of 4 = 2% intervals of length § = 5> figures of Cp, C1, C2
C,, = union of 2™ closed intervals, each of length 37" with gap between any two intervals > 37"

C, is closed C [0, 1], therefore compact.

Cn g Cn—l
Cantor set C = (17—, Cy: closed C [0, 1], therefore compact.
0,1€C. %, %, %, %, ... € C: C contains all endpoints of Cantor intervals.

Empty interior: Say I = (a,b) C C.

— [ C C, for all n.

Pick n such that 37" < b—a = |I|.

But then I ¢ C,, since the longest intervals in C,, are length 37".
— contradiction

Perfect: Let g € C. Fix ¢ > 0.
Pick n such that 37" < e.
zg € C, = x¢ lies in a Cantor interval of step n, of length 37".

a,beC o between a and b,
d(mm a), d(x(h b) <3 "<e in an interval of
Hence B(zg,€) N (C \ {x0}) is non-empty. length 37"

Since B(zg,e) N C 2 {a,b}

Proposition: A non-empty, perfect set E in R* is uncountable.

Proof: E must be infinite since it has accumulation points.

Assume E = {z,},_, (i.e., E is countably infinite)

Put kl =1.

Look at B(xg,,1) = B(z1,1) = V1: open set containing ;.

Since x; is an accumulation point of E; there exists e € Vi \ {z1}, e € E

Pick least integer ko > k1 such that xx, € Vi N E, zp, # i,

Pick V, open, contains x, and satisfies Vo C V4 and Tg, ¢ Vs. figure: zy, in Vi and
(e.g., Va = B(ak,,r) where r = £ min(d(zy,, T, ), 1 — d(zp,, T1,))) Ty In V2
Consider Vo N E'\ {zx, }: non-empty

Pick minimal k3 such that xp, € Vo N E \ {xk, }.

By construction k3 > ks. Tk, ¢ V3

Assume we have chosen 3, € ENV,,_1 \ {zg,_,} with k, > k,,_1 and minimal; open sets V;, 3 zy,,.
Vi CVyoq and @y, _, & V.

As i, is an accumulation point of E, we can choose k,41 minimal such that
Then ko1 > kn.

Get V,,41 open such that V,, ;1 C V,, and 2y, & Vi1

eV, ﬁE\{azkn}.

n+1

Put K,, =V, N E*
CVoaiNECV, 1 NE=K,

so K1 2Ky D ---

25>non-emp‘cy, closed
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K, C K1 C B(o,1)%.
Since nested, have FIP. By characterization of compactness (2), (-, K, # 0.

Now, x1 ¢ Vb, therefore x1 ¢ (K,; xo ¢ Vi, therefore xo ¢ (K,. =k, ¢ V3, therefore z, ¢ () K,.

Toq1 ¢ Va, ...; xp, € Vjq1, therefore zp, & () K.
= x; ¢ () K,, for any j, and K,, C E.
Therefore () K,, = (): contradiction.

PMATH 351 Lecture 14: October 16, 2009

Midterm: Friday October 23 here at 1:30.
Up to end of compactness.

Not proof of 1) Schroeder-Bernstein, 2) Perfect set in R* are uncountable.
Continuity: f: X — Y, X, Y metric spaces
Definition: Say f is continuous at xzy € X, if for all € > 0 there exist § > 0 such that whenever
dx (zg,y) < 6%7 then dy (f(zo, f(y))) < €.
Say f is continuous if it is continuous at every point of its domain.
Examples:
1. Constant functions are always continuous.
2. Identity map: X — X. Take 6 =e.
3. Identity map: (R,usual metric)??) — (R, discrete metric)>?)

e not continuous
Take € < 1, then By (Id(x0)?"),€) = {x0}.
So to have Id(y) = y € By (zo, €) means y = xo.
But for all § > 0, Bx(xq,d) contains infinitely many points.
So it contains some y # xo. But then Id(y) ¢ By (Id(zo), €).

4. If x¢ is not an accumulation point of X then any f is continuous at zg.
Proof: If § > 0 is small enough as B(zg,d) = {0}, then clearly if y € B(xg,0) then f(y) €
B(f(zo),€) for all e > 0
Corollary: If f: X — Y where X is the discrete metric space then f is continuous.

5. (X, d) any metric space and a € X.
Then f(z) = d(a,z) is continuous, where f: X — R.

Proof:
f(@) = f(y) =d(a,z) — d(a,y)
S d(aa y) + d(l’, y) - d(a7 y) = d(an y)
f(y) — f(z) <d(z,y)
= |d(a,2)* — d(a,y)*¥| < d(z,y)
So take § = e.

26>compa,ct in R*
21y € B(wo,9)

28) f(y) € B(f(x0),¢)
29) x

30)y
31) 20
52)= f(x)

3= f(y)
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Proposition: f is continuous at z if and only if whenever (z,) is a sequence in X converging to x;
then the sequence (f(x,)) converges to f(z).

Proof: (=) Let x,, — x.

Take € > 0. Get d by continuity so that d(z,y) <e¢ = d(f(z), f(y)) <e.

Get N such that d(z,,z) < 0 for all n > N.

Take n > N, then d(f(x,), f(x)) < € by definition of N and 4.

(«<=) Suppose f is not continuous at z. Then there exists ¢ > 0 such that for every ¢ > 0 there exists

y = y(6) with d(z,y) < & but d(f(z), /(1)) >
Take 6 = 2 and put z,, = y(1).
Then d(z,z,) < 1, s0 z, — .

But d(f(z), f(zn)) > € = f(zn) A f(z)

Contradiction.
Exercise: f,g: X — R continuous then so are f £+ g, fg, /g if g(z) # 0.

Alternate way to look at continuity:
f continuous at xg if and only if for all € > 0 there exists 6 > 0 such that

f(B(x0,0)) € B(f(x0),€)

if and only if B(zg,8) C f~13(B(f(x0),¢)), where f~1(v) = {z: f(x) € V'}.
= xp € int f7H(B(f(20),€))

Theorem: The following are equivalent: for f: X - Y
1. f is continuous
2. for all V open in Y, f~1(V) is open in X.
3. for all F closed in Y, f~1(F) is closed in X.

Proof: (1 = 2): Let V be open in Y, and suppose zq € f~1(V), i.e., f(zg) € V.
Hence there exists € > 0 such that f(B(xo,d)) C B(f(xo,€)) C V.
By continuity, there exists 6 > 0 such that f(B(zo,9)) C B(f(z0),€) C V.
= B(%0,6) C f~ (V) = =z is an interior point of f~*(V)
= [}V is open.
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Continuity
f: X = Y is continuous at x if Ve > 0 3§ > 0 such that f(B(z,d)) C B(f(z),e) < B(z,d) C

fHB(f(2),6))

Theorem: f: X — Y. The following are equivalent:
1. f is continuous
2. VV open in Y, f~1(V) is open in X.
3. VF closed in Y, f~1(F) is closed in X.

Proof: (1 = 2): v

(2 = 1): For each x € X, check that f is constant at x.
Put V = B(f(z),€): openinY

By (2), f~X(B(f(x),¢€)) is open in X.

x € fH(B(f(z),€)) so since the set is open there exists § > 0 such that B(z,d) C f~Y(B(f(z),€)),
i.e., f is continuous at = € X.

34>preimage
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(2 = 3): Let F be a closed set in Y.
FC is open set in Y. By (2), f~}(F°) is open in X.
FrE)={aeX fl@)eF}={a: fla) ¢ Fy={z:ag [I(F)}=X\f'(F)=((F)°

—_——

open

= f71(F) is closed

Corollary: If f: X - Y, g: Y — Z, continuous then go f: X — Z is continuous.
Proof: Let V C Z be open. (go f)~ (V) ={xz:9(f(z)) eV}
= flx)eg M (0) <= ze fHg (V)
——
open
— open as f, g are continuous

Examples:
1. f:(0,1) >R
ri—1
2. f: cl(%%ed - (_g’ g)

onto open set

f(x) = arctan(z)
3. f:(-%,3)—~ R

onto
f(z) =tanz
Theorem: Let f: K — X be continuous and K compact. Then f(K) is compact.
Proof: Let {U,} be an open cover of f(K).
Then f~'(U,) are open because f is continuous.
If » € K, then f(z) € f(K) so f(z) € U, for some a = =z € f~1(U,). Hence {f~1(U,)} form an
open cover of K.
Since K is compact there is a finite subcover, say f~1(Ua,), ..., f 1 (Ua,)-
Then U,,,...,U,, are a finite subcover of f(K) because if f(x) € f(K) for some z € K then
x € f~Y(U,,) (since these cover K), i.e., f(x) € U,,.
Hence f(K) is compact.

Corollary: (E.V.T.) If K is compact and f: FF — R is continuous then f attains minimum and
maximum values.

Proof: f(K) is compact in R, i.e., closed and bounded.
Let a = sup f(K) and b = inf f(K)

a,b € f(K) since it is closed,

i.e., Iy, 22 € K such that a € f(xy1), b= f(x2)

Corollary: If f: K — R is continuous, K compact and f > 0 on K then 36 > 0 such that f(z) > o
Vr € K.

Proof: Take 6 = f(x1) where f(z1) = minimum value of f on K.

Corollary: If f: X — Y continuous bijection, X compact, then f is a homeomorphism, i.e., f~! is
also continuous.

Proof: (f~1)"1(F3%) = f(F)

Let FF C X be closed. But X is compact, therefore F' is compact.
Here f(F) is compact and hence closed. Thus (f~!)~1(F) is closed, so f~! is continuous.

Example:

f:1]0,27) — boundary unit ball in R?
t — (cost,sint)

35) closed
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figure:

xhyS%zcv

and g~ 1(v) takes V
to Y and

F (g™ (v)) takes Y
to X

open does not
necessarily go to
open

closed does not have
to go to closed

bounded =4
bounded

(exist as f(K) is

bounded)

fliy - X C
F — Y
(f=1H(F)



e bijection
e continuous

But f~! is not continuous
f_l(lv 0) =0,
but f~1(cos(2m — €),sin(27 — €)) = 27 — €.

