
PMATH 351 Lecture 5: January 13, 2010
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Correction to question 2 on assignment 1: Let X and Y be sets, X 6= ∅ (insert)

Let X be a set, ≤ be a partial ordering on X. An element a ∈ X in maximal if the only element
b ∈ X such that a ≤ b is b = a. Notation: a < b means a ≤ b and a 6= b. So, a ∈ X is maximal if
there exists no b ∈ X, a < b. Notation: a ≥ b means b ≤ a, and a > b means b < a.

A subset C of X is nested if for any two elements a, b ∈ C, either a ≤ b or b ≤ a. A nested subset
is also known as a chain, or a tower.

An element b ∈ X is an upper bound of A ⊂ X if for each a ∈ A, a ≤ b.

Zorn’s Lemma: Let (X,≤) be a partially ordered set. Suppose that every chain C in X has an
upper bound in X. Then there exists a maximal element in X.

Example: Let V be a vector space over a field F . Let X = {A ⊂ V : A is linearly independent }.
Let ≤ on X be set inclusion, i.e., A1 ≤ A2 means A1 ⊂ A2.

If C is a chain in X, then
⋃
C(notation:

⋃
A∈C A) ∈ X. [your assignment]. Clearly, for each A ∈ C,

A ⊂
⋃
C (i.e., A ≤

⋃
C). Thus

⋃
C is an upper bound of C.

Hence, the supposition of Zorn’s Lemma is satisfied. Thus, by Zorn’s Lemma, there exists, in X, a
maximal B. That is:

(1) B ∈ X, i.e., B is linearly independent

(2) B is maximal in X, i.e., no linearly independent subset A (of V ) is (strictly) larger than B.

Consider span(B), which is a subspace of V . If span(B) ( V , then we can take a v0 ∈ V ,
v0 /∈ span(B), and obtain a strictly larger linearly independent set B ∪ {v0}. That will contradict
the maximality of B. This shows that, when B is maximal, span(B) = V .

B is thus a basis for V .

This example shows that, when we assume that axiom of choice or equivalently the Zorn’s Lemma,
it leads to the theorem: every vector space, over a field F , has a basis.

Example: Let us consider X =
{

]a, b[1) : a, b ∈ R, a < b
}

. Let X be partially ordered by set
inclusion. There is no maximal element, because for any ]a, b[ ∈ X, we see that ]a, b+ 1[ is strictly
larger.

The chain C = { ]−n, n[ : n ∈ N = {1, 2, . . .} } has no upper bound in X.
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Topological Spaces

Let X be a set, X 6= ∅. A subset of P(X), T , is called a topology on X if it is closed under taking
finite intersection and arbitrary union. To be precise, we mean for any finite A ⊂ T ,

⋂
A ∈ T and

for any A ⊂ T ,
⋃
A ∈ T .

The pair (X, T ) is called a topological space.

Example:

(1) T = P(X) is a topology on X. This is called the discrete topology on X.

(2) T = {∅, X} is called the indiscrete topology on X. Q: T = ∅? No.

1)open interval
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(3) Let X be an infinite set. Let

T =
{
∅, X,A : X \A2) is finite

}
Then T is a topology on X. This is called the co-finite topology or the topology of finite venn diagram of

A ∩B in X

X \ (A ∩B) =
(X \A) ∪ (X \B)

complements.

Proposition: In a topological space (X, T ), ∅ ∈ T and X ∈ T .
Proof: Let A = ∅ (A ⊂ T ), a finite set.⋂

A = {x ∈ X : x ∈ A for all A ∈ A}

= X⋃
A = {x ∈ X : x ∈ A for some A ∈ A}

= ∅ A = {A1, A2}⋂
A = A1 ∩A2

(4) X = {a, b, c}, T = {∅, X, {a, b}} and T = {∅, X, {a}, {b}, {a, b}}

Proposition: Let X 6= ∅ and let { Ti : i ∈ I } be a family of topologies on X, say that I 6= ∅. Then⋂
i∈I Ti is a topology on X.

PMATH 351 Lecture 7: January 18, 2010
If { Ti : i ∈ I } is a non-empty family of topologies on X, then

⋂
i∈I Ti is a top (on X)

Proof:

1. ∅ ∈ Ti for each i ∈ I, as each Ti is a top. So ∅ ∈
⋂
i∈I Ti. Similarly, X ∈

⋂
i∈I Ti.

2. We shall show that if A and B are in
⋂
i∈I Ti, then A∩B ∈

⋂
i∈I Ti. For each i ∈ I, A ∈ Ti and

B ∈ Ti by definition of intersection. Since Tn is a topology, A ∩B ∈ Ti. So A ∩B ∈
⋂
i∈I Ti.

3. Let Aj ∈
⋂
i∈I Ti for each j ∈ J . Then, for each i ∈ I, Aj ∈ Ti for each j ∈ J . As Ti is a

topology,
⋃
j∈J Aj ∈ Ti. As i ∈ I is arbitrary,

⋃
j∈J Aj ∈

⋂
i∈I Ti. This shows that

⋂
i∈I Ti is

closed under arbitrary union.

Proposition: Let X be a non-empty set. Let S be any given family of subsets of X (i.e., S ⊂ P(X)).
Then there exists a topology T0 on X such that (1) T0 ⊃ S (2) if T is a topology on X and T ⊃ S,
then T0 ⊂ T . So, T0 is the smallest topology on X which contains S.

Proof: Consider G = { T : T is a topology on X, T ⊃ S }. Clearly, the discrete topology, P(X),
contains S and so it is an element of G. Thus G 6= ∅.
Now T0

def
=
⋂
G is a topology on X by the previous theorem. Since each T ∈ G clearly contains T0,

this shows that (2) holds.

Definition: We call T0 the topology generated by S.

Example: Let X = {a, b, c, d}. Let S = {{a}, {b}, {c, d}}.
Then the topology generated by S is

T0 = {{a}, {b}, {c, d}, ∅, X, {a, b}, {a, c, d}, {b, c, d}}

Proposition: Let S ⊂ P(X) be given. Let B be obtained from S by taking all possible finite
intersections of members of S. (Then B is closed under finite intersection.) Next, let C be obtained
from B by taking all possible arbitrary union of members of B. Then C is not just closed under
arbitrary union, it is still closed under finite intersection. (Exercise.)
In particular, C = T0.
Remark: By first taking arbitrary union of members of S then further by taking finite intersections,
we don’t always get T0.

2)complement of A in X
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Metric Spaces: An important class of topological spaces are the metric spaces.
Definition: Let X be a set. A function d which assigns to each pair of points of X a non-negative
real number is called a metric on X if it satisfies

1. d(x, y) = d(y, x)

2. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y

3. d(x, y) ≤ d(x, z) + d(z, y) (the triangular inequality)

for all x, y, z ∈ X.

We refer to d(x, y) as the distance between x and y.
Examples: Let X be any non-empty set. Let d : X ×X → R be defined by

d(x, y) =

{
1 if x 6= y

0 if x = y

We call this the discrete metric on X.

Let X be Rn, a real vector space. Let d(x, y) =
√∑n

i=1(xi − yi)2, where x = (xi)
n
i=1, y = (yi)

n
i=1.

It is called the Euclidean distance (the default).

Let (X, d) be a metric space (X 6= ∅)

D(x, ε) = { y ∈ X : d(y, x) < ε }, ε > 0, is called a disc, or the ε-disc, about x.

A subset A ⊂ X is called open if for all a ∈ A, there exists ε > 0 so that D(a, ε) ⊂ A.

Example: Let X = R2 with the default metric (distance function). Let A = [0, 1]× [0, 1]. Then A
is not open because a = (0, 0) is a point which has no disc around it fully contained by A. figure: A with

dashed circle
around the originLet B = ]0,∞[× R in R2. Then B is open.

For given b = (b1, b2) ∈ B, the disc D(b, b1) is contained in B. figure: b ∈ B

Let (X, d) be a metric space, X 6= ∅.
Let T be the set of all open subsets of X.
Proposition: T is a topology on X.
Proof:

(i) X ∈ T and ∅ ∈ T because: The full X is open due to the observation that for each x ∈ X,
D(x, 1) ⊂ X. So X ∈ T . Clearly ∅ is open. So ∅ ∈ T .

(ii) Let A and B ∈ T , and consider A ∩B. Let x0 ∈ A ∩B be given (arbitrarily). Then x0 ∈ A figure: A ∩B
and x0 ∈ B. Because A is open, there exists ε1 > 0 such that D(x0, ε1) ⊂ A. Similarly, there
exists ε2 > 0 such that D(x0, ε2) ⊂ B. Then, for ε = min(ε1, ε2) > 0

D(x0, ε)

{
⊂ D(x0, ε1) ⊂ A
⊂ D(x0, ε2) ⊂ B

and so D(x0, ε) ⊂ A and B. So D(x0, ε) ⊂ A ∩B.

(iii) Let Ai ∈ T for all i ∈ I. Without loss of generality, I 6= ∅, and consider
⋃
i∈I Ai. Let

x0 ∈
⋃
i∈I Ai be given. Then x0 ∈ Ai0 for some i0 ∈ I. As Ai0 is open, there exists ε > 0

such that D(x0, ε) ⊂ Ai0 . Then D(x0, ε) ⊂
⋃
i∈I Ai follows. This proves that

⋃
i∈I Ai is open,

hence in T .

