PMATH 442 Lecture 1: September 12, 2011

David McKinnon
PMATH 442/642
NSERC \& OGS scholarship info meeting
Thursday Sept. 15 10-12 noon DC 1302 Refreshments
Office hours are cancelled this Wednesday.
http://www.student.math.uwaterloo.ca/~pmat442
Definition: A homomorphism of rings is a function $f: R \rightarrow S^{\prime}$ such that

1. $f(a+b)=f(a)+f(b)$
2. $f(a b)=f(a) f(b)$
3. $f(1)=1$

Definition: Let R be a ring. There is a unique homomorphism $\phi: \mathbb{Z} \rightarrow R$ given by $\phi(n)=n$, called the characteristic homomorphism. Since \mathbb{Z} is a PID, there is a unique nonnegative $n \in \mathbb{Z}$ such that $\operatorname{ker} \phi=(n)$. The characteristic of R is n.

Definition: An extension of fields is a pair of fields L, K such that $K \subset L$. It's written L / K.
The degree of L / K is the dimension of L as a K-vector space.
Recall: Let F be a field, R a non-zero ring, $\phi: F \rightarrow R$ a homomorphism. Then ϕ is $1-1$.
If $p(x) \in F[x]$ is irreducible, then $F[x] /(p(x))$ is a field. As an extension of F, it has degree $\operatorname{deg}(p)$, with basis

$$
\left\{1, x, \ldots, x^{\operatorname{deg}(p)-1}\right\}
$$

Definition: Let K be a field. A K-algebra is a ring R that contains K.
Definition: A K-algebra homomorphism is a function $f: R \rightarrow S$ that is a ring homomorphism satisfying $f(a)=a$ for all $a \in K$.

$$
\begin{aligned}
& f(a b)=f(a) f(b) \\
& f(c v)=c f(v)
\end{aligned}
$$

Note that a K-algebra homomorphism is also, equivalently, a ring homomorphism that is also a K-linear transformation.

Theorem: Let L / K be an extension of fields, $p(x) \in K[x]$ an irreducible polynomial, $\alpha \in L$ an element satisfying $p(\alpha)=0$. Then $\phi: K[x] /(p(x)) \rightarrow K(\alpha)$ given by $\phi(f(x))=f(\alpha)$ is a K-algebra isomorphism.
Proof: Not doing it.
So $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{\operatorname{deg}(p)-1}\right\}$ is a basis for $K(\alpha)$ over K.
Definition: In this context, $p(x)$ is called a minimal polynomial for α over K. It is unique to multiplication by a nonzero element of K.
Theorem: Let $p(x)$ be a minimal polynomial for α over K. If $f(x) \in K[x]$ satisfies $f(\alpha)=0$, then $p(x) \mid f(x)$. Proof: Not doing it.

PMATH 442 Lecture 2: September 14, 2011

Definition: Let K be a field, L an extension of $K, a \in L$ an element. Then α is algebraic over K iff there is a polynomial $p(x) \in K[x], p(x) \not \equiv 0$, such that $p(\alpha)=0$. (Otherwise, α is transcendental over K.) We say L / K is algebraic iff every element of L is algebraic over K.
L / K is finite iff $[L: K]^{1)}<\infty$.
Theorem: Let L / K be a finite extension. Then L / K is algebraic.
Proof: Let $\alpha \in L$ be any element. Let $n=[L: K]$. The $n+1$ vectors $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$ are linearly dependent,

[^0]so there exist $a_{0}, a_{1}, \ldots, a_{n} \in K$ such that $a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0$, but not all of the a_{i} s are 0 . So α is algebraic over K, since it's a root of $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in K[x]$.
Example: $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}, \ldots)$ is algebraic over \mathbb{Q}, but not finite.
Theorem: (KLM)

Proof: Let $\left\{a_{1}, \ldots, a_{l}\right\}$ be a basis for $L / K,\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis for M / L. Consider $\left\{a_{i} b_{j}\right\}_{\substack{i \in\{1, \ldots, l\} \\ j \in\{1, \ldots, m\}}}$.
Show that this set is a basis for M / K, from which the theorem immediately follows.
Linear independence: Assume $\sum_{i, j} \gamma_{i, j} a_{i} b_{j}=0$ for some $\gamma_{i j} \in K$. Then $\sum_{j}\left(\sum_{i} \gamma_{i j} \alpha_{i}\right) b_{j}=0$.
Since $\left\{b_{j}\right\}$ is linearly independent over L, we get $\sum_{i} \gamma_{i j} a_{i}=0$ for all j. Since $\left\{a_{i}\right\}$ is linearly independent over K, we conclude that $\gamma_{i j}=0$, for all i, j.
Spanning: Choose $\alpha \in M$. Then

$$
\alpha=\sum_{j} c_{j} b_{j}
$$

for some $c_{j} \in L$. For each j, there are $\gamma_{i j}$ in K such that $c_{j}=\sum_{i} \gamma_{i j} \alpha_{i}$. Then:

$$
\alpha=\sum_{i, j} \gamma_{i j} a_{i} b_{j}
$$

and we're done.
Let L / K be an extension of field. Let $L^{\text {alg }}$ be the set of elements of L algebraic over K.
Theorem: $L^{\text {alg }}$ is a field.
Proof: Let $\alpha \in L^{\text {alg }}$ be any element. Then $K(\alpha) / K$ is finite, because its degree is the degree of a minimal polynomial for α / K, which exists because α / K is algebraic. If $\beta \in L^{\text {alg }}$ is any other element, then $K(\beta) / K$ is finite too.

So $K(\alpha, \beta)$ is also finite. It contains $\alpha+\beta, \alpha-\beta, \alpha \beta$, and α / β (if $\beta \neq 0$), so all these must be in $L^{\text {alg }}$.
The field $L^{\text {alg }}$ is called the algebraic closure of K in L.
Definition: Let M / K be an extension. Let $E, F \subset M$ be subfields of M containing K. The compositum (composite) of E and F over K is $E F$, defined to be the smallest subfield of M that contains E and F.
If $E=K\left(\alpha_{1}, \ldots, \alpha_{n}\right), F=K\left(\beta_{1}, \ldots, \beta_{m}\right)$, then $E F=K\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{m}\right)$.

Splitting Fields

Let L / K be an extension, $p(x) \in K[x]$ a non-constant polynomial. Then L is a splitting field for $p(x)$ over K iff:
(1) $p(x)=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ for some $c, \alpha_{i} \in L$, and
(2) $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Example: A splitting field for $x^{4}-2$ over \mathbb{Q} is $\mathbb{Q}(\sqrt[4]{2}, i \sqrt[4]{2},-\sqrt[4]{2},-i \sqrt[4]{2})=\mathbb{Q}(\sqrt[4]{2}, i)$.
Example: A splitting field for $x^{3}+x+1$ over $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ is $\mathbb{F}_{2}\left(a_{1}, a_{2}, a_{3}\right)=\mathbb{F}_{8}$, the field with 8 elements. (Note a_{1}, a_{2}, a_{3} are the roots of $x^{3}+x+1$ in \mathbb{F}_{8}.)

PMATH 442 Lecture 3: September 16, 2011

Splitting Fields

Let K be a field, $p(x) \in K[x]$ a non-constant polynomial A splitting field for $p(x)$ over K is a field L such that:
(1) $p(x)=c\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)$ for some $c, a_{1}, \ldots, a_{n} \in L$ and
(2) $L=K\left(a_{1}, \ldots, a_{n}\right)$

Fact: Up to isomorphism, there is exactly one splitting field for a given $p(x)$ over K.
Definition: A finite field extension L / K is normal iff L is the splitting field for some $p(x) \in K[x]$.
Note:

Definition: Let K be a field. An algebraic closure of K is a field K such that:
(1) L / K is algebraic
(2) Every non-constant polynomial $p(x) \in K[x]$ splits into linear factors in $L[x]$.

Fact: Up to isomorphism, there is exactly one algebraic closure of K.
Definition: A field K is algebraically closed iff every non-constant $p(x) \in K[x]$ splits into linear factors in $K[x]$.

Theorem: Any algebraic closure of a field K is algebraically closed.
Proof: Let L be an algebraic closure of K, and let $p(x) \in L[x]$ be any non-constant polynomial. Proceed by induction on $\operatorname{deg}(p)$. The base case $\operatorname{deg}(p)=1$ is trivial.
Assume every polynomial of $\operatorname{deg} \leq n$ splits, and let $\operatorname{deg}(p)=n+1$. If p is reducible, we're done. If not, let M / L be a splitting field for $p(x)$ over L.
Any root $\alpha \in M$ of $p(x)$ is algebraic over L. But L is algebraic over K, so M is also algebraic over K. Let $q(x) \in K[x]$ be a minimal polynomial for α over K. Then since $q(x)=0$, we get $p(x) \mid q(x)$, and $q(x)$ splits into linear factors over K, so $p(x)$ does too.

Example: Union is $\overline{\mathbb{F}_{p}}$

Definition: Let K be a field, $p(x) \in K[x]$ a non-constant polynomial. We say that $p(x)$ is separable over K $i f f \operatorname{gcd}\left(p, p^{\prime}\right)=1$.
Definition: The derivative of $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is $a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}$.

Theorem:

$$
\begin{aligned}
(p q)^{\prime} & =p^{\prime} q+p q^{\prime} \\
(p \pm q)^{\prime} & =p^{\prime} \pm q^{\prime} \\
(c p)^{\prime} & =c p^{\prime} \text { if } c \in K
\end{aligned}
$$

Proof: As if.
Theorem: Let $p(x)=c \prod_{i}\left(x-a_{i}\right)^{n_{i}}$ for distinct $a_{i} \in K$. Then $x-a_{i} \mid p^{\prime}(x)$ iff $\left(x-a_{i}\right)^{2} \mid p(x)$.
Proof: Backwards: $p(x)=\left(x-a_{i}\right)^{2} q(x)$, so $p^{\prime}(x)=2\left(x-a_{i}\right) q(x)+\left(x-a_{i}\right)^{2} q^{\prime}(x)$ which has a factor of $x-a_{i}$.

$$
\begin{aligned}
& \text { Forwards: } p^{\prime}(x)=\left(x-a_{i}\right) q(x) \\
& \Longrightarrow p^{\prime}(x)=q(x)+\left(x-a_{i}\right) q^{\prime}(x) \\
& \Longrightarrow 0=p^{\prime}\left(a_{i}\right)=q\left(a_{i}\right)
\end{aligned}
$$

so $x-a_{i}\left|q(x) \Longrightarrow\left(x-a_{i}\right)^{2}\right| p(x)$
So $p(x)$ is separable iff it has no multiple roots in any extension of K.
Definition: Let L / K be an extension, $\alpha \in L, \alpha$ algebraic over K. Then α is separable over K iff its minimal polynomial over K is separable.

PMATH 442 Lecture 4: September 19, 2011

Fact: $p(x)$ is separable iff $\operatorname{gcd}\left(p, p^{\prime}\right)=1$.
Definition: Let L / K be a field extension, $\alpha \in L$ an algebraic element. Then α is separable over K iff the minimal polynomial for α / K is separable. We say L / K is separable iff every $\alpha \in L$ is separable over K.
Definition: A field K is perfect iff every finite extension of K is separable.
Theorem: If char $K=0$, then K is perfect.
Proof: Let L / K be an extension, $\alpha \in L$ an algebraic element, $p(x) \in K[x]$ its minimal polynomial over K. Then $p(x)$ is irreducible in $K[x]$. If $\alpha \in K$, then α is trivially separable over K.
If not, then $p^{\prime}(x)$ is non-constant, of degree smaller than $\operatorname{deg}(p)$. So $\operatorname{deg}\left(\operatorname{gcd}\left(p, p^{\prime}\right)\right)<\operatorname{deg}(p)$. Since p is irreducible, we conclude $\operatorname{gcd}\left(p, p^{\prime}\right)=1$.
What kind of polynomial has 0 derivative? Say char $K=l$.

$$
\begin{aligned}
p(x) & =a_{0}+a_{1} x+\cdots+a_{n} x^{n} \\
\Longrightarrow p^{\prime}(x) & =a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
\end{aligned}
$$

If $p^{\prime}=0$ then $i a_{i}=0$ for all i. This is equivalent to demanding $a_{1}=0$ for all i prime to p. So $p^{\prime}(x)=0$ iff

$$
p(x)=a_{0}+a_{l} x^{l} a_{2 l} x^{2 l}+\cdots+a_{n l} x^{n l}
$$

Definition: Let K be a field of characteristic $l \neq 0$. Define the Frobenius homomorphism

$$
\operatorname{Frob}_{l}: K \rightarrow K
$$

by $\operatorname{Frob}_{l}(a)=a^{l}$.
Theorem: If char $K=l \neq 0$, then $(a+b)^{l}=a^{l}+b^{l}$ for all $a, b \in K$.

Proof:

$$
(a+b)^{l}=\sum_{i=0}^{l}\binom{l}{i} a^{i} b^{l-i}
$$

If $i \neq 0, l,\binom{l}{i}=\frac{l!}{(l-i)!!!}$ is divisible by l, so:

$$
=a^{l}+b^{l}
$$

Theorem: Let K be a field of characteristic $l \neq 0$. Then K is perfect iff $\mathrm{Frob}_{l}: K \rightarrow K$ is onto (is an isomorphism).
Proof: Backwards: Assume Frob_{l} is onto, and let α be any algebraic element in an extension L / K. Let $p(x)$ be a minimal polynomial for α / K.

If $p^{\prime}(x) \neq 0$, then $\operatorname{gcd}\left(p, p^{\prime}\right)=1$, and so α is separable over K. If $p^{\prime}(x)=0$, then:

$$
\begin{aligned}
p(x) & =a_{0}+a_{l} x^{l}+\cdots+a_{n l} x^{n l} \\
\left(\text { since } \text { Frob }_{l}\right. \text { is onto) } & =\left(b_{0}\right)^{l}+\left(b_{1}\right)^{l} x^{l}+\cdots+\left(b_{n}\right)^{l} x^{n l} \\
& =\left(b_{0}+b_{1} x+\cdots+b_{n} x^{n}\right)^{l}
\end{aligned}
$$

which is reducible. This is impossible, so $p^{\prime} \neq 0$.
Forwards: Since Frob_{l} is not onto, there is some $a \in K$ such that $a \neq b^{l}$ for any $b \in K$. Consider $x^{l}-a$, and let F / K be a splitting field for $x^{l}-a$. There is some root $\alpha \in F$ of $x^{l}-a$:

$$
\begin{gathered}
\alpha^{l}-a=0 \\
\Longrightarrow x^{l}-a=x^{l}-\alpha^{l}=(x-\alpha)^{l}
\end{gathered}
$$

Since $\alpha \notin K$, its minimal polynomial $p(x)$ over K has degree at least 2 , and it's a factor of $(x-\alpha)^{l}$. So $p(x)$ isn't separable.
Theorem: Every finite field is perfect.
Proof: Frob_{l}, on a finite field is a $1-1$ function from a finite set to itself. It's therefore onto.
Example: $\mathbb{F}_{l}(T)$ is imperfect, since T is not the l th power of any rational function, for degree reasons.

$$
\begin{aligned}
\mathbb{C}(x) & =\left\{\frac{p(x)}{q(x)}: \begin{array}{c}
p, q \in \mathbb{C}[x] \\
q \neq 0
\end{array}\right\} \\
\mathbb{F}_{l}(T) & =\left\{\frac{p(T)}{q(T)}: \begin{array}{c}
p, q \in \mathbb{F}_{l}[T] \\
q \neq 0
\end{array}\right\}
\end{aligned}
$$

Definition: Let L / K be a finite extension. The separable closure of K in L is the set of all elements of L that are separable over K.
Theorem: The separable closure of K in L is a field.
Proof: Let $K^{\text {sep }}$ be the separable closure of K in L. Let $\alpha, \beta \in K^{\text {sep }}$ be elements.

