## PMATH 351 Lecture 5: January 13, 2010

Textbook on reserve in DC, call no 1359
Correction to question 2 on assignment 1: Let $X$ and $Y$ be sets, $X \neq \emptyset$ (insert)
Let $X$ be a set, $\leq$ be a partial ordering on $X$. An element $a \in X$ in maximal if the only element $b \in X$ such that $a \leq b$ is $b=a$. Notation: $a<b$ means $a \leq b$ and $a \neq b$. So, $a \in X$ is maximal if there exists no $b \in X, a<b$. Notation: $a \geq b$ means $b \leq a$, and $a>b$ means $b<a$.

A subset $C$ of $X$ is nested if for any two elements $a, b \in C$, either $a \leq b$ or $b \leq a$. A nested subset is also known as a chain, or a tower.

An element $b \in X$ is an upper bound of $A \subset X$ if for each $a \in A, a \leq b$.
Zorn's Lemma: Let $(X, \leq)$ be a partially ordered set. Suppose that every chain $C$ in $X$ has an upper bound in $X$. Then there exists a maximal element in $X$.
Example: Let $V$ be a vector space over a field $F$. Let $X=\{A \subset V: A$ is linearly independent $\}$. Let $\leq$ on $X$ be set inclusion, i.e., $A_{1} \leq A_{2}$ means $A_{1} \subset A_{2}$.
If $C$ is a chain in $X$, then $\bigcup C$ (notation: $\left.\bigcup_{A \in C} A\right) \in X$. [your assignment]. Clearly, for each $A \in C$, $A \subset \bigcup C$ (i.e., $A \leq \bigcup C$ ). Thus $\bigcup C$ is an upper bound of $C$.
Hence, the supposition of Zorn's Lemma is satisfied. Thus, by Zorn's Lemma, there exists, in $X$, a maximal $B$. That is:
(1) $B \in X$, i.e., $B$ is linearly independent
(2) $B$ is maximal in $X$, i.e., no linearly independent subset $A$ (of $V$ ) is (strictly) larger than $B$.

Consider $\operatorname{span}(B)$, which is a subspace of $V$. If $\operatorname{span}(B) \subsetneq V$, then we can take a $v_{0} \in V$, $v_{0} \notin \operatorname{span}(B)$, and obtain a strictly larger linearly independent set $B \cup\left\{v_{0}\right\}$. That will contradict the maximality of $B$. This shows that, when $B$ is maximal, $\operatorname{span}(B)=V$.
$B$ is thus a basis for $V$.
This example shows that, when we assume that axiom of choice or equivalently the Zorn's Lemma, it leads to the theorem: every vector space, over a field $F$, has a basis.

Example: Let us consider $\left.X=\{ ] a, b{ }^{1)}: a, b \in \mathbb{R}, a<b\right\}$. Let $X$ be partially ordered by set inclusion. There is no maximal element, because for any $] a, b[\in X$, we see that $] a, b+1[$ is strictly larger.

The chain $C=\{ ]-n, n[: n \in \mathbb{N}=\{1,2, \ldots\}\}$ has no upper bound in $X$.

## PMATH 351 Lecture 6: January 15, 2010

Information Session on Grad Studies for 3rd and 4th year undergrads in the Faculty of Mathematics Thursday, January 21, 4:00 pm DC 1302
Refreshments will be served.
Topological Spaces
Let $X$ be a set, $X \neq \emptyset$. A subset of $\mathcal{P}(X), \mathcal{T}$, is called a topology on $X$ if it is closed under taking finite intersection and arbitrary union. To be precise, we mean for any finite $\mathcal{A} \subset \mathcal{T}, \bigcap \mathcal{A} \in \mathcal{T}$ and for any $\mathcal{A} \subset \mathcal{T}, \bigcup \mathcal{A} \in \mathcal{T}$.
The pair $(X, \mathcal{T})$ is called a topological space.

## Example:

(1) $\mathcal{T}=\mathcal{P}(X)$ is a topology on $X$. This is called the discrete topology on $X$.
(2) $\mathcal{T}=\{\emptyset, X\}$ is called the indiscrete topology on $X$.

[^0](3) Let $X$ be an infinite set. Let
$$
\mathcal{T}=\left\{\emptyset, X, A: X \backslash A^{2)} \text { is finite }\right\}
$$

Then $\mathcal{T}$ is a topology on $X$. This is called the co-finite topology or the topology of finite complements.

Proposition: In a topological space $(X, \mathcal{T}), \emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
venn diagram of $A \cap B$ in $X$
$X \backslash(A \cap B)=$
$(X \backslash A) \cup(X \backslash B)$
$\mathcal{A}=\left\{A_{1}, A_{2}\right\}$
$\bigcap \mathcal{A}=A_{1} \cap A_{2}$
(4) $X=\{a, b, c\}, \mathcal{T}=\{\emptyset, X,\{a, b\}\}$ and $\mathcal{T}=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}$

Proposition: Let $X \neq \emptyset$ and let $\left\{\mathcal{T}_{i}: i \in I\right\}$ be a family of topologies on $X$, say that $I \neq \emptyset$. Then $\bigcap_{i \in I} \mathcal{T}_{i}$ is a topology on $X$.

## PMATH 351 Lecture 7: January 18, 2010

If $\left\{\mathcal{T}_{i}: i \in I\right\}$ is a non-empty family of topologies on $X$, then $\bigcap_{i \in I} \mathcal{T}_{i}$ is a top (on $X$ )

## Proof:

1. $\emptyset \in \mathcal{T}_{i}$ for each $i \in I$, as each $\mathcal{T}_{i}$ is a top. So $\emptyset \in \bigcap_{i \in I} \mathcal{T}_{i}$. Similarly, $X \in \bigcap_{i \in I} \mathcal{T}_{i}$.
2. We shall show that if $A$ and $B$ are in $\bigcap_{i \in I} \mathcal{T}_{i}$, then $A \cap B \in \bigcap_{i \in I} \mathcal{T}_{i}$. For each $i \in I, A \in \mathcal{T}_{i}$ and $B \in \mathcal{T}_{i}$ by definition of intersection. Since $\mathcal{T}_{n}$ is a topology, $A \cap B \in \mathcal{T}_{i}$. So $A \cap B \in \bigcap_{i \in I} \mathcal{T}_{i}$.
3. Let $A_{j} \in \bigcap_{i \in I} \mathcal{T}_{i}$ for each $j \in J$. Then, for each $i \in I, A_{j} \in \mathcal{T}_{i}$ for each $j \in J$. As $\mathcal{T}_{i}$ is a topology, $\bigcup_{j \in J} A_{j} \in \mathcal{T}_{i}$. As $i \in I$ is arbitrary, $\bigcup_{j \in J} A_{j} \in \bigcap_{i \in I} \mathcal{T}_{i}$. This shows that $\bigcap_{i \in I} \mathcal{T}_{i}$ is closed under arbitrary union.

Proposition: Let $X$ be a non-empty set. Let $\mathcal{S}$ be any given family of subsets of $X$ (i.e., $\mathcal{S} \subset \mathcal{P}(X)$ ). Then there exists a topology $\mathcal{T}_{0}$ on $X$ such that (1) $\mathcal{T}_{0} \supset \mathcal{S}(2)$ if $\mathcal{T}$ is a topology on $X$ and $\mathcal{T} \supset \mathcal{S}$, then $\mathcal{T}_{0} \subset \mathcal{T}$. So, $\mathcal{T}_{0}$ is the smallest topology on $X$ which contains $\mathcal{S}$.

Proof: Consider $\mathcal{G}=\{\mathcal{T}: \mathcal{T}$ is a topology on $X, \mathcal{T} \supset \mathcal{S}\}$. Clearly, the discrete topology, $\mathcal{P}(X)$, contains $\mathcal{S}$ and so it is an element of $\mathcal{G}$. Thus $\mathcal{G} \neq \emptyset$.
Now $\mathcal{T}_{0} \stackrel{\text { def }}{=} \bigcap \mathcal{G}$ is a topology on $X$ by the previous theorem. Since each $\mathcal{T} \in \mathcal{G}$ clearly contains $\mathcal{T}_{0}$, this shows that (2) holds.

Definition: We call $\mathcal{T}_{0}$ the topology generated by $\mathcal{S}$.
Example: Let $X=\{a, b, c, d\}$. Let $\mathcal{S}=\{\{a\},\{b\},\{c, d\}\}$.
Then the topology generated by $\mathcal{S}$ is

$$
\mathcal{T}_{0}=\{\{a\},\{b\},\{c, d\}, \emptyset, X,\{a, b\},\{a, c, d\},\{b, c, d\}\}
$$

Proposition: Let $\mathcal{S} \subset \mathcal{P}(X)$ be given. Let $\mathcal{B}$ be obtained from $\mathcal{S}$ by taking all possible finite intersections of members of $\mathcal{S}$. (Then $\mathcal{B}$ is closed under finite intersection.) Next, let $\mathcal{C}$ be obtained from $\mathcal{B}$ by taking all possible arbitrary union of members of $\mathcal{B}$. Then $\mathcal{C}$ is not just closed under arbitrary union, it is still closed under finite intersection. (Exercise.)
In particular, $\mathcal{C}=\mathcal{T}_{0}$.
Remark: By first taking arbitrary union of members of $\mathcal{S}$ then further by taking finite intersections, we don't always get $\mathcal{T}_{0}$.

[^1]
## PMATH 351 Lecture 8: January 20, 2010

Grad Studies Info Session, tomorrow at 4, DC 1302
Midterm Exam Date: Mon Feb 22
Metric Spaces: An important class of topological spaces are the metric spaces.
Definition: Let $X$ be a set. A function $d$ which assigns to each pair of points of $X$ a non-negative real number is called a metric on $X$ if it satisfies

1. $d(x, y)=d(y, x)$
2. $d(x, y) \geq 0$ and $d(x, y)=0$ if and only if $x=y$
3. $d(x, y) \leq d(x, z)+d(z, y)$ (the triangular inequality)
for all $x, y, z \in X$.
We refer to $d(x, y)$ as the distance between $x$ and $y$.
Examples: Let $X$ be any non-empty set. Let $d: X \times X \rightarrow \mathbb{R}$ be defined by

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

We call this the discrete metric on $X$.
Let $X$ be $\mathbb{R}^{n}$, a real vector space. Let $d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$, where $x=\left(x_{i}\right)_{i=1}^{n}, y=\left(y_{i}\right)_{i=1}^{n}$. It is called the Euclidean distance (the default).

Let $(X, d)$ be a metric space $(X \neq \emptyset)$
$D(x, \epsilon)=\{y \in X: d(y, x)<\epsilon\}, \epsilon>0$, is called a disc, or the $\epsilon$-disc, about $x$.
A subset $A \subset X$ is called open if for all $a \in A$, there exists $\epsilon>0$ so that $D(a, \epsilon) \subset A$.
Example: Let $X=\mathbb{R}^{2}$ with the default metric (distance function). Let $A=[0,1] \times[0,1]$. Then $A$ is not open because $a=(0,0)$ is a point which has no disc around it fully contained by $A$.
Let $B=] 0, \infty\left[\times \mathbb{R}\right.$ in $\mathbb{R}^{2}$. Then $B$ is open.
For given $b=\left(b_{1}, b_{2}\right) \in B$, the disc $D\left(b, b_{1}\right)$ is contained in $B$.
Let $(X, d)$ be a metric space, $X \neq \emptyset$.
Let $\mathcal{T}$ be the set of all open subsets of $X$.
Proposition: $\mathcal{T}$ is a topology on $X$.
Proof:
(i) $X \in \mathcal{T}$ and $\emptyset \in \mathcal{T}$ because: The full $X$ is open due to the observation that for each $x \in X$, $D(x, 1) \subset X$. So $X \in \mathcal{T}$. Clearly $\emptyset$ is open. So $\emptyset \in \mathcal{T}$.
(ii) Let $A$ and $B \in \mathcal{T}$, and consider $A \cap B$. Let $x_{0} \in A \cap B$ be given (arbitrarily). Then $x_{0} \in A$ and $x_{0} \in B$. Because $A$ is open, there exists $\epsilon_{1}>0$ such that $D\left(x_{0}, \epsilon_{1}\right) \subset A$. Similarly, there exists $\epsilon_{2}>0$ such that $D\left(x_{0}, \epsilon_{2}\right) \subset B$. Then, for $\epsilon=\min \left(\epsilon_{1}, \epsilon_{2}\right)>0$

$$
D\left(x_{0}, \epsilon\right)\left\{\begin{array}{l}
\subset D\left(x_{0}, \epsilon_{1}\right) \subset A \\
\subset D\left(x_{0}, \epsilon_{2}\right) \subset B
\end{array}\right.
$$

and so $D\left(x_{0}, \epsilon\right) \subset A$ and $B$. So $D\left(x_{0}, \epsilon\right) \subset A \cap B$.
(iii) Let $A_{i} \in \mathcal{T}$ for all $i \in I$. Without loss of generality, $I \neq \emptyset$, and consider $\bigcup_{i \in I} A_{i}$. Let $x_{0} \in \bigcup_{i \in I} A_{i}$ be given. Then $x_{0} \in A_{i_{0}}$ for some $i_{0} \in I$. As $A_{i_{0}}$ is open, there exists $\epsilon>0$ such that $D\left(x_{0}, \epsilon\right) \subset A_{i_{0}}$. Then $D\left(x_{0}, \epsilon\right) \subset \bigcup_{i \in I} A_{i}$ follows. This proves that $\bigcup_{i \in I} A_{i}$ is open, hence in $\mathcal{T}$.