PMATH 351 Lecture 9: January 22, 2010
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Chapter 2

Proposition: (2.1.2) Every ε-disc D(x, ε) is open.
Proof: Let a ∈ D(x, ε) be given. Let a ∈ D(x, ε) be given. Let r = ε− d(x, a). Then r > 0, because
a ∈ D(x, ε), so d(a, x) < ε.
Claim: D(a, r) ⊂ D(x, ε). figure:

a, y ∈ D(x, r)Proof: Let y ∈ D(a, r) be given.
Then d(y, a) < r. Hence d(y, x) ≤ d(y, a) + d(a, x) (by the triangle inequality)
< r + d(a, x) = ε. So d(y, x) < ε. This shows that y ∈ D(x, ε). As a ∈ D(x, ε) is arbitrarily given,
this proves that D(x, ε) is open.

Definition: Let (X, T ) be a topological space. Let A ⊂ X. a ∈ A is called an interior point of A
if there exists G ∈ T so that a ∈ G ⊂ A.

The set of all interior points of A is denoted int(A). figure: a ∈ G ⊂ A

A subset of X is called open if it is a member of the topology. Thus, a ∈ int(A) if there exists open
G so that a ∈ G ⊂ A.

Note: The finite intersection of open sets is open, and the (arbitrary) union of open sets is open.
Also, X and ∅ are open.

Proposition: Let X be a topological space. (Implicitly there is a topology S.) Let A ⊂ X. Then
int(A) is open.
Proof: Let b ∈ int(A). Choose an open set Gb so that b ∈ Gb ⊂ A. Then Gb ⊂ int(A). [Proof: Let figure: b ∈ Gb ⊂ A
c ∈ Gb. Then as c ∈ Gb ⊂ A, c ∈ int(A).] Now int(A) =

⋃
b∈int(A)Gb.

Being the union of open sets, int(A) is open.

Proposition: If G is open and G ⊂ A, then G ⊂ int(A). (seen from above) Thus int(A) is the
largest open subset of A.
Example: X = {a, b, c}, T = {∅, X, {a}}
int({a, b}) = {a}. int({a, b, c}) = X. int(∅) = ∅, int({b}) = ∅.

In a discrete topological space, int(A) = A, all A.

In an indiscrete topology space, int(A) =

{
∅ if A 6= full X

X if A = X

PMATH 351 Lecture 10: January 25, 2010
Example: Consider R under the usual metric (i.e., d(x, y) = |x − y| =

√
(x− y)2). Let A =

(Q ∩ [0, 1]) ∪ [2, 3]. Then int(A) = ]2, 3[. figure: A on real
lineConsider the metric space A under the usual metric space d(x, y) = |x− y|.
figure: A not on
real line

Then int(A) = A.

Definition: Let A be a subset of a topological space X. Then A is closed if X \A (notation Ac,
the complement of A) is open.
Example: X, ∅ are closed.

Let A ⊂ X. A point b ∈ X is called a limit point (or a contact point) of A if for every open set G,
with b ∈ G, meets A (i.e., G ∩A 6= ∅).
If every open set G, with b ∈ G,
meets A at some point other than b itself, we say that b is an accumulation point of A. figure: b on

boundary of AThe set of all limit points of A is called the closure of A, denoted cl(A).

Example: X = R, usual metric. A = Q ∩ [0, 1] ∪ [2, 3]. Then cl(A) = [0, 1] ∪ [2, 3].

Proposition: cl(A) is a closed set in X. cl(A) ⊇ A and is the smallest closed set which contains A.

Proposition: In a topological space X, for any subset A ⊂ X, int(A) and cl(Ac) are complementary figures: A ⊂ X
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sets, i.e., they form a partition, i.e.,
int(A)c = cl(Ac).

PMATH 351 Lecture 11: January 27, 2010
Example: Consider R under the usual metric. Let A = [0, 1] ∪ {2} ∪ [3, 4]. Then 2 is a limit
(contact) point of A. It is not an accumulation point of A. The open set D(2, 1/2) meets A at {2}.

Definition: Let X be a topological space. A set U is called a neighbourhood of a ∈ X if U
contains an open set G which has a as an element. Clearly, every open set which contains a is a figure: a ∈ G
neighbourhood of a.

U(a) = {U ⊂ X : U is a neighbourhood of a }

is called the neighbourhood system at a. Notice that U(a) is closed under finite intersection. Further,
if U ∈ U(a) and V ⊃ U , then V ∈ U(a).

Definition: Let ∆ be a set (6= ∅) with a partial order ≤. Suppose that for any two elements a,
b ∈ ∆, there exists c ∈ ∆ so that a ≤ c and b ≤ c. We call such (∆,≤) a directed set.

Examples:

1. N under the usual ordering is a directed set.

2. Let X be a topological space, a ∈ X be any point. Consider ∆ = U(a). Define on ∆ the
partial ordering ≤ by U , V ∈ U(a), U ≤ V if V ⊂ U . Then (U(a),≤) is a directed set. In fact,
if U and V are two neighbourhoods of a, then U ∩ V is a neighbourhood of a and is higher
than both.

Definition: Let (∆,≤) be a directed set. Let X be a set. A function x : ∆→ X is called a net in
X. When (∆,≤) is N under the usual ordering, we call the net a sequence in X.

Definition: Let (∆,≤) be a directed set, X be a topological space. Let x be a net on ∆ in X. The
image of an element α ∈ ∆ under x will be denoted by xα. The map x is sometimes recorded as
(xα)α∈∆.

Let x0 ∈ X. We say that x converges to x0 if for all U ∈ U(x0), there exists x ∈ ∆ such that
xβ ∈ U for all α ≤ β.

Proposition: Let X be a topological space and A ⊂ X. Let b ∈ X. Then b is a limit point of A if
and only if every neighbourhood U ∈ U(b) meets A if and only if there exists a net x : ∆→ X, with
terms in A, so that x converges to b.
(Partial Proof). Suppose that b is a limit point of A. Consider ∆ = U(b), with the partial ordering figure: b limit

point of A ⊂ XU ≤ V if V ⊂ U . To each U ∈ U(b), choose xu ∈ A ∩ U . [So, x is a choice function].
Then x is a net whose terms are in A. Moreover, we can check that indeed x converges to b.
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Proposition: In a topological space X, a point b is a contact (limit) point of a set A if and only if
there exists a net x : ∆→ X with all terms in A which converges to b.
Proof: If b is a contact point of A, we constructed a net x : U(b)→ A which converges to b. (Done)

Conversely, suppose that we have a net x : ∆→ A which converges to b. We intend to show that b
is a contact point of A.

Let U ∈ U(b) be given. Then, as x converges to b, there exists α ∈ ∆ such that xβ ∈ U for every
α ≤ β. In particular, xα ∈ U . As all terms of x are in A, we set xα ∈ A. So xα ∈ A ∩ U . Thus
U ∩A 6= ∅.

This proves that b ∈ cl(A).

Example: Seen from the above is that if there exists a sequence x : N→ A converging to b, then
b ∈ cl(A). Don’t expect that the converse holds. Consider an uncountable infinite set X. On X we
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consider the co-countable topology

T = {A ⊂ X : Ac (i.e., X \A) is at most countable, or A = ∅ }

Let A = X \ {x0}, where x0 ∈ X is fixed. Is x0 a limit (contact) point of A? Let U ∈ U(x0) be
given. There exists an open G such that x0 ∈ G ⊂ U . Thus G ∈ T .

Clearly G 6= ∅, so Gc is at most countable. If G does not meet A, then G ⊂ Ac, i.e., Gc ⊃ A. figure:
x0 ∈ G ⊂ U ⊂ XAs Gc is at most countable, A is at most countable. This implies that X = A ∪ {x0} is at most

countable. This contradicts that X is more than countable. Then G must meet A. So will the larger
U . This proves that x0 is indeed a contact point of A. Does there exist a sequence x : N→ A which
converges to x0?

Let x : N→ A be arbitrarily given. Consider the neighbourhood U = X \ rangex of x0. Notice that figure: xis

all terms of x are in A, no terms equal x0. So x0 ∈ U . Notice that U is open, because the range of
x is at most countable.

As no term of x falls in the neighbourhood of x0, x does not converge to x0.

PMATH 351 Lecture 13: February 1, 2010
Let X and Y be topological spaces and f : X → Y . Let a ∈ X. We say that f is continuous at a if
for all U ∈ U(f(a)) there exists a V ∈ U(a) such that f(V ) ⊂ U . figure: f : X → Y

If f is continuous at each a ∈ X we say that f is continuous on X.

If X and Y are metric spaces under d and ρ respectively, then f is continuous at a if for all D(f(a), ε),
there exists D(a, δ) such that f(D(a, δ)) ⊂ D(f(a), ε), i.e., for all ε > 0, there exists δ > 0 such that
for all x, d(x, a) < δ implies ρ(f(x), f(a)) < ε.

Theorem: The following statements are equivalent for a map f : X → Y on topological spaces.