PMATH 442 Lecture 5: September 21, 2011

Cyclotomic extensions
Let n be an integer, $\zeta_{n} \in \mathbb{C}$ a primitive root of unity; i.e., $\zeta_{n}=\left(e^{2 \pi i / n}\right)^{a}$ for some integer a prime to n. The nth cyclotomic extension of \mathbb{Q} is $\mathbb{Q}\left(\zeta_{n}\right)$. Note that this is independent of a.

n	$\mathbb{Q}\left(\zeta_{n}\right)$	degree over \mathbb{Q}
1	\mathbb{Q}	1
2	\mathbb{Q}	1
3	$\mathbb{Q}\left(\zeta_{3}\right)=\mathbb{Q}(\sqrt{-3})$	2
4	$\mathbb{Q}(i)$	2
5		4
6	$\mathbb{Q}(\sqrt{-3})$	2
\vdots		\vdots
n		$\phi(n)$

Definition: The group μ_{n} is the group of nth roots of unity with respect to multiplication.
We have $\mu_{n} \cong C_{n}$ (or $\mathbb{Z} / n \mathbb{Z}$), with generator $e^{2 \pi i / n}$, via:

$$
e^{2 \pi i a / n} \mapsto a \bmod n
$$

Note $\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\mu_{n}\right)$.
Note that if $d \mid n$, then $\mu_{d} \subset \mu_{n}$.
Definition: The nth cyclotomic polynomial is

$$
\begin{aligned}
x^{n}-1 & =\prod_{\alpha \in \mu_{n}}(x-\alpha)=\prod_{a=1}^{n}\left(x-e^{2 \pi i a / n}\right) \\
\phi_{n}(x) & =\prod_{(a, n)=1}\left(x-e^{\pi i a / n}\right)
\end{aligned}
$$

Note that $x^{n}-1=\prod_{d \mid n} \phi_{d}(x)$
Note $\phi_{n}(x)$ has degree $\phi(n)=\#$ integers prime to n between 0 and n.
Theorem: $\phi_{n}(x) \in \mathbb{Z}[x]$, and is primitive. Proof: By induction on n. If $n=1, \phi_{n}(x)=x-1$ and we're done.
Now assume $\phi_{k}(x) \in \mathbb{Z}[x]$ for all $k<n$, and consider $\phi_{n}(x)$. We have

$$
\begin{aligned}
x^{n}-1 & =\prod_{d \mid n} \phi_{d}(x) \\
& =\phi_{n}(x) \prod_{\substack{d \mid n \\
d \neq n}} \phi_{d}(x)
\end{aligned}
$$

Since $x^{n}-1, \phi_{d}(x) \in \mathbb{Z}[x]$ for $d<n$, we deduce $\phi_{n}(x) \in \mathbb{Q}[x]$. Since \mathbb{Z} is a UFD and since $\prod \phi_{d}(x)$ is primitive (by Gauss' Lemma), we conclude by Gauss' Lemma that $\phi_{n}(x) \in \mathbb{Z}[x] . \phi_{n}(x)$ is primitive because it's monic.

Theorem: $\phi_{n}(x)$ is irreducible over \mathbb{Q}.
Proof: By Gauss' Lemma, it suffices to show that $\phi_{n}(x)$ is irreducible over \mathbb{Z}. Assume $\phi_{n}(x)=f(x) g(x)$ for irreducible $f(x)$ over $\mathbb{Q}, f(x), g(x) \in \mathbb{Z}[x]$. Let ζ_{n} be come primitive nth root of unity. Note that if p is prime, $p \nmid n$, then $\phi_{n}\left(\zeta_{n}^{p}\right)=0 . f\left(\zeta_{n}\right)=0$
Since $x^{n}-1$ is separable, so is $\phi_{n}(x)$, so there are 2 cases:
Case I: $g\left(\zeta_{n}^{p}\right)=0$ for some prime p. Then ζ_{n} is a root of $g\left(x^{p}\right)$. Since $f\left(\zeta_{n}\right)=0$ and f is irreducible, we get

$$
g\left(x^{p}\right)=f(x) h(x)
$$

for some $h(x) \in \mathbb{Z}[x]$. Reducing $\bmod p$:

$$
\begin{aligned}
g\left(x^{p}\right) & \equiv f(x) h(x) \bmod p \\
\Longrightarrow g(x)^{p} & \equiv f(x) h(x) \bmod p
\end{aligned}
$$

so $\operatorname{gcd}(f, g) \not \equiv 1 \bmod p$.
So $\phi_{n}(x)=f(x) g(x)$ has a multiple root $\bmod p$. But this is impossible, since $\phi_{n}(x) \mid x^{n}-1$ and $x^{n}-1$ is separable $\bmod p$ (since $p \nmid n)$. So we are in:
Case II: $g\left(\zeta_{n}^{p}\right) \neq 0$ for all primes $p \nmid n$. In this case, $g\left(\zeta_{n}^{a}\right)$ for all a prime to n. Since $g \mid \phi_{n}(x)$, this means $g(x)$ is constant and $\phi_{n}(x)$ is irreducible.
So ζ_{n} has minimal polynomial $\phi_{n}(x)$ over \mathbb{Q}. Since $\operatorname{deg}\left(\phi_{n}(x)\right)=\phi(n)$, we conclude:

$$
\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]=\phi(n)
$$

If $n=p$ is prime, then $\phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1$.

PMATH 442 Lecture 6: September 23, 2011

Let K / F be a field extension. Then $\operatorname{Aut}_{F}(K)$ is the set of F-algebra isomorphisms $\phi: K \rightarrow K$.
Example: $\operatorname{Aut}_{K}(K)=\{1\}^{2)}$
(An automorphism is an isomorphism of an object with itself.)
Example: $\operatorname{Aut}_{\mathbb{R}}(\mathbb{C})=\{1, \sigma\}$ where σ is complex conjugation.
Example: $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2}))=\{1, \sigma\}$ where $\sigma(a+b \sqrt{2})=a-b \sqrt{2}$.
Example: If $\sqrt{D} \notin F$, then $\operatorname{Aut}_{F}(F(\sqrt{D}))=\{1, \sigma\}$, where $\sigma(a+b \sqrt{D})=a-b \sqrt{D}$.

$$
\begin{aligned}
i^{2}=-1 & \Longrightarrow \sigma\left(i^{2}\right)=\sigma(-1) \\
& \Longrightarrow \sigma(i)^{2}=-1
\end{aligned}
$$

Theorem: Let $p(x) \in F[x]$ be any polynomial, E / F an extension, $\sigma \in \operatorname{Aut}_{F}(E)$. If $\alpha \in E$ is a root of $p(x)$, then so is $\sigma(\alpha)$.
Proof: Let $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ for $a_{i} \in F$. Then:

$$
\begin{aligned}
a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n} & =0 \\
\Longrightarrow \sigma\left(a_{0}+\cdots+a_{n} \alpha^{n}\right) & =0 \\
\Longrightarrow \sigma\left(a_{0}\right)+\cdots+\sigma\left(a_{n}\right) \sigma(\alpha)^{n} & =0 \\
\Longrightarrow a_{0}+\cdots+\sigma(\alpha)^{n} & =0 \\
\Longrightarrow p(\sigma(\alpha)) & =0
\end{aligned}
$$

Since σ is $1-1$, it follows that it permutes the roots of $p(x)$.
Example: Aut $(\mathbb{Q}(\sqrt[3]{2}))=\{1\}$, because $\sigma(\sqrt[3]{2})^{3}=2 \Longrightarrow \sigma(\sqrt[3]{2})=\sqrt[3]{2}$ since $\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}$.
Theorem: Let $S \subset \operatorname{Aut}_{F}(K)$ be any subset. Let $E=\{\alpha \in K: \sigma(\alpha)=\alpha$ for all $\sigma \in S\}$.
(E is called the fixed field of S.)
Then E is a field.
Proof: It suffices to show $0,1 \in E$ (clear) and that E is closed under,,$+- \cdot$, and \div. Thus, pick any a, $b \in E$. Then for all $\sigma \in S, \sigma(a)=a \& \sigma(b)=b$, so $\sigma(a+b)=\sigma(a)+\sigma(b)$, and similarly for the rest.

Theorem: Let $T \subset K$ be any subset. Let $H=\left\{\sigma \in \operatorname{Aut}_{F}(K): \sigma(\alpha)=\alpha\right.$ for all $\left.\alpha \in T\right\}$. Then H is a subgroup of $\operatorname{Aut}_{F}(K)$.
Proof: It suffices to show $1 \in H$ (clear) and H closed under composition and inversion. This is easy:

$$
\sigma_{1} \in H, \sigma_{2} \in H \Longrightarrow \sigma_{i}(\alpha)=\alpha \text { for } i=1,2
$$

so $\sigma_{1}^{-1}(\alpha)=\alpha$ and $\sigma_{1}\left(\sigma_{2}(\alpha)\right)=\sigma_{1}(\alpha)=\alpha$

[^1]| $\operatorname{Aut}_{F}(K)$ | K / F |
| :---: | :---: |
| S | \longrightarrow fixed field, $F \subset E \subset K$ |
| fixing automorphisms H subgroup | \leftarrow |

Notice that the fixed field of S is the same as the fixed field of the subgroup generated by S.
Notice also that if $T \subset K$ is any subset, then the automorphisms fixing T are the same as the automorphisms fixing $F(T)$.

In particular, if $\alpha \in K$ is any element, then the F-algebra homomorphisms of K fixing α are precisely the F-algebra homomorphisms fixing $F(\alpha)$.
For instance, $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{C})$ fixes $\sqrt{2}$ iff it fixes $\mathbb{Q}(\sqrt{2})$.
If $H_{1} \subset H_{2}$, then $\operatorname{fix}\left(H_{2}\right) \subset \operatorname{fix}\left(H_{1}\right)$. If $E_{1} \subset E_{2}$, then $H_{2}{ }^{3)} \subset H_{1}{ }^{4)}$.

$$
\begin{array}{c|c}
\operatorname{Aut}_{\mathbb{R}}(\mathbb{C}) & \mathbb{C} / \mathbb{R} \\
\hline\{1\} & \mathbb{C} / \mathbb{R} \\
\{1, \sigma\} & \mathbb{R} / \mathbb{R}
\end{array}
$$

For which field extensions K / F is this correspondence a bijection?
Answer: Splitting fields. Almost.

PMATH 442 Lecture 7: September 26, 2011

Theorem: Let E / F be a field extension of degree n, and assume that E is the spitting field of a polynomial $p(x) \in F[x]$. Let L be a field, $\phi: F \rightarrow L$ a homomorphism, and assume that $\phi(p(x))$ splits into linear factors in $L[x]$. Then there is a homomorphism $\psi: E \rightarrow L$ extending ϕ, and there are at most n such extensions ψ, with equality iff $p(x)$ is separable.

Proof: The existence of ψ follows from the existence \& uniqueness of splitting fields up to isomorphism.
Induce on n. Base case $n=1$ is trivial, so assume the theorem for extensions of degree $\leq n-1$. Let $q(x)$ be an irreducible factor of $p(x)$ of degree at least 2 . Let $\alpha \in E$ be a root of $q(x)$. Then:

E is the splitting field for $p(x)$ over $f(\alpha)$. By induction, there are at most $[E: F(\alpha)]$ choices of ψ for any given Ξ, with equality iff $p(x)$ has distinct roots. The number of choices of Ξ is at $\operatorname{most} \operatorname{deg}(p(x))$, with equality iff $q(x)$ has distinct roots. So the number of choices of ψ in total is:

$$
[E: F(\alpha)][F(\alpha): F]=[E: F]=n
$$

[^2]with equality iff $p(x)$ is separable.
Corollary: If E is a splitting field of some polynomial over F, then $\# \operatorname{Aut}_{F}(E) \leq[E: F]$, with equality iff $p(x)$ is separable.
Definition: A finite extension E / F is Galois iff \# $\operatorname{Aut}_{F}(E)=[E: F]$.
Corollary: Splitting fields of separable polynomials are Galois.
Definition: If E / F is Galois, then $\operatorname{Gal}(E / F)=\operatorname{Aut}_{F}(E)$ is the Galois group of E / F.
Example: $\operatorname{Gal}(K / K)=\{1\}$.
Example: $\operatorname{Gal}(\mathbb{C} / \mathbb{R})=\{1, \sigma\}, \sigma=$ complex conjugation
Example: $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not Galois! Because $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$, but Aut $\mathbb{Q}(\mathbb{Q}(\sqrt[3]{2}))=\{1\}$.
PMATH 442 Lecture 8: September 28, 2011
Shuntaro Yamagishi
If E is a splitting field for a separable polynomial in $F[x]$, then E / F is Galois. If F is perfect (e.g., if char $F=0$ or F is finite) then every splitting field over F is Galois.
Example: $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$:
To determine a homomorphism from $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ to itself, it is enough to figure out where $\sqrt{2} \& \sqrt{3}$ go.

Clearly $\begin{gathered}\sqrt{2} \mapsto \pm \sqrt{2} \\ \sqrt{3} \mapsto \pm \sqrt{3}\end{gathered}$ are the only possibilities.