PMATH 351 Lecture 9: January 22, 2010

## Chapter 2

Proposition: (2.1.2) Every $\epsilon$-disc $D(x, \epsilon)$ is open.
Proof: Let $a \in D(x, \epsilon)$ be given. Let $a \in D(x, \epsilon)$ be given. Let $r=\epsilon-d(x, a)$. Then $r>0$, because $a \in D(x, \epsilon)$, so $d(a, x)<\epsilon$.
Claim: $D(a, r) \subset D(x, \epsilon)$.
Proof: Let $y \in D(a, r)$ be given.
Then $d(y, a)<r$. Hence $d(y, x) \leq d(y, a)+d(a, x)$ (by the triangle inequality)
$<r+d(a, x)=\epsilon$. So $d(y, x)<\epsilon$. This shows that $y \in D(x, \epsilon)$. As $a \in D(x, \epsilon)$ is arbitrarily given, this proves that $D(x, \epsilon)$ is open.

Definition: Let $(X, \mathcal{T})$ be a topological space. Let $A \subset X . a \in A$ is called an interior point of $A$ if there exists $G \in \mathcal{T}$ so that $a \in G \subset A$.
The set of all interior points of $A$ is denoted $\operatorname{int}(A)$.
A subset of $X$ is called open if it is a member of the topology. Thus, $a \in \operatorname{int}(A)$ if there exists open $G$ so that $a \in G \subset A$.

Note: The finite intersection of open sets is open, and the (arbitrary) union of open sets is open. Also, $X$ and $\emptyset$ are open.

Proposition: Let $X$ be a topological space. (Implicitly there is a topology $\mathcal{S}$.) Let $A \subset X$. Then $\operatorname{int}(A)$ is open.
Proof: Let $b \in \operatorname{int}(A)$. Choose an open set $G_{b}$ so that $b \in G_{b} \subset A$. Then $G_{b} \subset \operatorname{int}(A)$. [Proof: Let $c \in G_{b}$. Then as $c \in G_{b} \subset A, c \in \operatorname{int}(A)$.] Now $\operatorname{int}(A)=\bigcup_{b \in \operatorname{int}(A)} G_{b}$.
Being the union of open sets, $\operatorname{int}(A)$ is open.
Proposition: If $G$ is open and $G \subset A$, then $G \subset \operatorname{int}(A)$. (seen from above) Thus $\operatorname{int}(A)$ is the largest open subset of $A$.
Example: $X=\{a, b, c\}, \mathcal{T}=\{\emptyset, X,\{a\}\}$
$\operatorname{int}(\{a, b\})=\{a\} . \operatorname{int}(\{a, b, c\})=X . \operatorname{int}(\emptyset)=\emptyset, \operatorname{int}(\{b\})=\emptyset$.
In a discrete topological space, $\operatorname{int}(A)=A$, all $A$.
In an indiscrete topology space, $\operatorname{int}(A)= \begin{cases}\emptyset & \text { if } A \neq \text { full } X \\ X & \text { if } A=X\end{cases}$

## PMATH 351 Lecture 10: January 25, 2010

Example: Consider $\mathbb{R}$ under the usual metric (i.e., $d(x, y)=|x-y|=\sqrt{(x-y)^{2}}$ ). Let $A=$ $(\mathbb{Q} \cap[0,1]) \cup[2,3]$. Then $\operatorname{int}(A)=] 2,3[$.
Consider the metric space $A$ under the usual metric space $d(x, y)=|x-y|$.
Then $\operatorname{int}(A)=A$.
Definition: Let $A$ be a subset of a topological space $X$. Then $A$ is closed if $X \backslash A$ (notation $A^{c}$, the complement of $A$ ) is open.
Example: $X, \emptyset$ are closed.
Let $A \subset X$. A point $b \in X$ is called a limit point (or a contact point) of $A$ if for every open set $G$, with $b \in G$, meets $A$ (i.e., $G \cap A \neq \emptyset$ ).
If every open set $G$, with $b \in G$,
meets $A$ at some point other than $b$ itself, we say that $b$ is an accumulation point of $A$.
The set of all limit points of $A$ is called the closure of $A$, denoted $\operatorname{cl}(A)$.
Example: $X=\mathbb{R}$, usual metric. $A=\mathbb{Q} \cap[0,1] \cup[2,3]$. Then $\operatorname{cl}(A)=[0,1] \cup[2,3]$.
Proposition: $\operatorname{cl}(A)$ is a closed set in $X . \operatorname{cl}(A) \supseteq A$ and is the smallest closed set which contains $A$.
Proposition: In a topological space $X$, for any subset $A \subset X, \operatorname{int}(A)$ and $\operatorname{cl}\left(A^{c}\right)$ are complementary
figure:
$a, y \in D(x, r)$
figure: $a \in G \subset A$
figure: $b \in G_{b} \subset A$
figure: $A$ on real line
figure: $A$ not on real line
figure: $b$ on boundary of $A$
sets, i.e., they form a partition, i.e.,

$$
\operatorname{int}(A)^{c}=\operatorname{cl}\left(A^{c}\right)
$$

## PMATH 351 Lecture 11: January 27, 2010

Example: Consider $\mathbb{R}$ under the usual metric. Let $A=[0,1] \cup\{2\} \cup[3,4]$. Then 2 is a limit (contact) point of $A$. It is not an accumulation point of $A$. The open set $D(2,1 / 2)$ meets $A$ at $\{2\}$.
Definition: Let $X$ be a topological space. A set $U$ is called a neighbourhood of $a \in X$ if $U$ contains an open set $G$ which has $a$ as an element. Clearly, every open set which contains $a$ is a neighbourhood of $a$.

$$
\mathcal{U}(a)=\{U \subset X: U \text { is a neighbourhood of } a\}
$$

is called the neighbourhood system at $a$. Notice that $\mathcal{U}(a)$ is closed under finite intersection. Further, if $U \in \mathcal{U}(a)$ and $V \supset U$, then $V \in \mathcal{U}(a)$.
Definition: Let $\Delta$ be a set $(\neq \emptyset)$ with a partial order $\leq$. Suppose that for any two elements $a$, $b \in \Delta$, there exists $c \in \Delta$ so that $a \leq c$ and $b \leq c$. We call such $(\Delta, \leq)$ a directed set.

## Examples:

1. $\mathbb{N}$ under the usual ordering is a directed set.
2. Let $X$ be a topological space, $a \in X$ be any point. Consider $\Delta=\mathcal{U}(a)$. Define on $\Delta$ the partial ordering $\leq$ by $U, V \in \mathcal{U}(a), U \leq V$ if $V \subset U$. Then $(\mathcal{U}(a), \leq)$ is a directed set. In fact, if $U$ and $V$ are two neighbourhoods of $a$, then $U \cap V$ is a neighbourhood of $a$ and is higher than both.

Definition: Let $(\Delta, \leq)$ be a directed set. Let $X$ be a set. A function $x: \Delta \rightarrow X$ is called a net in $X$. When $(\Delta, \leq)$ is $\mathbb{N}$ under the usual ordering, we call the net a sequence in $X$.
Definition: Let $(\Delta, \leq)$ be a directed set, $X$ be a topological space. Let $\boldsymbol{x}$ be a net on $\Delta$ in $X$. The image of an element $\alpha \in \Delta$ under $\boldsymbol{x}$ will be denoted by $\boldsymbol{x}_{\alpha}$. The map $\boldsymbol{x}$ is sometimes recorded as $\left(\boldsymbol{x}_{\alpha}\right)_{\alpha \in \Delta}$.
Let $x_{0} \in X$. We say that $\boldsymbol{x}$ converges to $x_{0}$ if for all $U \in \mathcal{U}\left(x_{0}\right)$, there exists $x \in \Delta$ such that $\boldsymbol{x}_{\beta} \in U$ for all $\alpha \leq \beta$.
Proposition: Let $X$ be a topological space and $A \subset X$. Let $b \in X$. Then $b$ is a limit point of $A$ if and only if every neighbourhood $U \in \mathcal{U}(b)$ meets $A$ if and only if there exists a net $x: \Delta \rightarrow X$, with terms in $A$, so that $\boldsymbol{x}$ converges to $b$.
(Partial Proof). Suppose that $b$ is a limit point of $A$. Consider $\Delta=\mathcal{U}(b)$, with the partial ordering $U \leq V$ if $V \subset U$. To each $U \in \mathcal{U}(b)$, choose $\boldsymbol{x}_{u} \in A \cap U$. [So, $\boldsymbol{x}$ is a choice function].
figure: $b$ limit point of $A \subset X$
Then $\boldsymbol{x}$ is a net whose terms are in $A$. Moreover, we can check that indeed $\boldsymbol{x}$ converges to $b$.

## PMATH 351 Lecture 12: January 29, 2010

Proposition: In a topological space $X$, a point $b$ is a contact (limit) point of a set $A$ if and only if there exists a net $\boldsymbol{x}: \Delta \rightarrow X$ with all terms in $A$ which converges to $b$.
Proof: If $b$ is a contact point of $A$, we constructed a net $\boldsymbol{x}: \mathcal{U}(b) \rightarrow A$ which converges to $b$. (Done)
Conversely, suppose that we have a net $\boldsymbol{x}: \Delta \rightarrow A$ which converges to $b$. We intend to show that $b$ is a contact point of $A$.
Let $U \in \mathcal{U}(b)$ be given. Then, as $\boldsymbol{x}$ converges to $b$, there exists $\alpha \in \Delta$ such that $\boldsymbol{x}_{\beta} \in U$ for every $\alpha \leq \beta$. In particular, $\boldsymbol{x}_{\alpha} \in U$. As all terms of $\boldsymbol{x}$ are in $A$, we set $\boldsymbol{x}_{\alpha} \in A$. So $\boldsymbol{x}_{\alpha} \in A \cap U$. Thus $U \cap A \neq \emptyset$.
This proves that $b \in \operatorname{cl}(A)$.
Example: Seen from the above is that if there exists a sequence $\boldsymbol{x}: \mathbb{N} \rightarrow A$ converging to $b$, then $b \in \operatorname{cl}(A)$. Don't expect that the converse holds. Consider an uncountable infinite set $X$. On $X$ we
consider the co-countable topology

$$
\mathcal{T}=\left\{A \subset X: A^{c} \text { (i.e., } X \backslash A \text { ) is at most countable, or } A=\emptyset\right\}
$$

Let $A=X \backslash\left\{x_{0}\right\}$, where $x_{0} \in X$ is fixed. Is $x_{0}$ a limit (contact) point of $A$ ? Let $U \in \mathcal{U}\left(x_{0}\right)$ be given. There exists an open $G$ such that $x_{0} \in G \subset U$. Thus $G \in \mathcal{T}$.
Clearly $G \neq \emptyset$, so $G^{c}$ is at most countable. If $G$ does not meet $A$, then $G \subset A^{c}$, i.e., $G^{c} \supset A$. As $G^{c}$ is at most countable, $A$ is at most countable. This implies that $X=A \cup\left\{x_{0}\right\}$ is at most countable. This contradicts that $X$ is more than countable. Then $G$ must meet $A$. So will the larger $U$. This proves that $x_{0}$ is indeed a contact point of $A$. Does there exist a sequence $\boldsymbol{x}: \mathbb{N} \rightarrow A$ which converges to $x_{0}$ ?

Let $\boldsymbol{x}: \mathbb{N} \rightarrow A$ be arbitrarily given. Consider the neighbourhood $U=X \backslash$ range $\boldsymbol{x}$ of $x_{0}$. Notice that all terms of $\boldsymbol{x}$ are in $A$, no terms equal $x_{0}$. So $x_{0} \in U$. Notice that $U$ is open, because the range of $\boldsymbol{x}$ is at most countable.

As no term of $\boldsymbol{x}$ falls in the neighbourhood of $x_{0}, \boldsymbol{x}$ does not converge to $x_{0}$.

## PMATH 351 Lecture 13: February 1, 2010

Let $X$ and $Y$ be topological spaces and $f: X \rightarrow Y$. Let $a \in X$. We say that $f$ is continuous at $a$ if for all $U \in \mathcal{U}(f(a))$ there exists a $V \in \mathcal{U}(a)$ such that $f(V) \subset U$.
If $f$ is continuous at each $a \in X$ we say that $f$ is continuous on $X$.
If $X$ and $Y$ are metric spaces under $d$ and $\rho$ respectively, then $f$ is continuous at $a$ if for all $D(f(a), \epsilon)$, there exists $D(a, \delta)$ such that $f(D(a, \delta)) \subset D(f(a), \epsilon)$, i.e., for all $\epsilon>0$, there exists $\delta>0$ such that for all $x, d(x, a)<\delta$ implies $\rho(f(x), f(a))<\epsilon$.