(1) f is continuous on X

(2) f−1(G) is open in X for each open G in Y

(3) f−1(F ) is closed in X for each closed F in Y

(4) f(cl(A)) ⊂ cl(f(A)) for all subsets A ⊂ X

Proof: [(1) =⇒ (2)] Assume (1). Let open G in Y be given. Consider f−1(G). Let a ∈ f−1(G). figure: f−1(G)

Then f(a) ∈ G (by definition of pre-image). Now, G ∈ U(f(a)) because G is open. Because f is
continuous at a, there exists U ∈ U(a) such that f(U) ⊂ G. Without loss of generality, we may
assume that U is open. [As there exists an open neighbourhood of a inside U .] As f(U) ⊂ G,
U ⊂ f−1(G). Notice that a ∈ U . Then, it is clear that,⋃{

U : U is open, U ⊂ f−1(G)
}

= f−1(G).

Being the union of open sets, f−1(G) is open.

[(2) =⇒ (3)] Assuming (2). Let F ⊂ Y be a given closed set. Consider f−1(F ). figure: f−1(F )

Then F c (i.e., Y \ F ) is open in Y . By (2), f−1(F c) is open in X.
As f−1(F c) = [f−1(F )]c, we see that f−1(F c) is closed.

[(3) =⇒ (4)] Assume (3). Let A ⊂ X be given. Consider f−1(cl(A)) figure:
cl(A) 7→ cl(f(A))By (3), f−1(cl(f(A))) is closed.

Notice that cl(f(A)) ⊃ f(A)
so f−1(cl(f(A))) ⊃ f−1(f(A))
so f−1(cl(f(A))) ⊃ A
So cl(A) ⊂ f−1(cl(f(A))) (by definition of closure). Therefore f(cl(A)) ⊂ f [f−1(cl(f(A)))] ⊂
cl(f(A)). We see (4).
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To complete the proof of the equivalence of the four statements, we now show that

(4) f(cl(A)) ⊂ cl(f(A))

implies (2): f is continuous on X.
Proof: Let a ∈ X be given.
Let u ∈ U(f(a)) be given. f : X → Y

topological spaces
X and Y
figure: a 7→ f(a)

Without loss of generality, we may assume that u is open.
Then F := uc is closed and f(a) /∈ F .
Consider f−1(u) which clearly contains a. We need only to show that f−1(u) is a neighbourhood of
a.
Observe that f−1(u)c = f−1(F ).
In particular f [f−1(u)c︸ ︷︷ ︸

=A, say

] ⊂ F . Note:
f(f−1(F )) ⊂ F .

By assumption (4),
f(cl[f−1(u)c]) ⊂ cl(f(A))

Now, as f(A) ⊂ F and F is closed, we have cl(f(A)) ⊂ F .
Hence f(cl[A]) ⊂ F .
So cl([A]) ⊂ f−1(F ) = A by definition of pre-image

cl(A) ⊂ A

As cl(A) ⊃ A always, we get cl(A) = A. So A is closed.
So f−1(u) = Ac is open.
So f−1(u) is a neighbourhood of a.

Theorem: Let X be a set, Y be a topological space and let f : X → Y be a mapping.
Then the set

T =
{
f−1(G) : G open in Y

}
is a topology on X. Clearly, it is the smallest topology in X with which f is continuous.
Proof: [Checking that T is indeed a topology on X.]

(1)
⋂
i∈I f

−1(Gi) (where I is finite) = f−1(
⋂
i∈I Gi), where

⋂
i∈I Gi is open. Then T is closed

under finite intersection.

(2) Similarly T is closed under arbitrary union. figure: step
function

PMATH 351 Lecture 15: February 5, 2010
Definition: A mapping f : X → Y from topological space X to topological space Y is called a
homeomorphism if it is bijective and both f and f−1 are continuous.

It follows that, for a homeomorphism f , a set A ⊂ X is open if and only if f(A) ⊂ Y is open:

(if) Suppose that f(A) is open in Y . Then A = f−1(f(A)) [because f is bijective] is open in X f−1(f(A)) ⊃ A
f : R→ [0,∞[
f(x) = x2

surjective
A = [0,∞[ ⊂ R
f(A) = [0,∞[
f−1(f(A)) =
f−1([0,∞[) = R

because f is continuous.

(only if) Suppose that A is open in X, then f(A) = (f−1)−1(A) is open because f−1 is continuous.

figure: A 7→ f(A)

In short, the bijective f matches open sets of X to open sets of Y .

Definition: Topological spaces X and Y are homeomorphic if there exists a homeomorphism f
from X to Y .

Example: Let X = {a, b, c}, T = {X, ∅, {a}}. Let Y = {1, 2, 3} and T̃ = {Y, ∅, {3}}. The spaces
are homeomorphic. The map f : X → Y given by f(a) = 3, f(b) = 1, f(c) = 2 matches open sets.

Example: [0, 1] and any closed interval [a, b] (a, b ∈ R, a < b), as metric spaces are homeomorphic.
The map f : [0, 1]→ [a, b], f(t) = a+ t(b− a), t ∈ [0, 1] is a homeomorphism.
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Definition: (Subspaces)
Let X be a topological space under a topology T . Let A ⊂ X. Then TA = {G ∩A : G ∈ T } is a
topology on A. With this topology, we call A a subspace of X.

Let (X, d) be a metric space. Let A ⊂ X. Then dA defined by dA(a1, a2) = d(a1, a2) for all
a1, a2 ∈ A is also a metric. We call (A, dA) a subspace of (X, d).

Question: Let (X, d) be a metric space. Let A ⊂ X. Then A has two topologies. First, A is a metric
space under dA, and so dA induces a topology T1, say. Second, from d, we get a topology T on X,
and that we get a topology TA (T2) in A.

Are the two topologies the same? Answer: Yes.

Examples: R2 with the usual metric is a metric space. It is also a topological space.

e.g., the figures
A,B,C,D, . . . , Z,�| ,

are all (metric) and topological spaces.

Question: Are 8 and B homeomorphic? (Yes)

PMATH 351 Lecture 16: February 8, 2010
Definition: A topological space X is called Hausdorff if for each pair of distinct points x and y,
there exist open neighbourhoods U and V of x and y, respectively such that U ∩ V = ∅.

Proposition: Every metric space is Hausdorff. figure: distinct
disks with
x, y ∈ X

Proof: Let (X, d) be a metric space, and x 6= y in X be given. Then d(x, y) > 0 and so
r = 1

2d(x, y) > 0. The discs D(x, r) and D(y, r) are open and disjoint. If they were not disjoint,
say that z ∈ D(x, r) ∩D(y, r) exists, we would have d(x, z) < r, d(z, y) < r, resulting in d(x, y) ≤
d(x, z) + d(z, y) <3) r + r = 2r = d(x, y), a contradiction.

A topological space X is said to be metrizable if there exists a metric d on X such that the topology
induced by d agree with the topology on X.

A non-Hausdorff space is not metrizable, e.g., X = {a, b}, T = {X, ∅, {a}}. Then (X, T ) is not
metrizable.

Definition: A topological space X is connected if there exists no subset A ⊂ X which is both open
and closed, except A = ∅, and A = X.

Example: [0, 1] is connected. (Try to prove it on your own.)
(Assuming that every non-empty subset of R which is bounded from above has a least upper bound
in R. Similarly, every non-empty subset of R which is bounded from below has a greatest lower
bound in R.)

Definition: A subset I ⊂ R is called an interval if whenever a, b ∈ I, so are all numbers a ≤ c ≤ b.
e.g., I = [0, 1], ]0, 1[, ]0, 1], R, {1}, etc.

Example: A subset of R is connected if and only if it is an interval.
(Partial proof) If A ⊂ R and A is not an interval, we show that it is not connected:

There exist a, b ∈ A and a ≤ c ≤ b with c /∈ A. Then Ga = {x : x ∈ A, x < c } and Gb =
{x : x ∈ A, c < x }. They are non-empty, and they are both open, partitioning A.
Notice that Ga = A ∩ ]−∞, c[︸ ︷︷ ︸

open in R︸ ︷︷ ︸
open in the subspace A

figure: hole at c

Similarly Gb = A ∩ ]c,∞[ is open in space A

Ga ∪Gb = A.

3)strict
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Hence Ga is both open and closed, and Ga 6= A, ∅. So A is not connected.

Proposition: The statements below are equivalent for a topological space X.

(1) The only subsets of X which are both open and closed are X and ∅.

(2) There is no (interesting) partition of X into two (disjoint) non-empty open sets.

Examples in RRR2

A =
{

( 1
n , y) : 0 ≤ y ≤ 1

}
∪ ]0, 1] ∪ {(0, 1)} figure: A

Then A is connected.

PMATH 351 Lecture 17: February 10, 2010
The intermediate value theorem in calculus states that a continuous function f : [a, b]→ R where
f(a) < 0, f(b) > 0 must attain the value 0 at some point between a and b. figure: root of f

between a and b
The notion of a connected space is a characterization of such a property (intermediate value).

Theorem: A space X is connected if and only if for every continuous function f : X → R satisfying
f(a) < 0, f(b) > 0 for some a, b ∈ X, there exists a c ∈ X so that f(c) = 0.
Proof:

Lemma: The continuous image of a connected space is connected. That is: if f : X → Y is continuous
and X is connected, then f(X) is connected.