Uniform Continuity

Definition: f is uniformly continuous if Ve > 0, 30 > 0 such that if d(z,y) < §, then d(f(x), f(y)) < e.

Note: Uniform continuity = continuity; but not conversely.
Example:
1. f(z) =1 on (0,1) is continuous, but not uniformly continuous.
2. f(z) = 22 on R is continuous, but not uniformly continuous.

Example 1: Prove it is not uniformly continuous.
Take e = 1. Suppose § < 1 worked.

Take x = %, y= % Then d(z,y) < 0.

But |f(x) = f)| = |2 - 4= 2>1=¢,
Example 3: f: [a,1] = R (a > 0)

f(z) = 1: Is uniformly continuous.

ly — x|
< >

<5 <e

5
a?

1 1] |y—=
r oyl

Take § = ea?.
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Proposition: Let X be compact and f: X — Y continuous. Then f is uniformly continuous.

Proof: Let € > 0. Vz € X 35, > 0 such that if d(z,y) < d, then d(f(z), f(y)) < e.

Look at { B(x,d,/2) : © € X }: open cover of compact set X.

Take a finite subcover, say B(z1,0z,/2),...,B(zn, 0z, /2)

Let § = min(dy,/2,...,05,/2) >0

Suppose d(x,y) < . There is some ¢ such that © € B(x;,0,,/2) = d(z,2;) < 04,/2 < 0, so by
choice of d0,, d(f(x), f(z;)) < e.

Calculate d(y, z;) < d(y,z) + d(z, ;) < 8z,/2+ 04, /2 = 0s,

— d(f(y), f)) < e

Hence d(f(x), f(4)) < d(f(@), f(2:)) + d(f (). f(a:) < e+ €= 2e

= f is uniformly continuous.

Connectedness:

Definition: X is not connected if X = U UV where U, V are both open and non-empty and U NV = {).

Note U® =V and VC = U, therefore U,V are closed also.

E C X is connected means E # (ENU)U(ENV) where U,V open in X, ENU, ENV are disjoint
and ENU, ENV are both non-empty.

Example:
1. E=(0,1) U (2,3): not connected
2. Q= (QN(-,v2) U(QN (V2,))

3. X: discrete metric space: only®® singletons are connected
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[i.e., d is independent
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4. [a,b] in R is connected.
Suppose not, say [a,b] = (U N [a,b]) U (V N[a,b]), U, V open, U N [a,b] and V N [a,b] disjoint,
U N a,b], V N [a,b] non-empty
Without loss of generality b € U N [a,b]. Let t = sup([a,b] N'V)
([a,b] N V)€ = (—o0,a) U (b,00) UU: open: [a,b] NV is closed
t€fa,b]NV ¢+ bsince b€ UNa,b] and the two sets are disjoint.
t <b Sobecause V is open 30 > 0 such that t+d €V and t+6 < b
= t+ 46 € VNja,b]: contradicts definition of ¢ as sup V N [a, b]

Proposition: If X is connected and f: X — Y is continuous then f(X) is connected.
Proof: Suppose not, say f(X)= AU B, A, B open, disjoint and non-empty
f7HA), fHB)
e open as f is continuous
e non-empty as A, B are non-empty
e disjoint because A, B are disjoint
X =f"YA)UfYB)as f(X) = AU B: contradicts assumption X is connected

Path Connected
X is path connected if Vo # y € X there exists an interval [a,b] and continuous function f: [a,b] — X
such that f(a) =z, f(b) = v.

Proposition: path connected implies connected figure: path between
Proof: Say X = AU B, A, B open, disjoint and non-empty. z and y in set X
Let z € A, y € B. Let f: [a,b] = X be a path from z to y.

f([a,b]) is connected as f is continuous and [a, b] is connected
I

(fla,b] N A) U (fla,b] N B)
Mm m
T Y

(as fa) =)  (f(b) =)

so these sets are non-empty and disjoint because A, B are disjoint
contradiction

Example: of a connected set that is not path connected

1
X = { (x,sm;) tx > 0} U {(0,0)}
figure: graph of X
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Example: X = { (z,sin2):2 >0} U{(0,0)}

=F

Show X is connected, but not path connected. graph of sin 1 for
X=F z>0

Proof outline:

1. E path connected = FE connected = 37 E connected

2. X is not path connected

36) (non-empty sets?)
37) exercise
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1. E path connected
Let (x1,sin %1)7 (x2,sin ?12> € E (x1,22 > 0)

Define f: [0,1] = F

1
tr—>(t + (1 — )2, si —)EE
(e s T )
>0
f continuous on [0, 1]
f(1) = (z1,sin i), f(0) = (z2,sin i) — F is path connected
2. X not path connected
Prove no “path” joining (0,0) to (1,0)
Suppose f: [a,b] = X is a path with f(a) = (0,0), f(b) = (£,0)
Claim: ) ) )
ﬂ-a]-)a <ﬂ-al>7"'7 (7‘-71) € f[a7b]
<52 7 5 + 2k
keN
Note: f[a,b] is connected as f is continuous and [a, b] is connected.
Suppose without loss of generality (ﬁ, 1) ¢ fla,b].
2
Then
3(3,0) 5(0,0)

fla,b] = (f[mblﬂ{(””’y):”%}) ’ (f[a’b]m{(‘””’y):“%})

because only (x,y) € X with z = <= is the point (i, 1) ¢ fla,b]
2 2
e this contradicts the fact f[a,b] is connected
Also fla,b] is compact.
(oo}
The sequence {(ﬁ, 1)} is Cauchy and therefore converges as fla, b is complete.
2 k=1

Hence (0,1) € fla,b] C X.
But (0,1) ¢ X so contradiction.

Finite Dimensional Normed Vector Spaces over R (or C)
Norm on a vector space:
1. Jv]l > 0 and ||v|| = 0 if and only if v =0
2. ||av|| = |a||v]| for all a scalars, v € V
3. ||v1 + v2] < o1l + ||v2]| for all v1, vy € V
Norms always give metrics by d(x,y) = ||l — y||
Example: Space of polynomials on [0, 1] of degree <n
L [pllee = maxgefo,ulp(z)]

2. |lpll, = J Ip(x)] dz

Theorem: Suppose V' is a finite dimensional normed vector space over R with basis {vy,...,v,}. Then
there exists constants A, B > 0 such that for all (aq,...,a,) € R™

n
Alar,- - an)llgn < Y aiwi|| < Bl an) g
i=1
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Given any v € V there exists exactly one (ai,...,a,) such that v = > ] a;v;. Theorem says

Hala s 7an||R" ~ ||UHV

Proof:
n
HZ a3V
i=1

< llawilly
v =1
= lailllvilly,
1=1
n 1/2 n
< (Llt) " (Lht?)
=1 i=1
n 1/2
= |(a1,...,an)||lgn B where B = (Z|vi||2>
i=1

1/2

Define F': R™ — R by

n
F(ay,...,an) = HZaivi
i=1

Check F' is continuous:

F(z) - F(y) = Hzn:xivi - Hzn:ywi

< Hzx'w—zyivi +szivi
|-

Similarly F(y) - F(a) < |X(z: — yiJvil
— |F(@) - Fy)| < |} (@i -

< s — il il

< (Sl —ul?) " (St?)

= Bz — y|lg~ B
= Bd(z,y)

- szzvz

— F' is continuous
Restrict F'to S={zeR":|z| =1}

F(z)=0 < z=0
In particular, if x € S then F(z) > 0.
S is compact. By Extreme Value Theorem there exists ¢ > 0 such that F(x) > ¢ for all z € S
Take any a = (ay,...,a,) € R™\ {0}
€s.

) > 0.

HGHRW

F (g

llall

(e,

lallg. >
H ® ||a ”R"
= |lallgn E

K [lall ||

R"FM)

> [lallgnd

= [lal

38) Cauchy—Schwartz
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Take A = 6.
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Theorem: If V' an n dimensional normed vector space over R with basis {v1,...,v,} then there exists
A, B such that

n
Alar,- s an)llgn < | Y aiwi]| < Bl an) g
i=1

ItT:R*"—>V
T(al, ceey an) = Z?:l %%‘39)
then Allal| < [|T(a)l < Bllal|g.

Alla — b

g < T(a=b)|ly =[T(a) =T®)|y < Blla -0

Rn
Ad(a,b) < d(T(a),T(b)) < Bd(a,b)

See that x, — xo if and only if T'(xx) — T'(zo)

So topologies are the same.

Boundedness if the same.

Both T and T~ are continuous so V is homeomorphic to R"

Corollary: Subset of a finite dimensional vector space is compact if and only if it is closed and bounded.
Corollary: Any finite dimensional subspace of a normed vector space is complete.

Proof: Let V be normed vector space and W finite dimensional subspace. Let T: R™ — W be a
homeomorphism as above.

Let {wy} be a Cauchy sequence in W.

Then {z) = T !(wg)} is a Cauchy sequence in R".

So there exists x¢ such that x; — xo. But then T'(zy) — T'(z) € W.

Hence W is complete.

Function Spaces

Convergence: f,,f: X =Y. X, Y metric spaces.

Say fn — f pointwise if for all € > 0 and for all x € X there exists N such that dy (f.(x), f(z)) < € for
alln > N.

ie., (fn(x)) — f(x) for each z € X (as sequences in Y)

Say fn — f uniformly if for all € > 0 there exists N such that dy (f,(x), f(x)) < e for all z € X and
for all n > N.

Example: f,: [0,1] - R
fo(z) =2

_JO ifz £l
f"%f{1 ifrx=1

e convergence is pointwise, but not uniform
Note: each f, is continuous, but f is not

Theorem: If f, are continuous, and f, — f uniformly, then f is continuous.

Proof: Fix e > 0 and 2 € X. Need to find § such that dx(z,y) <§ = dy(f(z), f(y)) <e€

Pick N such that d(f.(y), f(y)) < €/3 for all n > N and for all y € X.