All four possibilities work, if you check them, so $\# \operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2}, \sqrt{3})) \geq 4$. Since $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=4$, we conclude that $\# \operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2}, \sqrt{3}))=4$, and $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$ is Galois.

$$
\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}) \cong(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) .
$$

This group has 5 subgroups.

$$
\begin{array}{rll}
\{1\} & \longleftrightarrow & \mathbb{Q}(\sqrt{2}, \sqrt{3}) \\
\left\{1, \sigma_{3}\right\} & \longleftrightarrow & \mathbb{Q}(\sqrt{3}) \\
\left\{1, \sigma_{2}\right\} & \longleftrightarrow & \mathbb{Q}(\sqrt{2}) \\
\left\{1, \sigma_{6}\right\} & \longleftrightarrow & \mathbb{Q}(\sqrt{6}) \\
\left., \sigma_{2}, \sigma_{3}, \sigma_{6}\right\} & \longleftrightarrow & \mathbb{Q}
\end{array}
$$

Example: $\mathbb{F}_{343} / \mathbb{F}_{7}$
$\mathbb{F}_{343}=$ splitting field of $x^{343}-x$ over \mathbb{F}_{7}. Since $x^{343}-x$ is separable, F_{343} / \mathbb{F}_{7} is Galois. Let $\sigma=$ Frob $_{7}: \mathbb{F}_{343} \rightarrow$ \mathbb{F}_{343}. It's an \mathbb{F}_{7}-automorphism of \mathbb{F}_{343}.

$$
\mathbb{F}_{343} \cong \mathbb{F}_{7}[x] /\left(x^{3}-2\right) \cong \mathbb{F}_{7}(\sqrt[3]{2})
$$

Let Larry, Curly and Moe be the three cube roots of two \mathbb{F}_{343}.

$$
\begin{aligned}
\sigma(\text { Larry }) & =\text { Curly } \quad(\text { wlog }) \\
\sigma(\text { Curly }) & =\text { Moe } \\
\sigma(\text { Moe }) & =\text { Larry }
\end{aligned}
$$

So $\left\{1, \sigma, \sigma^{2}\right\}$ are three different \mathbb{F}_{7}-automorphisms of \mathbb{F}_{343}. So $\mathbb{F}_{343} / \mathbb{F}_{7}$ is Galois.

[^3]Example: $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$. Degree 4 .

$$
\begin{aligned}
& \mathbb{Q}(\sqrt[4]{2}) \\
& 2 \mid\} \text { Galois: }\left\{\begin{array}{c}
\left.\stackrel{\stackrel{\mathrm{id}}{\mathrm{id}}}{a+b} \begin{array}{c}
\sqrt[4]{a} a-b \\
a, b \in \mathbb{Q}(\sqrt[4]{2})
\end{array}\right)
\end{array}\right. \\
& \mathbb{Q}(\sqrt{2})
\end{aligned}
$$

Aut $_{\mathbb{Q}}(\mathbb{Q}(\sqrt[4]{2}))=\{\mathrm{id}, \sigma\}$ which is too small! So $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is not Galois.
Definition: Let G be a group, K a field, V a (finite-dimensional) K-vector space, $\mathrm{GL}(V)$ the group of invertible K-linear transformations $V \rightarrow V$. (e.g., $V=K^{n}$, $\mathrm{GL}(V)=M_{n}(K)$.) A representation of G with values in V is a homomorphism $\rho: G \rightarrow \operatorname{GL}(V)$.

PMATH 442 Lecture 9: September 30, 2011

Shuntaro Yamagishi
shuntaroy@hotmail.com
Definition: G a group, K a field, V a K-vector space. A representation of G in V is a homomorphism $\rho: G \rightarrow \mathrm{GL}^{8)}(V)$

$$
\operatorname{dim} \rho=\operatorname{dim} V
$$

We'll work with 1-dimensional representations, called characters:
Example: Dirichlet characters:

$$
\begin{gathered}
\rho: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C} \\
\rho(m)=e^{2 \pi i m / n}
\end{gathered}
$$

Example: K, L fields, $\phi: K \rightarrow L$ a homomorphism. Then $\left.\phi\right|_{K^{*}}$ is a 1-dim representation of K^{*} in L.
Theorem: Let G be a group, L a field, $\chi_{1}, \ldots, \chi_{r}$ a set of distinct characters of G over L. Then $\left\{\chi_{1}, \ldots, \chi_{r}\right\}$ are linearly independent over L.
Proof: Assume not, and let (after possibly renumbering) $\left\{\chi_{1}, \ldots, \chi_{t}\right\}$ be an L-linear dependent subset of minimal size. Then there are $a_{1}, \ldots, a_{t} \in L$ such that

$$
a_{1} \chi_{1}(g)+\cdots+a_{t} \chi_{t}(g)=0
$$

for all $g \in G$. Note $t \geq 2$, and choose $\gamma \in G$ such that $\chi_{1}(\gamma) \neq \chi_{t}(\gamma)$. Then

$$
\begin{array}{ll}
& a_{1} \chi_{1}(\gamma) \chi_{1}(g)+\cdots+a_{t} \chi_{t}(\gamma) \chi_{t}(g)=0 \\
\text { and } & a_{1} \chi_{t}(\gamma) \chi_{1}(g)+\cdots+a_{t} \chi_{t}(\gamma) \chi_{1}(g)=0 \\
\Longrightarrow & (\text { nonzero }) \chi_{1}(g)+\cdots+(\text { something }) \chi_{t-1}(g)=0
\end{array}
$$

so $\left\{\chi_{1}, \ldots, \chi_{t-1}\right\}$ is linearly dependent, which is a contradiction.
Theorem: Let K / E be a field extension, F and E-subfield of K. Let $G=\left\{\sigma_{1}=1, \sigma_{2}, \ldots, \sigma_{n}\right\}$ be E-automorphisms of K whose fixed field is F. If G is a group, then

$$
\# G=[K: F] .
$$

Proof: Let $m=[K: F],\left\{w_{1}, \ldots, w_{n}\right\}$ an F-basis of K. Define

$$
\boldsymbol{v}_{i}=\left(\begin{array}{c}
\sigma_{i}\left(w_{1}\right) \\
\vdots \\
\sigma_{i}\left(w_{m}\right)
\end{array}\right) \in K^{m}
$$

[^4]There are n vectors in \boldsymbol{v}_{i}. If we show that the \boldsymbol{v}_{i} s are K-linear independent it will follow that $n \leq m$. Thus, say $a_{1}, \ldots, a_{n} \in K$ satisfy:

$$
a_{1} \boldsymbol{v}_{1}+\cdots+a_{n} \boldsymbol{v}_{n}=\mathbf{0}
$$

We want to show $a_{i}=0$ for all i. Well:

$$
a_{1} \sigma_{1}\left(w_{j}\right)+\cdots+a_{n} \sigma_{n}\left(w_{j}\right)=0
$$

for all j. Since $\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis for K / F, and since the σ_{i} are all F-linear transformations, we get

$$
a_{1} \sigma_{1}(\alpha)+\cdots+a_{n} \sigma_{n}(\alpha)=0
$$

for any $\sigma \in K$. Since the $\sigma_{i} \mathrm{~s}$ are characters of K^{*} in K, they're K-linearly independent so $a_{i}=0$ for all i. So $\# G \leq[K: F]$. Let $\alpha_{1}, \ldots, \alpha_{n+1} \in K$ be any elements. If we show it's linearly independent over F, then $\operatorname{dim}_{F} K \leq n$. Define

$$
\boldsymbol{u}_{i}=\left(\begin{array}{c}
\sigma_{1}\left(\alpha_{i}\right) \\
\vdots \\
\sigma_{n}\left(\alpha_{i}\right)
\end{array}\right) \in K^{n}
$$

There are $n+1$ of the $\boldsymbol{u}_{i} \mathrm{~s}$, so they are linearly dependent over K.
Choose $\beta_{1}, \ldots, \beta_{n+1} \in K$ such that
(1) $\beta_{1} \boldsymbol{u}_{1}+\cdots+\beta_{n+1} \boldsymbol{u}_{n+1}=\mathbf{0}$
(2) A minimal $\#$ of β_{i} are 0 .
and (3) $\beta_{1}, \ldots, \beta_{t}$ are nonzero, $\beta_{t+1}, \ldots, \beta_{n+1}=0, \beta_{t}=1$.
If all β_{i} are in F, then $\left\{\alpha_{1}, \ldots, \alpha_{n+1}\right\}$ is linearly dependent over F, by looking at first coordinate of (1).
If not, assume without loss of generality that $\beta_{1} \notin F$. Choose σ (in G) such that $\sigma\left(\beta_{1}\right) \neq \beta_{1}$. Then:

$$
\sigma\left(\beta_{1}\right) \sigma\left(\boldsymbol{u}_{1}\right)+\cdots+\sigma\left(\beta_{t}\right) \sigma\left(\boldsymbol{u}_{t}\right)=\mathbf{0}
$$

But σ acts on each \boldsymbol{u}_{i} by permuting the coordinates in the same way. So:

$$
\sigma\left(\beta_{1}\right) \boldsymbol{u}_{1}+\cdots+\sigma\left(\beta_{t}\right) \boldsymbol{u}_{t}=\mathbf{0}
$$

Subtraction with (1) gives:

$$
\left[\beta_{1}-\sigma\left(\beta_{1}\right)\right] \boldsymbol{u}_{1}+\cdots+\left[\beta_{t}-\sigma\left(\beta_{t}\right)\right]^{9)} \boldsymbol{u}_{t}=\mathbf{0}
$$

So this relation has fewer nonzero terms, which is a contradiction. So $\beta_{i} \in F$ for all i, and we're done.

PMATH 442 Lecture 10: October 3, 2011

Theorem: Let K / F be a Galois extension. If $p(x) \in F[x]$ is irreducible and has a root in K, then $p(x)$ splits into linear factors in $K[x]$, and $p(x)$ is separable.
Proof: Let $G=\operatorname{Gal}(K / F)=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}, \sigma \in K, p(\alpha)=0$. Let $\alpha_{i}=\sigma_{i}(\alpha)$ be the conjugates of α. Define $f(x)=\prod_{i}{ }^{10)}\left(x-\alpha_{i}\right)$. Then G acts on the roots of $f(x)$ by permutation, so the coefficients of $f(x)$ are fixed by G.
The fixed field of G is a field that contains F and of which K is a degree n extension, so it is F.
Now, $f(\alpha)=0$, so $p(x) \mid f(x)$. Since $p\left(\alpha_{i}\right)=0$ for all i, we get $f(x) \mid p(x)$, and so $f(x)$ is also irreducible (it's a constant times $p(x)$). Furthermore, $p(x)$ has all its roots in K, and it's separable (because $f(x)$ is).
Theorem: Let K / F be a finite extension. Then K / F is Galois iff K is the splitting field for a separable polynomial in $F[x]$.
Proof: Let $\left\{w_{1}, \ldots, w_{n}\right\}$ be an F-basis of K. Let $p_{i}(x)$ be a minimal polynomial for w_{i} over F. Let $g(x)=\operatorname{lcm}\left(p_{i}(x)\right)$. Then since each $p_{i}(x)$ is separable, so is $g(x)$. Since each $p_{i}(x)$ splits in K, so does $g(x)$. Since $K=F\left(w_{1}, \ldots, w_{n}\right), K$ is a splitting field for $g(x)$ over F.

[^5]Theorem: Let K / F be a finite extension. Then K / F is Galois iff it is normal and separable.
Proof: Forwards: Galois \longrightarrow normal, done.
If $\alpha \in K$, then its minimal polynomial $p(x) \in F[x]$ is separable, so K / F is separable.
Backwards: Follows immediately from previous theorem.
Theorem: (The Fundamental Theorem of Galois Theory).
Let K / F be a finite Galois extension, $G=\operatorname{Gal}(K / F)$. Then there is a bijection between subgroups of G and F-subfields of K given by:

$$
\begin{aligned}
E & \longmapsto\{\sigma \in G \text { such that } \sigma(\alpha)=\alpha \text { for all } \alpha \in E\} \\
\left\{\begin{array}{c}
\alpha \in E \text { such that } \\
\sigma(\alpha)=\alpha \\
\text { for all } \sigma \in H
\end{array}\right\} & \longleftrightarrow H
\end{aligned}
$$

Moreover, if $E_{1}, E_{2} \longleftrightarrow H_{1}, H_{2}$, then:

F-subfields of K		Subgroups of G			
$E_{2} \subset E_{1}$	\longleftrightarrow	$H_{1} \subset H_{2}$			
$[K: F]$	$=$	$\# H$			
$[E: F]$	$=$	$\|G: H\|$			
$\operatorname{Gal}(K / E)=$ Aut $_{E} K$	\cong	H			
$\operatorname{Hom}_{F}(E, K)^{11)}$	\cong	$G / H^{12)}$			
$\left\{\begin{array}{c}F \text { is Galois } \\ \operatorname{Gal}(E / F) \\ E_{1} \cap E_{2}\end{array}\right.$	\longleftrightarrow				H is normal in G
$E_{1} E_{2}$	\longleftrightarrow	$H_{1} H_{2}$			
	\longleftrightarrow	$H_{1} \cap H_{2}$			

Example: $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$.
The Fundamental Theorem says that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ has five \mathbb{Q}-subfields.

PMATH 442 Lecture 11: October 5, 2011

Theorem: (FTGT)

[^6]Let K / F be a Galois extension, $G=\operatorname{Gal}(K / F)$. Then there is a bijection

$$
\begin{aligned}
\left\{\begin{array}{c}
F \text {-subfields } \\
E \text { of } K
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\text { Subgroups } \\
H \text { of } G
\end{array}\right\} \\
E & \longmapsto\left\{\begin{array}{c}
\sigma \in G \text { such that } \\
\sigma(\alpha)=\alpha \quad \forall \alpha \in E
\end{array}\right\}
\end{aligned}
$$

F-fields		Subgroups
$E_{1} \subset E_{2}$	\longleftrightarrow	$H_{2} \subset H_{1}$
$[K: E]$	$=$	$\# H$
$[E: F]$	$=$	$\# G / H=\|G: H\|$
$\operatorname{Gal}(K / E)=\operatorname{Aut}_{E}(K)$	$=$	H
$\operatorname{Hom}_{F}(E, K)$	\cong	G / H
E / F Galois	\longleftrightarrow	H is normal
(in the case Gal (E / F)	\cong	$G / H)$
$E_{1} \cap E_{2}$	\longleftrightarrow	$H_{1} H_{2}$
$E_{1} E_{2}$	\longleftrightarrow	$H_{1} \cap H_{2}$

Proof: We will show that if H_{1} and H_{2} are subgroups of G with the same fixed field E, then $H_{1}=H_{2}$. Then E is also the fixed field of $H_{1} H_{2}$, so

$$
[K: E]=\# H_{1}=\# H_{2}=\# H_{1} H_{2}
$$

so $H_{1}=H_{2}$.
Now let $E \subset K$ be any F-subfield. Then $[K: E]=\# \operatorname{Gal}(K / E)$ because K / E is Galois.
But $\operatorname{Gal}(K / E)$ is a subgroup of G, so:
(1) $E \subset$ fixed field of $\operatorname{Gal}(K / E)$
and (2) $[K:$ fixed field $]=[K: E]$
so E is the fixed field of $\operatorname{Gal}(K / E)$.
So the given correspondence is a bijection, as desired.
The inclusion-reversing property is clear.
We already proved $[K: E]=\# H$. KLM and $\# H(\# G / H)=\# G$ suffice to show $[E: F]=\# G / H$. We already showed $\operatorname{Gal}(K / E)$ is equal to H.
We will now show that $\operatorname{Hom}_{F}(E, K) \cong G / H$ as pointed sets.
Definition: A pointed set is an ordered pair (S, x) where $x \in S$.
Definition: Let F be a field, $A_{1}, A_{2} F$-algebras. Then

$$
\operatorname{Hom}_{F}\left(A_{1}, A_{2}\right)=\left\{\begin{array}{c}
F \text {-algebra homomorphism } \\
\phi: A_{1} \rightarrow A_{2}
\end{array}\right\}
$$