Proof: Without loss of generality we may assume f(X) = Y . Suppose, to the contrary that Y is not
connected, then we can partition Y into two disjoint non-empty open sets Y1 and Y2. Now
f−1(Y1) and f−1(Y2) is a partition of X, where f−1(Y1) and f−1(Y2) are open due to the
continuity of f , and both are non-empty (f surjective). This shows that X is not connected,
a contradiction.

(i) Suppose that X is connected. To show that the intermediate value property holds in X, let
f : X → R be a given continuous map, and suppose that there are points a and b such that
f(a) < 0 and f(b) > 0.

By the Lemma, f(X) is a connected space, and a subspace of R so f(X) must be an interval.
The interval has a negative value and a positive value. So the interval must contain all real
numbers between them, In particular, 0 is there.

(ii) Suppose that X is not connected. Then there exists a partition of X into disjoint and non-
empty open X1, X2. Let f : X → R be defined by f(x) = −1 if x ∈ X1 and f(x) = +1 if
x ∈ X2. Then f is continuous. There are only four possible images namely, X, X1, X2 or ∅.
All are open. So f is continuous. The value 0 is not attained by f .

Proposition: Let X be a topological space. Let {Xi : i ∈ I } be a family of connected subsets of
X. Suppose that

⋂
i∈I Xi 6= ∅. Then

⋃
i∈I Xi is connected.

Proof: Exercise. [Sol: Lecture 34] figures:
path f : [a, b]→ X
lines x1, x2, x3
distinct lines in R2

PMATH 351 Lecture 18: February 12, 2010
Definition: A topological space X is path connected if for every two elements x, y ∈ X, there exists
a (path) continuous map γ : [0, 1]→ X such that γ(0) = x and γ(1) = y. figure: γ(t) from x

to y ∈ X
Proposition: A path connected space is connected. figure: γx
Proof: Fix an x0 ∈ X. To each x ∈ X, fix a path γx in X joining x to x0, i.e., γx(0) = x and
γx(1) = x0. The family

{ γx([0, 1]) : x ∈ X }

consists of connected subsets of X. The intersection is not empty (x0 is there). So
⋃
x∈X γx([0, 1])

is connected by the previous theorem. But the union is equal to X.

The converse is not true. The example figure: X

9



X = { (x, 0) : x ∈ ]0, 1] } ∪
{ (

1
n , y

)
: y ∈ [0, 1]

}
∪ {(0, 1)}

as a subspace of R2 is that of connected space which is not path connected. In fact (0, 1) and (1, 1)
cannot be joined by a path in X.

Topological Vector Spaces: Let V be a real vector space. Suppose that T is a topology on
V . We call V a topological vector space if the linear structure and the topological structure are
compatible in the following sense:

(1) Vector addition: V × V︸ ︷︷ ︸
4)

→ V is closed and continuous

(2) Scalar multiplication: R× V → V is continuous
where the topology on R× V is generated by {G1 ×G2 : G1 open in R, G2 open in V }

Examples: Rn, C[0, 1] under the uniform metric defined by

d(f, g) = sup{min(|f(t)− g(t)|, 1) : t ∈ [0, 1] }

In a topological vector space over R, a set A is convex if for all x, y ∈ A, the line segment joining x
and y

{ tx+ (1− t)y : t ∈ [0, 1] }

is contained in A. figures: A ⊂ V

Proposition: A convex subset of a topological space is connected and in fact is path connected.

Remark: We have the theorem that f : X → Y is continuous if and only if f−1(G) is open for
every open G. If B generates the topology on Y , then it is sufficient to observe that f−1(B) are
open for each B ∈ B. Example: R has the usual topology generated by

B = { ]−∞, a[, ]a,∞[ : a ∈ Q }.

Thus f : X → R is continuous if and only if f−1(]−∞, a[) and f−1(]a,∞[) are open (in X) for each
rational a.

PMATH 351 Lecture 19: February 24, 2010
Compactness
Let X be a topological space. A family C of open sets is said to be an open cover of X if

⋃
C = X.

If C̃ ⊂ C and
⋃
C̃ = X, we call C̃ a subcover of C.

The space X is called compact (cpct) is every open cover C of X has a finite subcover C̃.

Example: R is not compact. The family { ]−n, n[ : n ∈ N } is an open cover of R. Clearly it has
no finite subcover.

A finite topological space X is compact. Here is the trivial argument: Let X = {x1, x2, . . . , xn}.
Let C be any given open cover. Then

⋃
C = X. So, for each 1 ≤ i ≤ n, xi ∈

⋃
C and so there exists

Gi ∈ C so that xi ∈ Gi. Now C̃ = {Gi : 1 ≤ i ≤ n } ⊂ C. C̃ is clearly a subcover of C.

Let X be any set and consider the topology of finite complements. Then the space X is compact.
Without loss of generality, X is infinite.

Proof: Let C be an open cover of X. Let x0 ∈ X be fixed. Then, as C covers X, there exists G0 ∈ C
so that x0 ∈ G0. Now, G0 is open, therefore X \ G0 is finite, say X \ G0 = {x1, x2, . . . , xn}. To
each xi, there exists Gi ∈ C so that xi ∈ Gi.

Now {G0, G1, G2, . . . , Gn} is a finite subcover of C.

Theorem: A subspace X of Rn is compact if and only if it is closed (in Rn) and bounded.

4)where V × V has the topology generated by {G1 ×G2 : G1, G2 open }
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Definition: X ⊂ Rn is bounded if there exists a (finite) radius r so that X ⊂ D(0, r).

Definition: Sequential compactness. Let X be a topological space. If every sequence xn in X
has a convergent subsequence in X, we say X is sequentially compact.

Example: In [0, 1], the sequence 0, 1, 0, 1, 0, 1, . . . , is not convergent, but the sequence formed by
the odd terms 0, 0, 0, . . . , is convergent (illustrating the notion of convergent subsequence).

The full space R is not sequential compact.
Proof: The sequence xn = n is a sequence in R which has no convergent subsequence.

Theorem 3.1.3: (Bolzano–Weierstrass Theorem).
A (subset of a) metric space is compact if and only if it is sequentially compact. (Proof page 165).

Question on exam. Can we put a topology on P2 so that P2 is homeomorphic to R?

Yes. P2 can be matched with R3 by a bijective map. Also |R3| = |R|. So |P2| = |R|. There is a
bijection f : P2 → R.

PMATH 351 Lecture 20: February 26, 2010
Theorem 3.1.3 (Bolzano–Weierstrass Theorem):
A subset A of a metric space M is compact if and only if it is sequentially compact.
Proof (page 165).

Lemma: A compact A ⊂M is closed in M .
Proof: Let A be compact. Let x0 ∈M , x0 /∈ A be given. figure: A ⊂M

To each a ∈ A, because a 6= x0, r = d(a, x0) > 0 and D(x0, r/2) is disjoint from D(a, r/2). Label
them as Ua and Va, and they are neighbourhoods (open) of a and x0 respectively. Now {Ua : a ∈ A }
is an open cover of A in the sense that

⋃
a∈A ua ⊃ A. Because A is compact, there exists finitely many

Ua1 , Ua2 , . . . , Uan so that their union already contains A. Notice that Va1 ∩ Va2 ∩ · · · ∩ Van =: Vx0 figure: cover of A,
x0 /∈ Ais an open neighbourhood of x0, and is disjoint from each Uai (i = 1, . . . , n). Vx0 does not meet

Ua1 , Ua2 , . . . , Uan implies that Vx0
does not meet A.

Hence x0 is not a limit of A.

As x0 /∈ A is arbitrary, this proves that A is closed.

Comment: The Lemma holds when M is any Hausdorff topological space.

Lemma 2: In a compact space, say X, a closed subset A is compact.
Proof: Let A be a closed set in X. Knowing X is compact, we wish to argue that A is compact. figure: cover of

A ⊂ X
Let C be a collection of open sets in X which covers A, i.e.,

⋃
C ⊃ A.

Now C ∪{ Ac︸︷︷︸
open

} is an open cover of X. By compactness of X, a finite number of members of C ∪{Ac}

covers X, say {u1, u2, . . . , un, Ac} covers X.
Then {u1, u2, . . . , un} covers A.
So A is compact.

Comment: In Rn, a subset is compact if and only if it is closed and bounded (Heine–Borel
Theorem).

With the Lemma above, if we can show that a closed disk (with finite radius)
{
x ∈ R2 : d(x0, 0) ≤ r

}
is compact, then it follows from the Lemma that every bounded closed set in Rn is compact.

PMATH 351 Lecture 21: March 1, 2010
New Midterm: Tuesday, 16 March, 2010 at 4:00–5:30 PM
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Proof of the Bolzano–Weierstrass Theorem (page 165 text)
Let A be compact. Assume, to the contrary that A is not sequentially compact, that there exists a
sequence xk ∈ A which has no convergent subsequence.

In particular, the sequence has infinitely many distinct points y1, y2, . . . , yn, . . . .

Claim: {y1, y2, . . . , yn, . . .} is closed.