Get 0 > 0 such that d(z,y) < 6 = d(fn(z), fn(y)) < €/3.

Check if this & works.

Suppose d(z,y) < 6 and look at d(f(x), () < d(f(x), fv () + d(fx (@), fn () + d(fn(v), F (1) <
€/3+¢€/3+¢€¢/3=¢

Corollary: If g; are continuous and Y g5 converges uniformly to g, then g is continuous.
Proof: Sy = Ejlv gk is continuous and Sy — ¢ uniformly by assumption.

39)1inear7 bijection
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Definition: A sequence f,: X — Y is uniformly Cauchy if for all ¢ > 0 there exists N such that
d(fn(z), fm(z)) < € for all n,m > N and for all z € X.

Theorem: Suppose X,Y are metric spaces and Y is complete. Then the sequence f,: X — Y is
uniformly Cauchy if and only if (f,,) is uniformly convergent.

Proof: (<) Say f, — f uniformly and pick N such that d(f,(z), f(z)) < €/2 for all n > N and for
allz € X.

Then

A(fn(2), f(2)) < d(fu(2), f(2)) + d(f(2), fn(2))
<€/2+4¢€/2 if n,m >N

(=) Since (fy) is uniformly Cauchy, then (f,(z)) is Cauchy in Y for each x € X.

Y is complete so there exists a, € Y such that f,(x) — a,.

Put f(z) =a, so f: X = Y.

Show f,, — f uniformly.

For € > 0, get N such that d(f,(z), fm(2)) < ¢/2 for all x € X, ¥n,m > N (by uniform Cauchy)
Let n > N and look at d(f,(z), f(z)) (for arbitrary x)

Get m > N such that d(f,(z), f(z)) < /240

So

d(fn(), f(2)) < d(fu(@), fm(2)) + d(fm(2), f(2))
<e€/2+e€/2=¢ (asn,m > N)

PMATH 351 Lecture 19: October 30, 2009

Corollary: Weierstrass M-test

Let f,: X — R. If there exists a sequence M}, such that |fi(z)| < M}, for all x € X and for all & and
if >°7° M}, converges, then Y 7~ | fi converges uniformly.

Example:
sin kx

1 1
fk(T/)ZT |fk($)|§ﬁ 0§2ﬁ<oo

= Y SBM j5 a continuous function.

Proof: Let Sy(z) = Ziv fr(z). Show {Sn} converges uniformly. It’s enough to prove {Sy} is
uniformly Cauchy.

M M
< Z‘fk(x)lg Z Mp—-0as M >N — oo
k=N+1 k=N+1

M
> filx)

N+1

SN — Sm(z)| =

= {Sn} is uniformly Cauchy.

Dini’s Theorem: Suppose K is compact and f,: K — R converges pointwise to f. If f,, f are
continuous and f,1(z) < fn(z) for all n, for all x € K, then f, — f uniformly.

Proof: Let g, = fr, — f

gr, is continuous

gn — 0 pointwise

gn(®) = gny1(2)

gn > 0 since f(x) < fo(x) as fn(z) decreases

Prove g, — 0 uniformly to conclude f,, — f uniformly.

Let € > 0. Find N such that |g,(x)| < € for all n > N and for all z € K,

< 0<gp(z)<eforalln> N and for all z € K.

Since g, — 0 pointwise, for all t € K there exists N; such that 0 < g, (t) < 5 for all n > Ny.
In particular, gy, (t) < .

40>depends on x temporarily looking at
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Because gy, is continuous at ¢ so there exists d; > 0 such that if d(t,z) < J; then |gn, () — gn, (2)| < §.
The balls B(t,0;), t € K are an open cover of the compact set K. Take a finite subcover say
B(t1,0t,),...,B(tr,0t,).

If € K there exists ¢ such that « € B(t;, d¢,)

| o

= d(z,t;) <o, = |gn,, (i) — gn,, (2)]

<
2
= |gn,, (@) <lgn,, (%) — gn,, ()] + gn,, (t:)]
< € + €
L
2 2

Take N = max(Ny,, ..., Nt,).
Let n > N and z € K. Get t; as before.

0 < gn(x) <* gn(z) < gn,, () < €

This is uniform convergence.
Examples:

1. See need K compact

fulz) = M}H on K = (0,1]

fn(z) = 0*2) pointwise
foa () < fu(2)

fn, f continuous

fn(1/n) = 1/2 for all n so there does not exist N such that for all n > N and for all x € (0, 1],
[fn(2)] <1/2.

2. fu(z) = 2™ on [0,1]
Everything satisfied except continuity of f.

3. fn — 0 pointwise
fn(1/n) = n so convergence is not uniform
fn are not decreasing pointwise.

Function Spaces C'(X) = continuous functions f: X — R vector spaces
Cy(X) = continuous, bounded functions f: X — R subspaces

When X is compact C(X) = Cp(X)

CR)\Cp(R): f(z) ==

Define || f|| = sup,¢ x[f(x)| when f € Cy(X)

“sup norm” or “uniform” norm (exercise)

|f (@) <||f]] for all x € X
Defines a metric on Cy(x) by d(f,g9) = |f — gl

Ball B(f,r):

Take f,, f € Crh(X)
Recall f,, — f uniformly means for all € > 0 there exists N such that |f,(z) — f(z)| < eforalln > N
and for all z € X.

< sup|fu(z) — f(z)|<e Vn>=N
rzeX

— |fn—fll<e Vn>N

< d(fu,f)<e Yn>N

<= f, — [ in metric space Cy(x)

Dby g, decreasing
42)— f
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{fn} in Cy(z) is Cauchy if and only if {f,} is uniformly Cauchy

Theorem: C,(X) is a complete metric space

Proof: Suppose {f,} in Cp(X) is a Cauchy sequence. Then {f,} is uniformly Cauchy and so it
converges uniformly to some f € C(X).

Get N such that |f(z) — Fy(z)| <1forallz e X

= |f(z)] <14 [fn(x)] <1+ | fN]]
= ||f||=sgglf(m)|§1+l|fzvll<oo

= f € Cb(X)
Hence f,, — f in uniform norm.
Therefore Cp(X) is complete.

Cyp(X) is a complete normed vector space, i.e., a Banach space.
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C(X), Cp(X)
| £l = sup,e x| f(x)] for any f € Cp(X)
d(f,g) = If —gll

(Cp(X),d) is a complete metric space figure: e-tube around

f
1. Example of an open set in CJ0, 1]

B={feC[0,1]: f(z)>0 Vxe][0,1]}

Take € = inf,¢c(o 1) f(2), > 0 by E.V.T.
If g € B(f,e) < |g(z) — f(z)| <e Vzel0,1]

= g(x) > f(z) —¢ v € [0,1]
>inff—e = g€B

2. C={feCR): f(x)>0 Va}

Claim: If f € C and inf,cg f = 0 then f is not an interior point of C. (e.g., f(z) = |m|+1)

Take any € > 0. Take g = f — § € B(f,¢)
Choose any x such that f(z) < § and then g(x) <0so g ¢ C.

3. D={JeCR): f() <O Va)

Claim: D is closed.
Let f, € D and suppose f, — f, i.e., f,, = f uniformly.
But then f,, — f pointwise. So if f,, <0 at every z then f(z) <0 Vxso f € D.

Compactness in Cp(X)

Compact = closed and bounded

E C Cy(X) is bounded means 3f € Cp(X) and M constant such that E C B(f, M)

Then E C B(0, M +||f|]) because if g € B(f, M) then [|lg]| < {lg = fll+ [ | < M+|f| = B(f,M) <
B0, [If] + M)

e call this uniformly bounded

Restate: E is bounded iff 3Mj such that || f|| < My Vf€eFE
Example: In C[0, 1] closed and bounded =% compact.

:172

== :n=123,...
2 + (1 — nz)? nEheY }

E—{nm
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If fe E,then 0 < f(z) <1Vzso EC B(0,1+e¢).
So E is bounded.

Closed? Say g is an accumulation point of E.

Get fp, > gwith f,, € E, n; <ng < ---

S = m — 0 pointwise.

Look at fnk(nik) =150 sup,|fn, — 0*3) =1 Vny
Thus f,, # 0 uniformly.

Hence there is no accumulation point g.

In fact, no subsequence of (f,) converges uniformly.
Hence F is closed as it has no accumulation points and FE is not compact because fails B-W characteri-
zation of compactness.

Equicontinuity

Definition: Let E C C(X). We say E is equicontinuous if Ye > 0 3§ > 0 such that Vf € E and
Va,y € X such that d(z,y) < d, we have |f(z) — f(y)| < e.

If E = {f} then equicontinuity is uniform continuity.

It E={f1,..., fn} then E is equicontinuous if and only if each f; is uniformly continuous (just take
minimum § that works for fi,..., f,)

E equiconinuous = each f € F is uniformly continuous.

Not equicontinuous means Je > 0 such that V§ > 0 3f € E and z,y € X such that d(z,y) < ¢ but

[f(@) = f(y)l =z e

Example:

1. E={2":n=1,2,3,...} C C[0,1]: not equicontinuous
Take € = % and take any §. Takex =1,y =1— g.

Pick nso (1 —3)" < 1.

Then |fn(y44)) — fn(;v45))| >1-— % = €. graph of z™ for n

large
2

2. E:{fn(x):min:LZ,...}
|fn(7%)*fn(0)| =1Vn

So FE is not equicontinuous.
3. C]0,1] is not equicontinuous, since it contains subsets that are not equicontinuous.

4. Fix M. E={feC[0,1]:|f(z) — fly)| < M|z —y| VY=z,y€[0,1]} is equicontinuous.
Take 0 = 7.

5. Eg={f€eCl0,1]:|f(z)|] <M Vze[0,1} CE (above, in 4.), so it is equicontinuous.
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Equicontinuity
Definition: Say E C C(X) is equicontinuous if Ye > 0 36 > 0 such that if d(z,y) < ¢ then
[f(z) = fly)l <eVfeE.