Theorem: The following statements are equivalent for a map $f: X \rightarrow Y$ on topological spaces.
(1) $f$ is continuous on $X$
(2) $f^{-1}(G)$ is open in $X$ for each open $G$ in $Y$
(3) $f^{-1}(F)$ is closed in $X$ for each closed $F$ in $Y$
(4) $f(\operatorname{cl}(A)) \subset \operatorname{cl}(f(A))$ for all subsets $A \subset X$

Proof: $[(1) \Longrightarrow(2)]$ Assume (1). Let open $G$ in $Y$ be given. Consider $f^{-1}(G)$. Let $a \in f^{-1}(G)$. Then $f(a) \in G$ (by definition of pre-image). Now, $G \in \mathcal{U}(f(a))$ because $G$ is open. Because $f$ is continuous at $a$, there exists $U \in \mathcal{U}(a)$ such that $f(U) \subset G$. Without loss of generality, we may assume that $U$ is open. [As there exists an open neighbourhood of a inside $U$.] As $f(U) \subset G$, $U \subset f^{-1}(G)$. Notice that $a \in U$. Then, it is clear that,

$$
\bigcup\left\{U: U \text { is open, } U \subset f^{-1}(G)\right\}=f^{-1}(G)
$$

Being the union of open sets, $f^{-1}(G)$ is open.
$[(2) \Longrightarrow(3)]$ Assuming (2). Let $F \subset Y$ be a given closed set. Consider $f^{-1}(F)$.
Then $F^{c}$ (i.e., $Y \backslash F$ ) is open in $Y$. By (2), $f^{-1}\left(F^{c}\right)$ is open in $X$.
As $f^{-1}\left(F^{c}\right)=\left[f^{-1}(F)\right]^{c}$, we see that $f^{-1}\left(F^{c}\right)$ is closed.
$[(3) \Longrightarrow(4)]$ Assume (3). Let $A \subset X$ be given. Consider $f^{-1}(\operatorname{cl}(A))$
By $(3), f^{-1}(\operatorname{cl}(f(A)))$ is closed.
Notice that $\operatorname{cl}(f(A)) \supset f(A)$
so $f^{-1}(\operatorname{cl}(f(A))) \supset f^{-1}(f(A))$
so $f^{-1}(\operatorname{cl}(f(A))) \supset A$
So $\operatorname{cl}(A) \subset f^{-1}\left(\operatorname{cl}(f(A))\right.$ ) (by definition of closure). Therefore $f(\operatorname{cl}(A)) \subset f\left[f^{-1}(\operatorname{cl}(f(A)))\right] \subset$ $\operatorname{cl}(f(A))$. We see (4).

## PMATH 351 Lecture 14: February 3, 2010

To complete the proof of the equivalence of the four statements, we now show that
(4) $f(\operatorname{cl}(A)) \subset \operatorname{cl}(f(A))$
implies (2): $f$ is continuous on $X$.
Proof: Let $a \in X$ be given.
Let $u \in \mathcal{U}(f(a))$ be given.
Without loss of generality, we may assume that $u$ is open.
Then $F:=u^{c}$ is closed and $f(a) \notin F$.
Consider $f^{-1}(u)$ which clearly contains $a$. We need only to show that $f^{-1}(u)$ is a neighbourhood of $a$.
Observe that $f^{-1}(u)^{c}=f^{-1}(F)$.
In particular $f[\underbrace{f^{-1}(u)^{c}}_{=A, \text { say }}] \subset F$.
By assumption (4),

$$
f\left(\operatorname{cl}\left[f^{-1}(u)^{c}\right]\right) \subset \operatorname{cl}(f(A))
$$

Now, as $f(A) \subset F$ and $F$ is closed, we have $\operatorname{cl}(f(A)) \subset F$.
Hence $f(\operatorname{cl}[A]) \subset F$.
So $\operatorname{cl}([A]) \subset f^{-1}(F)=A$ by definition of pre-image

$$
\operatorname{cl}(A) \subset A
$$

As $\operatorname{cl}(A) \supset A$ always, we get $\operatorname{cl}(A)=A$. So $A$ is closed.
So $f^{-1}(u)=A^{c}$ is open.
So $f^{-1}(u)$ is a neighbourhood of $a$.
Theorem: Let $X$ be a set, $Y$ be a topological space and let $f: X \rightarrow Y$ be a mapping.
Then the set

$$
\mathcal{T}=\left\{f^{-1}(G): G \text { open in } Y\right\}
$$

is a topology on $X$. Clearly, it is the smallest topology in $X$ with which $f$ is continuous.
Proof: [Checking that $\mathcal{T}$ is indeed a topology on $X$.]
(1) $\bigcap_{i \in I} f^{-1}\left(G_{i}\right)$ (where $I$ is finite) $=f^{-1}\left(\bigcap_{i \in I} G_{i}\right)$, where $\bigcap_{i \in I} G_{i}$ is open. Then $\mathcal{T}$ is closed under finite intersection.
(2) Similarly $\mathcal{T}$ is closed under arbitrary union.

## PMATH 351 Lecture 15: February 5, 2010

Definition: A mapping $f: X \rightarrow Y$ from topological space $X$ to topological space $Y$ is called a homeomorphism if it is bijective and both $f$ and $f^{-1}$ are continuous.
It follows that, for a homeomorphism $f$, a set $A \subset X$ is open if and only if $f(A) \subset Y$ is open:
(if) Suppose that $f(A)$ is open in $Y$. Then $A=f^{-1}(f(A))$ [because $f$ is bijective] is open in $X$ because $f$ is continuous.
(only if) Suppose that $A$ is open in $X$, then $f(A)=\left(f^{-1}\right)^{-1}(A)$ is open because $f^{-1}$ is continuous.
In short, the bijective $f$ matches open sets of $X$ to open sets of $Y$.
Definition: Topological spaces $X$ and $Y$ are homeomorphic if there exists a homeomorphism $f$ from $X$ to $Y$.
Example: Let $X=\{a, b, c\}, \mathcal{T}=\{X, \emptyset,\{a\}\}$. Let $Y=\{1,2,3\}$ and $\tilde{\mathcal{T}}=\{Y, \emptyset,\{3\}\}$. The spaces are homeomorphic. The map $f: X \rightarrow Y$ given by $f(a)=3, f(b)=1, f(c)=2$ matches open sets.
Example: $[0,1]$ and any closed interval $[a, b](a, b \in \mathbb{R}, a<b)$, as metric spaces are homeomorphic. The map $f:[0,1] \rightarrow[a, b], f(t)=a+t(b-a), t \in[0,1]$ is a homeomorphism.
$f: X \rightarrow Y$
topological spaces
$X$ and $Y$
figure: $a \mapsto f(a)$

Note:
$f\left(f^{-1}(F)\right) \subset F$.
figure: step function
$f^{-1}(f(A)) \supset A$
$f: \mathbb{R} \rightarrow[0, \infty[$
$f(x)=x^{2}$ surjective $A=[0, \infty[\subset \mathbb{R}$
$f(A)=[0, \infty[$
$f^{-1}(f(A))=$ $f^{-1}([0, \infty[)=\mathbb{R}$
figure: $A \mapsto f(A)$

Definition: (Subspaces)
Let $X$ be a topological space under a topology $\mathcal{T}$. Let $A \subset X$. Then $\mathcal{T}_{A}=\{G \cap A: G \in \mathcal{T}\}$ is a topology on $A$. With this topology, we call $A$ a subspace of $X$.

Let $(X, d)$ be a metric space. Let $A \subset X$. Then $d_{A}$ defined by $d_{A}\left(a_{1}, a_{2}\right)=d\left(a_{1}, a_{2}\right)$ for all $a_{1}, a_{2} \in A$ is also a metric. We call $\left(A, d_{A}\right)$ a subspace of $(X, d)$.

Question: Let $(X, d)$ be a metric space. Let $A \subset X$. Then $A$ has two topologies. First, $A$ is a metric space under $d_{A}$, and so $d_{A}$ induces a topology $\mathcal{T}_{1}$, say. Second, from $d$, we get a topology $\mathcal{T}$ on $X$, and that we get a topology $\mathcal{T}_{A}\left(\mathcal{T}_{2}\right)$ in $A$.

Are the two topologies the same? Answer: Yes.
Examples: $\mathbb{R}^{2}$ with the usual metric is a metric space. It is also a topological space. e.g., the figures

$$
A, B, C, D, \ldots, Z \text {, 甲, }
$$

are all (metric) and topological spaces.
Question: Are 8 and $B$ homeomorphic? (Yes)

## PMATH 351 Lecture 16: February 8, 2010

Definition: A topological space $X$ is called Hausdorff if for each pair of distinct points $x$ and $y$, there exist open neighbourhoods $U$ and $V$ of $x$ and $y$, respectively such that $U \cap V=\emptyset$.

Proposition: Every metric space is Hausdorff.
Proof: Let $(X, d)$ be a metric space, and $x \neq y$ in $X$ be given. Then $d(x, y)>0$ and so $r=\frac{1}{2} d(x, y)>0$. The discs $D(x, r)$ and $D(y, r)$ are open and disjoint. If they were not disjoint, say that $z \in D(x, r) \cap D(y, r)$ exists, we would have $d(x, z)<r, d(z, y)<r$, resulting in $d(x, y) \leq$ $d(x, z)+d(z, y)<{ }^{3)} r+r=2 r=d(x, y)$, a contradiction.

A topological space $X$ is said to be metrizable if there exists a metric $d$ on $X$ such that the topology induced by $d$ agree with the topology on $X$.
A non-Hausdorff space is not metrizable, e.g., $X=\{a, b\}, \mathcal{T}=\{X, \emptyset,\{a\}\}$. Then $(X, \mathcal{T})$ is not metrizable.

Definition: A topological space $X$ is connected if there exists no subset $A \subset X$ which is both open and closed, except $A=\emptyset$, and $A=X$.

Example: $[0,1]$ is connected. (Try to prove it on your own.)
(Assuming that every non-empty subset of $\mathbb{R}$ which is bounded from above has a least upper bound in $\mathbb{R}$. Similarly, every non-empty subset of $\mathbb{R}$ which is bounded from below has a greatest lower bound in $\mathbb{R}$.)

Definition: A subset $I \subset \mathbb{R}$ is called an interval if whenever $a, b \in I$, so are all numbers $a \leq c \leq b$. e.g., $I=[0,1],] 0,1[] 0,1,], \mathbb{R},\{1\}$, etc.

Example: A subset of $\mathbb{R}$ is connected if and only if it is an interval.
(Partial proof) If $A \subset \mathbb{R}$ and $A$ is not an interval, we show that it is not connected:
There exist $a, b \in A$ and $a \leq c \leq b$ with $c \notin A$. Then $G_{a}=\{x: x \in A, x<c\}$ and $G_{b}=$ $\{x: x \in A, c<x\}$. They are non-empty, and they are both open, partitioning $A$.


Similarly $\left.G_{b}=A \cap\right] c, \infty[$ is open in space $A$

$$
G_{a} \cup G_{b}=A
$$

[^2]Hence $G_{a}$ is both open and closed, and $G_{a} \neq A, \emptyset$. So $A$ is not connected.
Proposition: The statements below are equivalent for a topological space $X$.
(1) The only subsets of $X$ which are both open and closed are $X$ and $\emptyset$.
(2) There is no (interesting) partition of $X$ into two (disjoint) non-empty open sets.

## Examples in $\mathbb{R}^{\mathbf{2}}$

$\left.\left.A=\left\{\left(\frac{1}{n}, y\right): 0 \leq y \leq 1\right\} \cup\right] 0,1\right] \cup\{(0,1)\}$
figure: $A$
Then $A$ is connected.

## PMATH 351 Lecture 17: February 10, 2010

The intermediate value theorem in calculus states that a continuous function $f:[a, b] \rightarrow \mathbb{R}$ where $f(a)<0, f(b)>0$ must attain the value 0 at some point between $a$ and $b$.
The notion of a connected space is a characterization of such a property (intermediate value).
Theorem: A space $X$ is connected if and only if for every continuous function $f: X \rightarrow \mathbb{R}$ satisfying $f(a)<0, f(b)>0$ for some $a, b \in X$, there exists a $c \in X$ so that $f(c)=0$.
Proof:
Lemma: The continuous image of a connected space is connected. That is: if $f: X \rightarrow Y$ is continuous and $X$ is connected, then $f(X)$ is connected.

Proof: Without loss of generality we may assume $f(X)=Y$. Suppose, to the contrary that $Y$ is not connected, then we can partition $Y$ into two disjoint non-empty open sets $Y_{1}$ and $Y_{2}$. Now $f^{-1}\left(Y_{1}\right)$ and $f^{-1}\left(Y_{2}\right)$ is a partition of $X$, where $f^{-1}\left(Y_{1}\right)$ and $f^{-1}\left(Y_{2}\right)$ are open due to the continuity of $f$, and both are non-empty ( $f$ surjective). This shows that $X$ is not connected, a contradiction.
(i) Suppose that $X$ is connected. To show that the intermediate value property holds in $X$, let $f: X \rightarrow \mathbb{R}$ be a given continuous map, and suppose that there are points $a$ and $b$ such that $f(a)<0$ and $f(b)>0$.

By the Lemma, $f(X)$ is a connected space, and a subspace of $\mathbb{R}$ so $f(X)$ must be an interval. The interval has a negative value and a positive value. So the interval must contain all real numbers between them, In particular, 0 is there.
(ii) Suppose that $X$ is not connected. Then there exists a partition of $X$ into disjoint and nonempty open $X_{1}, X_{2}$. Let $f: X \rightarrow \mathbb{R}$ be defined by $f(x)=-1$ if $x \in X_{1}$ and $f(x)=+1$ if $x \in X_{2}$. Then $f$ is continuous. There are only four possible images namely, $X, X_{1}, X_{2}$ or $\emptyset$. All are open. So $f$ is continuous. The value 0 is not attained by $f$.