Proof: Let a ∈ A, a /∈ {y1, . . . , yn, . . .}. If a were a limit point of {y1, . . . , yn, . . .} then every
neighbourhood of a will meet this set. Hence, by picking elements in the intersection of D(a, 1/n) figure: xn1 , xn2 in

neighbourhood of
a, n2 > n1

with the set {y1, . . . , yn, . . .}, we get a convergent subsequence of xk which converges to a. This
would contradict that xk has no convergent subsequence.

Therefore {y1, . . . , yn, . . .} is compact. (“closed subsets of a compact space A is compact”).

Claim: Each element of {y1, . . . , yn, . . .} is an isolated point of the set, i.e., to each yi, there exists a
positive δ such that D(yi, δ) does not meet {y1, . . . , yn, . . .} at any point other than yi.

Consider the open cover of {y1, . . . , yn, . . .}

C = {D(yi, δi) : i = 1, 2, . . . }.

This C has no finite subcover. It contradicts the compactness of {y1, . . . , yn, . . .}. The above proves
that compact A is sequentially compact.

Next, assume that A is sequentially compact. Let C be a given open cover of A.

Claim: There exists r > 0 such that for each y ∈ A, D(y, r) ⊂ U for some U ∈ C.
. . . Read the book.

PMATH 351 Lecture 22: March 3, 2010
Theorem: (4.2.2) Let f : X → Y be continuous where X and Y are topological spaces. If X is
compact, then f(X) is compact.
Proof: Let {Gi : i ∈ I } be an open cover of f(X). Then

{
f−1(Gi) : i ∈ I

}
is an open cover of X.

Each f−1(Gi) is open because f is continuous and Gi is open.⋃
i∈I

f−1(Gi) = f−1
(⋃
i∈I

Gi

)
⊃ f−1(f(X)) ⊃ X.

As X is compact, there exists i1, i2, . . . , iN ∈ I such that {f−1(Gi1), f−1(Gi2), . . . , f−1(GiN )}
covers X. Then {Gi1 , Gi2 , . . . , GiN } covers f(X). This proves that f(X) is compact.

Comment: In calculus, we have the theorem: a continuous function (into R) on [a, b] attains
maximum and minimum.
Proof: [a, b] is compact. Therefore f [a, b] is compact (⊂ R). So f [a, b] is closed and bounded
(clearly non-empty, as a ≤ b is understood). It contains a maximum and minimum. (sup and inf
exist for bounded non-empty sets in R, and they are limit points).

Example: The continuous map f : R → R, f(x) = x, attains no max/min on R which is not
compact. The continuous map f : ]0, 1[→ R, f(x) = 1

x attains no maximum and minimum ]0, 1[.
Note f(]0, 1[) = ]1,∞[.

Example: Show that the figures (in R2)

0 and 8 are not homeomorphic

Proof: If any point is removed from the first figure, what is left is a connected space. However, the
removal of the point A gives 8◦ which is not connected. Hence they are not homeomorphic. figure: 8 with

centre point
missingTheorem: A bijective f from a compact space X to a Hausdorff space which is continuous is a

homeomorphism. (That is, the inverse map is continuous).
Proof: Let f : X → Y be continuous, bijective, X is compact, Y is Hausdorff.

12



To show that f−1 : Y → X is continuous, let F ⊂ X be a given closed set. figure: f : X → Y
and its inverseConsider (f−1)−1(F ) = f(F ). Because X is compact, F closed, F is compact. As f is continuous,

f(F ) is compact. Being in a Hausdorff space Y , f(F ) is closed in Y . Thus (f−1)−1(F ) is closed in
Y .

This proves that f−1 is continuous.

Corollary: Continuous and injective images of the circle
{

(x, y) : x2 + y2 = 1
}

in R2 are homeo-
morphic. figures:

homeomorphic to a
circlePMATH 351 Lecture 23: March 5, 2010

Midterm on March 16, Tuesday, 4:00–5:30, MC 4042

§4.6 Uniform Continuity
Let X and Y be metric spaces under metrics d and ρ, respectively. A map f : X → Y is said to
be uniformly continuous on X if ∀ε > 0, ∃δ > 0 such that (d(x1, x2) < δ =⇒ ρ(f(x1), f(x2)) < ε).
Clearly, uniform continuity of f on X implies continuity on X.

Example: Let X = ]0, 1[, Y = R. Let f(x) = 1
x . Then f is continuous on X, but not uniformly

continuous.

Proposition: If X is compact, then continuous f : X → Y is uniformly continuous.
Proof: Assume that f : X → Y is continuous, and that X is compact. Let ε > 0 be given.

To each x ∈ X, there exists a δx > 0 such that ρ(f(x), f(x2)) < ε/2 for all d(x, x2) < δx. [continuity
of f at x]
Now the family {D(x, δx/2) : x ∈ X } is an open cover of X. By compactness of X, there exists
a1, a2, . . . , an ∈ X so that {D(ai, δai/2) : i = 1, . . . , n } covers X. Let δ = mini=1,...,n(δai/2). Then
δ > 0.

Let x1, x2 ∈ X be given with d(x1, x2) < δ.

Because the discs D(ai, δai/2) cover X, there exists i so that x1 ∈ D(ai, δai/2). So, d(x1, ai) < δai/2.

d(x2, ai) ≤ d(x1, ai) + d(x1, x2) < δai/2 + δ < δai/2 + δai/2 = δai

So ρ(f(x2), f(ai)) < ε/2. Also, ρ(f(x1), f(ai)) < ε/2. Hence

ρ(f(x1), f(x2)) ≤ ρ(f(x2), f(ai)) + ρ(f(x1), f(ai)) < ε/2 + ε/2 = ε.

This proves the uniform continuity of f .

Complete metric spaces
Definition: Let X be a metric space with metric d.
A sequence xk in X is called Cauchy if

lim
k,l→∞

d(xk, xl) = 0, i.e., ∀ε > 0, ∃N such that (k, l ≥ N =⇒ d(xk, xl) < ε).

Clearly, if xk is a convergent sequence in X, then it is Cauchy.

The converse is not true in general.
Example: Consider ]0, 1](= X). The sequence 1

k (k ∈ N) is Cauchy. It does not converge to a point
in ]0, 1].
Definition: A metric space (X, d) is complete if every Cauchy sequence converges (to a point of X).
Proposition: Rn, Cn are complete metric spaces.
Proposition: A subspace A of a complete metric space X is complete if and only if A is closed in
X.
Proposition: Compact metric spaces are complete.

Read Theorem 3.1.5
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PMATH 351 Lecture 24: March 8, 2010
Definition: (3.1.4). A metric space is totally bounded if for all ε > 0, there exist finitely many
x1, . . . , xn in the space so that {D(xi, ε) : i = 1, . . . , n } covers the space.

Example: The square [0, 1]× [0, 1] in R2 is totally bounded. figure: a square is
totally bounded

Theorem: (3.1.5). A metric space (X, d) is compact if and only if it is complete and totally bounded.
(A generalization of the Heine–Borel Theorem for subspaces of Rn).
Proof: (Page 166). To see the converse we suppose that (X, d) is complete and totally bounded, compactness

implies sequentially
complete and
totally bounded

and proceed to argue that X is sequentially compact.

Let yk be a sequence in X.

Without loss of generality, we may assume that all terms of yk are distinct. Consider ε = 1. There
are a finite number of discs D(x1, 1), D(x2, 1), . . . , D(xk, 1) which covers X. There must be one
disc, say D(x1, 1), which holds infinitely many yk terms.

Extract a subsequence
y11, y12, y13, . . . , y1j , . . .

of y1, y2, . . . , yk, . . . with all terms in D(x1, 1).
Next, repeat the argument using ε = 1/2, and claim that there exists a disc D(x2, 1/2) and a
subsequence

y21, y22, y23, . . .

of the previous y11, y12, . . . so that all terms are in D(x2, 1/2) figure: finite cover
of discs of radius
1/2

...
By induction, get sequence

yl1, yl2, . . . ,

which is a subsequence of yl−1,1, yl−1,2, . . . so that all terms are in D(xl, 1/l).
Consider the diagonal sequence

y11, y22, y33, . . . , ynn, . . .

It is Cauchy. As X is complete, it converges to a point of X.

Don’t expect the statement: A metric space (X, d) is compact if and only if it is complete and
bounded.

Example: R2 is complete, but not compact. However, (R2, ρ = min(d5), 1)) has the same topology R2 is bounded by
Dρ(0, 2)as (R2, d).

PMATH 351 Lecture 25: March 10, 2010
The Banach Fix Point Theorem (or the Contraction mapping theorem): Let (X, d) be a metric space.
A mapping T : X → X is contractive if there exists a constant k < 1 such that d(T (x), T (y)) ≤
kd(x, y) for all x, y ∈ X. (Clearly, contractive maps are uniformly continuous.) If (X, d) is complete.
Then every contractive map T has a unique fixed point x0 ∈ X (i.e., T (x0) = x0).

Proof: Uniqueness first. Suppose x0 and x̃0 are both fixed points of T . Consider d(T (x0), T (x̃0)) ≤
kd(x0, x̃0) we get d(x0, x̃0) ≤ kd(x0, x̃0).
With k < 1, we get d(x0, x̃0) = 0. Hence x0 = x̃0.