Remarks: $\operatorname{Hom}_{F}\left(A_{1}, A_{2}\right)$ is, in general, just a set. If $A_{1} \subset A_{2}$, then $\operatorname{Hom}_{F}\left(A_{1}, A_{2}\right)$ is a pointed set, with distinguished element $i: A_{1} \hookrightarrow A_{2}$ the inclusion.
Define $\phi: G \rightarrow \operatorname{Hom}_{F}(E, K)$ by $\phi(\sigma)=\left.\sigma\right|_{E}{ }^{13)}$
This maps the distinguished element of G (namely id) to that of $\operatorname{Hom}_{F}(E, K)$ (namely inclusion $E \hookrightarrow K$).
We know ϕ is onto because we proved that if K / E is Galois, then homomorphisms from $E \rightarrow K$ always extend to all of K.
If $\phi\left(\sigma_{1}\right)=\phi\left(\sigma_{2}\right)$, then $\left.\sigma_{1}\right|_{E}=\left.\sigma_{2}\right|_{E}$, so $\left.\sigma_{1} \sigma_{2}^{-1}\right|_{E}=\operatorname{id}_{E}$. This implies that $\sigma_{1} \sigma_{2}^{-1} \in H=\operatorname{Gal}(K / E)$, so for any $f \in \operatorname{Hom}_{F}(E, K)$ the set

$$
\{\sigma \in G: \phi(\alpha)=f\}
$$

[^7]is a left coset of H. So we've shown that $G / H \cong \operatorname{Hom}_{F}(E, K)$ as pointed sets.
We have the following lemma:
Lemma: Say K / F is normal, $F \subset E \subset K$ fields. Then E / F is normal iff im $\phi=E$ for all homomorphisms $\phi: E \rightarrow K$.

PMATH 442 Lecture 12: October 7, 2011

Office hours Tuesday Oct. 11 moved to 3:30-4:30.
Lemma: Let K / F be a finite normal field extension. E an F-subfield of K. Then E / F is normal iff im $\phi=E$ for all F-homomorphisms $\phi: E \rightarrow K$.
Proof of lemma: Write $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
Forwards: Assume E / F normal. Then we can choose the α_{i} s so that $p(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)$ is in $F[x]$. For each $i, \phi\left(\alpha_{i}\right)$ is a root of $p(x)$, so since ϕ is injective, it permutes the roots of $p(x)$, so:

$$
\begin{aligned}
\operatorname{im} \phi=\phi(E) & =F\left(\phi\left(\alpha_{1}\right), \ldots, \phi\left(\alpha_{n}\right)\right) \\
& =F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \\
& =E
\end{aligned}
$$

Backwards: Assume that E / F is not normal. Then there is an irreducible $p(x) \in F[x]$ such that $p(x)$ has a root $\alpha \in E$, but $p(x)$ does not split in E. Since $p(x)$ splits in K, there is a root β of $p(x)$ with $\beta \in K$. Since K / F is normal, and since $p(x)$ splits in K, we can extend the isomorphism $F(\alpha) \cong F(\beta)$ to a homomorphism $\psi: K \rightarrow K$. Let $\phi=\left.\psi\right|_{E}$. Then $\phi(\alpha)=\beta \notin E$, so $\operatorname{im} \phi \not \supset E$.

We now return to our quest to show that E / F is Galois iff H is a normal subgroup of G.
The lemma implies that E / F is Galois $i f f \operatorname{Hom}_{F}(E, K) \cong \operatorname{Aut}_{F}(E)$ as pointed sets.
Let $\sigma \in \operatorname{Aut}_{F}(E)$. The subgroup of G fixing $\sigma(E)$ is $\sigma H \sigma^{-1}$. So $\sigma(E)=E$ for all $\sigma \in G$ iff $\sigma H \sigma^{-1}=H$ for all $\sigma \in G$. So E / F is Galois iff H is normal in G.

In that case, the map $\psi: G \rightarrow \operatorname{Gal}(E / F), \psi(\sigma)=\left.\sigma\right|_{E}$, is an onto homomorphism ker $\psi=H$, so induces an isomorphism $G / H \rightarrow \operatorname{Gal}(E / F)$.
We just need to show $E_{1} \cap E_{2}$ corresponds to $H_{1} H_{2}$, and that $E_{1} E_{2}$ corresponds to $H_{1} \cap H_{2}$.
If $\sigma \in H_{1} H_{2}$, then certainly σ fixes $E_{1} \cap E_{2}$. Conversely, let E be the fixed field of $H_{1} H_{2}$. Then $E_{1} \cap E_{2} \subset E$, and since $H_{1} H_{2}$ is the smallest subgroup of G containing $H_{1} \& H_{2}$, it follows that E is the largest F-subfield of K contained in E_{1} and E_{2}. But $E_{1} \cap E_{2}$ is the largest F-subfield of K contained in $E_{1} \& E_{2}$, so $E=E_{1} \cap E_{2}$.

Similarly, $E_{1} E_{2}$ is the smallest F-subfield of K containing $E_{1} \& E_{2}$ so it corresponds to the largest subgroup of G contained in $H_{1} \& H_{2}$, namely $H_{1} \cap H_{2}$.

Example: $\mathbb{Q}(\sqrt[3]{2}, \gamma)=K, \gamma=e^{2 \pi i / 3}$. What is $\operatorname{Gal}(K / \mathbb{Q})$, and what are the \mathbb{Q}-subfields of K ?

$\operatorname{Gal}(K / \mathbb{Q}): \phi$	$\phi(\sqrt[3]{2})$	$\phi(\gamma)$
id	$\sqrt[3]{2}$	γ
	$\gamma \sqrt[3]{2}$	γ
	$\gamma^{2} \sqrt[3]{2}$	γ
	$\sqrt[3]{2}$	γ^{2}
	$\gamma \sqrt[3]{2}$	γ^{2}
	$\gamma^{2} \sqrt[3]{2}$	γ^{2}

Since ϕ is determined by $\phi(\sqrt[3]{2})$ and $\phi(\gamma)$, and since $[K: \mathbb{Q}]=6$, we know these six rows are all represented by elements of $\operatorname{Gal}(K / \mathbb{Q})$.

PMATH 442 Lecture 13: October 12, 2011
$\mathbb{Q}(\sqrt[3]{2}, \gamma) / \mathbb{Q}, \gamma=e^{2 \pi i / 3}$
$S=\left\{\underset{a}{\sqrt[3]{2}}, \gamma \underset{b}{\sqrt[3]{2}}, \gamma_{c}^{2} \sqrt[3]{2}\right\}$
$G=\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \gamma) / \mathbb{Q})$
G acts on S by permutations, and this action is an isomorphism of G with S_{3}.

$$
\begin{array}{cc}
\text { Subgroups of } G & \mathbb{Q} \text {-subfield } \\
\hline\{1\} & \mathbb{Q}(\sqrt[3]{2}, \gamma) \\
\{1,(a b)\} & \mathbb{Q}\left(\gamma^{2} \sqrt[3]{2}\right) \\
\{1,(a c)\} & \mathbb{Q}(\gamma \sqrt[3]{2}) \\
\{1,(b c)\} & \mathbb{Q}(\sqrt[3]{2}) \\
\{1,(a b c),(a c b)\} & \mathbb{Q}(\gamma) \\
G & \mathbb{Q}
\end{array}
$$

Example: Compute the Galois group of $x^{4}-2$.
Solution: The splitting field is $\mathbb{Q}(\sqrt[4]{2}, i)$ which has degree 8 over \mathbb{Q}.
Any \mathbb{Q}-automorphism of $\mathbb{Q}(\sqrt[4]{2}, i)$ takes $i \mapsto \pm i$ and $\sqrt[4]{2}$ to $\pm \sqrt[4]{2}$ or $\pm i \sqrt[4]{2}$, and any \mathbb{Q}-automorphism is completely determined by its action on $\sqrt[4]{2}$ and i. This gives at most 8 automorphisms, so since $\mathbb{Q}(\sqrt[4]{2}, i) / \mathbb{Q}$ is Galois of degree 8 , they are all realised by actual automorphisms.
Let $G=\operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2}, i) / \mathbb{Q})$. Then G acts on $S=\{\sqrt[4]{2}, i \sqrt[4]{2},-\underset{c}{\sqrt[4]{2},-i \sqrt[4]{2}\}}$ by permutations. So there is a homomorphism $\psi: G \rightarrow S_{4}$ which is injective because if $\sigma \in \operatorname{ker} \psi$ then $\sigma(i)=i \& \sigma(\sqrt[4]{2})=\sqrt[4]{2}$. The homomorphism ψ is given by:

\mathbb{Q}-Automorphism	Permutation of S
$(i, \sqrt[4]{2})$	1
$(-i, \sqrt[4]{2})$	$(b d)$
$(i, i \sqrt[4]{2})$	$(a b c d)$
$(-i, i \sqrt[4]{2})$	$(a b)(c d)$
$(i,-\sqrt[4]{2})$	$(a c)(b d)$
$(-i,-\sqrt[4]{2})$	$(a c)$
$(i,-i \sqrt[4]{2})$	$(a d c b)$
$(-i,-i \sqrt[4]{2})$	$(a d)(b c)$

(a)

Note that every permutation in $\psi(G)$ preserves this square, so $G \stackrel{\psi}{\hookrightarrow} D_{4}$. But $\# G=\# D_{4}=8$, so in fact ψ induces an isomorphism of G with D_{4}.
One can, as in the previous case, use this to find all the \mathbb{Q}-subfields of $\mathbb{Q}(\sqrt[4]{2}, i)$.
Theorem: Let K be the splitting field of a separable polynomial $f(x)$ over a field F. Then $\operatorname{Gal}(K / F)$ acts transitively on the roots of $f(x)$ if $f(x)$ is irreducible.
Proof: Let $\alpha \in K$ be a root of $f(x)$. Define:

$$
p(x)=\prod_{\substack{\sigma \in G \\ \text { distinct } \sigma(x)}}(x-\sigma(x))
$$

Then the coefficients of $p(x)$ lie in the fixed field of G since $p(x)$ is fixed by G. So $p(x) \in F[x]$. But $p(x)=0$, so $f(x) \mid p(x)$. However, since $p(x)$ is separable and every root of $p(x)$ is a root of $f(x)$, we get $p(x) \mid f(x)$. So $p(x)=c f(x)$ for some $c \in F$. Since G acts transitively on the roots of $p(x)$, it acts transitively on the roots of $f(x)$.

PMATH 442 Lecture 14: October 14, 2011

Galois Theory of Finite Fields
Say F is a finite field. Then F has p^{n} elements for some prime p and integer $n \geq 1$. We write $F=\mathbb{F}_{p^{n}}$. A finite extension of F is also a finite field, with $p^{k n}$ elements for some integer $k \geq 1$. Let $E=\mathbb{F}_{p^{k n}}$. Then

$$
[E: F]=\left[\mathbb{F}_{p^{k n}}: \mathbb{F}_{p^{n}}\right]=k
$$

Consider $\operatorname{Frob}_{p}: \begin{aligned} \mathbb{F}_{p^{k n}} & \rightarrow \mathbb{F}_{p^{k n}} \\ E & \rightarrow E\end{aligned}$.
It's an isomorphism, with fixed field \mathbb{F}_{p}. In general, Frob_{p} only fixes $\mathbb{F}_{p^{n}}$ is $n=1$, so Frob_{p} is not in $\operatorname{Aut}_{F}(E)$. However, $\alpha^{p^{n}}=\alpha$ iff $\alpha \in F=\mathbb{F}_{p^{n}}$, so $\mathbb{F}_{p^{n}}$ is the fixed field of $\left(\operatorname{Frob}_{p}\right)^{n}$, the n-fold composition of Frob ${ }_{p}$ with itself.

So let $\pi=\left(\operatorname{Frob}_{p}\right)^{n}$. Then for each $a \in\{1, \ldots, k\}$, the a-fold composition π^{a} is an automorphism of $\mathbb{F}_{p^{k n}}=E$ whose fixed field is $\mathbb{F}_{p^{a n}} \cap E=\mathbb{F}_{p^{g n}}$ where $g=\operatorname{gcd}(a, k)$. So π is an F-automorphism of E of order k. So E / F is Galois with $\operatorname{Gal}(E / F)=\left\{1, \pi, \ldots, \pi^{k-1}\right\} \cong \mathbb{Z} / k \mathbb{Z}$.
Theorem: Say K / F is a finite Galois extension, E / F any finite extension.

Then $K E / E$ is Galois, and

$$
\operatorname{Gal}(K E / E) \cong \operatorname{Gal}(K / K \cap E) \text { and }[K E: F]=\frac{[K: F][E: F]}{K \cap E: F}
$$

Proof: First, note that the formula follows formally from the isomorphism of Galois groups:

$$
\begin{aligned}
{[K E: F] } & =[E: F][K E: E] \\
& =[E: F][K: K \cap E] \\
& =[E: F] \frac{[K: F]}{[K \cap E: F]}
\end{aligned}
$$

It therefore suffices to prove the theorem for $F=K \cap E$.

K is the splitting field for some separable polynomial $p(x) \in F[x]$. So $K E$ is the splitting field for $p(x) \in E[x]$ over E, and therefore $K E / E$ is Galois.
Define $\psi: \operatorname{Gal}(K E / E) \rightarrow \operatorname{Gal}(K / F)$ by $\psi(\sigma)=\left.\sigma\right|_{K}$, which is well defined because K / F is Galois, so $\operatorname{im}\left(\left.\sigma\right|_{K}\right)=K . \psi$ is a homomorphism. If $\sigma \in \operatorname{ker} \psi$, then $\left.\sigma\right|_{K}=\mathrm{id}$. Since $\sigma \in \operatorname{Gal}(K E / E),\left.\sigma\right|_{E}=$ id too, so $\sigma_{K E}=$ id. So ψ is injective.

Consider $\operatorname{im} \psi$. Its fixed field is, say, L. Then $L \subset K$, and every element of $\operatorname{Gal}(K E / E)$ fixes L, so $L \subset E$. But $F \subset L$, so $L=K \cap E=F$. Therefore $\operatorname{im} \psi=\operatorname{Gal}(K / F)$, and ψ is onto.
Theorem: Say $K_{1} K_{2}$ are Galois extensions of F. Then $K_{1} \cap K_{2}$ and $K_{1} K_{2}$ are Galois over F, and $\operatorname{Gal}\left(K_{1} K_{2} / F\right)$ is isomorphic to the fibre product of $\operatorname{Gal}\left(K_{1} / F\right)$ and $\operatorname{Gal}\left(K_{2} / F\right)$ over $\operatorname{Gal}\left(K_{1} \cap K_{2} / F\right)$.