Proposition: Let $X$ be a topological space. Let $\left\{X_{i}: i \in I\right\}$ be a family of connected subsets of $X$. Suppose that $\bigcap_{i \in I} X_{i} \neq \emptyset$. Then $\bigcup_{i \in I} X_{i}$ is connected.
Proof: Exercise. [Sol: Lecture 34]

## PMATH 351 Lecture 18: February 12, 2010

Definition: A topological space $X$ is path connected if for every two elements $x, y \in X$, there exists a (path) continuous map $\gamma:[0,1] \rightarrow X$ such that $\gamma(0)=x$ and $\gamma(1)=y$.

Proposition: A path connected space is connected.
Proof: Fix an $x_{0} \in X$. To each $x \in X$, fix a path $\gamma_{x}$ in $X$ joining $x$ to $x_{0}$, i.e., $\gamma_{x}(0)=x$ and $\gamma_{x}(1)=x_{0}$. The family

$$
\left\{\gamma_{x}([0,1]): x \in X\right\}
$$

consists of connected subsets of $X$. The intersection is not empty ( $x_{0}$ is there). So $\bigcup_{x \in X} \gamma_{x}([0,1])$ is connected by the previous theorem. But the union is equal to $X$.

The converse is not true. The example
figure: root of $f$ between $a$ and $b$
figures:
path $f:[a, b] \rightarrow X$
lines $x_{1}, x_{2}, x_{3}$
distinct lines in $\mathbb{R}^{2}$
figure: $\gamma(t)$ from $x$ to $y \in X$
figure: $\gamma_{x}$
figure: $X$

$$
X=\{(x, 0): x \in] 0,1]\} \cup\left\{\left(\frac{1}{n}, y\right): y \in[0,1]\right\} \cup\{(0,1)\}
$$

as a subspace of $\mathbb{R}^{2}$ is that of connected space which is not path connected. In fact $(0,1)$ and $(1,1)$ cannot be joined by a path in $X$.

Topological Vector Spaces: Let $V$ be a real vector space. Suppose that $\mathcal{T}$ is a topology on $V$. We call $V$ a topological vector space if the linear structure and the topological structure are compatible in the following sense:
(1) Vector addition: $\underbrace{V \times V}_{4)} \rightarrow V$ is closed and continuous
(2) Scalar multiplication: $\mathbb{R} \times V \rightarrow V$ is continuous
where the topology on $\mathbb{R} \times V$ is generated by $\left\{G_{1} \times G_{2}: G_{1}\right.$ open in $\mathbb{R}, G_{2}$ open in $\left.V\right\}$
Examples: $\mathbb{R}^{n}, C[0,1]$ under the uniform metric defined by

$$
d(f, g)=\sup \{\min (|f(t)-g(t)|, 1): t \in[0,1]\}
$$

In a topological vector space over $\mathbb{R}$, a set $A$ is convex if for all $x, y \in A$, the line segment joining $x$ and $y$

$$
\{t x+(1-t) y: t \in[0,1]\}
$$

is contained in $A$.
Proposition: A convex subset of a topological space is connected and in fact is path connected.
Remark: We have the theorem that $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(G)$ is open for every open $G$. If $\mathcal{B}$ generates the topology on $Y$, then it is sufficient to observe that $f^{-1}(B)$ are open for each $B \in \mathcal{B}$. Example: $\mathbb{R}$ has the usual topology generated by

$$
\mathcal{B}=\{ ]-\infty, a[,] a, \infty[: a \in \mathbb{Q}\}
$$

Thus $f: X \rightarrow \mathbb{R}$ is continuous if and only if $f^{-1}(]-\infty, a[)$ and $f^{-1}(] a, \infty[)$ are open (in $X$ ) for each rational $a$.

## PMATH 351 Lecture 19: February 24, 2010

## Compactness

Let $X$ be a topological space. A family $\mathcal{C}$ of open sets is said to be an open cover of $X$ if $\cup \mathcal{C}=X$. If $\tilde{\mathcal{C}} \subset \mathcal{C}$ and $\bigcup \tilde{\mathcal{C}}=X$, we call $\tilde{\mathcal{C}}$ a subcover of $\mathcal{C}$.
The space $X$ is called compact (cpct) is every open cover $\mathcal{C}$ of $X$ has a finite subcover $\tilde{\mathcal{C}}$.
Example: $\mathbb{R}$ is not compact. The family $]-n, n[: n \in \mathbb{N}\}$ is an open cover of $\mathbb{R}$. Clearly it has no finite subcover.

A finite topological space $X$ is compact. Here is the trivial argument: Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let $\mathcal{C}$ be any given open cover. Then $\bigcup \mathcal{C}=X$. So, for each $1 \leq i \leq n, x_{i} \in \bigcup \mathcal{C}$ and so there exists $G_{i} \in \mathcal{C}$ so that $x_{i} \in G_{i}$. Now $\tilde{\mathcal{C}}=\left\{G_{i}: 1 \leq i \leq n\right\} \subset \mathcal{C} . \tilde{\mathcal{C}}$ is clearly a subcover of $\mathcal{C}$.

Let $X$ be any set and consider the topology of finite complements. Then the space $X$ is compact. Without loss of generality, $X$ is infinite.

Proof: Let $\mathcal{C}$ be an open cover of $X$. Let $x_{0} \in X$ be fixed. Then, as $\mathcal{C}$ covers $X$, there exists $G_{0} \in \mathcal{C}$ so that $x_{0} \in G_{0}$. Now, $G_{0}$ is open, therefore $X \backslash G_{0}$ is finite, say $X \backslash G_{0}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. To each $x_{i}$, there exists $G_{i} \in \mathcal{C}$ so that $x_{i} \in G_{i}$.
Now $\left\{G_{0}, G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a finite subcover of $\mathcal{C}$.
Theorem: A subspace $X$ of $\mathbb{R}^{n}$ is compact if and only if it is closed (in $\mathbb{R}^{n}$ ) and bounded.

[^3]Definition: $X \subset \mathbb{R}^{n}$ is bounded if there exists a (finite) radius $r$ so that $X \subset D(0, r)$.
Definition: Sequential compactness. Let $X$ be a topological space. If every sequence $x_{n}$ in $X$ has a convergent subsequence in $X$, we say $X$ is sequentially compact.

Example: In $[0,1]$, the sequence $0,1,0,1,0,1, \ldots$, is not convergent, but the sequence formed by the odd terms $0,0,0, \ldots$, is convergent (illustrating the notion of convergent subsequence).

The full space $\mathbb{R}$ is not sequential compact.
Proof: The sequence $x_{n}=n$ is a sequence in $\mathbb{R}$ which has no convergent subsequence.
Theorem 3.1.3: (Bolzano-Weierstrass Theorem).
A (subset of a) metric space is compact if and only if it is sequentially compact. (Proof page 165).
Question on exam. Can we put a topology on $P_{2}$ so that $P_{2}$ is homeomorphic to $\mathbb{R}$ ?
Yes. $P_{2}$ can be matched with $\mathbb{R}^{3}$ by a bijective map. Also $\left|\mathbb{R}^{3}\right|=|\mathbb{R}|$. So $\left|P_{2}\right|=|\mathbb{R}|$. There is a bijection $f: P_{2} \rightarrow \mathbb{R}$.

## PMATH 351 Lecture 20: February 26, 2010

Theorem 3.1.3 (Bolzano-Weierstrass Theorem):
A subset $A$ of a metric space $M$ is compact if and only if it is sequentially compact.
Proof (page 165).
Lemma: A compact $A \subset M$ is closed in $M$.
Proof: Let $A$ be compact. Let $x_{0} \in M, x_{0} \notin A$ be given.
To each $a \in A$, because $a \neq x_{0}, r=d\left(a, x_{0}\right)>0$ and $D\left(x_{0}, r / 2\right)$ is disjoint from $D(a, r / 2)$. Label them as $U_{a}$ and $V_{a}$, and they are neighbourhoods (open) of $a$ and $x_{0}$ respectively. Now $\left\{U_{a}: a \in A\right\}$ is an open cover of $A$ in the sense that $\bigcup_{a \in A} u_{a} \supset A$. Because $A$ is compact, there exists finitely many $U_{a_{1}}, U_{a_{2}}, \ldots, U_{a_{n}}$ so that their union already contains $A$. Notice that $V_{a_{1}} \cap V_{a_{2}} \cap \cdots \cap V_{a_{n}}=: V_{x_{0}}$ is an open neighbourhood of $x_{0}$, and is disjoint from each $U_{a_{i}}(i=1, \ldots, n)$. $V_{x_{0}}$ does not meet $U_{a_{1}}, U_{a_{2}}, \ldots, U_{a_{n}}$ implies that $V_{x_{0}}$ does not meet $A$.
Hence $x_{0}$ is not a limit of $A$.
As $x_{0} \notin A$ is arbitrary, this proves that $A$ is closed.
Comment: The Lemma holds when $M$ is any Hausdorff topological space.
Lemma 2: In a compact space, say $X$, a closed subset $A$ is compact.
Proof: Let $A$ be a closed set in $X$. Knowing $X$ is compact, we wish to argue that $A$ is compact.
Let $\mathcal{C}$ be a collection of open sets in $X$ which covers $A$, i.e., $\cup \mathcal{C} \supset A$.
figure: $A \subset M$
figure: cover of $A$, $x_{0} \notin A$
figure: cover of $A \subset X$

Now $\mathcal{C} \cup\{\underbrace{A^{c}}_{\text {open }}\}$ is an open cover of $X$. By compactness of $X$, a finite number of members of $\mathcal{C} \cup\left\{A^{c}\right\}$ covers $X$, say $\left\{u_{1}, u_{2}, \ldots, u_{n}, A^{c}\right\}$ covers $X$.
Then $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ covers $A$.
So $A$ is compact.
Comment: In $\mathbb{R}^{n}$, a subset is compact if and only if it is closed and bounded (Heine-Borel Theorem).

With the Lemma above, if we can show that a closed disk (with finite radius) $\left\{x \in \mathbb{R}^{2}: d\left(x_{0}, 0\right) \leq r\right\}$ is compact, then it follows from the Lemma that every bounded closed set in $\mathbb{R}^{n}$ is compact.

PMATH 351 Lecture 21: March 1, 2010
New Midterm: Tuesday, 16 March, 2010 at 4:00-5:30 PM

Proof of the Bolzano-Weierstrass Theorem (page 165 text)
Let $A$ be compact. Assume, to the contrary that $A$ is not sequentially compact, that there exists a sequence $x_{k} \in A$ which has no convergent subsequence.
In particular, the sequence has infinitely many distinct points $y_{1}, y_{2}, \ldots, y_{n}, \ldots$.
Claim: $\left\{y_{1}, y_{2}, \ldots, y_{n}, \ldots\right\}$ is closed.
Proof: Let $a \in A, a \notin\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$. If $a$ were a limit point of $\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$ then every neighbourhood of $a$ will meet this set. Hence, by picking elements in the intersection of $D(a, 1 / n)$ with the set $\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$, we get a convergent subsequence of $x_{k}$ which converges to $a$. This would contradict that $x_{k}$ has no convergent subsequence.
Therefore $\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$ is compact. ("closed subsets of a compact space $A$ is compact").
Claim: Each element of $\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$ is an isolated point of the set, i.e., to each $y_{i}$, there exists a positive $\delta$ such that $D\left(y_{i}, \delta\right)$ does not meet $\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$ at any point other than $y_{i}$.
Consider the open cover of $\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$

$$
\mathcal{C}=\left\{D\left(y_{i}, \delta_{i}\right): i=1,2, \ldots\right\} .
$$

This $\mathcal{C}$ has no finite subcover. It contradicts the compactness of $\left\{y_{1}, \ldots, y_{n}, \ldots\right\}$. The above proves that compact $A$ is sequentially compact.

Next, assume that $A$ is sequentially compact. Let $\mathcal{C}$ be a given open cover of $A$.
Claim: There exists $r>0$ such that for each $y \in A, D(y, r) \subset U$ for some $U \in \mathcal{C}$.
... Read the book.

## PMATH 351 Lecture 22: March 3, 2010

Theorem: (4.2.2) Let $f: X \rightarrow Y$ be continuous where $X$ and $Y$ are topological spaces. If $X$ is compact, then $f(X)$ is compact.
Proof: Let $\left\{G_{i}: i \in I\right\}$ be an open cover of $f(X)$. Then $\left\{f^{-1}\left(G_{i}\right): i \in I\right\}$ is an open cover of $X$. Each $f^{-1}\left(G_{i}\right)$ is open because $f$ is continuous and $G_{i}$ is open.

$$
\bigcup_{i \in I} f^{-1}\left(G_{i}\right)=f^{-1}\left(\bigcup_{i \in I} G_{i}\right) \supset f^{-1}(f(X)) \supset X
$$

As $X$ is compact, there exists $i_{1}, i_{2}, \ldots, i_{N} \in I$ such that $\left\{f^{-1}\left(G_{i_{1}}\right), f^{-1}\left(G_{i_{2}}\right), \ldots, f^{-1}\left(G_{i_{N}}\right)\right\}$ covers $X$. Then $\left\{G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{N}}\right\}$ covers $f(X)$. This proves that $f(X)$ is compact.
Comment: In calculus, we have the theorem: a continuous function (into $\mathbb{R}$ ) on $[a, b]$ attains maximum and minimum.
Proof: $[a, b]$ is compact. Therefore $f[a, b]$ is compact $(\subset \mathbb{R})$. So $f[a, b]$ is closed and bounded (clearly non-empty, as $a \leq b$ is understood). It contains a maximum and minimum. (sup and inf exist for bounded non-empty sets in $\mathbb{R}$, and they are limit points).