(Existence).
Let x1 ∈ X be a fixed element in X and consider x2 = T (x1), x3 = T (x2), . . . , xk = T (xk−1) =
T (k−1)(x1), . . .
Claim: The sequence xk converges to a fixed point of T . figure: x1 → x2 →

x3 → · · ·
5)Euclidean
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Proof: d(x2, x3) = d(T (x1), T (x2)) ≤ kd(x1, x2)

d(x3, x4) = d(T (x2), T (x3)) ≤ kd(x2, x3) ≤ k2d(x1, x2)

...

d(xn, xn+1) ≤ kn−1d(x1, x2)

d(xn, xn+j) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+j−1, xn+j)

≤
[
kn−1 + kn + · · ·+ kn+j−2

]
d(x1, x2)

≤
[
kn−1 + kn + · · ·

]
d(x1, x2) =

kn−1

1− k
d(x1, x2)

The RHS tends to 0 as n→∞. So the sequence is Cauchy. The space X is complete, so there exists

by 0 ≤ k < 1∑∞
n=0 k

m = 1
1−k

x0 ∈ X such that xn → x0.

Since T is continuous,

T (x0) = T
(

lim
n→∞

xn

)
=6) lim

n→∞
T (xn) = lim

n→∞
xn+1 = x0

Application T (cl(A)) ⊆
cl(T (A))Show that there exists a continuous function f0 : [0, 1]→ R satisfying the integral equation

f0(x) = ex +

∫ x

0

(sin t)3

2
f0(t) dt for all x ∈ [0, 1].

Such a f0 is unique.
Proof: Background: Consider C([0, 1],R) = { f : [0, 1]→ R : f continuous }. It is a vector space
over R. Equip the space with a norm:

‖f‖∞ = sup
x∈[0,1]

|f(x)| = max
x∈[0,1]

|f(x)|

The norm induces a metric
d(f, g) = ‖f − g‖∞

Fact: (C[0, 1], d) is complete.
Consider T : C[0, 1]→ C[0, 1] defined by

T (f) = ex +

∫ x

0

(sin t)3

2
f(t) dt x ∈ [0, 1].

Then the f0 we are looking for is a fixed point of T . T is contractive:

Proof: |T (f)(x)− T (g)(x)| =
∣∣∣∣��ex +

∫ x

0

(sin t)3

2
f(t) dt−

(
��ex +

∫ x

0

(sin t)3

2
g(t) dt

)∣∣∣∣
=

∣∣∣∣∫ x

0

(sin t)3

2
(f(t)− g(t)) dt

∣∣∣∣
≤
∫ x

0

∣∣∣∣ sin(t)3

2
|f(t)− g(t)|

∣∣∣∣dt
≤ 1

2

∫ x

0

|f(t)− g(t)|dt ≤ 1
2

∫ 1

0

|f(t)− g(t)|dt ≤ 1
2‖f − g‖∞

sup
x∈[0,1]

|T (f)(x)− T (g)(x)| ≤ 1
2‖f − g‖∞

‖T (f)− T (g)‖∞ ≤
1
2
7)‖f − g‖∞

6)continuity
7)k = 1

2
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PMATH 351 Lecture 26: March 12, 2010
§5.5
A (real) vector space X is normed if there is a map ‖·‖ : X → R (called norm) satisfying

(1) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X

(2) ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ R

(3) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

The norm induces a metric on X by

d(x, y) = ‖x− y‖

and is therefore a metric space as well as a topological space. If X is complete, we call X a Banach
space.

Examples: (Rn, ‖·‖p) where ‖x‖p = p
√∑n

i=1|xi|
p

The usual Euclidean norm is using p = 2.

(Rn, ‖·‖2), (Rn, ‖·‖1), (Rn, ‖·‖∞)

where ‖x‖∞
def
= supi≤n|xi|

are examples of Banach spaces.

Definition: Let X be a topological space. A sequence fn : X → R is said to converge pointwise (on
X) if for each fixed x ∈ X, the sequence fn(x) in R is convergent.

When fn is pointwise convergent,
f(x) = limn→∞ fn(x), f : X → R, is called the pointwise limit of fn. We write “fn → f pointwise”.

Thus it means that for each x ∈ X and ε > 0, there exists N such that for all n ≥ N , |fn(x)−f(x)| <
ε.

If N exists and is independent of x, we say that fn → f uniformly on X.

In fact, the above can be formulated for any set X. Consider C(X,R) the vector space of all
continuous functions on X, and confine ourself further, to Cb(X,R), the space of bounded continuous
functions.

Theorem: Let X be a topological space. Let fn be a sequence in C(X,R). If fn tends to f : X → R
uniformly on X, then f ∈ C(X,R). (Proof: Exercise)

Definition: On Cb(X,R), we define ‖·‖∞ by

‖f‖∞ = sup
x∈X
|f(x)| (a finite number because f is bounded)

Claim that ‖·‖∞ is a norm on Cb(X,R) under which the space Cb(X,R) is a Banach space. Observe
that, if X is compact, then

C(X,R) = Cb(X,R).

We can observe that

fn → f uniformly on X
if and only if (fn − f)→ 0 uniformly on X

and gn → 0 uniformly on X
if and only if ‖gn‖∞ → 0 (in R)

Note: When X is finite with n elements, using the discrete topology, C(X,R) is essentially the same
as Rn.
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The Arzela–Ascoli Theorem (Page 299, §5.6)

Let A ⊂M8) be compact and B ⊂ C9)(A,N10))

Definition: B is called equicontinuous on A if for all ε > 0 there exists δ > 0 such that

d(x, y) < δ =⇒ ρ(f(x), f(y)) < ε, all f ∈ B.

Note: δ does not depend on f ∈ B.
B is bounded means that { ‖f‖∞ : f ∈ B } is bounded set, i.e., supx∈A|f(x)| < b, finite b, for all
f ∈ B.
B is pointwise compact if { f(x) : f ∈ B } is compact for each fixed x ∈ A.

Theorem: B is compact if and only if B is closed, equicontinuous and pointwise compact.
Proof: Suppose that B is closed, equicontinuous and pointwise compact. We wish to show that B
is compact.

Since A is compact, for each δ > 0, there exists a finite set Cδ = {y1, . . . , yk} such that each x ∈ A
is within δ of some yi ∈ Cδ. [total boundedness of compact A]

Thus C1/n is a finite set for each n ∈ N and C =
⋃
n∈N C1/n is a countable set (and is dense in A).

Let fn be a given sequence of functions in B. Let C = {x1, x2, . . .} be a listing of elements of the
countable C.

The sequence { fn(x1) : n ∈ N } is a sequence in { f(x1) : f ∈ B } which is compact by pointwise
compactness of B. By the Bolzano–Weierstrass theorem, fn(x1) has a convergent subsequence, say
f11(x1), f12(x1), f13(x1), . . .
Repeat this idea to the sequence f1k (k = 1, 2, . . . )
at x2, we get a (second) subsequence of f1k (k = 1, . . . )

f21(x2), f22(x2), f23(x2), . . .

which is convergent. Note: f21(x1), f22(x1), . . . , is also convergent.
Repeating the above,
we set

f31(x3), f32(x3), f33(x3), f34(x3), . . . convergent.

...
Consider the diagonal sequence fnn which is a subsequence of all previous ones, and will therefore
have the property that

fnn(xj) (n = 1, . . . ) is convergent for each j

Let gn = fnn, a subsequence of fn. It converges at each xj ∈ C. Let ε > 0 be given, and let δ > 0
be found, according to equicontinuity of B. Let Cδ = {y1, y2, . . . , yk} be the finite set consisting of
points of C. [use n with 1

n < δ]

There exists N0 such that m, n ≥ N0

ρ(gm(yi), gn(yi)) < ε for each 1 ≤ i ≤ k.

Therefore

ρ(gn(x), gm(x)) ≤ ρ(gn(x), gn(yj)) + ρ(gn(yj), gm(yj)) + ρ(gm(yj), gm(x))

≤ ε+ ε+ ε = 3c

8)metric space
9)all continuous maps from A to N

10)metric space
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for all n, m ≥ N0.

This shows that gn is uniformly Cauchy, i.e., Cauchy in norm ‖·‖∞. The space C(A,N) is complete,
so gn is convergent in C(A,N). B is closed, it converges in B.
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Note, the proof of the Arzela–Ascoli Theorem has these lines

f1, . . . , fn, . . .�� ��f11 , f12, f13, f14, . . . , converging at x1

f21,
�� ��f22 , f23, f24, . . . , converging at x2

...

fm1, fm2, . . . ,
�� ��fmm , converging at xm

...

Let gn = fnn.
Claim: gn is a subsequence of all fm1, fm2, . . .
(From text page 300)
The claim should be modified as gn, starting with the mth term, is a subsequence of fm1, fm2, fm3,
. . .

Example: Consider the sequence of functions fn : [0, 1]→ R belonging to C([0, 1],R) given by

fn(t) =

{
0 1 ≥ t ≥ 1

n

1− nt 0 ≤ t ≤ 1
n

figure of fn(t)

‖fn‖∞ = 1 for each n

For each fixed t, the sequence {
fn(t)→ 0 if 0 < t

fn(0)→ 1 if 0 = t

That is, fn tends to the function φ : [0, 1]→ R{
φ(t) = 0 if t > 0 pointwise

φ(t) = 1 otherwise

Is φ ∈ C([0, 1],R)? No.