Definition: Let S, T, U be sets, with functions

The fibre product of T and U over S is:

$$
T \times{ }_{S} U=\{(t, u) \in T \times U: f(t)=g(u)\}
$$

PMATH 442 Lecture 15: October 17, 2011

Definition: Let $\phi: G \rightarrow \operatorname{Sym}(S)$ be a group action of G on a set S. Then ϕ is transitive iff for every a, $b \in S$, there is a $g \in G$ such that $[\phi(g)](a)=b$.
Theorem: Let K_{1}, K_{2} be Galois extensions of F. Then $K_{1} \cap K_{2}$ and $K_{1} K_{2}$ are Galois extensions of F, and

$$
\operatorname{Gal}\left(K_{1} K_{2} / F\right) \cong \operatorname{Gal}\left(K_{1} / F\right) \times_{\operatorname{Gal}\left(K_{1} \cap K_{2} / F\right)} \operatorname{Gal}\left(K_{2} / F\right)=\left\{(\sigma, \tau):\left.\underset{\tau \in \operatorname{Gal}\left(K_{2} / F\right)}{\sigma \in \operatorname{Gal}\left(K_{1} / F\right)} \quad \sigma\right|_{K_{1} \cap K_{2}}=\left.\tau\right|_{K_{1} \cap K_{2}}\right\}
$$

Proof: $K_{1} \cap K_{2}$ is Galois over F because it's contained in K, (\& so is separable) and if $p(x) \in F[x]$ is irreducible \& has a root in K_{i}, then by normality of K_{i} / F it splits into linear factors in $K_{i}[x]$, and hence in $\left(K_{1} \cap K_{2}\right)[x]$. So $K_{1} \cap K_{2} / F$ is normal.
$K_{1} K_{2} / F$ is Galois because it's a splitting field for $\operatorname{lcm}\left(f_{1}, f_{2}\right)$ over F, where K_{i} is a splitting field for $f_{i}(x)$ over F.

Define ψ : $\operatorname{Gal}\left(K_{1} K_{2} / F\right) \rightarrow G$ by $\psi(\sigma)=\left(\left.\sigma\right|_{K_{1}},\left.\sigma\right|_{K_{2}}\right)$. It's clearly a homomorphism, and its image clearly lives in G because $\left.\left(\left.\sigma\right|_{K_{1}}\right)\right|_{K_{2}}=\left.\left(\left.\sigma\right|_{K_{2}}\right)\right|_{K_{1}}$. It's also injective because σ is determined by its values on $K_{1} \&$ K_{2}.

$$
\begin{aligned}
\# \operatorname{Gal}\left(K_{1} K_{2} / F\right) & =\frac{\left[K_{1}: F\right]\left[K_{2}: F\right]}{\left[K_{1} \cap K_{2}: F\right]} \\
& =\frac{\# \operatorname{Gal}\left(K_{1} / F\right) \# \operatorname{Gal}\left(K_{2} / F\right)}{\# \operatorname{Gal}\left(K_{1} \cap K_{2} / F\right)} \\
& =\# \operatorname{Gal}\left(K_{1} / F\right) \# \operatorname{Gal}\left(K_{2} / K_{1} \cap K_{2}\right) \\
& =\# G
\end{aligned}
$$

because there are [$K_{2}: K_{1} \cap K_{2}$] ways to extend $\left.\sigma\right|_{K_{1} \cap K_{2}}$ to K_{2}.

Therefore ψ is surjective and hence an isomorphism.
In particular, if $K_{1} \cap K_{2}=F$, then

$$
\operatorname{Gal}\left(K_{1} K_{2} / F\right) \cong \operatorname{Gal}\left(K_{1} / F\right) \times \operatorname{Gal}\left(K_{2} / F\right)
$$

Definition: Let K / F be a separable extension, and let L / F be a Galois extension containing K / F. The Galois closure of K in L is the intersection of all Galois extensions of F that contain $K / F \&$ are contained in L.

Note: The Galois closure of K is a Galois extension of F.
Other notes: Say K / F is finite \& separable. Then $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, so a splitting field for the lcm of the minimal polynomials over F of the α_{i} s is a Galois extension of F containing K. In fact, this field is a Galois closure of K over F. Any Galois closure of K is isomorphic to this one.

$$
\begin{gathered}
\mathbb{F}_{25} \cong \mathbb{F}_{5}(\sqrt{2}) \\
(2 \sqrt{2})^{2}=(3 \sqrt{2})^{2}=-2 \\
\left.\begin{array}{c}
(\sqrt{a})(\sqrt{b}) \neq \sqrt{a b} \\
1=1 \\
\Longrightarrow \\
\Longrightarrow \\
\Longrightarrow \\
\\
\hline \\
\\
\Longrightarrow \\
\sqrt{1 \cdot 1}=\sqrt{(-1)(-1)} \\
\\
\Longrightarrow 1=\sqrt{1}=\sqrt{-1} \sqrt{-1}
\end{array}\right\} \text { WRONG! }
\end{gathered}
$$

PMATH 442 Lecture 16: October 19, 2011

Theorem: (Primitive Element) Let K / F be a finite, separable field extension. Then $K=F(\alpha)$ for some $\alpha \in K$.
Proof: First, note that is enough to show that $K=F(\alpha)$ iff K / F has finitely many subextensions. To see this, assume we had proven that $K=F(\alpha)$ iff K has finitely many F-subfields. Then since K / F is separable, there is a Galois extension L / F with $K \subset L$. By the Fundamental Theorem, L has only finitely many F-subfields, so K also has only finitely many F-subfields. By our presumed fact, $K=F(\alpha)$ for some $\alpha \in K$.

Forwards: Assume $K=F(\alpha)$, and let $E \subset K$ be an F-subfield. Let $p(x) \in F[x]$ be the monic minimal polynomial for α / F. Let $p(x)=p_{1}(x) \cdots p_{n}(x)$ be a factorization of $p(x)$ into monic irreducibles in $E[x]$. Let E^{\prime} be the F-field generated by the coefficients of the $p_{i}(x)$. Note that $K=E(\alpha)=E^{\prime}(\alpha)$ and α has the same minimal polynomial over E and E^{\prime}, so $[K: E]=\left[K: E^{\prime}\right]$, and hence $E=E^{\prime}\left(\right.$ since $\left.E^{\prime} \subset E\right)$.
Backwards: Assume K has only finitely many F-subfields.
Case I: F is infinite. Then it is enough to show that for any α, β in $K, F(\alpha, \beta)=F(\gamma)$ for some $\gamma \in K$. Since F is infinite, and since K has only finitely many F-subfields there exist $c_{1}, c_{2} \in F$ such that $F\left(\alpha+c_{1} \beta\right)=F\left(\alpha+c_{2} \beta\right) \& c_{1} \neq c_{2}$.

$$
\begin{aligned}
\text { Then } \beta & =\frac{\left(\alpha+c_{1} \beta\right)-\left(\alpha+c_{2} \beta\right)}{c_{1}-c_{2}} \in F\left(\alpha+c_{1} \beta\right) \\
\text { and } \alpha & =\left(\alpha+c_{1} \beta\right)-c_{1} \beta \in F\left(\alpha+c_{1} \beta\right)
\end{aligned}
$$

so we may take $\gamma=\alpha+c_{1} \beta$.
Case II: F finite, so K finite. By the classification of finite abelian groups, $K^{*}=K \backslash\{0\} \cong(\mathbb{Z} / n \mathbb{Z}) \times \cdots \times$ $(\mathbb{Z} / n \mathbb{Z})$ with $n_{i} \mid n_{i+1}$ for all $i<r$. If $r \geq 2$, then there are at least n_{1}^{2} elements of K^{*} with order dividing n_{1}. This corresponds to at least n_{1}^{2} different roots of $x^{n_{1}}-1$. This is a problem if $n_{1}>1$, so we deduce that $r=1$ $\& K^{*}$ is cyclic.
So $K=F(\alpha)$ where α is a generator of the cyclic group K^{*}.
Let's compute $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$.

$$
\zeta_{n}=\text { primitive } n \text {th root of unity }
$$

$$
\text { Well, } \begin{aligned}
{\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right] } & =\phi(n) \\
& =\#(\mathbb{Z} / n \mathbb{Z})^{*} \\
& =\#\{a \in\{1, \ldots, n\}: \operatorname{gcd}(a, n)=1\}
\end{aligned}
$$

We will find $\phi(n)$ automorphisms of $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$, which will imply that $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ is Galois.
Let $\zeta_{n}(x)=n$th cyclotomic polynomial. The roots of $\zeta_{n}(x)$ are the primitive nth roots of unity. They are all powers of ζ_{n}, so $\mathbb{Q}\left(\zeta_{n}\right)$ is the splitting field for $\zeta_{n}(x)$ over \mathbb{Q}, and so $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ is Galois.
Claim: $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{*}$

$$
\text { via } \begin{aligned}
\sigma & \stackrel{\psi}{\mapsto} \frac{\log \sigma\left(\zeta_{n}\right)}{\log \zeta_{n}} \\
& =a, \text { where } \sigma\left(\zeta_{n}\right)=\zeta_{n}^{a}
\end{aligned}
$$

Proof of claim: It is easy to check that ψ is a homomorphism. If $\psi(\sigma)=1$, then $\sigma\left(\zeta_{n}\right)=\zeta_{n} \Longrightarrow \sigma=\mathrm{id}$, so ψ is $1-1$. Since $\# \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)=\#(\mathbb{Z} / n \mathbb{Z})^{*}=\phi(n)$, we see that ψ is onto.
\square claim

PMATH 442 Lecture 17: October 21, 2011

Computing Galois Groups

Given a polynomial $f(x) \in F[x]$, find the Galois group of a splitting field for $f(x)$ over $F[x]$. Assume $f(x)$ is separable.
If $F=\mathbb{F}_{q}$ and $f(x)$ is irreducible, then splitting field is $\mathbb{F}_{q^{d}}$, where $d=\operatorname{deg}(f)$, so $\operatorname{Gal}\left(\mathbb{F}_{q^{d}} / \mathbb{F}_{q}\right) \cong \mathbb{Z} / d \mathbb{Z}$.
If $F=\mathbb{Q}$, the problem is much, much harder, in general.
Say $\operatorname{deg}(f(x))=2, f(x)$ irreducible. Then a splitting field has degree ≤ 2 !, so it has degree 2 . Therefore its Galois group is $\mathbb{Z} / 2 \mathbb{Z}$.
Now say $\operatorname{deg}(f(x))=3, f$ irreducible. Let K be the splitting field for $f(x)$ over \mathbb{Q}. Then $\operatorname{Gal}(K / \mathbb{Q})$ acts transitively on the three roots of $f(x)$, giving a homomorphism $\psi: \operatorname{Gal}(K / \mathbb{Q}) \rightarrow S_{3}$. Moreover, ψ is 1-1 because ψ is completely determined by its values on the roots of $f(x)$. The transitive subgroups of S_{3} are:

$$
\begin{aligned}
& A_{3}(\text { cyclic of order } 3) \\
& S_{3}
\end{aligned}
$$

Let F be a field, and let $K=F\left(a_{1}, \ldots, a_{n}\right)$ for indeterminates a_{i}. S_{n} acts on K by permuting the a_{i}.
Let $M=$ fixed field of S_{n}. Then $[K: M]=n!=\# S_{n}$.
Consider $f(x)=\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)$. The coefficients of $f(x)$ all lie in M. They are:

$$
s_{i}=\text { sum of all products of } i \text { dinstinct } a_{i} \mathrm{~s},
$$

up to multiplication by ± 1. The polynomial s_{i} is called the i th elementary symmetric polynomial.
Now, K is a splitting field for $f(x)$ over M, and also K is a splitting field for $f(x)$ over $F\left(s_{1}, \ldots, s_{n}\right) \subset M$. By comparing degrees, we see that $M=F\left(s_{1}, \ldots, s_{n}\right)$.
This action of S_{n} descends to $F\left[a_{1}, \ldots, a_{n}\right]$. If E / F is a splitting field for a separable polynomial $p(x) \in F[x]$, then we get a homomorphism

$$
\begin{aligned}
& \psi: \operatorname{Gal}(E / F) \rightarrow \operatorname{Gal}(K / M) \\
& \quad \sigma \mapsto \text { permutation corresponding to action of } \sigma \text { on roots of } p(x), \text { ordered. }
\end{aligned}
$$

ψ is injective because σ is determined by its values on the roots of $p(x)$, so we can pretend $\operatorname{Gal}(E / F)$ is a subgroup of $\operatorname{Gal}(K / M)$.
A_{n} is a normal subgroup of S_{n}, of index 2. Its fixed field is therefore a quadratic extension of M. What is this fixed field?

Definition: Let R be a ring, r_{1}, \ldots, r_{n} elements of R. The discriminant of r_{1}, \ldots, r_{n} is:

$$
\operatorname{Disc}\left(r_{1}, \ldots, r_{n}\right)=\prod_{i<j}\left(r_{i}-r_{j}\right)^{2}
$$

This is symmetric in r_{1}, \ldots, r_{n}. The fixed field of A_{n} in K is $M\left(\sqrt{\operatorname{Disc}\left(a_{1}, \ldots, a_{n}\right)}\right)$. So $\operatorname{Gal}(E / F)$ fixes $F\left(\sqrt{\operatorname{Disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right)}\right)$ iff $\psi(\operatorname{Gal}(E / F)) \subset A_{n}$. This happens iff $\sqrt{\operatorname{Disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right)} \in F$.

PMATH 442 Lecture 18: October 26, 2011

Assume that $2 \neq 0$.

$s_{i}=i$ th elementary symmetric polynomial in $a_{i} \mathrm{~s}$.
This is the splitting field for

$$
\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)=f(x)
$$

If E / F is Galois, then $\operatorname{Gal}(E / F)$ embeds in $\operatorname{Gal}\left(F\left(a_{1}, \ldots, a_{n}\right) / F\left(s_{1}, \ldots, s_{n}\right)\right) \cong S_{n}$ by numbering the roots $\alpha_{1}, \ldots, \alpha_{n}$ of $p(x)$ over F.

$$
\text { Define } \begin{aligned}
D(f(x)) & =\prod_{i<j}\left(a_{i}-a_{j}\right)^{2} \\
& \in F\left(s_{1}, \ldots, s_{n}\right)
\end{aligned}
$$

$F\left(s_{1}, \ldots, s_{n}, \sqrt{D}\right)$ is the fixed field of A_{n}.
Definition: Let $p(x) \in F[x]$ be any polynomial $p(x)=t_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right)$. The discriminant of $p(x)$ is

$$
\operatorname{Disc}(p(x))=t_{n}^{2 n-2} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Notice that this corresponds to $D(f(x))$ if $p(x)$ is monic.
So $F(\sqrt{D})$ is the fixed field of $\operatorname{Gal}(E / F) \cap A_{n}$, where we view $\operatorname{Gal}(E / F)$ as a subgroup of S_{n} using the correspondence described earlier (permutation action on the roots of $p(x)$).