Example: The continuous map $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x$, attains no max/min on $\mathbb{R}$ which is not compact. The continuous map $f:] 0,1\left[\rightarrow \mathbb{R}, f(x)=\frac{1}{x}\right.$ attains no maximum and minimum $] 0,1[$. Note $f(] 0,1[)=] 1, \infty[$.
Example: Show that the figures (in $\mathbb{R}^{2}$ )

$$
0 \text { and } 8 \text { are not homeomorphic }
$$

Proof: If any point is removed from the first figure, what is left is a connected space. However, the removal of the point $A$ gives 8 which is not connected. Hence they are not homeomorphic.

Theorem: A bijective $f$ from a compact space $X$ to a Hausdorff space which is continuous is a homeomorphism. (That is, the inverse map is continuous).
Proof: Let $f: X \rightarrow Y$ be continuous, bijective, $X$ is compact, $Y$ is Hausdorff.
figure: 8 with centre point missing
figure: $x_{n_{1}}, x_{n_{2}}$ in neighbourhood of $a, n_{2}>n_{1}$

To show that $f^{-1}: Y \rightarrow X$ is continuous, let $F \subset X$ be a given closed set.
Consider $\left(f^{-1}\right)^{-1}(F)=f(F)$. Because $X$ is compact, $F$ closed, $F$ is compact. As $f$ is continuous, $f(F)$ is compact. Being in a Hausdorff space $Y, f(F)$ is closed in $Y$. Thus $\left(f^{-1}\right)^{-1}(F)$ is closed in $Y$.

This proves that $f^{-1}$ is continuous.
Corollary: Continuous and injective images of the circle $\left\{(x, y): x^{2}+y^{2}=1\right\}$ in $\mathbb{R}^{2}$ are homeomorphic.

## PMATH 351 Lecture 23: March 5, 2010

Midterm on March 16, Tuesday, 4:00-5:30, MC 4042

## §4.6 Uniform Continuity

Let $X$ and $Y$ be metric spaces under metrics $d$ and $\rho$, respectively. A map $f: X \rightarrow Y$ is said to be uniformly continuous on $X$ if $\forall \epsilon>0, \exists \delta>0$ such that $\left(d\left(x_{1}, x_{2}\right)<\delta \Longrightarrow \rho\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<\epsilon\right)$. Clearly, uniform continuity of $f$ on $X$ implies continuity on $X$.
Example: Let $X=] 0,1\left[, Y=\mathbb{R}\right.$. Let $f(x)=\frac{1}{x}$. Then $f$ is continuous on $X$, but not uniformly continuous.

Proposition: If $X$ is compact, then continuous $f: X \rightarrow Y$ is uniformly continuous.
Proof: Assume that $f: X \rightarrow Y$ is continuous, and that $X$ is compact. Let $\epsilon>0$ be given.
To each $x \in X$, there exists a $\delta_{x}>0$ such that $\rho\left(f(x), f\left(x_{2}\right)\right)<\epsilon / 2$ for all $d\left(x, x_{2}\right)<\delta_{x}$. [continuity of $f$ at $x$ ]
Now the family $\left\{D\left(x, \delta_{x} / 2\right): x \in X\right\}$ is an open cover of $X$. By compactness of $X$, there exists $a_{1}, a_{2}, \ldots, a_{n} \in X$ so that $\left\{D\left(a_{i}, \delta_{a_{i}} / 2\right): i=1, \ldots, n\right\}$ covers $X$. Let $\delta=\min _{i=1, \ldots, n}\left(\delta_{a_{i}} / 2\right)$. Then $\delta>0$.

Let $x_{1}, x_{2} \in X$ be given with $d\left(x_{1}, x_{2}\right)<\delta$.
Because the discs $D\left(a_{i}, \delta_{a_{i}} / 2\right)$ cover $X$, there exists $i$ so that $x_{1} \in D\left(a_{i}, \delta_{a_{i}} / 2\right)$. So, $d\left(x_{1}, a_{i}\right)<\delta_{a_{i}} / 2$.

$$
d\left(x_{2}, a_{i}\right) \leq d\left(x_{1}, a_{i}\right)+d\left(x_{1}, x_{2}\right)<\delta_{a_{i}} / 2+\delta<\delta_{a_{i}} / 2+\delta_{a_{i}} / 2=\delta_{a_{i}}
$$

So $\rho\left(f\left(x_{2}\right), f\left(a_{i}\right)\right)<\epsilon / 2$. Also, $\rho\left(f\left(x_{1}\right), f\left(a_{i}\right)\right)<\epsilon / 2$. Hence

$$
\rho\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \rho\left(f\left(x_{2}\right), f\left(a_{i}\right)\right)+\rho\left(f\left(x_{1}\right), f\left(a_{i}\right)\right)<\epsilon / 2+\epsilon / 2=\epsilon
$$

This proves the uniform continuity of $f$.
Complete metric spaces
Definition: Let $X$ be a metric space with metric $d$.
A sequence $x_{k}$ in $X$ is called Cauchy if

$$
\lim _{k, l \rightarrow \infty} d\left(x_{k}, x_{l}\right)=0 \text {, i.e., } \forall \epsilon>0, \exists N \text { such that }\left(k, l \geq N \Longrightarrow d\left(x_{k}, x_{l}\right)<\epsilon\right) .
$$

Clearly, if $x_{k}$ is a convergent sequence in $X$, then it is Cauchy.
The converse is not true in general.
Example: Consider $] 0,1](=X)$. The sequence $\frac{1}{k}(k \in \mathbb{N})$ is Cauchy. It does not converge to a point in $] 0,1]$.
Definition: A metric space $(X, d)$ is complete if every Cauchy sequence converges (to a point of $X$ ).
Proposition: $\mathbb{R}^{n}, \mathbb{C}^{n}$ are complete metric spaces.
Proposition: A subspace $A$ of a complete metric space $X$ is complete if and only if $A$ is closed in $X$.
Proposition: Compact metric spaces are complete.

## Read Theorem 3.1.5

## PMATH 351 Lecture 24: March 8, 2010

Definition: (3.1.4). A metric space is totally bounded if for all $\epsilon>0$, there exist finitely many $x_{1}, \ldots, x_{n}$ in the space so that $\left\{D\left(x_{i}, \epsilon\right): i=1, \ldots, n\right\}$ covers the space.
Example: The square $[0,1] \times[0,1]$ in $\mathbb{R}^{2}$ is totally bounded.
Theorem: (3.1.5). A metric space $(X, d)$ is compact if and only if it is complete and totally bounded. (A generalization of the Heine-Borel Theorem for subspaces of $\mathbb{R}^{n}$ ).
Proof: (Page 166). To see the converse we suppose that $(X, d)$ is complete and totally bounded, and proceed to argue that $X$ is sequentially compact.

Let $y_{k}$ be a sequence in $X$.
Without loss of generality, we may assume that all terms of $y_{k}$ are distinct. Consider $\epsilon=1$. There are a finite number of discs $D\left(x_{1}, 1\right), D\left(x_{2}, 1\right), \ldots, D\left(x_{k}, 1\right)$ which covers $X$. There must be one disc, say $D\left(x_{1}, 1\right)$, which holds infinitely many $y_{k}$ terms.
Extract a subsequence

$$
y_{11}, y_{12}, y_{13}, \ldots, y_{1 j}, \ldots
$$

of $y_{1}, y_{2}, \ldots, y_{k}, \ldots$ with all terms in $D\left(x_{1}, 1\right)$.
Next, repeat the argument using $\epsilon=1 / 2$, and claim that there exists a disc $D\left(x_{2}, 1 / 2\right)$ and a subsequence

$$
y_{21}, y_{22}, y_{23}, \ldots
$$

of the previous $y_{11}, y_{12}, \ldots$ so that all terms are in $D\left(x_{2}, 1 / 2\right)$


By induction, get sequence

$$
y_{l 1}, y_{l 2}, \ldots
$$

which is a subsequence of $y_{l-1,1}, y_{l-1,2}, \ldots$ so that all terms are in $D\left(x_{l}, 1 / l\right)$.
Consider the diagonal sequence

$$
y_{11}, y_{22}, y_{33}, \ldots, y_{n n}, \ldots
$$

It is Cauchy. As $X$ is complete, it converges to a point of $X$.
Don't expect the statement: A metric space ( $X, d$ ) is compact if and only if it is complete and bounded.

Example: $\mathbb{R}^{2}$ is complete, but not compact. However, $\left.\left(\mathbb{R}^{2}, \rho=\min \left(d^{5}\right), 1\right)\right)$ has the same topology as $\left(\mathbb{R}^{2}, d\right)$.

## PMATH 351 Lecture 25: March 10, 2010

The Banach Fix Point Theorem (or the Contraction mapping theorem): Let ( $X, d$ ) be a metric space. A mapping $T: X \rightarrow X$ is contractive if there exists a constant $k<1$ such that $d(T(x), T(y)) \leq$ $k d(x, y)$ for all $x, y \in X$. (Clearly, contractive maps are uniformly continuous.) If ( $X, d$ ) is complete. Then every contractive map $T$ has a unique fixed point $x_{0} \in X$ (i.e., $T\left(x_{0}\right)=x_{0}$ ).

Proof: Uniqueness first. Suppose $x_{0}$ and $\tilde{x}_{0}$ are both fixed points of $T$. Consider $d\left(T\left(x_{0}\right), T\left(\tilde{x}_{0}\right)\right) \leq$ $k d\left(x_{0}, \tilde{x}_{0}\right)$ we get $d\left(x_{0}, \tilde{x}_{0}\right) \leq k d\left(x_{0}, \tilde{x}_{0}\right)$.
With $k<1$, we get $d\left(x_{0}, \tilde{x}_{0}\right)=0$. Hence $x_{0}=\tilde{x}_{0}$.
(Existence).
Let $x_{1} \in X$ be a fixed element in $X$ and consider $x_{2}=T\left(x_{1}\right), x_{3}=T\left(x_{2}\right), \ldots, x_{k}=T\left(x_{k-1}\right)=$ $T^{(k-1)}\left(x_{1}\right), \ldots$
Claim: The sequence $x_{k}$ converges to a fixed point of $T$.
figure: $x_{1} \rightarrow x_{2} \rightarrow$ $x_{3} \rightarrow \cdots$

[^4]figure: a square is totally bounded
compactness implies sequentially complete and totally bounded
figure: finite cover of discs of radius $1 / 2$
$\mathbb{R}^{2}$ is bounded by $D_{\rho}(\mathbf{0}, 2)$
\[

Proof: \quad $$
\begin{aligned}
d\left(x_{2}, x_{3}\right) & =d\left(T\left(x_{1}\right), T\left(x_{2}\right)\right) \leq k d\left(x_{1}, x_{2}\right) \\
d\left(x_{3}, x_{4}\right) & =d\left(T\left(x_{2}\right), T\left(x_{3}\right)\right) \leq k d\left(x_{2}, x_{3}\right) \leq k^{2} d\left(x_{1}, x_{2}\right) \\
& \vdots \\
d\left(x_{n}, x_{n+1}\right) & \leq k^{n-1} d\left(x_{1}, x_{2}\right) \\
d\left(x_{n}, x_{n+j}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{n+j-1}, x_{n+j}\right) \\
& \leq\left[k^{n-1}+k^{n}+\cdots+k^{n+j-2}\right] d\left(x_{1}, x_{2}\right) \\
& \leq\left[k^{n-1}+k^{n}+\cdots\right] d\left(x_{1}, x_{2}\right)=\frac{k^{n-1}}{1-k} d\left(x_{1}, x_{2}\right)
\end{aligned}
$$
\]

The RHS tends to 0 as $n \rightarrow \infty$. So the sequence is Cauchy. The space $X$ is complete, so there exists $x_{0} \in X$ such that $x_{n} \rightarrow x_{0}$.
Since $T$ is continuous,

$$
T\left(x_{0}\right)=T\left(\lim _{n \rightarrow \infty} x_{n}\right)=^{6)} \lim _{n \rightarrow \infty} T\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=x_{0}
$$

## Application

Show that there exists a continuous function $f_{0}:[0,1] \rightarrow \mathbb{R}$ satisfying the integral equation
by $0 \leq k<1$
$\sum_{n=0}^{\infty} k^{m}=\frac{1}{1-k}$
$T(\operatorname{cl}(A)) \subseteq$ $\mathrm{cl}(T(A))$

$$
f_{0}(x)=e^{x}+\int_{0}^{x} \frac{(\sin t)^{3}}{2} f_{0}(t) \mathrm{d} t \quad \text { for all } x \in[0,1] .
$$

Such a $f_{0}$ is unique.
Proof: Background: Consider $C([0,1], \mathbb{R})=\{f:[0,1] \rightarrow \mathbb{R}: f$ continuous $\}$. It is a vector space over $\mathbb{R}$. Equip the space with a norm:

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|=\max _{x \in[0,1]}|f(x)|
$$