Does fn converge to some function in the C([0, 1],R) under ‖·‖∞?
i.e., Does fn tends to some fn in C([0, 1],R) uniformly?
No (uniform convergence implies pointwise convergent.)

Does fn has a convergent subsequence in C([0, 1],R) under ‖·‖∞?
No.
Let B = { fn : n ∈ N } ⊂ C([0, 1],R).

B is not sequentially compact. It is not compact (we are dealing with metric spaces).

Some conditions of the A–A theorem must fail.
B is clearly bounded, as ‖fn‖∞ = 1. Exercise: Is B weakly compact? Is B equicontinuous?

Approximating continuous functions.

The ex can be approximated by finite polynomials on [a, b] in the sense that for all ε > 0, there
exists polynomial p so that |f(x)− p(x)| ≤ ε for all x ∈ [a, b]

18



i.e., ‖f − p‖∞ < ε in C([a, b],R).

(Taylor series)

Question: Can a continuous function f : [a, b]→ R be approximated by a polynomial?
Theorem: (Weierstrass Approximation Theorem): Every f ∈ C([a, b],R) can be approximated by a
polynomial p ∈ C([a, b],R).

Rephrased: The set of polynomials is dense in C([a, b],R).
See Theorem 5.8.1 (page 305).
Indeed the Bernstein polynomials

pn(x) =

n∑
r=0

(
n

r

)
f
( r
n

)
xr(1− x)n−r

is a sequence of polynomials approximating a continuous f : [0, 1]→ R
i.e., ‖pn − f‖∞ → 0 as n→∞.

PMATH 351 Lecture 29: March 19, 2010
Theorem: (Weierstrass Approximation Theorem)
f is a continuous function from [a, b] to R.
Then there exists a (finite) polynomial p such that after ε > 0 is specified, ‖f − p‖∞ < ε.
Proof: Without loss of generality, [a, b] = [0, 1], and may assume f(0) = f(1) = 0. Extend f to R
by f(t) = 0 for t /∈ [0, 1]. Then f is uniformly continuous on R.

Let Qn(x) = Cn(1 − x2)n on [−1, 1] where Cn = 1/
∫ 1

−1(1 − x2)n dx. With that normalization figure of Qn(x)

constant,
∫ 1

−1Qn(x) dx = 1.

Observation 1: F (x) = (1− x2)n − (1− nx2) ≥ 0 on [0, 1]
Proof: F (0) = 0, F ′(x) = −2nx(1− x2)n−1 + 2nx
= 2nx(1− (1− x2)n−1) ≥ 0 on [0, 1]

Observation 2:
∫ 1

−1(1− x2)n dx = 2
∫ 1

0
(1− x2)n dx ≥ 2

∫ 1/
√
n

0
(1− x2)n dx

≥ 2
∫ 1/
√
n

0
(1− nx2) dx = 4

3
√
n
≥ 1√

n

i.e., Cn ≤
√
n.

Let 1 > δ > 0 be fixed.
Then Qn(x) ≤

√
n(1− δ2)n for x ∈ [−1,−δ] ∪ [δ, 1]

Let Pn(x) =
∫ 1

−1 f(x+ t)Qn(t) dt

=
∫ 1−x
−x f(x+ t)Qn(t) dt (if t < −x, then x+ t < 0, then f(x+ t) = 0)

=
∫ 1

0
f(t)Qn(t− x) dt

[
x+t=s
t=s−x
dt=ds

]
Observation 3: Pn(x) is a polynomial in x.

Proof:
d2n+1

dx
Pn(x) =

d2n+1

dx

∫ 1

0

f(t)Qn(t− x) dt

=

∫ 1

0

f(t)
d2n+1

dx
Qn(t− x) dt

=

∫ 1

0

f(t)0 dt = 0.

Let ε > 0 be given. Then there exists δ > 0 so that if |x− y| < 2δ, then |f(x)− f(y)| < ε/2.
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Since Qn(t) ≥ 0, we get
Theorem: (Weierstrass Approximation Theorem)

|Pn(x)− f(x)| =
∣∣∣∣∫ 1

−1
[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣ (note:

∫ 1

−1
Qn = 1)

=

∣∣∣∣∣
∫ −δ
−1

[f(x+ t)− f(x)]Qn(t) dt +

∫ δ

−δ
[f(x+ t)− f(x)]Qn(t) dt +

∫ 1

δ

[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ −δ
−1

[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣∣+

∣∣∣∣∣
∫ δ

−δ
[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣∣+

∣∣∣∣∫ 1

δ

[f(x+ t)− f(x)]Qn(t) dt

∣∣∣∣
≤ 2M

∫ δ

−1
Qn(t) dt+

ε

2

∫ δ

−δ
Qn(t) dt+ 2M

∫ 1

δ

Qn(t) dt

where M = ‖f‖∞
≤ 4M

√
n(1− δ211))n +

ε

2
.

The first term tends to 0 as n→∞.
Large N , we get 12)≤ ε

2 + ε
2 ≤ ε and such ‖PN − f‖∞ ≤ ε.
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The Stone Weierstrass Theorem (generalisation of Weierstrass approximation theorem)

Let A be a compact metric space, B ⊂ C(A,R)
Assuming that B satisfies:

i) B is an algebra, i.e., f , g ∈ B =⇒ f + g ∈ B, fg13) ∈ B
=⇒ λf ∈ B14), λ ∈ R, multiplicative

ii) constant function 1 ∈ B

iii) B separates points of A

then the closure of B, denoted B, equals C(A,R)

Example: A = [a, b], B = { p(x) : p is a polynomial on [a, b] }
i, ii, iii) obvious, (iii) take the identity.
Every continuous function in [a, b] can be approximated by a polynomial
Proof: By the Weierstrass approximation theorem, for every n, exists pn such that

||t| − pn(t)| < 1/n for − n ≤ t ≤ n

Thus ||f(x)| − pn(f(x))| < 1/n for −n ≤ f(x) ≤ n (n be large enough since A is compact).

This shows that B is closed under taking absolute value, i.e., f ∈ B implies |f | ∈ B.
First B is an algebra, is B also an algebra? Yes, since

f ∈ B =⇒ ∃ an approx =⇒ |f − fn| < ε

g ∈ B =⇒ ∃ an approx =⇒ |g − gn| < ε

}
f + g ∈ B

Check + is a continuous function on C(A,R)× C(A,R) to C(A,R)

Similarly, x is also continuous, f ∈ B, g ∈ B =⇒ fg ∈ B
 B is an algebra

11)arrow to below
12)arrow from above
13)pointwise
14)with f + g ∈ B, vector space + linear algebra fg ∈ B
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If f ∈ B, so is pn(f) (because B is an algebra)
Also, pn(f)(x) = pn(f(x)) and

∣∣|f(x)| − pn(f(x))︸ ︷︷ ︸
∈B

∣∣ < 1/n means that |f(x)| can be approximated

by an element of B, then |f(x)| ∈ B since B is closed and |f(x)| is a limit point of B.

Aside: A is compact, f is bounded on A, there exists large enough n such that −n ≤ f(x) ≤ n

Define f ∨ g = max(f, g) pointwise

f ∧ g = min(f, g) pointwise

and observe that f ∨ g =
f + g

2
+
|f − g|

2

f ∧ g =
f + g

2
− |f − g|

2

We see that B is closed under maximum and minimum. figure: distance
between a+b

2
and b

on real lineLet h ∈ C(A,R) and x1 6= x2 ∈ A, then by (iii), there exists g ∈ B such that g(x1) 6= g(x2). By
choosing α, β ∈ R correctly, we can have

αg + β achieving (αg + β)(x1) = h(x1)

(αg + β)(x2) = h(x2)

Call such αg + β by the name: fx1x2
— That is fx1x2

∈ B and

fx1x2
= h(x1)

fx1x2 = h(x2)

— textbook 5.8.2

fyx(y) = h(y) =⇒ fyx(y) > h(y)− ε
for z ∈ U ⊂ U(y) =⇒ fyx(z) > h(z)− ε by continuity of h

Is the metric used?

should be also by
continuity of fyx
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f ∈ B
=⇒ p(f) ∈ B
f2 + 2f + 10fx1x2 = h(x1), fx1x2(x2) = h(x2)
fxy
Let ε > 0 and x ∈ A. For y ∈ A, ∃ neighborhood U(y) of y such that

fyx(z) > h(z)− ε for all z ∈ U(y)

(simply because h is continuous)

fyx(y) = h(y)

fyx(y15)) > h(y16))− ε
fyx(z) > h(z)− ε

Baire’s Category Theorem
Reference on page 175, chapter 3, Exercise 33. Let M be a metric space. A set S ⊂ M is called
nowhere dense (in M) if for every [nonempty] open U , we have cl(S) ∩ U 6= U , or equivalently

int(cl(S)) =17) ∅
15)z ∈ U(y)
16)z
17)(typo 6= in text)
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Show that Rn cannot be written as a countable union of nowhere dense sets.

Definition: A set A ⊂M is of first category (in M) if it is the union of countably many nowhere
dense sets. Else A is of second category.