Say $p(x)$ has degree $3, E / F$ a splitting field. Assume $3 \neq 0$. Then $\operatorname{Gal}(E / F)$ is either isomorphic to A_{3} or to S_{3}. So $\operatorname{Gal}(E / F) \cong A_{3}$ iff $F=F(\sqrt{D})$ iff D is a square in F.

How can we compute D without knowing the roots of $p(x)$?
Definition: Let $f(x), g(x)$ be polynomials in $F[x]$ for some field F, with $f(x)=t_{n} x^{n}+\cdots+t_{0}, g(x)=$ $u_{m} x^{m}+\cdots+u_{0}$. The resultant of f and g is:

$$
\operatorname{Res}(f, g)=\operatorname{det}\left(\begin{array}{ccccccc}
t_{n} & t_{n-1} & \cdots & t_{0} & & & \\
& t_{n} & t_{n-1} & \cdots & t_{0} & & \\
& & \ddots & & & \ddots & \\
& & & t_{n} & t_{n-1} & \cdots & t_{0} \\
u_{m} & \ldots \ldots \ldots \ldots \ldots & u_{0} & & \\
& \ddots & & & & \ddots & \\
& & u_{m} & \ldots \ldots \ldots \ldots \ldots & u_{0}
\end{array}\right)
$$

[^8]\[

\operatorname{Res}\left(x^{2}+x+1, x^{3}-2 x+2\right)=\operatorname{det}\left($$
\begin{array}{ccccc}
1 & 1 & 1 & & \\
& 1 & 1 & 1 & \\
& & 1 & 1 & 1 \\
1 & 0 & -2 & 2 & \\
& 1 & 0 & -2 & 2
\end{array}
$$\right)
\]

Claim: $\operatorname{Disc}(p(x))=\frac{\operatorname{Res}\left(p, p^{\prime}\right)}{t_{n}}$
Theorem: Let $f(x)=t_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right), g(x)=u_{m} \prod_{i=1}^{m}\left(x-\beta_{i}\right)$ be polynomials in $F[x]$. Then:

$$
\operatorname{Res}(f, g)=t_{n}^{m} u_{m}^{n} \prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)
$$

Proof: Write $\phi(x)=T_{n} \prod_{i}\left(x-a_{i}\right), \psi(x)=U_{m} \prod_{i}\left(x-b_{i}\right)$, where all these $a_{i} \mathrm{~s}, b_{i} \mathrm{~s}, T_{n}, U_{m}$ are indeterminants over F. It suffices to prove the theorem for $\phi \& \psi$.

Note that t_{n} divides all the coefficients of $\phi(x)$, and u_{m} divides all the coefficients u_{i} of $\psi(x)$, so

$$
\operatorname{Res}(\phi, \psi)=t_{n}^{m} u_{m}^{n}\left(\operatorname{sym} \text { poly in } a_{i} \mathrm{~s} \& b_{i} \mathrm{~s}\right)
$$

PMATH 442 Lecture 19: October 28, 2011

Let $f(x)=t_{n} x^{n}+\cdots+t_{0}$. Then

$$
\operatorname{Disc}(f)=\frac{(-1)^{n(n-1) / 2} \operatorname{Res}\left(f, f^{\prime}\right)}{t_{n}}
$$

This is what we will prove, eventually.

Lemma:

$$
\begin{aligned}
& f(x)=t_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right) \\
& g(x)=u_{m} \prod_{i=1}^{m}\left(x-\beta_{i}\right)
\end{aligned}
$$

Then $\operatorname{Res}(f, g)=t_{n}^{m} u_{m}^{n} \prod_{i, j}\left(\alpha_{i}-\beta_{j}\right)$
Proof of lemma: We showed $\operatorname{Res}(f, g)=t_{n}^{m} u_{m}^{n}$ (symmetric polynomial in α_{i}, β_{j}) by showing that

$$
\begin{aligned}
& \phi(x)=T_{n} \prod\left(x-a_{i}\right) \\
& \psi(x)=U_{m} \prod\left(x-b_{i}\right)
\end{aligned}
$$

satisfy $\operatorname{Res}(\phi, \psi)=T_{n}^{m} U_{m}^{n} \cdot\left(\right.$ some polynomial symmetric in a_{i} and $\left.b_{j}\right)$
Next, we will show that $\operatorname{Res}(f, g)=0$ iff $\operatorname{gcd}(f, g) \neq 1$. To see this, note that $\operatorname{gcd}(f, g) \neq 1$ iff there are polynomials $p(x), q(x)$ of degrees at most $m-1, n-1$, respectively, such that $f p=g q$.
This is equivalent to saying that $\left\{f, x f, \ldots, x^{m-1} f, g, x g, \ldots, x^{n-1} g\right\}$ is linearly dependent. Writing this out in terms of the basis $\left\{1, x, \ldots, x^{n+m-1}\right\}$, we see that $\operatorname{gcd}(f, g) \neq 1$ iff

$$
\left.\operatorname{det}\left[\begin{array}{ccccccc}
t_{n} & t_{n-1} & \ldots & t_{0} & & \\
& t_{n} & \ldots \ldots . & t_{0} & & \\
& & \ddots & & & \ddots & \\
& & & t_{n} & \ldots \ldots . & t_{0} \\
u_{m} & u_{m-1} & \ldots \ldots . & u_{0} & & \\
& \ddots & & & \ddots & \\
& & u_{m} & \ldots \ldots \ldots \ldots & u_{0}
\end{array}\right] \quad 15\right)=0=\operatorname{Res}(f, g)
$$

[^9]Therefore, $\operatorname{Res}(\phi, \psi)=C T_{n}^{m} U_{m}^{n} \prod_{i, j}\left(a_{i}-b_{j}\right)$ for some $C \in F$.
To find C, compute $\operatorname{Res}\left(x^{n}, x^{m}-1\right)$.

$$
\begin{aligned}
& \left.=\operatorname{det}\left[\begin{array}{cccccc}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
1 & & & -1 & & \\
& \ddots & & & \ddots & \\
& & 1 & \ldots & \cdots & -1
\end{array}\right] 16\right)=(-1)^{n} \\
& \operatorname{Res}\left(x^{n}, x^{m}-1\right)=C \prod_{i=1}^{n} \prod_{j=1}^{m}\left(0-\beta_{j}\right) \\
& =C \prod_{j=1}^{m}\left(-\beta_{j}\right)^{n} \\
& =C(-1)^{m n}\left(\prod_{j=1}^{m} \beta_{j}\right)^{n} \\
& =C(-1)^{m n}\left((-1)^{m+1}\right)^{n} \\
& =C(-1)^{n}
\end{aligned}
$$

$\Longrightarrow C=1$
\square lemma
$g\left(\alpha_{i}\right)=u_{m} \prod_{j}\left(\alpha_{i}-\beta_{j}\right)$

$$
\begin{aligned}
\Longrightarrow \operatorname{Res}(f, g) & =t_{n}^{m} \prod_{i=1}^{n} g\left(\alpha_{i}\right) \\
& =(-1)^{n m} u_{m}^{n} \prod_{j=1}^{m} f\left(\beta_{j}\right)
\end{aligned}
$$

Now, $\operatorname{Disc}(f)=t_{n}^{2 n-2} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$, and $f^{\prime}\left(\alpha_{i}\right)=\left.\frac{\mathrm{d}}{\mathrm{d} x}\right|_{x=\alpha_{i}} t_{n} \prod_{j=1}^{n}\left(x-\alpha_{j}\right)=\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)$.

$$
\begin{aligned}
\operatorname{So} \frac{\operatorname{Res}\left(f, f^{\prime}\right)}{t_{n}} & =t_{n}^{n-2} \prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right) \\
& =t_{n}^{n-2} t_{n}^{n} \prod_{i=1}^{n} \prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right) \\
& =(-1)^{n(n-1) / 217)} t_{n}^{2 n-2} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2} \\
& =(-1)^{n(n-1) / 2} \operatorname{Disc}\left(f, f^{\prime}\right)
\end{aligned}
$$

This proves the claim!

[^10]Example: $f(x)=x^{2}+b x+c$

$$
\begin{aligned}
& \Longrightarrow \operatorname{Disc}(f)=-\operatorname{Res}\left(f, f^{\prime}\right) \\
& =-\operatorname{Res}\left(x^{2}+b x+c, 2 x+b\right) \\
& \quad=-\operatorname{det}\left[\begin{array}{ccc}
1 & b & c \\
2 & b & 0 \\
0 & 2 & b
\end{array}\right] \\
& =-\left(b^{2}+4 c-2 b^{2}\right)=b^{2}-4 c
\end{aligned}
$$

This looks familiar:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

PMATH 442 Lecture 20: October 31, 2011

$$
\operatorname{Disc}(f)=\frac{(-1)^{n(n-1) / 2} \operatorname{Res}\left(f, f^{\prime}\right)}{\text { lead coeff. of } f}=\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)^{218)}
$$

If we add c to all the α_{i}, the product won't change. In other words, $\operatorname{Disc}(f(x))=\operatorname{Disc}(f(x+c))$ for all constants c.
$\operatorname{Disc}\left(x^{3}+a x^{2}+b x+c\right)$
$a=-\alpha_{1}-\alpha_{2}-\alpha_{3}$
If we subtract $\frac{a}{3}$ from each α_{i}, their sum will become zero:

$$
\begin{gathered}
\left(x-\frac{a}{3}\right)^{3}+a\left(x-\frac{a}{3}\right)^{2}+b\left(x-\frac{a}{3}\right)+c=x^{3}-a x^{2}+\frac{a^{2}}{3} x-\frac{a^{3}}{27}+a x^{2}-\frac{2 a^{2}}{3} x+\frac{a^{3}}{9}+b x-\frac{a b}{3}+c \\
=x^{3}+\left(b-\frac{a^{2}}{3}\right) x+\left(\frac{2 a^{3}}{27}-\frac{a b}{3}+c\right)
\end{gathered}
$$

This has the same discriminant \& Galois group as our original polynomial, and roots that only differ by $\frac{a}{3}$ from the original roots.

So, we can calculate a "general" discriminant of degree 3 by:

$$
\begin{aligned}
& \operatorname{Disc}\left(x^{3}+a x+b\right)=(-1)^{3(3-1) / 2} \operatorname{Res}\left(f, f^{\prime}\right) \\
&=-\operatorname{Res}\left(f, f^{\prime}\right) \\
&=-\operatorname{det}\left[\begin{array}{ccccc}
1 & 0 & a & b & \\
& 1 & 0 & a & b \\
3 & 0 & a & & \\
& 3 & 0 & a & \\
& & 3 & 0 & a
\end{array}\right] \\
&=-\operatorname{det}\left[\begin{array}{ccccc}
1 & 0 & a & b & 0 \\
0 & 1 & 0 & a & b \\
0 & 0 & -2 a & -3 b & 0 \\
0 & 0 & 0 & -2 a & -3 b \\
0 & 0 & 3 & 0 & a
\end{array}\right] \\
&=-\left(4 a^{3}+27 b^{2}\right) \\
&=-4 a^{3}-27 b^{2}
\end{aligned}
$$

[^11]Example: Compute the Galois group of $x^{3}+3 x^{2}+3, x^{3}+3 x^{2}-3$

$$
\begin{array}{rlrl}
& \rightsquigarrow(x-1)^{3}+3(x-1)^{2}+3 & \rightsquigarrow x^{3}-3 x-1 \\
& =x^{3} x-1-6 x+3+3 & \begin{aligned}
\text { Disc } & =-4(-3)^{3}-2 \\
& =x^{3}-3 x+5 \\
& =108-27 \\
\text { Disc } & =-4(-3)^{3}-27(5)^{2} \\
& =108-675 \\
& =-567
\end{aligned} & =81 \\
& =9^{2} \\
& \Longrightarrow \mathrm{Gal} & \cong A_{3}
\end{array}
$$

Not a square, so
Galois group $\cong S_{3}$
Q: What are the transitive subgroups of S_{4} ? Possible orders:

	In $A_{4} ?$
$C_{4}:$ group generated by 4-cycle	No
$C_{2} \times C_{2}:$ group of double-flips	Yes
$D_{4}:$ generated by double flips \& one 4-cycle	No
$A_{4}:$ even permutations	Yes
$S_{4}:$ all of 'em	No

Let G be a finite group, S a finite set on which G acts. Then:

$$
\# G=\sum_{a \in S}(\# \text { orbits of } a)(\operatorname{stab}(a))
$$

If S has $1 G$-orbit, then $\#$ (orbit) $\mid \# G$.

PMATH 442 Lecture 21: November 2, 2011

Question \#6: Assume $f \& g$ are monic.
Tuesday November 8 4:30 MC 2065
Info session for Waterloo Math Grad School
Refreshments/Snacks
Galois Groups of degree 4 polynomials (irreducible):

	Disc a square?	Gal group of resolvent
$C_{2} \times C_{2}$	Yes	$\{1\}$ (factors completely)
C_{4}	No	S_{2} (linear • quadratic)
D_{4}	No	S_{2} (linear \cdot quadratic)
A_{4}	Yes	A_{3} (irreducible)
S_{4}	No	S_{3} (irreducible)

Resolvent cubic:
Let $\alpha_{1}, \ldots, \alpha_{4}$ be the roots of $f(x)$. Then $\operatorname{Gal}(f(x))$ permutes the following three elements of the splitting field:

$$
\begin{aligned}
\theta_{1} & =\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right) \\
\theta_{2} & =\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right) \\
\theta_{3} & =\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
\end{aligned}
$$

So $p(x)=\left(x-\theta_{1}\right)\left(x-\theta_{2}\right)\left(x-\theta_{3}\right)$ has coefficients in the ground field F.