The norm induces a metric

$$
d(f, g)=\|f-g\|_{\infty}
$$

Fact: $(C[0,1], d)$ is complete.
Consider $T: C[0,1] \rightarrow C[0,1]$ defined by

$$
T(f)=e^{x}+\int_{0}^{x} \frac{(\sin t)^{3}}{2} f(t) \mathrm{d} t \quad x \in[0,1] .
$$

Then the $f_{0}$ we are looking for is a fixed point of $T . T$ is contractive:

$$
\text { Proof: } \begin{aligned}
|T(f)(x)-T(g)(x)| & =\left|\ell^{\mathscr{x}}+\int_{0}^{x} \frac{(\sin t)^{3}}{2} f(t) \mathrm{d} t-\left(\ell^{\mathscr{x}}+\int_{0}^{x} \frac{(\sin t)^{3}}{2} g(t) \mathrm{d} t\right)\right| \\
& =\left|\int_{0}^{x} \frac{(\sin t)^{3}}{2}(f(t)-g(t)) \mathrm{d} t\right| \\
& \leq \int_{0}^{x}\left|\frac{\sin (t)^{3}}{2}\right| f(t)-g(t)| | \mathrm{d} t \\
& \leq \frac{1}{2} \int_{0}^{x}|f(t)-g(t)| \mathrm{d} t \leq \frac{1}{2} \int_{0}^{1}|f(t)-g(t)| \mathrm{d} t \leq \frac{1}{2}\|f-g\|_{\infty} \\
\sup _{x \in[0,1]}|T(f)(x)-T(g)(x)| & \leq \frac{1}{2}\|f-g\|_{\infty} \\
\|T(f)-T(g)\|_{\infty} & \left.\leq \frac{1}{2} 7\right)\|f-g\|_{\infty}
\end{aligned}
$$

[^5]
## PMATH 351 Lecture 26: March 12, 2010

$\S 5.5$
A (real) vector space $X$ is normed if there is a map $\|\cdot\|: X \rightarrow \mathbb{R}$ (called norm) satisfying
(1) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$
(2) $\|\lambda x\|=|\lambda|\|x\|$ for all $x \in X$ and $\lambda \in \mathbb{R}$
(3) $\|x\| \geq 0$ and $\|x\|=0$ if and only if $x=0$.

The norm induces a metric on $X$ by

$$
d(x, y)=\|x-y\|
$$

and is therefore a metric space as well as a topological space. If $X$ is complete, we call $X$ a Banach space.
Examples: $\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$ where $\|x\|_{p}=\sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}$
The usual Euclidean norm is using $p=2$.

$$
\begin{aligned}
& \left(\mathbb{R}^{n},\|\cdot\|_{2}\right),\left(\mathbb{R}^{n},\|\cdot\|_{1}\right),\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \\
& \quad \text { where }\|x\|_{\infty} \stackrel{\text { def }}{=} \sup _{i \leq n}\left|x_{i}\right|
\end{aligned}
$$

are examples of Banach spaces.
Definition: Let $X$ be a topological space. A sequence $f_{n}: X \rightarrow \mathbb{R}$ is said to converge pointwise (on $X$ ) if for each fixed $x \in X$, the sequence $f_{n}(x)$ in $\mathbb{R}$ is convergent.
When $f_{n}$ is pointwise convergent,
$f(x)=\lim _{n \rightarrow \infty} f_{n}(x), f: X \rightarrow \mathbb{R}$, is called the pointwise limit of $f_{n}$. We write " $f_{n} \rightarrow f$ pointwise".
Thus it means that for each $x \in X$ and $\epsilon>0$, there exists $N$ such that for all $n \geq N,\left|f_{n}(x)-f(x)\right|<$ $\epsilon$.

If $N$ exists and is independent of $x$, we say that $f_{n} \rightarrow f$ uniformly on $X$.
In fact, the above can be formulated for any set $X$. Consider $C(X, \mathbb{R})$ the vector space of all continuous functions on $X$, and confine ourself further, to $C_{b}(X, \mathbb{R})$, the space of bounded continuous functions.

Theorem: Let $X$ be a topological space. Let $f_{n}$ be a sequence in $C(X, \mathbb{R})$. If $f_{n}$ tends to $f: X \rightarrow \mathbb{R}$ uniformly on $X$, then $f \in C(X, \mathbb{R})$. (Proof: Exercise)
Definition: On $C_{b}(X, \mathbb{R})$, we define $\|\cdot\|_{\infty}$ by

$$
\|f\|_{\infty}=\sup _{x \in X}|f(x)| \quad \text { (a finite number because } f \text { is bounded) }
$$

Claim that $\|\cdot\|_{\infty}$ is a norm on $C_{b}(X, \mathbb{R})$ under which the space $C_{b}(X, \mathbb{R})$ is a Banach space. Observe that, if $X$ is compact, then

$$
C(X, \mathbb{R})=C_{b}(X, \mathbb{R}) .
$$

We can observe that

$$
f_{n} \rightarrow f \text { uniformly on } X
$$

if and only if $\left(f_{n}-f\right) \rightarrow 0$ uniformly on $X$
and $g_{n} \rightarrow 0$ uniformly on $X$
if and only if $\left\|g_{n}\right\|_{\infty} \rightarrow 0($ in $\mathbb{R})$
Note: When $X$ is finite with $n$ elements, using the discrete topology, $C(X, \mathbb{R})$ is essentially the same as $\mathbb{R}^{n}$.

## PMATH 351 Lecture 27: March 15, 2010

The Arzela-Ascoli Theorem (Page 299, §5.6)
Let $A \subset M^{8)}$ be compact and $\mathcal{B} \subset C^{9)}\left(A, N^{10)}\right)$
Definition: $\mathcal{B}$ is called equicontinuous on $A$ if for all $\epsilon>0$ there exists $\delta>0$ such that

$$
d(x, y)<\delta \Longrightarrow \rho(f(x), f(y))<\epsilon, \text { all } f \in \mathcal{B}
$$

Note: $\delta$ does not depend on $f \in \mathcal{B}$.
$\mathcal{B}$ is bounded means that $\left\{\|f\|_{\infty}: f \in \mathcal{B}\right\}$ is bounded set, i.e., $\sup _{x \in A}|f(x)|<b$, finite $b$, for all $f \in \mathcal{B}$.
$\mathcal{B}$ is pointwise compact if $\{f(x): f \in \mathcal{B}\}$ is compact for each fixed $x \in A$.
Theorem: $\mathcal{B}$ is compact if and only if $\mathcal{B}$ is closed, equicontinuous and pointwise compact.
Proof: Suppose that $\mathcal{B}$ is closed, equicontinuous and pointwise compact. We wish to show that $\mathcal{B}$ is compact.

Since $A$ is compact, for each $\delta>0$, there exists a finite set $C_{\delta}=\left\{y_{1}, \ldots, y_{k}\right\}$ such that each $x \in A$ is within $\delta$ of some $y_{i} \in C_{\delta}$. [total boundedness of compact $A$ ]
Thus $C_{1 / n}$ is a finite set for each $n \in \mathbb{N}$ and $C=\bigcup_{n \in \mathbb{N}} C_{1 / n}$ is a countable set (and is dense in $A$ ).
Let $f_{n}$ be a given sequence of functions in $\mathcal{B}$. Let $C=\left\{x_{1}, x_{2}, \ldots\right\}$ be a listing of elements of the countable $C$.

The sequence $\left\{f_{n}\left(x_{1}\right): n \in \mathbb{N}\right\}$ is a sequence in $\left\{f\left(x_{1}\right): f \in \mathcal{B}\right\}$ which is compact by pointwise compactness of $\mathcal{B}$. By the Bolzano-Weierstrass theorem, $f_{n}\left(x_{1}\right)$ has a convergent subsequence, say $f_{11}\left(x_{1}\right), f_{12}\left(x_{1}\right), f_{13}\left(x_{1}\right), \ldots$
Repeat this idea to the sequence $f_{1 k}(k=1,2, \ldots)$
at $x_{2}$, we get a (second) subsequence of $f_{1 k}(k=1, \ldots)$

$$
f_{21}\left(x_{2}\right), f_{22}\left(x_{2}\right), f_{23}\left(x_{2}\right), \ldots
$$

which is convergent. Note: $f_{21}\left(x_{1}\right), f_{22}\left(x_{1}\right), \ldots$, is also convergent.
Repeating the above,
we set

$$
f_{31}\left(x_{3}\right), f_{32}\left(x_{3}\right), f_{33}\left(x_{3}\right), f_{34}\left(x_{3}\right), \ldots \quad \text { convergent. }
$$

Consider the diagonal sequence $f_{n n}$ which is a subsequence of all previous ones, and will therefore have the property that

$$
f_{n n}\left(x_{j}\right) \quad(n=1, \ldots) \text { is convergent for each } j
$$

Let $g_{n}=f_{n n}$, a subsequence of $f_{n}$. It converges at each $x_{j} \in C$. Let $\epsilon>0$ be given, and let $\delta>0$ be found, according to equicontinuity of $\mathcal{B}$. Let $C_{\delta}=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ be the finite set consisting of points of $C$. [use $n$ with $\frac{1}{n}<\delta$ ]

There exists $N_{0}$ such that $m, n \geq N_{0}$

$$
\rho\left(g_{m}\left(y_{i}\right), g_{n}\left(y_{i}\right)\right)<\epsilon \text { for each } 1 \leq i \leq k
$$

Therefore

$$
\begin{aligned}
\rho\left(g_{n}(x), g_{m}(x)\right) & \leq \rho\left(g_{n}(x), g_{n}\left(y_{j}\right)\right)+\rho\left(g_{n}\left(y_{j}\right), g_{m}\left(y_{j}\right)\right)+\rho\left(g_{m}\left(y_{j}\right), g_{m}(x)\right) \\
& \leq \epsilon+\epsilon+\epsilon=3 c
\end{aligned}
$$

[^6]for all $n, m \geq N_{0}$.
This shows that $g_{n}$ is uniformly Cauchy, i.e., Cauchy in norm $\|\cdot\|_{\infty}$. The space $C(A, N)$ is complete, so $g_{n}$ is convergent in $C(A, N) . \mathcal{B}$ is closed, it converges in $\mathcal{B}$.

## PMATH 351 Lecture 28: March 17, 2010

Note, the proof of the Arzela-Ascoli Theorem has these lines


Let $g_{n}=f_{n n}$.
Claim: $g_{n}$ is a subsequence of all $f_{m 1}, f_{m 2}, \ldots$
(From text page 300)
The claim should be modified as $g_{n}$, starting with the mth term, is a subsequence of $f_{m 1}, f_{m 2}, f_{m 3}$,

Example: Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ belonging to $C([0,1], \mathbb{R})$ given by

$$
\begin{gathered}
f_{n}(t)= \begin{cases}0 & 1 \geq t \geq \frac{1}{n} \\
1-n t & 0 \leq t \leq \frac{1}{n}\end{cases} \\
\left\|f_{n}\right\|_{\infty}=1 \text { for each } n
\end{gathered}
$$

For each fixed $t$, the sequence

$$
\begin{cases}f_{n}(t) \rightarrow 0 & \text { if } 0<t \\ f_{n}(0) \rightarrow 1 & \text { if } 0=t\end{cases}
$$

That is, $f_{n}$ tends to the function $\phi:[0,1] \rightarrow \mathbb{R}$

$$
\begin{cases}\phi(t)=0 & \text { if } t>0 \text { pointwise } \\ \phi(t)=1 & \text { otherwise }\end{cases}
$$

Is $\phi \in C([0,1], \mathbb{R})$ ? No.
Does $f_{n}$ converge to some function in the $C([0,1], \mathbb{R})$ under $\|\cdot\|_{\infty}$ ?
i.e., Does $f_{n}$ tends to some $f_{n}$ in $C([0,1], \mathbb{R})$ uniformly?

No (uniform convergence implies pointwise convergent.)
Does $f_{n}$ has a convergent subsequence in $C([0,1], \mathbb{R})$ under $\|\cdot\|_{\infty}$ ?
No.
Let $\mathcal{B}=\left\{f_{n}: n \in \mathbb{N}\right\} \subset C([0,1], \mathbb{R})$.
$\mathcal{B}$ is not sequentially compact. It is not compact (we are dealing with metric spaces).
Some conditions of the $\mathrm{A}-\mathrm{A}$ theorem must fail.
$\mathcal{B}$ is clearly bounded, as $\left\|f_{n}\right\|_{\infty}=1$. Exercise: Is $\mathcal{B}$ weakly compact? Is $\mathcal{B}$ equicontinuous?
Approximating continuous functions.
The $e^{x}$ can be approximated by finite polynomials on $[a, b]$ in the sense that for all $\epsilon>0$, there exists polynomial $p$ so that $|f(x)-p(x)| \leq \epsilon$ for all $x \in[a, b]$

$$
\text { i.e., }\|f-p\|_{\infty}<\epsilon \text { in } C([a, b], \mathbb{R})
$$

(Taylor series)
Question: Can a continuous function $f:[a, b] \rightarrow \mathbb{R}$ be approximated by a polynomial?
Theorem: (Weierstrass Approximation Theorem): Every $f \in C([a, b], \mathbb{R})$ can be approximated by a polynomial $p \in C([a, b], \mathbb{R})$.

Rephrased: The set of polynomials is dense in $C([a, b], \mathbb{R})$.
See Theorem 5.8.1 (page 305).
Indeed the Bernstein polynomials

$$
p_{n}(x)=\sum_{r=0}^{n}\binom{n}{r} f\left(\frac{r}{n}\right) x^{r}(1-x)^{n-r}
$$

is a sequence of polynomials approximating a continuous $f:[0,1] \rightarrow \mathbb{R}$ i.e., $\left\|p_{n}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.