The exercise above can be phrased as: Rn is of 2nd category.

Theorem: (Baires) Every complete metric space M is of 2nd category (in M).

Examples: Let the metric space M be R. Is N ⊆ R of 1st category or 2nd category? Answer: 1st.
N is of first category in R.

Baire’s Theorem gives:

N is of 2nd category in N In N,

cl({2}) = {2}
int(cl{2}) = int({2})

= {2} 6= ∅
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Baire Category Theorem. A complete metric space X is of 2nd category, i.e., it is not the union of
countably many nowhere dense sets.

Proof: Let Sn be a sequence of nowhere dense sets, i.e., Sn has empty interior for each n. Let
Un = X \ Sn18). Then each Un is open and dense. In particular, every non-empty open set in X
meets Un.

We shall show that
⋂∞
n=1 Un 6= ∅.

Let x1 ∈ U1 be fixed. Let r1 be a positive radius so that

D1 = D(x1, r1) ⊂ U1.

Since U2 is dense, there exists a point x2 of U2 which is in D1. Since U2 is open, there exists a
small enough radius r2 so that D2 = D(x2, r2) ⊂ U2. We may assume that r2 is small enough that
r2 <

1
2r1, and smaller than r1 − d(x1, x2) [note: x2 ∈ D1].

Then D2 ⊂ D1. By induction, we get a sequence of discs Dn with centres xn and radii rn so that

Dn ⊂ Dn−1, Dn ⊂ Un, rn < 1
2rn−1.

In particular rn → 0 as n→∞.
Note: n,m ≥ N =⇒ xn, xm ∈ DN =⇒ d(xn, xm) < 2rN . This sequence xn is Cauchy and
therefore converges to an x in the complete space X.

xn ∈ DN for all n ≥ N =⇒ x ∈ DN ⊂ DN−1.
Thus x ∈ Dk for every k.
So x ∈

⋂∞
k=1Dk. So x ∈

⋂∞
n=1 Uk as each Dk ⊂ Uk.

Now x ∈
⋂∞
n=1 Un =⇒ x /∈

[
X \

⋂∞
n=1 Un

]
=⇒ x /∈

⋃∞
n=1(X \ Un)

=⇒ x /∈
⋃∞
n=1 Sn =⇒ x /∈

⋃∞
n=1 Sn.

Hence
⋃∞
n=1 Sn 6= X.

Corollary: (The uniform boundedness principle). Let B be a family of real valued continuous
functions on a complete metric space M (i.e., B ⊂ C(X,R)).

Suppose that for x ∈ M , there is a bound bx such that |f(x)| ≤ bx for all f ∈ B. [pointwise
boundedness19) of the family B] Then there exists an open set G ⊂ X, G 6= ∅, and a constant b such
that

|f(x)| ≤ b for all f ∈ B and all x ∈ G.
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18)closure
19)in X
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The uniform boundedness principle.

Let B be a family of continuous functions on a complete metric space M , and suppose that for each
x ∈M , there exists a constant bx such that |f(x)| ≤ bx for all f ∈ B [pointwise boundedness]. Then
there is a non-empty open set (say a disc) G such and a constant b such that

|f(x)| ≤ b for all x ∈ G and f ∈ B

[uniform boundedness of B on G.]
Proof: For each n ∈ N, let

Fn = {x ∈M : |f(x)| ≤ n for all f ∈ B }

Then each Fn is a closed set in M , because

Fn =
⋂
f∈B

{x ∈M : f(x) ∈ [−n, n] } =
⋂
f∈B

f−1([−n, n])

For each x ∈M , there exists n ∈ N such that

x ∈ Fn (by pointwise boundedness and take n ≥ bx)

Therefore
⋃∞
n=1 Fn = M .

Baire’s Theorem asserts that M is not of 1st category as M is complete. So, at least some Fn0 which
is not nowhere dense. So (Fn0)◦ 6= ∅. As Fn0 is closed, Fn0 = Fn0 . So Fn0

◦ 6= ∅. Take G = Fn0

◦. ◦: interior

Thus x ∈ G =⇒ x ∈ Fn0
=⇒ |f(x)| ≤ n0 for all f ∈ B. So |f(x)| ≤ n0 for all f ∈ B and x ∈ G.

Take b = n0.

Space-filling curves (paths). figure: Hilbert
curve

Proposition: There exists a continuous (path) f : [0, 1]→ [0, 1]× [0, 1] which is surjective.

|f1(t)− f2(t)| ≤
√

2δ for all t

‖f1 − f2‖∞ ≤
√

2δ, f1, f2 ∈ C([0, 1],R2)

‖f3 − f2‖∞ ≤
√

2( δ2 )

etc ‖fn+1 − fn‖∞ ≤
√

2( δ
2n−1 ) inductively

We get from the above that fn is a Cauchy sequence in the complete space C([0, 1],R2). It converges
to an f ∈ C([0, 1],R2).

Question: Is f injective? No.

Is
{
x ∈ R : sin(x) + cos(ex) +

√
2x7︸ ︷︷ ︸

f(x)

< 10
}

open?

= f−1(]−∞, 10[)
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Example: If X is a topological space and A, B ⊂ X are connected subsets, A∩B 6= ∅, then A∪B
is connected.
Proof: (Version 1). Suppose that U and V are open, disjoint sets partitioning A∪B. We intend to
show that one of them is empty.

Since A is connected, figure: U and V
partition A ∪B[UA = U ∩A is open in A, VA = V ∩A is open in A, and UA and VA partition A]

U ∩ A or V ∩ A must be empty. Hence either A ⊂ U or A ⊂ V , without loss of generality, say
A ⊂ U .

Similarly, either B ⊂ U or B ⊂ V .
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Case 1: Suppose that B ⊂ U . figure: A, B ⊂ U
Hence A ∪B ⊂ U .
Then, as A ∪B = U20) and V 21).
So V = ∅.

Case 2: Suppose that B ⊂ V . As U and V are disjoint, A and B must be disjoint. A contradiction figure: A ⊂ U ,
B ⊂ Vto A ∩B 6= ∅.

Version 2: We show A ∪B has the IVP. Let f : A ∪B → R be continuous and that f(x1) > 0 and
f(x2) < 0 for given x1, x2 ∈ A ∪B. Let x0 ∈ A ∩B be fixed (exists by assumption). figure:

x1, x2 ∈ A ∪BCase 1: f(x0) = 0. (Done)
Case 2: Suppose that f(x0) < 0.
Subcase: If x1 and x2 are both from A, by the continuity of f |A : A→ R and the connectedness of
A, there exists c ∈ A where f(c) = 0.
Subcase: If x1 and x2 are both from B, similarly, we get that there exists c ∈ B where f(c) = 0.
Subcase: If x1 ∈ A, x2 ∈ B, then by continuity of f |A : A → R and connectedness of A, and
f(x1) > 0, f(x0) < 0, there exists c ∈ A with f(c) = 0. figure: connected

sets which are not
path connected
sets

(M,d) a metric space
d : M ×M → R
ρ metric on M ×M may be defined by ρ((x1, x2), (y1, y2)) = max(d(x1, y1), d(x2, y2))

D(x0, r) = {x ∈M : d(x0, x) < r }
=
{
x ∈M : d(x0, x)︸ ︷︷ ︸

f(x)

∈ ]−∞, r[
}

= f−1(]−∞, r[)

Therefore D(x0, r) is open.

{x ∈M : 1 < d(x0, x) < 2 } = f−1(]1, 2[)
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Exercise 1. Let T1 and T2 : Rn → Rn be two contractions. Let a1 and a2 be the unique fixed points
of T1 and T2 respectively. Show that there exists c < 1 such that

‖a1 − a2‖ ≤ 1
1−c

(
sup
x∈Rn

‖T1(x)− T2(x)‖
)
.

Exercise 2. Let (M,d) be a metric space with a countable dense set. (We call M separable.) Show
that for every subset A ⊂ M , there exists a countable (at most countable) subset of A which is
dense in A. C(X22),R)

A = AA sequence of functions fn : X → (M,d)
is pointwise Cauchy if for each x ∈ X, fn(x) (a sequence in X) is Cauchy, i.e., ∀ε > 0, ∃N such that
d(fn(x), fm(x)) < ε23) for n, m ≥ N .
It is uniformly Cauchy if for for all ε > 0, ∃N such that d(fn(x), fm(x)) < ε for all x ∈ X.

Example: Let f : R → R and g : R → R be continuous. Show (f ∨ g)(x) = max(f(x), g(x)) is a
continuous function.
Proof: Use f ∨ g = 1

2 (f + g) + 1
2 |f − g|

or Proposition: a function φ : R→ R is continuous if and only if

φ−1(]−∞, a[) and φ−1(]a,∞[)

20)disjoint
21)disjoint
22)compact
23)not |fn(x)− fm(x)| < ε
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are open for each a ∈ R.
(f ∨ g)−1(]−∞, a[)
= {x ∈ R : (f ∨ g)(x) < a } = {x ∈ R : f(x) < a and g(x) < x }
= {x ∈ R : f(x) < a } ∩ {x ∈ R : g(x) < a }
= f−1(]−∞, a[)24) ∩ g−1(]−∞, a[)25)

24)open by continuity of f
25)open by continuity of g
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