Example: E={f e CR): f exists and |f'(z)| < M Vz € X and Vf € E }.
Then F is equicontinuous.

Proof: By Mean Value Theorem |f(z) — f(y)[*® < M|z — y| Va,y

Given e we take 6 = 1.

Proposition: If E C C(X) is equicontinuous then so is E.
Proof: Let f € E\ E and let € > 0.

Get f, € E such that f,, — f, i.e., f, = f uniformly.

Dy =1
4)_1_ ¢

45) — 1

16)= | f'(2)||x — y| for some z
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So 3N such that ||fx — f||*”) < e. Get ¢ that works for ¢ and E.
Let z,y € X with d(z,y) < d, then

|f(@) = fFWl < f(2) = In(@)] + [n(x) = In@)] + v (y) = fy)]
<e+e+e=3e

This proves E is equicontinuous.

Proposition: Suppose X is compact and f,, € C(X).

If f,, — f uniformly, then F = { f, :n=1,2,...} is equicontinuous.

f is continuous being uniform limit of continuous functions.

Proof: f is uniformly continuous being continuous on a compact set of X.
Let € > 0. Get 6 for f.

Get N such that || f, — f|| < e ¥n > N.

For any n > N and z,y such that d(z,y) < 9,

[fn(2) = fn(y)l < [fnl2) = @)+ [f (@) = FW)] + () = fu(y)]

< 3e

For each f;,i=1,...,N —1 get §; > 0 such that d(z,y) < &; = |fi(z) — fi(y)| < 3¢ (can do as each
fi is uniformly continuous)

Take 69 = min(d, 61, ...,0n-1)-

If d(z,y) < o then |fn(z) — fu(y)| < 3e Vn.

So F is equicontinuous.

Example: E = {fn(x) = % cx €10, 27 }

|fn(2)] < ﬁ — 0 s0 f,, = 0 uniformly. = F is equicontinuous.

But f},(z) = %2 = y/ncosna so f;,(0) = v/n — oc.

Uniformly Bounded
E C C(X) is uniformly bounded if E C B(0, M) for some M, equivalently IM such that ||f| < M
VfeE.

Definition: Say E C C(X) is pointwise bounded if Vo € X IM, such that |f(z)| < M, Vf € E.

Uniformly bounded = pointwise bounded, but not conversely.

Fix  # 0. Have f,(x) # 0 Vn > N where % <. graph: fn(z) has
peak of n and is zero
sup| fn(z)| < max(|fi(x)],...,|fn(2)]) forz > L

So {f»} is pointwise bounded, but not uniformly bounded.

Proposition: If X is compact and FE is equicontinuous and pointwise bounded, then FE is uniformly
bounded.

Proof: Take e = 1. Get ¢ by equicontinuity so d(z,y) < = |f(z) — f(y)|<1VfeFE

Look at balls B(z,d) for z € X. This is an open cover of compact X so take a finite subcover, say
B(z1,9),...,B(xy,9).

Let M; = sup{|f(x;)|: f € E'} (< oo by pointwise boundedness of F)

Take M = (max;=1,.n M)+ 1.

Let z € X. There is a ball B(xz;,J) containing x.

= d(z,1;) <6 = [f(2)] <|f(z) = f(z:)] + [f ()]

Theorem: Let X be compact. Let {f,} —; C C(X) be a pointwise bounded, equicontinuous family.
Then

0= sup, ¢ x|/ (@) = f(2)]
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(1) {fn} is uniformly bounded. (already done)
(2) There is a subsequence of the sequence (f,) which converges uniformly.

Corollary: (Arzela—Ascoli Theorem)

Let X be compact. E C C(X) is compact if and only if E is pointwise (uniformly) bounded, closed
and equicontinuous.

Proof: (=) E compact = FE bounded (meaning uniformly bounded) and closed

Suppose E is not equicontinuous. This means Je > 0 such that V§ = % there are x,,y, € X with
A(wn,yn) < % and 3f, € E with |f(zn) = fo(yn)| > €.

Since F is compact the Bolzano—Weierstrass characterization of compactness says there is a subsequence
fo =" f € E.

Hence the set {f,,, } is equicontinuous and hence 39 such that d(z,y) < o = |fn, (%) — fn, ()| <*P €
\/le.

Take nj, such that 6y > i 50 d(Zn,,,Yn,) < nflk < 00 SO |frp(ny,) — frp(Wn, )| < € by (1) and this
contradicts (2).
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Theorem: X compact. {f,} € C(X) be a pointwise bounded and equicontinuous set. Then
(a) {fn} uniformly bounded
(b) there exists a subsequence of {f,} which converges uniformly

Corollary: (Arzela—Ascoli Theorem): For X compact, E C C(X) is compact if and only if F is
pointwise bounded, closed and equicontinuous.

Proof: (<) Let {f,} be a sequence in E.

Since E is pointwise bounded and equicontinuous, the same is true for {f,}. By theorem there
exists a uniformly convergent subsequence and the limit must belong to F since E is closed. By
Bolzano—Weierstrass characterization of compactness this implies E is compact.

Lemma 1: Let K be a countable set. Let f,: K — R, n=1,2,... be a pointwise bounded family.
There there exists subsequence (g,) of (f,) which converges pointwise.

Proof: Let K = {1,292, 23,...}.

Start by looking at {f,(z1)},—,.

Since {f,} are pointwise bounded, the sequence {f,(z1)} is a bounded sequence of real numbers and
so by Bolzano—Weierstrass there exists a convergent subsequence, say f11(z1), f1.2(z1),- ...

Thus {f1,,},—, is a subsequence of {f,} converging at .

Look at {f1n(z2)},—,: bounded sequence of real numbers therefore convergent subsequence, say

fa1(x2), fa2(x2),. ...

f1 fa fs fa o i
fiz fiz fia -+ fix converges at z;

Ja1 fos  foa -+ for  converges at xq,To
a1 fa2 faa -+ fax converges at x1,T2,73

Ik Jra Jrks fra oo converges at xi,x2,...,Tg

In general, given (fx ) a subsequence of (f,,) which converges at x1, 2, ..., zk, consider (fi n(Tr+1)):
Get a convergent subsequence (fr+1.n(Tk+1)). S0 (fr+1,n) converges at z1,xa, ..., Tki1-
Put g, = fun- (gn) is a subsequence of (f,).

48)(2)
49) yniform convergence
50)(1)
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Furthermore (g,,)72 . is a subsequence of (f ») and hence converges at xy.
So (gn) converges pointwise on K.

Lemma 2: Any compact metric space X is separable (i.e., countable dense set)
Proof: For each n, the balls B(z, 1), 2 € X cover X. Get a finite subcover B(zy, 1, 1),..., B(zp,, L).

Put K, = {zn.1,-..,Tnk, } and K = U~ Kn: K is countable.

Given y € X and € > 0. Take n such that % < €. Have y € B(x,, 5, %) for some j.
Therefore z,,; € B(y,2) C B(y,¢€), so y € K, therefore K is dense.

Proof of Theorem (b): Let K be a countable dense set on X.

Think about f,: K — R: Pointwise bounded.

By Lemma 1 there exists a pointwise convergent (on K) subsequence (g).

We'll prove (g,,) converges uniformly on all of X.

Suffices to prove (gy,) is uniformly Cauchy.

Take € > 0. Find N such that Vn,m > N,
|gn(x) — gm(x)] < € Ve e X.
By equicontinuity 30 > 0 such that
d(z,y) <6 = |gn(z) —gn(y)l <€ Vn.

Notice balls B(x,0), x € K cover X because K is dense. By compactness of X, 3x1,..., 2 such that
Ui\/f B(z;,0) covers X.

If y € X then y € B(x;,0) for some z;.

By choice of 8, |gn(y) — gn(zi)] < € Vn.

{gn(z;)} converges for each ¢ and so is Cauchy.

Hence 3N; such that if n,m > N, then |gn(2;) — gm(z:)| < € (2).

Let N = max(Ny,..., Ny).

Let y € X and n,m > N. Get i such that y € B(x;,9) so

l9k(y) — gr(zi)| <e k. (1)
192 (Y) = gm (W)| < 19n(y) = gn ()| + |90 (i) — gm(@i)] + |gm(T:) — gm (y)]
< O 4 €52) 4 £53) = 3¢

Therefore (g,,) is uniformly Cauchy.
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Taylor Series
3f € C*° where Taylor polynomials do not converge to f.

e_l/:CZ, x#0
0, z=0

f*)(0) = 0 Vk. All Taylor polynomials (centred at 0) are identically 0. So they don’t converge to f
except at 0.

Inner Product Spaces
C[0,1]: Define inner product (f,g) = fol fg.

1l = VT ) = (/ )
da(f,9) = (/Ol(f —g))1/2

1/2

Lo
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e metric on C]0, 1]
e not complete

Apply Gram Schmidt process to {1,z,22,...}, to get the Legendre polynomials {p,,}.
Given f € C[0,1], let fy = Zn:1<f,pn)pn. Then fy — fin [|-||2. (PMATH 354!)

Example: f(z) = +/z on [0,1]. Put p1(t) =0, ppt1(t) = pa(t) + %(t —p2(t))
Claim: p,, — f uniformly.

Show p,, — f pointwise

Pn (t) § pn+1(t) V’Il,t
Show p,,, f are continuous. Dini’s theorem implies p,, — f uniformly.
Proceed by induction. Assume 0 < py(t) < po(t) < - < pu(t) < VT
n = 1: Free.

V= para(t) = Vi = (pa(t) + 5(t = pi(1))
=Vt = pa(t) = 5(Vt = pa () (VI + pa(t))

= (V= pa(t)(1 = 3(VE+pa(1)))

But p(t) < Vi, 50 > (VI = pa(t))(1 = V) > 0.
<V pas(t) = pa(t) + 5(t =P (1))

S0 ppa1(t) > pn(t)-

So {pn(t)} is increasing and bounded above for fixed ¢ € [0, 1], hence it converges by Bolzano—Weierstrass,
say {pn(t)} — f(t) (pointwise convergence)

Par1(t) = pa(t) + 5(t — P (1))
Ft) = F@&) + 5t = f2(1) = t=f(t),s0 vVt = f(t)

By Dini’s theorem convergence is uniform.