If $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, then its discriminant and resolvent cubic are heinous. Substituting $x=x-\frac{a}{4}$ will eliminate the x^{3} term without changing the discriminant, galois group, or galois group \& splitting behaviour of the resolvent cubic.
So we assume $a=0$. In that case:

$$
=16 b^{4} d-4 b^{3} c^{2}-128 b^{2} d^{2}+144 b c^{2} d-27 c^{4}+256 d^{3}
$$

\& resolvent cubic is:

$$
x^{3}-2 b x^{2}+\left(b^{2}-4 d\right) x+c^{2}
$$

Example: Find Galois group of $x^{4}+2 x^{2}-x+3$ over \mathbb{Q}.
Solution: Disc $=$ not a square
Resolvent cubic:

$$
x^{3}-4 x^{2}-8 x+1 \quad \text { irreducible over } \mathbb{Q} \text { (rational roots theorem) }
$$

$\Longrightarrow \mathrm{Gal} \cong S_{4}$.
Example: Same for $x^{4}+2 x^{2}+4$.
Solution:

$$
\begin{aligned}
\text { Disc } & =16 \cdot 2^{4} \cdot 4-128 \cdot 2^{2} \cdot 4^{2}+256 \cdot 4^{3} \\
& =2^{10}-2^{13}+2^{14} \\
& =2^{10}(1-8+16) \\
& =2^{10} \cdot 9 \\
& =\left(3 \cdot 2^{5}\right)^{2}
\end{aligned}
$$

Resolvent: $x^{3}-4 x^{2}-12 x=x(x-6)(x+2)$
Therefore $\mathrm{Gal} \cong C_{2} \times C_{2}$
Theorem: Let $f(x)$ be an irreducible polynomial in $\mathbb{Z}[x]$, primitive. Let $p \in \mathbb{Z}$ be a prime such that $f(x)$ is separable mod p, and p does not divide the leading coefficient of $f(x)$. If $f(x)$ factors mod p as $f(x)=m_{1}(x) \cdots m_{r}(x), \operatorname{deg}\left(m_{i}\right)=d_{i}$, then $\operatorname{Gal}(f)$ over \mathbb{Q} contains a permutation with cycle structure $\left(d_{1}\right) \cdots\left(d_{r}\right)$.
Example: Compute $\operatorname{Gal}\left(x^{4}+5 x^{2}+11\right)$.
Previous techniques $\Longrightarrow C_{4}$ or D_{4}.
Mod 2: $x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2} X$
$\operatorname{Mod} 3: x^{4}-x^{2}-1=\left(x^{2}+1\right)^{2} X$
$\operatorname{Mod} 5: x^{4}+1=\left(x^{2}+2\right)\left(x^{2}-2\right) X$

PMATH 442 Lecture 22: November 4, 2011

Compute $\operatorname{Gal}\left(x^{4}+5 x^{2}+11\right)$
Reduce mod 17:

$$
x^{4}+5 x^{2}+11=(x+1)(x-1)\left(x^{2}+6\right)
$$

\Longrightarrow Gal contains a permutation with cycle structure $(1)(1)(2)$, and so cannot be C_{4}.
When can the roots of a polynomial in x be expressed in terms of $+,-, \cdot, \div \sqrt[n]{\cdot}$, and the coefficients?
Theorem: Let F be a field that contains all the nth roots of unity. Let $a \in F$. Then $F(\sqrt[n]{a}) / F$ is Galois, with cyclic Galois group, provided char $F \nmid n$.
Proof: First, we may assume that $[F(\sqrt[n]{a}): F]=n$, since otherwise we may replace n with

$$
k=\min _{i}\left\{(\sqrt[n]{a})^{i} \in F\right\}
$$

and we will have $k \mid n$.
Write $x^{n}-a=(x-\sqrt[n]{a})(x-\zeta \sqrt[n]{a}) \cdots\left(x-\zeta^{n-1} \sqrt[n]{a}\right)$ where ζ is a primitive nth root of unity. Therefore, since $\zeta \in F, F(\sqrt[n]{a})$ is a splitting field for $x^{n}-a$ over F. Since char $F \nmid n=[F(\sqrt[n]{a}): F]$, we see that $F(\sqrt[n]{a}) / F$ is separable, so it's Galois.

Let $\sigma \in \operatorname{Gal}(F(\sqrt[n]{a}) / F)$ be such that $\sigma(\sqrt[n]{a})=\zeta \sqrt[n]{a}$. Since $\zeta \in F, \sigma(\zeta)=\zeta$, so $\sigma\left(\zeta^{r} \sqrt[n]{a}\right)=\zeta^{r+1} \sqrt[n]{a}$. Therefore σ has order n and $\operatorname{Gal}(F(\sqrt[n]{a}) / F)=\langle\sigma\rangle$ is cyclic.
Theorem: Let F be a field containing the nth roots of unity. Let K / F be a finite Galois extension with cyclic Galois group. Then $K=F(\sqrt[n]{a})$ for some $a \in F, n=[K: F] .{ }^{19)}$
Proof: Say $\alpha \in K, \zeta$ a primitive nth root of unity. Define

$$
(\alpha, \zeta)=\alpha+\zeta \sigma(\alpha)+\zeta^{2} \sigma^{2}(\alpha)+\cdots+\zeta^{n-1} \sigma^{n-1}(\alpha)
$$

where $\operatorname{Gal}(K / F)=\langle a\rangle$. Then

$$
\begin{aligned}
\sigma((\alpha, \zeta)) & =\sigma(\alpha)+\zeta \sigma^{2}(\alpha)+\cdots+\zeta^{n-1} \sigma^{n}(\alpha) \\
\zeta^{-1}(\alpha, \zeta) & =\zeta^{-1} \alpha+\sigma(\alpha)+\zeta \sigma^{2}(\alpha)+\cdots+\zeta^{n-2} \sigma^{n-1}(\alpha)
\end{aligned}
$$

Since $\zeta^{-1} \alpha=\zeta^{n-1} \sigma^{n}(\alpha)$, we see that $\sigma((\alpha, \zeta))=\zeta^{-1}(\alpha, \zeta)$.
In particular, $\sigma\left((\alpha, \zeta)^{n}\right)=(\sigma, \zeta)^{n}$, so $(\alpha, \zeta)^{n} \in F$. Furthermore, if $1 \leq k \leq n-1$, then $\sigma^{k}((\alpha, \zeta))=$ $\zeta^{-k}(\alpha, \zeta) \neq(\alpha, \zeta)$, so (α, ζ) does not lie in any proper subfield of K. So we may set $a=(\alpha, \zeta)^{n}$ to get $K=F(\sqrt[n]{a})$.

Theorem: Assume F contains the nth roots of unity, $a, b \in F^{*}$. Then $F(\sqrt[n]{a}) \cong F(\sqrt[n]{b})$ iff $\langle a\rangle \equiv$ $\langle b\rangle \bmod \left(F^{*}\right)^{n}$, where

$$
\left(F^{*}\right)^{n}=\left\{\alpha^{n}: \alpha \in F^{*}\right\}
$$

(that is, $a^{k}=b^{l} \alpha^{n}$ for some $\alpha \in F, 1 \leq k, l \leq n-1$.)

PMATH 442 Lecture 23: November 7, 2011

Definition: Let L / F be an extension, $\alpha \in L$ any element. Then α is solvable in radicals over F iff $\alpha \in K$ for some field K such that

$$
F=K_{0}=K_{1} \subset K_{2} \subset \cdots \subset K_{n}=K
$$

where $K_{i}=K_{i-1}\left(\sqrt[r_{i}]{a_{i}}\right)$ for some $a_{i} \in K_{i-1}$, and $r_{i} \in \mathbb{Z}_{>0}$, char $F \nmid r_{i}$.
We say $p(x) \in F[x]$ non-constant is solvable in radicals iff all its roots are. We call an extension like K / F a solvable extension.

Theorem: Let $\alpha \in K$ be solvable in radicals over F. Then α is contained in a Galois solvable extension.
Proof: First, adjoin all the r_{i} th roots of unity to f;

this is an extension of solvable form. Next, notice that to compute the Galois closure of K over F, one need only adjoin elements of the form $\sqrt[r_{i}]{b_{i}}$ for some elements $b_{i} \in K_{i-1}$, although there may be several of them for each i.

Definition: A group G is solvable iff there is a set of subgroups

$$
\{1\}=G_{0} \subset G_{1} \subset \cdots \subset G_{n}=G
$$

[^12]such that G_{i-1} is a normal subgroup of G_{i}, with G_{i} / G_{i-1} an abelian group.
Say G is a group, $N \subset G$ a normal subgroup. Then G / N is abelian iff for all $g, h \in G$, we have $g h g^{-1} h^{-1} \in N$.
Definition: The commutator of $g \& h$ is $[g, h]=g h g^{-1} h^{-1}$. The commutator subgroup of G is the subgroup of G generated by the commutators of G. It's denoted $[G, G]$.
Notice that G / N is abelian iff $[G, G] \subset N$. Also notice that $[G, G]$ is a normal subgroup of G, because for any homomorphism f (like, say, conjugation by σ), $f\left(g h g^{-1} h^{-1}\right)=f(g) f(h) f(g)^{-1} f(h)^{-1}=[f(g), f(h)]$.
We can construct the commutator series of G :
$G^{(0)}=G$
$G^{(i)}=\left[G^{(i-1)}, G^{(i-1)}\right]$
So $G^{(0)} \supset G^{(1)} \supset G^{(2)} \supset \cdots$ and $G^{(i)} / G^{(i-1)}$ is abelian! If $G^{(n)}=\{1\}$ for some n, then G is solvable. Conversely, if G is finite, then if $G^{(n)} \neq\{1\}$ for all n, then G is not solvable.
Theorem: Let G be a finite solvable group. Then any subgroup or quotient group of G is also solvable.
Proof: Say H is a subgroup of G, and say $G_{0}=\{1\} \subset G_{1} \subset \cdots \subset G_{n}=G$ satisfy G_{i} / G_{i-1} abelian. Let $H_{i}=H \cap G_{i}$. Then H_{i} is a normal subgroup of H_{i+1} and $H_{i+1} / H_{i} \hookrightarrow G_{i+1} / G_{i}$, so H_{i+1} / H_{i} is abelian. Since $H_{0} \subset G_{0}=\{1\}$, we conclude that H is solvable.

Similarly, if N is a normal subgroup of $G \& q: G \rightarrow G / N$ is the "reduce $\bmod N$ " homomorphism, then the chain

$$
q\left(G_{0}\right) \subset q\left(G_{1}\right) \subset \cdots \subset q\left(G_{n}\right)
$$

shows that G / N is solvable.

PMATH 442 Lecture 24: November 9, 2011

Theorem: Let G be a group, N a normal subgroup. If N is solvable and G / N is solvable, then so is G.
Proof: G is solvable iff its commutator series $G^{(i)}$ satisfies $G^{(n)}=\{1\}$ for some n. Since $G^{(i)} \bmod N=$ $(G / N)^{(i)}$, we see that $G^{(n)} \subset N$ for some $M\left(G / N\right.$ is solvable). Since N is solvable, its subgroup $G^{(i)}$ is also solvable, so the groups $G^{(i)}$ satisfy $G^{(n)}=\{1\}$ for some n, as desired.
Theorem: Let F be a field of characteristic $0, f(x) \in F[x]$ a non-constant polynomial. Then $f(x)$ is solvable in radicals iff $\operatorname{Gal}(f)$ over F is solvable.
Proof: Forwards: If $f(x)$ is solvable in radicals, then its splitting field admits subfields satisfying

$$
F=K_{0} \subset K_{1} \subset \cdots \subset K_{n}=\text { splitting field }
$$

and $K_{i}=K_{i-1}\left(\sqrt[n_{i}]{a_{i}}\right)$. Moreover, we can insist that K_{i} / K_{i-1} is Galois for each i, by adjoining all relevant roots of unity first. This may make K_{n} larger than a splitting field for $f(x)$; this is OK \& we'll consider it later.

So $\operatorname{Gal}\left(K_{i} / K_{i-1}\right)$ is abelian for all i, making $\operatorname{Gal}\left(K_{n} / F\right)$ solvable. Since a splitting field K is contained in K_{n}, its Galois group over F is a quotient of $\operatorname{Gal}\left(K_{n} / F\right)$, and so is solvable.

Backwards: Let K / F be a splitting field for $f(x)$. Then since $\operatorname{Gal}(K / F)$ is solvable, we get a chain of subgroups $\{1\}=G_{0} \subset G_{1} \subset \cdots \subset G_{n}=\operatorname{Gal}(K / F)$ such that G_{i} / G_{i-1} is abelian. By refining this chain, we may assume that G_{i} / G_{i-1} is cyclic for all i. But if K_{i} corresponds to G_{i}, then G_{i} / G_{i-1} cyclic $\Longrightarrow K_{i-1}=K_{i}\left(\sqrt[n_{i}-1]{\left.a_{i-1}\right)}\right)$ for some $a_{i-1} \in K_{i-1}$, provided that K_{i} contains all $\left(n_{i-1}\right)$ th roots of unity. So if we adjoin a large finite number of roots of unity to F, then we can construct a chain of subfields of a suitable form to prove that $f(x)$ is solvable in radicals.

Question: Is every finite group solvable?
Answer: No. If $n \geq 5, A_{n}$ has no nontrivial normal subgroups and is not abelian, and so is not solvable.
Furthermore, the only normal subgroups of S_{n} for $n \geq 5$ are $\{1\}, A_{n}$, and S_{n}. So if $n \geq 5$, then S_{n} isn't solvable.

I'd like to thank my parents, God and L. Ron Hubbard.

$$
\begin{aligned}
& S_{3}:\{1\} \subset \underset{\text { cyclic }}{A_{3} \subset S_{3} \text { solvable } \checkmark} \\
& S_{4}:\{1\} \subset \underset{\substack{\text { double } \\
\text { flips }}}{V_{4} \subset A_{4} \subset S_{4}}
\end{aligned}
$$

So S_{4} is solvable too. But S_{5} is not solvable.
Example: The Galois group of $x^{5}-15 x+5$ over \mathbb{Q} is S_{5}.
Proof: The polynomial is irreducible by Eisenstein's Criterion using $p=5$.
Since $x^{5}-15 x+5$ is irreducible of degree 5 , its Galois group acts transitively on a 5 -element set, so by orbit-stabilizer, the Galois group's order is divisible by 5 . Let $G=\operatorname{Gal}(f(x))=\operatorname{Gal}\left(x^{5}-15 x+5\right)$. By Cauchy's Theorem, G contains an element of order 5 . So G must contain a 5 -cycle.
$f^{\prime}(x)=5 x^{4}-15$
Roots $x= \pm \sqrt[4]{3}$

We see that $f(x)$ has exactly 3 real roots. Therefore, the action of complex conjugation on the roots of $f(x)$ is as a transposition. So G contains a transposition.
A simple bubble sort shows that G must be all of S_{5}.