## PMATH 351 Lecture 29: March 19, 2010

Theorem: (Weierstrass Approximation Theorem)
$f$ is a continuous function from $[a, b]$ to $\mathbb{R}$.
Then there exists a (finite) polynomial $p$ such that after $\epsilon>0$ is specified, $\|f-p\|_{\infty}<\epsilon$.
Proof: Without loss of generality, $[a, b]=[0,1]$, and may assume $f(0)=f(1)=0$. Extend $f$ to $\mathbb{R}$ by $f(t)=0$ for $t \notin[0,1]$. Then $f$ is uniformly continuous on $\mathbb{R}$.
Let $Q_{n}(x)=C_{n}\left(1-x^{2}\right)^{n}$ on $[-1,1]$ where $C_{n}=1 / \int_{-1}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x$. With that normalization figure of $Q_{n}(x)$ constant, $\int_{-1}^{1} Q_{n}(x) \mathrm{d} x=1$.

Observation 1: $F(x)=\left(1-x^{2}\right)^{n}-\left(1-n x^{2}\right) \geq 0$ on $[0,1]$
Proof: $F(0)=0, F^{\prime}(x)=-2 n x\left(1-x^{2}\right)^{n-1}+2 n x$
$=2 n x\left(1-\left(1-x^{2}\right)^{n-1}\right) \geq 0$ on $[0,1]$
Observation 2: $\int_{-1}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x=2 \int_{0}^{1}\left(1-x^{2}\right)^{n} \mathrm{~d} x \geq 2 \int_{0}^{1 / \sqrt{n}}\left(1-x^{2}\right)^{n} \mathrm{~d} x$
$\geq 2 \int_{0}^{1 / \sqrt{n}}\left(1-n x^{2}\right) \mathrm{d} x=\frac{4}{3 \sqrt{n}} \geq \frac{1}{\sqrt{n}}$
i.e., $C_{n} \leq \sqrt{n}$.

Let $1>\delta>0$ be fixed.
Then $Q_{n}(x) \leq \sqrt{n}\left(1-\delta^{2}\right)^{n}$ for $x \in[-1,-\delta] \cup[\delta, 1]$
Let $P_{n}(x)=\int_{-1}^{1} f(x+t) Q_{n}(t) \mathrm{d} t$
$=\int_{-x}^{1-x} f(x+t) Q_{n}(t) \mathrm{d} t($ if $t<-x$, then $x+t<0$, then $f(x+t)=0$ )
$=\int_{0}^{1} f(t) Q_{n}(t-x) \mathrm{d} t\left[\begin{array}{l}x+t=s \\ t=s=x \\ \mathrm{~d} t=\mathrm{d} s\end{array}\right]$
Observation 3: $P_{n}(x)$ is a polynomial in $x$.

Proof:

$$
\begin{aligned}
\frac{\mathrm{d}^{2 n+1}}{\mathrm{~d} x} P_{n}(x) & =\frac{\mathrm{d}^{2 n+1}}{\mathrm{~d} x} \int_{0}^{1} f(t) Q_{n}(t-x) \mathrm{d} t \\
& =\int_{0}^{1} f(t) \frac{\mathrm{d}^{2 n+1}}{\mathrm{~d} x} Q_{n}(t-x) \mathrm{d} t \\
& =\int_{0}^{1} f(t) 0 \mathrm{~d} t=0
\end{aligned}
$$

Let $\epsilon>0$ be given. Then there exists $\delta>0$ so that if $|x-y|<2 \delta$, then $|f(x)-f(y)|<\epsilon / 2$.

Since $Q_{n}(t) \geq 0$, we get
Theorem: (Weierstrass Approximation Theorem)

$$
\begin{gathered}
\left|P_{n}(x)-f(x)\right|=\left|\int_{-1}^{1}[f(x+t)-f(x)] Q_{n}(t) \mathrm{d} t\right| \quad\left(\text { note: } \int_{-1}^{1} Q_{n}=1\right) \\
=\left|\int_{-1}^{-\delta}[f(x+t)-f(x)] Q_{n}(t) \mathrm{d} t+\int_{-\delta}^{\delta}[f(x+t)-f(x)] Q_{n}(t) \mathrm{d} t+\int_{\delta}^{1}[f(x+t)-f(x)] Q_{n}(t) \mathrm{d} t\right| \\
\leq\left|\int_{-1}^{-\delta}[f(x+t)-f(x)] Q_{n}(t) \mathrm{d} t\right|+\left|\int_{-\delta}^{\delta}[f(x+t)-f(x)] Q_{n}(t) \mathrm{d} t\right|+\left|\int_{\delta}^{1}[f(x+t)-f(x)] Q_{n}(t) \mathrm{d} t\right| \\
\leq 2 M \int_{-1}^{\delta} Q_{n}(t) \mathrm{d} t+\frac{\epsilon}{2} \int_{-\delta}^{\delta} Q_{n}(t) \mathrm{d} t+2 M \int_{\delta}^{1} Q_{n}(t) \mathrm{d} t
\end{gathered}
$$

where $M=\|f\|_{\infty}$

$$
\leq 4 M \sqrt{n}\left(1-\delta^{211)}\right)^{n}+\frac{\epsilon}{2}
$$

The first term tends to 0 as $n \rightarrow \infty$.
Large $N$, we get ${ }^{12)} \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} \leq \epsilon$ and such $\left\|P_{N}-f\right\|_{\infty} \leq \epsilon$.

## PMATH 351 Lecture 30: March 22, 2010

The Stone Weierstrass Theorem (generalisation of Weierstrass approximation theorem)
Let $A$ be a compact metric space, $\mathcal{B} \subset C(A, \mathbb{R})$
Assuming that $\mathcal{B}$ satisfies:
i) $\mathcal{B}$ is an algebra, i.e., $f, g \in \mathcal{B} \Longrightarrow f+g \in \mathcal{B}, f g^{13)} \in \mathcal{B}$

$$
\Longrightarrow \lambda f \in \mathcal{B}^{14)}, \lambda \in \mathbb{R}, \text { multiplicative }
$$

ii) constant function $1 \in \mathcal{B}$
iii) $\mathcal{B}$ separates points of $A$
then the closure of $\mathcal{B}$, denoted $\overline{\mathcal{B}}$, equals $C(A, \mathbb{R})$
Example: $A=[a, b], \mathcal{B}=\{p(x): p$ is a polynomial on $[a, b]\}$
i, ii, iii) obvious, (iii) take the identity.
Every continuous function in $[a, b]$ can be approximated by a polynomial
Proof: By the Weierstrass approximation theorem, for every $n$, exists $p_{n}$ such that

$$
\left||t|-p_{n}(t)\right|<1 / n \text { for }-n \leq t \leq n
$$

Thus $\left||f(x)|-p_{n}(f(x))\right|<1 / n$ for $-n \leq f(x) \leq n$ ( $n$ be large enough since $A$ is compact).
This shows that $\overline{\mathcal{B}}$ is closed under taking absolute value, i.e., $f \in \overline{\mathcal{B}}$ implies $|f| \in \overline{\mathcal{B}}$.
First $\mathcal{B}$ is an algebra, is $\overline{\mathcal{B}}$ also an algebra? Yes, since

$$
\left.\begin{array}{l}
f \in \overline{\mathcal{B}} \Longrightarrow \exists \text { an approx } \Longrightarrow\left|f-f_{n}\right|<\epsilon \\
g \in \overline{\mathcal{B}} \Longrightarrow \exists \text { an approx } \Longrightarrow\left|g-g_{n}\right|<\epsilon
\end{array}\right\} f+g \in \overline{\mathcal{B}}
$$

Check + is a continuous function on $C(A, \mathbb{R}) \times C(A, \mathbb{R})$ to $C(A, \mathbb{R})$
Similarly, $x$ is also continuous, $f \in \overline{\mathcal{B}}, g \in \overline{\mathcal{B}} \Longrightarrow f g \in \overline{\mathcal{B}}$
$\rightsquigarrow \overline{\mathcal{B}}$ is an algebra

[^7]If $f \in \overline{\mathcal{B}}$, so is $p_{n}(f)$ (because $\overline{\mathcal{B}}$ is an algebra)
Also, $p_{n}(f)(x)=p_{n}(f(x))$ and $||f(x)|-\underbrace{p_{n}(f(x))}_{\in \overline{\mathcal{B}}}|<1 / n$ means that $|f(x)|$ can be approximated
by an element of $\overline{\mathcal{B}}$, then $|f(x)| \in \overline{\mathcal{B}}$ since $\overline{\mathcal{B}}$ is closed and $|f(x)|$ is a limit point of $\overline{\mathcal{B}}$.
Aside: $A$ is compact, $f$ is bounded on $A$, there exists large enough $n$ such that $-n \leq f(x) \leq n$

$$
\text { Define } \begin{aligned}
f \vee g & =\max (f, g) \text { pointwise } \\
f & \wedge g=\min (f, g) \text { pointwise }
\end{aligned}
$$

and observe that $f \vee g=\frac{f+g}{2}+\frac{|f-g|}{2}$

$$
f \wedge g=\frac{f+g}{2}-\frac{|f-g|}{2}
$$

We see that $\overline{\mathcal{B}}$ is closed under maximum and minimum.
Let $h \in C(A, \mathbb{R})$ and $x_{1} \neq x_{2} \in A$, then by (iii), there exists $g \in \mathcal{B}$ such that $g\left(x_{1}\right) \neq g\left(x_{2}\right)$. By choosing $\alpha, \beta \in \mathbb{R}$ correctly, we can have

$$
\begin{array}{r}
\alpha g+\beta \text { achieving }(\alpha g+\beta)\left(x_{1}\right)=h\left(x_{1}\right) \\
(\alpha g+\beta)\left(x_{2}\right)=h\left(x_{2}\right)
\end{array}
$$

Call such $\alpha g+\beta$ by the name: $f_{x_{1} x_{2}}$ - That is $f_{x_{1} x_{2}} \in \mathcal{B}$ and

$$
\begin{aligned}
& f_{x_{1} x_{2}}=h\left(x_{1}\right) \\
& f_{x_{1} x_{2}}=h\left(x_{2}\right)
\end{aligned}
$$

— textbook 5.8.2

$$
\begin{aligned}
f_{y x}(y)=h(y) & \Longrightarrow f_{y x}(y)>h(y)-\epsilon \\
\text { for } z \in U \subset \mathcal{U}(y) & \Longrightarrow f_{y x}(z)>h(z)-\epsilon \text { by continuity of } h
\end{aligned}
$$

figure: distance
between $\frac{a+b}{2}$ and $b$ on real line

Is the metric used?

## PMATH 351 Lecture 31: March 24, 2010

$f \in \overline{\mathcal{B}}$
$\Longrightarrow p(f) \in \overline{\mathcal{B}}$
$f^{2}+2 f+10 f_{x_{1} x_{2}}=h\left(x_{1}\right), f_{x_{1} x_{2}}\left(x_{2}\right)=h\left(x_{2}\right)$
$f_{x y}$
Let $\epsilon>0$ and $x \in A$. For $y \in A, \exists$ neighborhood $\mathcal{U}(y)$ of $y$ such that

$$
f_{y x}(z)>h(z)-\epsilon \text { for all } z \in \mathcal{U}(y)
$$

(simply because $h$ is continuous)

$$
\begin{gathered}
f_{y x}(y)=h(y) \\
f_{y x}\left(y^{15)}\right)>h\left(y^{16)}\right)-\epsilon \\
f_{y x}(z)>h(z)-\epsilon
\end{gathered}
$$

Baire's Category Theorem
Reference on page 175, chapter 3, Exercise 33. Let $M$ be a metric space. A set $S \subset M$ is called nowhere dense (in $M$ ) if for every [nonempty] open $U$, we have $\operatorname{cl}(S) \cap U \neq U$, or equivalently

$$
\operatorname{int}(\operatorname{cl}(S))={ }^{17)} \emptyset
$$

[^8]Show that $\mathbb{R}^{n}$ cannot be written as a countable union of nowhere dense sets.
Definition: A set $A \subset M$ is of first category (in $M$ ) if it is the union of countably many nowhere dense sets. Else $A$ is of second category.

The exercise above can be phrased as: $\mathbb{R}^{n}$ is of 2 nd category.
Theorem: (Baires) Every complete metric space $M$ is of 2 nd category (in $M$ ).
Examples: Let the metric space $M$ be $\mathbb{R}$. Is $\mathbb{N} \subseteq \mathbb{R}$ of 1st category or 2nd category? Answer: 1st. $\mathbb{N}$ is of first category in $\mathbb{R}$.