Weierstrass Theorem: Let f: [0,1] — R be continuous and let € > 0. Then there exists a polynomial
p such that || f —p| <e.
In fact, the Bernstein polynomials

converge uniformly to f.

Intuitive Identity: Toss a coin n times; probability of heads x, probability of tails 1 — z. Probability

of k heads in n tosses:
(Z) Ik(l o l,)nfk

Suppose pay f(%) dollars for k heads in n tosses. Expected pay off over n tosses: Y _, (Z)f(%)xk(l -
)"k =p,(2).
In long run we expect zn heads in n tosses, so expect pay off of f(%*) = f(x). So intuitively

pn(x) = f(2).

Proof of Theorem: Technical Calculations:
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1) (z+y)" Zk o (W)zFy"~*. Differentiate with respect to z, leave y fixed.

(2) n(z+y)" ' = Zk:o (7Y kah=1yn—k ;Em,w -
(3) n(n—1)(z+y)"~ ZZ:o (1) k(k — D)ak—2yn=r ou (B:0) =nla+y)
(2) @ (2): na(x +y)" = 30, () katy" "

(3") 2* - (3): n(n—1)a*(z +y)" % = X4, () k(k — L)aky"*

Put ry,(z) = (})a*(1 —z)"7k

pal(@) = Ypso F()re(@)
Takey=1—x

(1) 1=3%—ok(x)
(2) nax =325 kri(z)
(3") n(n—1D)a? =34 k(k — Dri(z) = X krp(z) — Yo krn(z) = Yoo kre(z) — na

> (k= na)re(@) = Y- kry(e) = 2" nkark(z) + Y (na)*ri(x)

=n(n — 1)%2% + nz — 2nznz + (nx)?
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Weierstrass Theorem
Polynomials are dense in C[0, 1].

i.e., Vf € C[0,1] and Ve > 0 there exists polynomial p
such that [|f —pl| = S‘[Bp”'f(”) —pla) <e
xe€|0,

Bernstein Proof
Show p,(z) = > 1_, (1) f(£)a*(1 — z)"~* converges uniformly to f.

(1) >i_ore(x) =1 where ry(z) = (Z)a: (1 —x)n*

(2) Sp_o(k —nx)?rp(z) = nz(l — )

Let f € C[0,1], say |f(z)] < M Vz € [0,1]

Also f is uniformly continuous, so given € > 0 get 6 > 0 such that |z —y| <6 = |f(z) — f(y)| <e¢
Take N such that % <e.

Let n > N. Fix x € [0,1].

Ipn(z) — f(2)| =

54)> 0 by induction assumption
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Divide ks into 2 classes

A={k:|E—2/<§ < |k—nz|<in}
B:{k |2 — 2] >6 < |k—nz|>0n}

< Zif @) |ri(z)

<Z|f z)|rg(x +Z|f

keA keB
< Z erp(z) + Z 2Mry(x)
keA |k—nz|>dn

(k — nx)?
(k — nx)?

Y erla) 4 30 M) e

2
keA k=0 (571)
2M
T =T eN T

This shows [|p, — f|| < 2e¥Vn > N
i.e., pp, — f uniformly.

Approximation by trigonometric polynomials

N N
g a, sinnx + b,, cosnx = E e’
n=0 n=—N

an,b, €C, ¢, €C

e = cosxn + isinxn

eiwn + e—iwn
2

eixn _ efi:cn
24

= cosxn
=sinxn

e uniformly approximate continuous, 27 periodic functions
= C0,2x] with f(0) = f(2x)

Inner product spaces:

{em=}>_ ___ are orthonormal

55) — €
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Check:

T om

1 2m

) ) 1 27 .
<eznw7 67,mw> — / elnwe—zmx dx
0

o /. e x
i(n—m)z |27
s L et

21 i(n —m)

0
=0

“Best” approximation (in inner product sense) to f from

N

N
span{ e :n=—N,...,N} = Z (f,e”m)einT = Z f(n)e™ = fy

n=—N n=—N

2w
ey = 5 [ s aa

= A(n)57)
Big Theorem (PM354)
fv = fin |2 "
. 2T
ie., (i 0 lfn —f|2) -0
This does not even guarantee pointwise convergence (Big Theorem PM354).
Let Ko(t) = 320, (1 4 e,
Put fu(e) = g5 fy" Ku(0)f (@ — 1) dt = K, % f(a)

Theorem: f, — f uniformly and f,, are trigonometric polynomials
First, show f, are trigonometric polynomials:

n

_ L i

1 n - 2w .
= — 1- ] / eV f(x —t)dt

Change of variable: Let u =2 — ¢, dt = du

1 n |]| 27\' N B
1 1 ij(z—u)
27rj__n< n+1>/0 © f(u) du

f027( eliTe=1u f(u) du

. " |]| 1]x 1 - —iJu
S O D e

=f(5)

=3 (1= )y e

Jj=—n

=c;j

56)if n #£ m
57)nth Fourier coefficients of f
58>Fejer’s kernel
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So f, is a trigonometric polynomial of degree < n.

50, fn(2) = Z?:—n( - n'%)f(j)ei”
PMATH 351 Lecture 25: November 13, 2009

Theorem: Trigonometric polynomials are uniformly dense in 27-periodic, continuous functions.

Given f continuous and 27 periodic define

- gy 1\ ije
fn(t) = j;ﬂf(])sg) (1 - 7H—1)€ ’

Then f, — f uniformly.

27
Ao fu(@) = 5 [ fe =K. (0
W ) _ = o ‘j‘ 1]

Sketch of Proof
(1) o Jo" Kaltydt = £ 50 (1= 350 [ etitar =1

(2) Kn(t) = L 30C30t 5 figure: functi
n - n+1 sin?2 é - gure: | unt. 0ons
approximation
(3) If fix § > 0 and let § < ¢ < 2w — § then K, (t) < A5¢(d) = 0 as n — co. Fix 4. Dirac’s delta
2m—6 2m—0
! Ko (t)dt < - ) gt
27'(' 5 271' 5 n + 1
< <(9) —+0asn— oo
n+1
1 27
@) = 1@ = o= [ pe— 0K — 1@
T Jo
1 27
<|5: [ Gle—0- g oy )
T Jo
1 2m
< oo | I(f(z—1) = f(2)) | Ka(t) dt
0

Fix € > 0. Pick § > 0 by uniform continuity so |t| < 06 = |f(z —t) — f(z)] <e.
Get M such that |f(z)] < M V.

;ﬂ(/06<1)+/:5<2)+/:ﬂ_6(3)> Cetete—3¢ Wn>N

2w —4§ 0(5)
(3) < / MK, (t)dt < 2M—"L < ¢
F) n + 1

59) <f7 eijac>
60>Feijer kernel

41



ifnzNwhere%c(é)<e

1 4 1 27
1 < — K,(t)dt < — K, (t)dt =
(1) <o) € (t) So ) o€ (t) €

(2) t = 27 — u where u € [0,4] when ¢ € 27 — §, 27]

|—ul <6
Thus f, — f uniformly.

Stone—Weierstrass Theorem

Terminology: A family A of functions (on X) is called an algebra if f,ge A = f+ge€ A, fge A,
cf € A for all scalars ¢

Examples: Polynomials, C(X), Differentiable functions on R.

Say A separates points if Vo # y € X then 3f € A such that f(x) # f(y).

Example: polynomials on [0, 1]

C(X) separates points: f(z) = d(z, z), continuous function, f(z) =0, but f(y) = d(x,y) # 0 if x # .

Stone—Weierstrass Theorem: Let X be compact and let A C C'(X) be an algebra that separates
points. Assume constant functions belong to A. Then A is dense in C(X).

ie.,Ve>0 & Vf e C(X) 3g € Asuch that ||g — f|| <e.

Corollary: Polynomials are dense in C[0, 1].

Separation of points is necessary for A to be dense
If 3z # y such that f(x) = f(y) Vf € Athenif f, € Aand f,, — g uniformly, we must have g(z) = g(y).
But 3¢ € C(X) such that g(x) # g(y)

Lemma 1: Suppose B is any algebra C C(X) containing all constant functions. If f € B, then

|f| € B.

Proof: Let ¢ = || f|| > 0. We know there exists polynomials p,, such that p,, — /= uniformly on [0, 1].

Suppose g € B, 0 < g(z) <1Vz e X.

Then p,, o g()%?) is defined Vz € X.

If p,(t) = aén)tk + -+ agn)t + aé") then p, o g(x) = a,(cn)g(:c)k +- 4 agn)g(x) + aén)
2 2

Also feBsoL, e Band0< L <1

Therefore p,, o (i—j) € B.

Know Ve > 0 3N such that |p,(t) — Vt| < eVt € [0,1] and Vn > N

SoVxr e X
f2(2) F2(2)
(22 [P
—_——
— |fo-<evn>N (@)

fn € B and f, — % uniformly
Exercise: cf, — |f| uniformly = |f| € B
<~
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= f(z— (—u))
62) = pn(g(x))
63)— 1£(=)]

c
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Stone—Weierstrass Theorem
Algebra A: f,ge A = f+ge A

fge A

cfe A

ACC(X,F), F =R or C separates points
if whenever x £y € X

3f € A such that f(z) # f(y)

Let X be compact, metric space and let A C C(X) be an algebra that separates points. Assume
constant functions belong to A. Then A is dense in C(X).

Lemma 1: Suppose B an algebra C C'(X) that contains the constants. If f € B then |f| € B.
Lemma 2: If f,g € A then max(f, )% and min(f,g) € A
Proof: First check A is an algebra.
Let f,g € A, say £, = f, g.%%) = g, fu + gn € A since A is an algebra.
fotgn—f+g frgeA
— _
) f, — cf cfe A

By Lemma, |f — g| € A.
max(f,9) = 5(f+g+|f—g)) e A
min(f,g) = 5(f+g9+[f —gl) € A

Lemma 3: Given z # y € X, a,b € R, there exists f € A such that f(z) =a, f(y) =b
Proof: Since A separates points there exists g € A such that g(x) # g(y)

g(t) — g(fﬂ)m))
g(y) —g(z)
————

#0

Put f(t59)) =a + (b — a)(

=a; +agg(t) € A
fl@)=a, fly)=b v

Lemma 4: If f € C(X), 20 € X and € > 0 then there exists g% € A such that g(xo) = f(z) and
9(z) < f(z)+eVze X

Proof: Apply lemma 3 with z = z0, y fixed®? but arbitrary, a = f(z¢), b = f(y).

Get h, € A such that hy(zo) = f(z0), hy(y) = f(y).

If y = ¢ just take hy,(t) = f(zo) (constant function)

Look at (hy — f)(y) = 0.

hy — f is continuous so 3y > 0 such that |hy(2) — f(2)| < € if d(y, z) < §,.

Look at balls { B(y,d,) : y € X }: open cover of compact set X, so there is a finite subcover, say

B(y176y1)7 .. 7B(yk‘7§yk)

Take g = min(hy,, ..., hy,) € A by lemma 2.
9(xo) = f(xo) as all hy(zo) = f(z0).

If z € X, then z € B(y;,d,,) for some j

= d(y;,2) < 0y,

By definition of d,,, this implies hy, (2) < f(z) + €

9= h, h(z) = max(f(x), g(z))
65 ¢ A

66)e X

6T e R

68) = 9(7307 6)

9y # x0
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= g(2) < hy,(2) < f(2) + ¢
Lemma 5: If f € C(X) and € > 0 there exists g € A such that [|g — f|| <e.
Proof: For each € X by Lemma 4 we get g, € A such that g, (z) = f(z) and

92(2) < f(z)+e Vze X
Know ¢, — f(x) = 0 so there exists d, > 0 such that
d(x,2) < b = g2(2) — f(2)] <€

Balls B(z,d,): € X open cover of X

Take a finite subcover, say B(z1,04,),...,B(zL,0s,)
Put g = max(ga,,---,9z,) €A

Take y € X say y € B(x;,0y,)
= |92, — f(Y)l <€

fly) —e 5 9, (y) < fy) +¢

f(y) —€ < g, (y) < 9(y) = gz, (y) (some index)

(1)
< f(y) +eby (2)
= lg(y) — fly)| <e VyeX
= |lg—fll<e

Proof of S-W Theorem

Let f € C(X),and e >0

By lemma 5 get g € A such that ||g — f|| < €/2.
Get h € A such that ||g — h| < €/2.

By triangle inequality

If =Rl < I1f —gll+llg — Al
<e
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Complex-Valued Continuous Functions
C metric space
d(z,w) = |z — w|

|z| = [Rez + iImz| = \/(Re 2)2 + (Im 2)2
= [[(Re z,Im z) (|

f: X—>C
f is continuous at = means whenever
Tp — T then f(zn) = f(x)
—— N—_— ———
converges in X converges in C

f=g+ih

f=Ref+ilmf

Re f(z) = Re(f(x))

9(x) = Re(f(z))

f is continuous iff Re f and Im f are continuous where Re f,Im f: X — R.
f:X—=C



f is continuous iff f is continuous

Theorem: (S-W for complex-valued continuous functions)
Let X be a compact metric space and let A be a subalgebra (scalars from C) of

C(X,C)={f: X — C: f continuous }

which contains all constants (from C), separates points and is closed under conjugation (meaning
feAd = feA.
Then A is (uniformly) dense in C(X,C).

Example: X ={z€C:|z|=1} z=¢€" 0 €[0,27]
_ N n . : : : fz) = f(e) = g(0)

A=3>_ yanz":ay, € C, N € N ¢ trigonometric polynomials

Forze X,z = 271 = % figure: unit circle in

It f70) = Ziy:_]v anz", ?(Z) = Zmn = 27]:7:_[\[ anz" " e A ¢
So A is an algebra that contains the constants, separates points and is closed under conjugation.

C(X,C) ~ C([0,27],C) and 27 periodic
A = {Zi\{:—N aneme}
Let B = {Zﬁ;oanz" ta,€C,ne N}
e algebra, contains constants, separates points
e Bis not dense: f(z) =1 ¢ closure B yet 1 € C(X,C)

Say f=1lim f,, f, € B
f(€?) =lim £, (e") uniformly in 6

2m 2m N, )
Ffndo = / ¢S a{eit? g
0 0 k=0

2

n

27
afgn) / R0 gp = 0
0

=~
Il

0

271'7 271'7 271'7
T — ffdé" = [iFt - s
0

0 0

27
FlIf, — fldo
g/o Fllfn — 1]
27
SM/O |fn_f|d9

< Me - 27 for n sufficiently large

2 27
— ?fnd9—>/ |fI2do
0

0
2w
:/ 146
0

=27

e A
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e contradiction

Proof of S—-W for complex-valued functions

Let Agr = {real-valued functions in A}
CC(X)

e contains all real valued constant functions

A-algebra over R

If fec Athen fEA = f+f=2Refc A
= Refed = RefeA

Similarly Im f € A = Im f € Ag.

If 2 # y then there exists f € A such that f(z) # f(y)
= At least one of Re f(z) # Re f(y) or Im f(z) # Im f(y)
Therefore Ag separates points.

By S-W Theorem, Ag is dense in C'(X)

Let f € C(X,C) and let € > 0.

Then Re f, Im f € C(X) so there exist g, h € Ag such that |[Re f — g|| < e and ||Im f — k|| <€
Also g +ih € A: Calculate || f — (g + ih)]|

=|Ref+ilm f—(g+ih)|| < [Ref —gll +[li(Im f — h)[| < 2¢
=f
Applications
1. Let f € C(X), f1-1
Then {ET]LO anf"(x):an, €R, n € N} is dense in C'(X)
2. Suppose f € C[0,1] and fol f(z)xz"dz =0 for alln=0,1,2,....
Then f = 0.
Proof: fol f(@)p(z) dx = 0 for p(x) = polynomial
Know there exists py — f uniformly for polynomials py and so fol f-py dz — fol f-fdxr =
—

=0

T dae

= f=0.
PMATH 351 Lecture 28: November 20, 2009

Applications of S—-W Theorem

1
(1) /0 f@)z"dz =0 Yn=0,1,2,...

= f=0

Uniqueness Theorem

(2) If f 2r-periodic, continuous function and f(j) = 0 = L 0% f(z)e=¥*dx Vj € Z then f = 0.
Proof: Let p(z) = Zf:;_N are’™® for any trigonometric polynomials

Then - 027T f(z)p(x)dz =0

Take py — f uniformly.

1 27 72) 1 27 _ 1 2m 9
f-on™ = /O f-f /O 7= f

2m Jo 2 2m

)= 0
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3) ¢([0,1] > [0,1])

N
Take A = {Z fil®)gi(y) « fiy 90 [0,1] = R, continuous}
i=1

e algebra

e contains constants
e separates points

By S-W, A is dense in C([0,1] x [0, 1])

HW (4) Cla,b] is separable, i.e., countable dense set

(5) Proposition: Let X be compact and suppose A C C(X) is a subalgebra that separates points,
but A # C(X).
Then there exists zg € X such that f(zg) =0Vf € A.
Proof: Suppose not. Then Vz € X 3f, € A such that f,(x) # 0. By multiplying by a suitable
scalar, without loss of generality f.(z) = 2. By continuity there exists d, > 0 such that if
y € B(z,d,) then f.(y) > 1.
X is compact so take a finite subcover, say

B(21,00,), ..., B(wx,0s.)

Put f(y) =Y f2,(y) € A
1=1

If y € X, then there exists ¢ such that y € B(z;,04,)
— fL) =1
= fly) > f2,y) >1 = ;€C(X)

Consider A+ R={g+X:g€ A AeR} CC(X)
A+ R is an algebra: Take g1 + A1, g2 + Ao

(g1 +A1)(g2 + A2) = g192 + Aag1 + A1g2 + A1 Az
~—~
cA €R
Contains constants because g =0 € A
A + R separates points since A separates points
By S-W Theorem A + R is dense in C(X).
So there exists g, + A\, — % uniformly where g, € A, A\, € R

[f @) gn(y) + F@)An = 1 = [F (W)l |9n(y) + An — ﬁ‘
1
< 1ol )+ e = 73]

— 0 uniformly

Hence fg, + Anf — 1 uniformly
—_—
€A
= leA
So A is a subalgebra of C(X) that contains constants and separates points.
By S-W: A is dense in C(X). But A is closed, therefore A = C(X): contradiction.

Remark: Evaluation map ¢.,: C(X) = R, f +— f(xo) [optional]
@z, linear, multiplicative, continuous onto R

ker ¢z = { f 1 f(z0) =0} = ¢} {0}

72)= 0
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o closed set
e ideal
e proper ideal
C(X)/ker ¢,y 2 R = maximal ideal

Theorem: {ker ¢, : o € X }: all the maximal ideals in C'(X)

Previous proposition says A C ker ¢y,

Suppose B algebra with no g € X such that f(zo) =0Vf € B

Apply previous argument to B we see there exists f € B such that f(y) > 1 Vy
= % € C(X) = B is not contained in any proper ideal

e Banach algebra.

PMATH 351 Lecture 29: November 23, 2009

Baire Category Theory

Definition: A C X is called nowhere dense if int A = ().

e.g., Z in R: nowhere dense

Q in R: fails to be nowhere dense

A is nowhere dense if and only if A is nowhere dense

Ais called first category if A=J,_, A, where each A,, is nowhere dense.

e.g., Q=2 {rn}: first category

A is called second category otherwise.

If A is nowhere dense then A€ is dense.