Baire's Theorem gives:

$$
\mathbb{N} \text { is of } 2 \text { nd category in } \mathbb{N}
$$

## PMATH 351 Lecture 32: March 26, 2010

Baire Category Theorem. A complete metric space $X$ is of 2nd category, i.e., it is not the union of countably many nowhere dense sets.
Proof: Let $S_{n}$ be a sequence of nowhere dense sets, i.e., $\overline{S_{n}}$ has empty interior for each $n$. Let $U_{n}=X \backslash{\overline{S_{n}}}^{18)}$. Then each $U_{n}$ is open and dense. In particular, every non-empty open set in $X$ meets $U_{n}$.
We shall show that $\bigcap_{n=1}^{\infty} U_{n} \neq \emptyset$.
Let $x_{1} \in U_{1}$ be fixed. Let $r_{1}$ be a positive radius so that

$$
D_{1}=D\left(x_{1}, r_{1}\right) \subset U_{1}
$$

Since $U_{2}$ is dense, there exists a point $x_{2}$ of $U_{2}$ which is in $D_{1}$. Since $U_{2}$ is open, there exists a small enough radius $r_{2}$ so that $D_{2}=D\left(x_{2}, r_{2}\right) \subset U_{2}$. We may assume that $r_{2}$ is small enough that $r_{2}<\frac{1}{2} r_{1}$, and smaller than $r_{1}-d\left(x_{1}, x_{2}\right)$ [note: $x_{2} \in D_{1}$ ].

Then $\overline{D_{2}} \subset D_{1}$. By induction, we get a sequence of discs $D_{n}$ with centres $x_{n}$ and radii $r_{n}$ so that

$$
\overline{D_{n}} \subset D_{n-1}, D_{n} \subset U_{n}, r_{n}<\frac{1}{2} r_{n-1}
$$

In particular $r_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Note: $n, m \geq N \Longrightarrow x_{n}, x_{m} \in D_{N} \Longrightarrow d\left(x_{n}, x_{m}\right)<2 r_{N}$. This sequence $x_{n}$ is Cauchy and therefore converges to an $x$ in the complete space $X$.
$x_{n} \in D_{N}$ for all $n \geq N \Longrightarrow x \in \overline{D_{N}} \subset D_{N-1}$.
Thus $x \in D_{k}$ for every $k$.
So $x \in \bigcap_{k=1}^{\infty} D_{k}$. So $x \in \bigcap_{n=1}^{\infty} U_{k}$ as each $D_{k} \subset U_{k}$.
Now $x \in \bigcap_{n=1}^{\infty} U_{n} \Longrightarrow x \notin\left[X \backslash \bigcap_{n=1}^{\infty} U_{n}\right] \Longrightarrow x \notin \bigcup_{n=1}^{\infty}\left(X \backslash U_{n}\right)$
$\Longrightarrow x \notin \bigcup_{n=1}^{\infty} \overline{S_{n}} \Longrightarrow x \notin \bigcup_{n=1}^{\infty} S_{n}$.
Hence $\bigcup_{n=1}^{\infty} S_{n} \neq X$.
Corollary: (The uniform boundedness principle). Let $\mathcal{B}$ be a family of real valued continuous functions on a complete metric space $M$ (i.e., $\mathcal{B} \subset C(X, \mathbb{R}))$.
Suppose that for $x \in M$, there is a bound $b_{x}$ such that $|f(x)| \leq b_{x}$ for all $f \in \mathcal{B}$. [pointwise boundedness ${ }^{19)}$ of the family $\left.\mathcal{B}\right]$ Then there exists an open set $G \subset X, G \neq \emptyset$, and a constant $b$ such that

$$
|f(x)| \leq b \text { for all } f \in \mathcal{B} \text { and all } x \in G
$$

PMATH 351 Lecture 33: March 29, 2010

[^9]The uniform boundedness principle.
Let $\mathcal{B}$ be a family of continuous functions on a complete metric space $M$, and suppose that for each $x \in M$, there exists a constant $b_{x}$ such that $|f(x)| \leq b_{x}$ for all $f \in \mathcal{B}$ [pointwise boundedness]. Then there is a non-empty open set (say a disc) $G$ such and a constant $b$ such that

$$
|f(x)| \leq b \text { for all } x \in G \text { and } f \in \mathcal{B}
$$

[uniform boundedness of $\mathcal{B}$ on $G$.]
Proof: For each $n \in \mathbb{N}$, let

$$
F_{n}=\{x \in M:|f(x)| \leq n \text { for all } f \in \mathcal{B}\}
$$

Then each $F_{n}$ is a closed set in $M$, because

$$
F_{n}=\bigcap_{f \in \mathcal{B}}\{x \in M: f(x) \in[-n, n]\}=\bigcap_{f \in \mathcal{B}} f^{-1}([-n, n])
$$

For each $x \in M$, there exists $n \in \mathbb{N}$ such that

$$
\left.x \in F_{n} \quad \text { (by pointwise boundedness and take } n \geq b_{x}\right)
$$

Therefore $\bigcup_{n=1}^{\infty} F_{n}=M$.
Baire's Theorem asserts that $M$ is not of 1st category as $M$ is complete. So, at least some $F_{n_{0}}$ which is not nowhere dense. So $\left(\overline{F_{n_{0}}}\right)^{\circ} \neq \emptyset$. As $F_{n_{0}}$ is closed, $\overline{F_{n_{0}}}=F_{n_{0}}$. So $F_{n_{0}}{ }^{\circ} \neq \emptyset$. Take $G=F_{n_{0}}{ }^{\circ}$. ${ }^{\circ}$ : interior Thus $x \in G \Longrightarrow x \in F_{n_{0}} \Longrightarrow|f(x)| \leq n_{0}$ for all $f \in \mathcal{B}$. So $|f(x)| \leq n_{0}$ for all $f \in \mathcal{B}$ and $x \in G$. Take $b=n_{0}$.
Space-filling curves (paths).
Proposition: There exists a continuous (path) $f:[0,1] \rightarrow[0,1] \times[0,1]$ which is surjective.

$$
\begin{aligned}
\left|f_{1}(t)-f_{2}(t)\right| & \leq \sqrt{2} \delta \text { for all } t \\
\left\|f_{1}-f_{2}\right\|_{\infty} & \leq \sqrt{2} \delta, f_{1}, f_{2} \in C\left([0,1], \mathbb{R}^{2}\right) \\
\left\|f_{3}-f_{2}\right\|_{\infty} & \leq \sqrt{2}\left(\frac{\delta}{2}\right) \\
\text { etc }\left\|f_{n+1}-f_{n}\right\|_{\infty} & \leq \sqrt{2}\left(\frac{\delta}{2^{n-1}}\right) \text { inductively }
\end{aligned}
$$

We get from the above that $f_{n}$ is a Cauchy sequence in the complete space $C\left([0,1], \mathbb{R}^{2}\right)$. It converges to an $f \in C\left([0,1], \mathbb{R}^{2}\right)$.
Question: Is $f$ injective? No.
Is $\{x \in \mathbb{R}: \underbrace{\sin (x)+\cos \left(e^{x}\right)+\sqrt{2} x^{7}}_{f(x)}<10\}$ open?
$=f^{-1}(]-\infty, 10[)$

## PMATH 351 Lecture 34: March 31, 2010

Example: If $X$ is a topological space and $A, B \subset X$ are connected subsets, $A \cap B \neq \emptyset$, then $A \cup B$ is connected.
Proof: (Version 1). Suppose that $U$ and $V$ are open, disjoint sets partitioning $A \cup B$. We intend to show that one of them is empty.
Since $A$ is connected,
[ $U_{A}=U \cap A$ is open in $A, V_{A}=V \cap A$ is open in $A$, and $U_{A}$ and $V_{A}$ partition $A$ ]
$U \cap A$ or $V \cap A$ must be empty. Hence either $A \subset U$ or $A \subset V$, without loss of generality, say $A \subset U$.

Similarly, either $B \subset U$ or $B \subset V$.

Case 1: Suppose that $B \subset U$.
figure: $A, B \subset U$
Hence $A \cup B \subset U$.
Then, as $A \cup B=U^{20)}$ and $V^{21)}$.
So $V=\emptyset$.
Case 2: Suppose that $B \subset V$. As $U$ and $V$ are disjoint, $A$ and $B$ must be disjoint. A contradiction to $A \cap B \neq \emptyset$.

Version 2: We show $A \cup B$ has the IVP. Let $f: A \cup B \rightarrow \mathbb{R}$ be continuous and that $f\left(x_{1}\right)>0$ and $f\left(x_{2}\right)<0$ for given $x_{1}, x_{2} \in A \cup B$. Let $x_{0} \in A \cap B$ be fixed (exists by assumption).
Case 1: $f\left(x_{0}\right)=0$. (Done)
Case 2: Suppose that $f\left(x_{0}\right)<0$.
Subcase: If $x_{1}$ and $x_{2}$ are both from $A$, by the continuity of $\left.f\right|_{A}: A \rightarrow \mathbb{R}$ and the connectedness of $A$, there exists $c \in A$ where $f(c)=0$.
Subcase: If $x_{1}$ and $x_{2}$ are both from $B$, similarly, we get that there exists $c \in B$ where $f(c)=0$.
Subcase: If $x_{1} \in A, x_{2} \in B$, then by continuity of $\left.f\right|_{A}: A \rightarrow \mathbb{R}$ and connectedness of $A$, and $f\left(x_{1}\right)>0, f\left(x_{0}\right)<0$, there exists $c \in A$ with $f(c)=0$.
$(M, d)$ a metric space
$d: M \times M \rightarrow \mathbb{R}$
$\rho$ metric on $M \times M$ may be defined by $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left(d\left(x_{1}, y_{1}\right), d\left(x_{2}, y_{2}\right)\right)$

$$
\begin{aligned}
D\left(x_{0}, r\right) & =\left\{x \in M: d\left(x_{0}, x\right)<r\right\} \\
& =\{x \in M: \underbrace{d\left(x_{0}, x\right)}_{f(x)} \in]-\infty, r[ \} \\
& =f^{-1}(]-\infty, r[)
\end{aligned}
$$

Therefore $D\left(x_{0}, r\right)$ is open.
$\left\{x \in M: 1<d\left(x_{0}, x\right)<2\right\}=f^{-1}(] 1,2[)$

## PMATH 351 Lecture 35: April 5, 2010

Exercise 1. Let $T_{1}$ and $T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be two contractions. Let $a_{1}$ and $a_{2}$ be the unique fixed points of $T_{1}$ and $T_{2}$ respectively. Show that there exists $c<1$ such that

$$
\left\|a_{1}-a_{2}\right\| \leq \frac{1}{1-c}\left(\sup _{x \in \mathbb{R}^{n}}\left\|T_{1}(x)-T_{2}(x)\right\|\right)
$$

Exercise 2. Let $(M, d)$ be a metric space with a countable dense set. (We call $M$ separable.) Show that for every subset $A \subset M$, there exists a countable (at most countable) subset of $A$ which is dense in $A$.

A sequence of functions $f_{n}: X \rightarrow(M, d)$
figure: $A \subset U$, $B \subset V$
figure:
$x_{1}, x_{2} \in A \cup B$
figure: connected sets which are not path connected sets
is pointwise Cauchy if for each $x \in X, f_{n}(x)$ (a sequence in $X$ ) is Cauchy, i.e., $\forall \epsilon>0, \exists N$ such that $d\left(f_{n}(x), f_{m}(x)\right)<\epsilon^{23)}$ for $n, m \geq N$.
It is uniformly Cauchy if for for all $\epsilon>0, \exists N$ such that $d\left(f_{n}(x), f_{m}(x)\right)<\epsilon$ for all $x \in X$.
Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Show $(f \vee g)(x)=\max (f(x), g(x))$ is a continuous function.
Proof: Use $f \vee g=\frac{1}{2}(f+g)+\frac{1}{2}|f-g|$
or Proposition: a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if and only if

$$
\phi^{-1}(]-\infty, a[) \text { and } \phi^{-1}(] a, \infty[)
$$

[^10]are open for each $a \in \mathbb{R}$.
$(f \vee g)^{-1}(]-\infty, a[)$
$=\{x \in \mathbb{R}:(f \vee g)(x)<a\}=\{x \in \mathbb{R}: f(x)<a$ and $g(x)<x\}$
$=\{x \in \mathbb{R}: f(x)<a\} \cap\{x \in \mathbb{R}: g(x)<a\}$
$=f^{-1}(]-\infty, a[)^{24)} \cap g^{-1}(]-\infty, a[)^{25)}$

[^11]
[^0]:    ${ }^{1)}$ open interval

[^1]:    ${ }^{2)}$ complement of $A$ in $X$

[^2]:    ${ }^{3)}$ strict

[^3]:    ${ }^{4)}$ where $V \times V$ has the topology generated by $\left\{G_{1} \times G_{2}: G_{1}, G_{2}\right.$ open $\}$

[^4]:    ${ }^{5}$ ) Euclidean

[^5]:    ${ }^{6)}$ continuity
    ${ }^{7)} k=\frac{1}{2}$

[^6]:    ${ }^{8)}$ metric space
    ${ }^{9)}$ all continuous maps from $A$ to $N$
    ${ }^{10)}$ metric space

[^7]:    ${ }^{11)}$ arrow to below
    ${ }^{12)}$ arrow from above
    ${ }^{13)}$ pointwise
    ${ }^{14)}$ with $f+g \in \mathcal{B}$, vector space + linear algebra $f g \in \mathcal{B}$

[^8]:    ${ }^{15)} z \in \mathcal{U}(y)$
    ${ }^{16)} z$
    17) $($ typo $\neq$ in text $)$

[^9]:    ${ }^{18)}$ closure
    19) in $X$

[^10]:    ${ }^{20)}$ disjoint
    ${ }^{21)}$ disjoint
    ${ }^{22)}$ compact
    ${ }^{23)} \operatorname{not}\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$

[^11]:    ${ }^{24)}$ open by continuity of $f$
    ${ }^{25)}$ open by continuity of $g$