Why? A set is dense if and only if it intersects every non-empty open set.
Suppose A€ is not dense. Then there exists U open, # () such that U N A€ =0
— U CA = int A # (): contradiction.

Proposition: A closed and nowhere dense <= A€ is open and dense
Proof: —=: v

«=: Suppose int A™) = ). Hence int AN A® = (): contradicts A® dense.
Proposition: X is second category if and only if the intersection of every countable family of dense
open sets in X is non-empty.

Proof: (=) Let G, j =1,2,... be open and dense.

Then GjC are closed and nowhere dense.

0 C
Since X is 2nd category X # J7° G? — (U Gf) £ 0.
;,_/
:ﬂfil Gj

(«<=) Suppose X is not 2nd category.
Then X = [J;° F; where F} are closed and nowhere dense.

Baire Category Theorem
A complete metric space is second category.
Proof: Let {A4,} 7, be open and dense
Show (72, A, #0
Let z1 € Ay and let U; be an open ball™ containing x,, Uy C A;.
As is dense so there exists x5 € A9 N U;.
——

open

)= A
74) = B(z1,71)
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Since A, NU; is open there exists an open set Us 3 xa, Us € Ao N U™ and diam Uy < %diam Ui and
U, CUy -
(B(z2,7) € B(x1,71) = B(w2,5) C B(xa,7) C B(x1,71))

Proceed inductively to get open sets U,, > x,, U, C ﬂ? Aj, U, CU,_1, diamU, < %diam U,—1 (so
diam U,, — 0)

Claim {z,}{" is a Cauchy sequence.

Let € > 0. Pick NV such that diam Uy < e.

If n,m > N then z,, z,, € Un (as Ujs are nested)

= d(xp,xy) < dlam Uy < e.

Since the space is complete, z,, — x.

Notice &, € Uy foralln > N = zc€ Uy CUn_1 C ﬂiv_l A;

This is true for al N = 2z € (" 4; = (N 4; #0 = X is second category.

Corollary: R is uncountable

Proof: R is second category.

Corollary: A non-empty perfect set E in a complete metric space is uncountable.

Proof: Say E = J;_{r.}. E being a closed subset of a complete metric space is complete. Therefore
E is second category. This implies {r,} is open for some n.

So there exists € > 0 such that B(r,,e) = {r,}

But r, is an accumulation point of E = B(rn,e) N B(E\ {r,}) #0

e contradiction

Proposition: The set E of functions in C[0, 1] which have a derivative at (even) one point of (0,1) is
first category.

Corollary: The set of nowhere differentiable continuous functions is second category.

Proof: (exercise) Union of two first category sets is first category.

Proof of proposition:

B) —
Put E,, = {f € C[0,1]: 3z € ]0,1 — %] such that Vh € (0, %], |f(z + })L f(@)| < n}
If f is differentiable at xg € (0, 1) then there exists ny such that zy € [0,1 — n%] and there exists ng
such that if 0 < h < n% then

< | f'(zo)| +1

‘f(f“rh) — fx)
h

<’]’L3

Take n = max(ny,ne,n3) = f € E,
Shown E C | J,2 | E,

PMATH 351 Lecture 30: November 25, 2009

Proposition: The set of functions E C C[0, 1] which have a derivative at one point of (0, 1) is first
category.
Proof:

Put E, = {f € C[0,1] : 3z € [0,1 — 1/n] such that Vh € (0,1/n], |f(ac—|—h})L— f()] < n}

Show
(1) EC UL En
(2) E, closed

75)g Ao N Aq
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(3) E, have empty intersection

= F, N E are nowhere dense

FE is first category

Step 1: Let f € E, say f'(xg) exists for zg € (0,1)

Then there exists ny such that x € [0,1 — 1/n4]

There exists ny such that |h| < 1/ng then |w — (@) <1

. |f(zo + h) — f(x0)]

A Sl—l—f/(l‘o) V0<h§1/n2

<ns

Put n = max(ny,ne,n3) = f€E,
— ECU,_,E,

(3) Let f € By, and let € >0

Show there exists g € C[0,1] such that g € B(f,¢), i.e,, ||g — f]| <€, but g ¢ E,.

i.e., for all x € [0,1 — 1/n], there exists h € (0,1/n] such that

EEETIECT R

h

Get polynomial P such that ||f — P|| < €/2 (by S-W)

Let M > sup,¢(o,1)|P'(7)| (can do as P € C[0,1])

Let @ be continuous piecewise linear with slope (M +n+1) and 0 < Q < €/2
Put g=P+Q € C[0,1]

lg=fl=1IP+Q—FI<IP—flI+IQ
<e€/2+¢/2=c¢

lg(z +h) —g(@)| _ |Plx+h) - P(z)+Qx+h) - Q)]

h
5 Q@ +h) - Q)] _ [Pl +h) — P(z)]
- h h
>M+n+1-M (for small h)
=n+1>n

= g¢FE,

(2) Prove E, is closed.
Suppose f,, € E, and f,, — f (uniformly)
Need to prove f € E,,.
For each m, there exists x,, € [0,1 — 1/n] such that for all h € (0,1/n]

|fm($m + h})L - fm(zm)‘ <n

By B-W there exists ,,, — 2o € [0,1 —1/n]

figure: periodic
sawtooth between 0
and 1; peak of €/2

(3)

By relabeling, if necessary, (and throwing away functions not in the subsequent f,,;) we can
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assume T,, — Ig.

Fix h € (0,1/n]. Fix e > 0.

Pick M; such that ||fm — f]| < % for all m > M; (2)

f is uniformly continuous. There exists § > 0 such that |z —y| <

— @) - [l < & (1)

Pick Ms such that |z, — xo| < 0 if m > My and then let M = max(M;, M>)

|f(zo + h) — f(x0)] < |f(zo +h) — flza + h)| n |f(xar +h) — faur(@ar + 1)

h - h h
+ |far(zar +h) — far(zar)] + |/ (zar) = fzar) + |f(zar) = f(20)]
h h h |zo+h—(zrr+h)| =
< ehh/476) + ||f_th||77) +n78) + ||fM _fH79) n 6%%/480) lzo —xpm| < 8
<6/4+%+n+6/4+6/4

[

=n-+e

True for all € > 0, therefore WLW <nforall h € (0,1/n]
= f € E,. Therefore F,, is closed.

Banach Contraction Mapping Principle

Let X be a complete metric space and let 7: X — X be a contraction i.e., exists r < 1 such that
d(T(z),T(y)) <rd(z,y) for all z,y € X

Then T is continuous and has a unique fixed point i.e., point  such that T'(z) = «.

PMATH 351 Lecture 31: November 27, 2009

Banach Contraction Mapping Principle
T: X — X is a contraction if there exists r < 1 such that d(T(z),T(y)) < rd(x,y) for all z,y € X

Theorem: If X is a complete metric space and T: X — X is a contraction, then T is a continuous
map and has a unique fixed point, i.e., there exists z € X such that T'(z) = x.

Proof: In fact a contraction is uniformly continuous.

Given € > 0 take § = ¢/r and then d(x,y) < §

= d(T(x),T(y)) <r-d=¢

Take 7o € X. Look at T'(zq), T(T(z0)) = T?(x0)
Let o1 = T(20), Tny1 = T(xn) = T*(xp_1) = -+ = T (z0)

First check {z,,}]° is a Cauchy sequence.
Start by looking at d(x,, xn+1) = d(T(xn-1), T(xy))

<rd(xp—1,z,) = rd(T(zn—2), T(xn-1)) < r2d(a:n_2,acn_1) = =71"d(xz0,21)
Assume m > n. Say m =n + k.

(@, Tm) < d(Tn, Tpt1) + A@pg1, Tpt2) + o+ d(Tnrk—1, Tntr)
< r”d(xo,wl) + ’r‘n+1d(;1‘;07x1> ot rn+k_1d($o,l‘1)
=d(zo,z1)(r" +r"Tt 4 4 pth=1y

Sd(mo,xl)er —0asn— oo

n

by (1)
™)
)by (3)
™) (2)
80)by (1)
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Hence {z,} is Cauchy
As X is complete there exists y € X such that z, — y

By continuity T'(z,,) — T(y)
I
$n+1 — y

Therefore T'(y) = y. So y is a fixed point of T'.
Suppose z was also a fixed point of T

d(z,y) = d(T(2),T(y)) < rd(z,y)

Since r <1 = d(z,y) =0,ie, 2=y

Application to Solving an Integral Equation
Suppose k(z,y): [0,1] x [0,1] — R, continuous
Consider the equation

fa)=a+ | " ke, y) f(y) dy. ()

Find continuous f which satisfies this.
eg. k=1A=1 f(z)=1+ [; f(y)dy

g(z) = / f(y) dy is differentiable = f is differentiable
0

¢'(z) = f(z) by Fundamental Theorem of Calculus
— P@) =0+ f(5) = f(z) = ce?
Furthermore f(0) =1 + foo fly)=1 = c=1, f(z)=¢"

Theorem: If sup, ¢ 1 fol\k(x, y)|dy = A < 1 then (*) has a unique solution.

Proof: Define T': C[0,1] — C[0,1] by T(f)(z) = A+ [ k(z,y) f(y) dy.

We want a fixed point for T'.

Verify T(f) (.’E) S C[O, 1]. figure: 0 < z <
Without loss of generality x > z

Tf(x) =Tf(2)| =

/Ow k(z,y)f(y)dy — /OZ k(z,) f(y) dy‘

<

/0 (k(e.y) — k(2.9)) f W) dy\ ;

[ s dy‘

< [ 1) = ke ls@lay+ [ )il dy
’ 0 To

k is uniformly continuous. Given € > 0 get 0, i.e., ||(z,y) — (z,y)]| < = |k(z,y) — k(z,y)| < e.
f is bounded, say || f|| < M.

Let [z — 2| < mings

Then [[(z,4) — (2 9)l = & — 2| < 8

= |k(z,y) — k(z,9)| <e

— (1)< [y e- Mdy = zeM < eM

(2): Also ||k|| <M = (2) < [ M'Mdy = |z —2|M'M < §M'M < eM'M.

ITf(x) —Tf(z)| < (1) + (2) < eM + eM'M = e(constant)

= T'f(x) is continuous
C[0,1] is a complete metric space.
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Verify T is a contraction.

d(Tf,Tg) = |Tf - Tyl

= sup |Tf(x) - Ty(z)]
z€(0,1]

ITf(x) - Tl wﬂ/ (e.9)f y‘/k@wm@mﬁ

<

k() (F) - <»@‘
/kaynf o(v)|dy

SHf—gHA\M%yWM

< AIf =gl = Ad(f,9)

Therefore |[Tf — Tg| < AlIf — gl
Thus T is a contraction and therefore the integral equation has a unique solution in C[0, 1] by Banach
Contraction Mapping Principle.

PMATH 351 Lecture 32: November 30, 2009

Example: T: [1,00) — [1,00)

T(x)=xz+1/x
T(z) = T(y)| =z —y—y + ;]
:|33—l/—7y|
= eyl -

<z -yl

But T'(x) # « so no fixed point.

Picard’s Theorem
Terminology: Say @: [a,b] x R — R is Lipschitz in y-variable if there exists a constant L such that

|P(z,y) — P(z,2)| < Lly — 2| Vr € [a,b] & Vy,z € R

Global Picard Theorem
Suppose @: [a,b] x R — R is continuous and Lipschitz in y-variable. Then the differential equation

F'(x) = 8(a, F(x)), Fla)=c

has a unique solution.
Proof: Define T': Cla,b] — Cla,b]

by TF(z) = c + / "o, F(1) dt.

If F € Cla,b] then G(t) = (¢, F(t)) is continuous.

By the Fundamental Theorem of Calculus TF(x) is differentiable, so TF € Cl[a,b] as claimed.
(TF) (z) = &(x, F(x)) by Fundamental Theorem of Calculus.

Suppose F' is a fixed point of T'.

TF(z) = F(x)
F'(z) = (TF) (z) = &(x, F(z)) and TF(a)%? = F(a)

81) contraction factor
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Thus F satisfies the initial value differential equation.
Conversely, if F'(z) = @(x, F(z)) and F(a) = ¢ then (T'F) (x) = F'(z) Vz € [a, ]

= TF(x) = F(z) + constant
— TF(a)%? = F(a)® + constant
so constant = 0 = TF(x) = F(z) so F' is a fixed point of T
Can’t call on BCMP directly, because T" might not be a contraction. But we use same method of proof.
Start with Fy(z) = c¢. Put Fyyq(z) = TFy(x).

Let L be the Lipschitz factor of @
Let M = max,<z<p|P(z, )]

[F1 () — Fo(x)| = |Te(x) - ¢f
c+/w@(t,c)dt—c

< /ﬂ@(t,c)\dt < M(z—a)

. LF ' M(z—a)*
Inductively, we assume |Fy(x) — Fj_1(z)| < =—— Vz € [a, ]
Then |Fipa1(2) — Fi(2)| = |T(Fi)(z) = T(F—1) ()|
o+ / B(t, Fi(t)) dt — (e + / dﬁ(t,Fm(t))dt)’

< [ 10t Fu(t) - 0t a0
< / L|Fy(t) — Frp—1(t)|dt by Lipschitz property

T kalM t— k
< / L # d¢ (by inductive assumption)

_ LkM (tfa)kJFl
K k+1

x

B LFM (z — a)kt!
N (k+1)!

a

That completes the inductive step.
Next, verify {F,} is uniformly Cauchy.
Fix z € [a,b] temporarily.

[Fn(2) = Fin(2)] < [Fn(2) = Faga (2)] + [Faga (2) = Frpo ()] + - + [Fnoa(2) = Fo(2))]
LM Lm—lM

S e T A e Gl
M &K (L(xz—a))) M X (L(b—a))
<y § sy 4§ o)

Tail of convergent series® so < eifn > N

Therefore {F),} is a Cauchy sequence in Cla,b] so F,, — F uniformly.

82) c

83) (exp(L(b—a)) = S5° (L“’];l“”])

54



Need to prove T is a continuous function

TF(x) - TG()| <

/ "ot F () — (1, G ()|t
< /IL|F(t) — G| dt

< L|F—a / ar
< L(b—a)|[F =G|

So |[TF — TG|| < L(b — a)|F - G|
— T is continuous.
T(F,)* — T(F) by continuity of T
Therefore TF = F.
So F solves the initial-value differential equation.
Suppose G is another solution to differential equation.
Then also TG = G.
|F =G| = |TF - TG| = |T*F - T*G]|

(L(b— a))*

k!

—_———
—0 as k—oo

<|IF -G (by similar arguments)
= |[F-G||=0 = F=G
Actually valid for @: [a,b] x R™ — R™.

Example:
vty VY + ()2 =0

y(0) = ao, ¥'(0) =ay

Let Y = (y07y1)
Define @(z, yo,y1)*” = (y1, —yo — V2 + ¥3) = (1, —yo — |Y])

y786) — &(z,Y) = (yh —Yo — \/y(% + y%)

Yo =y = =y —\/¥3 +ui = —vo — \Jus + (1)?
yo + o+ ud+ (Wh)? =

PMATH 351 Lecture 33: December 2, 2009

Global Picard Theorem
&d: [a,b] x R — R, continuous and Lipschitz in y variable. Then the differential equation

F'(z) = &(x, F(x)), F(a)=c
has a unique solution.
Example: y" +y + \/y*> + (y')* = 0, y(0) = a0, ¥'(0) = a1
Let Y = (yo,v1), and
P(x,Y) = (y1, —yo — [Y]]) (%)
Y(0) = (ao, a1)
Y= (y5,41)

S)E. 1 = F
85) = ¢(z,Y), &: [0,1] x R? — R?
9= (y5, 1)

55



e Saw if Y = (yo,y1) solves (x), then yg solves the initial differential equation, and y; = yj.

Check if @ is Lipschitz in Y-variable.

|6(x,Y) — Dz, 2)| = ||(y1, —yo — |Y]) = (21, —20 — || Z]]) |
Y1 — 21, Yo + 20 — ||V + ||ZH)||

(
(
(y1 — 21, —yo + 20) + (0, |V + ||Z||)H
(

)|
=||(y1 — 21,90 —ZO)H + ‘HZH - ||Y||‘

<Y -Z[+|Z-Y]

2|y - Z|

So @ is Lipschitz in Y-variable.
By Global Picard Theorem, there exists a unique solution to the differential equation.

Reminder: In proof of Picard Theorem, Lipschitz condition was used here:

naﬂma@>ﬂ

/ax B(t, Fiu(t)) — D(t, Fi—1(t)) dtH

Local Picard Theorem
Suppose @: [a,b] X [¢c — €, ¢+ €] — R is continuous, and satisfies a Lipschitz condition in y € [c — €, c+ €.
Then the differential equation

F'(z) = &(x, F(x)), F(a)=c

has a unique solution for « € [a,a + h], where a + h = min(b, a + ﬁ)

Proof: Just check that the iterates Fi(z) stay in [c — €, ¢+ €], for all 2 € [a,a + h], so we can use the
Lipschitz property in exactly the same way as in the proof of the global theorem.

Check: Fy(z) =c€[c—¢€,c+¢€

|Frq1(z) —c| = |c+ /I &(t, Fi(t))dt — ¢

< [Nl moa
< ||<I>||/ dt

= [|?]|(z — a)
< h||®|

€
< 5l
|2

= Frr1(z) € [c—¢,c+ €, Vz € [a,a + h].

Continuation Theorem

Suppose @: [a,b] x R — R is Lipschitz in y-variable on each compact set [a,b] x [N, N], for all N,
then the differential equation F'(x) = &(x, F(x)), F(a) = ¢

either has a unique solution on [a, b]

or there exists z € (a,b) such that the differential equation has a unique solution on |[a, z), and
lim, ,,-|F(x)| = +oo.

Example: y' = 2, y(0) = 1, for z € [0, 2]

&(x,y) = y*: have Lipschitz condition on every compact set

Solution (by separation of variables) is y = ﬁ get blow up at 1.
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Metric Completion
Definition: Let (X, dx) be a metric space.
By a completion of (X,dx) we mean a complete metric space (Y,dy) and a map T: X — Y such that
dy (T'(z1),T(x2)) = dx(x1,22) and T(X) is dense in Y.
e.g.,
(1) QCR T = Identity map

(2) If X € X, complete metric space
Take Id: X — X to see X is completion of X

Theorem: Every metric space (X, dx) has a completion
Proof: Fix zy € X. Define a family of functions

fo: X =2 Rby f.(2) =dx(z,2) —dx(zo,2), VaeX.

e.g., fz,(2) =0Vz e X.
Note:

— |d($7y1) - d(l’,y2)‘ S d(yl7y2)
So |fz(21) = fu(22)| = |d(z, 21) — d(x0, 21) — d($,22)87) + d(9€0722)88)|
< d(w,21) — d(z, z2)| + |d(z0, 21) — d(20, 22)| < 2d(21, 22)

Thus f, is (uniformly) continuous.

Look at |fz, () — fa, (Y)| = |d(z1,y) — d(22,y)|
< d(71,22) VyeX

= s = foull = 5101 s (0) = foa (W] < 1, 2)
y
But | fo, (22) = fay (22)] = |d(1, 22) — d(@2,22)%)|

= d(z1, o)
Therefore ||fo, — fuo | = d(x1,22)

In particular, ||fs, || = || fe; — foot2 || = d(21,20) < 00 50 f,, is bounded for any x; € X.
ie., fr € Cy(X) < complete metric space

Consider the map T: X — Cp(X)
T fa
doy ) (T (1), T(@2)")) = || for = fuoll = dx (21, 22)

Put Y =T(X). Y is complete, being a closed subset of a complete metric space. Y is the completion
of X.

87) arrow from first term
88) arrow from second term

89)—
90)= fl'l
)= fzg

o7