PMATH 442 Lecture 25: November 11, 2011

Definition: A valuation on a field K is a function $\phi: K \rightarrow \mathbb{R}_{\geq 0}$ satisfying:
$\forall a, b \in K(1) \phi(a b)=\phi(a) \phi(b)$
(2) $\phi(a)=0$ iff $a=0$
(3) $\phi(a+b) \leq \phi(a)+\phi(b)$

Example: Let $K=\mathbb{Q}, p \in \mathbb{Z}$ prime. For $\frac{a}{b} \in \mathbb{Q}$ in lowest terms, define $\left|\frac{a}{b}\right|_{p}=0$ if $a=0$. If $a \neq 0$, write $\frac{a}{b}=p^{r} \frac{a^{\prime}}{b^{\prime}}$ for $a^{\prime}, b^{\prime} \in \mathbb{Z}, p \nmid a^{\prime} b^{\prime}$, and let

$$
\left|\frac{a}{b}\right|_{p}=\frac{1}{p^{r}}
$$

(1) and (2) are clear. For (3), note that (if $r \leq t$ without loss of generality)

$$
\begin{aligned}
\left|p^{r} \frac{a_{1}}{b_{1}}+p^{t} \frac{a_{2}}{b_{2}}\right|_{p} & =p^{-r}\left|\frac{a_{1}}{b_{1}}+p^{t-r} \frac{a_{2}}{b_{2}}\right|_{p} \\
& \leq p^{-r}
\end{aligned}
$$

so $|a+b|_{p} \leq \max \left\{|a|_{p},|b|_{p}\right\}$.
This is called the p-adic absolute value on \mathbb{Q}.
Example: $\left|\frac{8}{37}\right|_{2}=\frac{1}{8},\left|\frac{12}{17}\right|_{3}=\frac{1}{3}\left|\frac{12}{17}\right|_{2}=\frac{1}{4}$
So $p^{n} \rightarrow 0 p$-adically.
Example: $1+p+p^{2}+\cdots=\sum_{i=0}^{\infty} p^{i}=\frac{1}{1-p}$ if $\sum_{i=0}^{\infty} p^{i}$ converges. If we interpret this sequence classically. $\sum p^{i}$ does not converge.

Theorem: Let $\sum_{i=0}^{\infty} a_{i}$ be an infinite series. Then $\sum_{i=0}^{\infty} a_{i}$ is Cauchy p-adically iff $\left|a_{i}\right|_{p} \rightarrow 0 .\left(a_{i} \in \mathbb{Q}\right)$ Proof: Forwards is clear. Backwards is harder. Say $\left|a_{i}\right|_{p} \rightarrow 0$. Then $\left|\sum_{i=0}^{n} a_{i}\right|_{p} \leq \max _{i \in\{1, \ldots, n\}}\left\{\left|a_{i}\right|_{p}\right\}$. So

$$
\left|\sum_{i=0}^{n} a_{i}-\sum_{i=0}^{m} a_{i}\right|_{p}=\left|\sum_{i=m+1}^{n} a_{i}\right|_{p} \leq \max _{i \in\{m+1, \ldots, n\}}\left\{\left|a_{i}\right|_{p}\right\}
$$

which is going to 0 . So $\sum_{i=0}^{\infty} a_{i}$ induces a Cauchy sequence.
So $\sum_{i=0}^{\infty} 2^{i}=-1$.
Is $\mathbb{Q} p$-adically complete?
No: $3^{2} \equiv 2 \bmod 7$ so 3 is 7 -adically close to $\sqrt{2}$. Sort of, " $|3-\sqrt{2}|_{7} \leq \frac{1}{7}$ ".
Let's look for $a_{2} \in \mathbb{Z} / 7^{2} \mathbb{Z}$ such that $a_{2}^{2} \equiv 2 \bmod 7^{2}$.
Say $a_{2} \equiv 3 \bmod 7$. Then $a_{2} \equiv 3+7 k \bmod 7^{2}$

$$
\begin{aligned}
& \Longrightarrow(3+7 k)^{2} \equiv 9+42 k \bmod 49 \\
& \Longrightarrow 2 \equiv 9+42 k \bmod 49 \\
& \Longrightarrow-7 \equiv 42 k \bmod 49 \\
& \Longrightarrow-1 \equiv 6 k \bmod 7 \\
& \Longrightarrow k \equiv \bmod 7 \\
& \Longrightarrow a_{2}=3+7=10 \text { works! }
\end{aligned}
$$

By iterating this procedure, we can find integers a_{r} such that $a_{r}^{2} \equiv 2 \bmod 7^{r}$ for all $r \in \mathbb{Z}_{>0}$. So $\left\{a_{r}\right\}$ is a Cauchy sequence, whose limit if it exists is $\sqrt{2} \notin \mathbb{Q}$. Therefore \mathbb{Q} is not 7 -adically complete.

PMATH 442 Lecture 26: November 14, 2011

Let R be the ring of p-adic Cauchy sequences of rational numbers, with

$$
\begin{aligned}
\left\{a_{i}\right\}+\left\{b_{i}\right\} & =\left\{a_{i}+b_{i}\right\} \\
\left\{a_{i}\right\}\left\{b_{i}\right\} & =\left\{a_{i} b_{i}\right\}
\end{aligned}
$$

It is easy to see that the sum \& product of Cauchy sequences is again Cauchy.
Let $M=R$ be the set of null sequences in R; namely, the set of sequences whose limit exists and is 0 . It is easy to see that M is an ideal of R, since it is closed under $+\&-$, and multiplication by arbitrary Cauchy sequences.

Theorem: M is a maximal ideal of R.
Proof: We will show that every element of $R-M$ is a unit, so M is maximal. Say $\left\{a_{i}\right\}$ is a p-adic Cauchy sequence which does not converge to 0 . Then there are only finitely many a_{i} such that $a_{i}=0$, since $\left\{a_{i}\right\}$ is Cauchy \& not null. After adding a null sequence, then, we may assume that $a_{i} \neq 0$ for all i. Consider $\left\{\frac{1}{a_{i}}\right\}$. It is clearly an inverse to $\left\{a_{i}\right\}$. Is it Cauchy? Yes: The sequence $\left\{\left|a_{i}\right|_{p}\right\}$ is also Cauchy, and therefore convergent. So if $\lim _{i \rightarrow \infty}\left|a_{i}\right|_{p}=L$, then $\left\{\left|\frac{1}{a_{i}}\right|_{p}\right\} \rightarrow \frac{1}{L} \neq 0$ and

$$
\left|\frac{1}{a_{n}}-\frac{1}{a_{m}}\right|_{p}=\left.\underset{\rightarrow \frac{1}{L}}{\mid a_{n}}\right|_{p} ^{-1}\left|\underset{\rightarrow \text { 六 }}{a_{m}}\right|_{p}^{-1}\left|\underset{\rightarrow \text { small as you like }}{a_{m}-a_{n}}\right|_{p}
$$

so $\left\{\frac{1}{a_{n}}\right\}$ is Cauchy.

$$
\begin{gathered}
\left|a_{n}\right|_{p}-\left|a_{m}\right|_{p} \leq\left|a_{n}-a_{m}\right|_{p} \text { by } \triangle \text { inequality } \\
\left|a_{m}\right|_{p}-\left|a_{n}\right|_{p} \leq\left|a_{m}-a_{n}\right|_{p} \text { by } \triangle \text { inequality } \\
a^{-1}=\left(a^{-1}(a) a_{1}^{-1}\right)=a_{1}^{-1}
\end{gathered}
$$

So R / M is a field containing \mathbb{Q}. We call it \mathbb{Q}_{p}, the field of p-adic numbers.

It is easy to see that \mathbb{Q}_{p} is complete. The absolute value of \mathbb{Q}_{p} is

$$
\left|\left\{a_{n}\right\}\right|_{p}=\lim _{n \rightarrow \infty}\left|a_{n}\right|_{p}
$$

$\mathbb{Q} \hookrightarrow \mathbb{Q}_{p}$ via $x \mapsto\{x\}$.
So what the heck is \mathbb{Q}_{p} ? Some elements of \mathbb{Q}_{p} include:

$$
\begin{aligned}
& 1+p+p^{2}+\cdots \\
& 2+3 p^{2}-4 p^{3}+p^{4}+\cdots
\end{aligned}
$$

More generally, if $0 \leq a_{i} \leq p-1, a_{i} \in \mathbb{Z}$, then $\sum_{i=0}^{\infty} a_{i} p^{i} \in \mathbb{Q}_{p}$. In fact, for any $n \in \mathbb{Z}$, the series $\sum_{i=n}^{\infty} a_{i} p^{i}$ is in \mathbb{Q}_{p}.
We will show that every elements of \mathbb{Q}_{p} is of the form $\sum_{i=n}^{\infty} a_{i} p^{i}$ for $0 \leq a_{i} \leq p-1, a_{i}, n \in \mathbb{Z}$.
Theorem: Let $\alpha \in \mathbb{Q}_{p}^{*}$. Then α can be written uniquely as $\alpha=p^{r} u$ for $|u|_{p}=1$.
Proof: $|\alpha|_{p}=p^{-r}$ for some r. So $\left|p^{-r} \alpha\right|_{p}=1$, so $\alpha=p^{r}\left(p^{-r} \alpha\right)$. If $\alpha=p^{k} u$, then $|\alpha|_{p}=p^{-r} \Longrightarrow k=r$, and then $u=p^{-r} \alpha$.

Definition: The ring of p-adic integers is $\mathbb{Z}_{p}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p} \leq 1\right\}$. This is a ring because of $\mid a+$ $\left.b\right|_{p} \leq \max \left\{|a|_{p},|b|_{p}\right\}$. It's not a field, since $p \in \mathbb{Z}_{p}$ but $\frac{1}{p} \notin \mathbb{Z}_{p}$. Note $\mathbb{Z}_{p}^{*}=\left\{\alpha \in \mathbb{Q}_{p}:|\alpha|_{p}=1\right\}$. So $\mathbb{Q}_{p}^{*}=\left\{p^{r} u: u \in \mathbb{Z}_{p}^{*}\right\}$. In particular, \mathbb{Q}_{p} is the fraction field of \mathbb{Z}_{p}.

PMATH 442 Lecture 27: November 16, 2011

Theorem: $\mathbb{Z}_{p}=$ the closure of \mathbb{Z} in \mathbb{Q}_{p}.
Proof: If $\left\{x_{i}\right\}$ is a Cauchy sequence of integers $x_{i} \in \mathbb{Z}$, then $\left|\left\{x_{i}\right\}\right|_{p} \leq 1$ because $\left|x_{i}\right|_{p} \leq 1$ for all i. So $\overline{\mathbb{Z}} \subset \mathbb{Z}_{p}$.
Conversely, say $\left\{x_{i}\right\} \in \mathbb{Z}_{p}$. Then $\lim _{i \rightarrow \infty}\left|x_{i}\right|_{p} \leq 1$. If $\lim _{i}\left|x_{i}\right|_{p}=0$, then $\left\{x_{i}\right\}=0 \in \overline{\mathbb{Z}}$. Otherwise, we have $\left|x_{n}\right|_{p}=\lim _{i}\left|x_{i}\right|_{p}$ for all large enough n. Write $x_{n}=p^{r} \frac{a_{n}}{b_{n}}$ for $p \nmid a_{n} b_{n}$. Then for every positive integer m, there is an integer $\alpha_{n, m}$ such that

$$
\alpha_{n, m} \equiv x_{n} \bmod p^{m} \Longleftrightarrow\left|\alpha_{n, m}-x_{n}\right|_{p} \leq p^{-m}
$$

So up to messing around with finitely initial terms, the sequence $\left\{\alpha_{n, n}\right\} \in \overline{\mathbb{Z}}$ is equal in \mathbb{Q}_{p} to $\left\{x_{n}\right\}$, so $\left\{x_{n}\right\} \in \overline{\mathbb{Z}}$.
Theorem: $\mathbb{Z}_{p} / p^{r} \mathbb{Z}_{p} \cong \mathbb{Z} / p^{r} \mathbb{Z}$.
Proof: Consider $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{p} / p^{r} \mathbb{Z}_{p}$. It is clear that $\operatorname{ker} \phi=p^{r} \mathbb{Z}$. So there is an injection $\phi: \mathbb{Z} / p^{r} \mathbb{Z} \rightarrow \mathbb{Z}_{p} / p^{r} \mathbb{Z}_{p}$. It is onto because any $\alpha \in \mathbb{Z}_{p}$ satisfies

$$
|\alpha-n|_{p} \leq p^{-r} \text { for some } n \in \mathbb{Z}, \Longleftrightarrow \alpha \equiv n \bmod p^{r} \mathbb{Z}_{p} \Longleftrightarrow \alpha \equiv \phi(n) \checkmark
$$

Say $\alpha \in \mathbb{Q}_{p}$. If $\alpha=0$, then α is clearly of the form $\alpha=\sum_{i=n}^{\infty}$ for $0 \leq a_{i} \leq p-1$. If $\alpha \neq 0$, write $\alpha=p^{r} \frac{a}{b}$, where $p \nmid a b$. It suffices to write $\frac{a}{b}=\sum_{i=n}^{\infty} a_{i} p^{i}$.
But $\frac{a}{b} \in \mathbb{Z}_{p}$, so for each $r \geq 1$, we can find $m_{r} \in \mathbb{Z}$ such that $\frac{a}{b} \equiv m_{r} \bmod p^{r} \mathbb{Z}_{p}$. So if we choose $m_{r} \in\{0, \ldots, p-1\}$, we write m_{r} in base p_{i} and get

$$
\frac{a}{b}=a_{0}+a_{1} p+\cdots+a_{r-1} p^{r-1}+E p^{r}
$$

for $0 \leq a_{i} \leq p-1$. Moreover, note that $m_{r+t} \equiv m_{r} \bmod p^{r}$. So we get a well defined series

$$
\frac{a}{b}=\sum_{i=0}^{\infty} a_{i} p^{i}
$$

where $a_{i} \in\{0, \ldots, p-1\}$. So \mathbb{Q}_{p} really is

$$
\begin{gathered}
\mathbb{Q}_{p}=\left\{\sum_{i=n}^{\infty} a_{i} p^{i}: a_{i} \in\{0, \ldots, p-1\}\right\} \\
\frac{\not \emptyset \varnothing \varnothing^{7}}{} \\
=\sum_{n=0}^{\infty} 6 \cdot 7^{n}
\end{gathered}
$$

Define $R \subset(\mathbb{Z} / p \mathbb{Z}) \times\left(\mathbb{Z} / p^{2} \mathbb{Z}\right) \times \cdots$ by

$$
R=\left\{\left(a_{1}, a_{2}, \ldots\right): a_{i} \equiv a_{i+r} \bmod p^{i}, a_{i} \in \mathbb{Z} / p^{i} \mathbb{Z}\right\}=H
$$

Theorem: $\mathbb{Z}_{p} \cong R$.
Proof: Define $\phi: \mathbb{Z}_{p} \rightarrow H$ by $\phi(\alpha)=\left(\alpha \bmod p, \alpha \bmod p^{2}, \cdots\right)$. Clearly $\operatorname{im} \phi \subset$, so $\phi: \mathbb{Z}_{p} \rightarrow R$. Since $\operatorname{ker} \phi=\{0\}, \phi$ is injective. For surjectivity, say $\left(n_{1}, n_{2}, \ldots\right) \in R$. If we choose $n_{i} \in\left\{0, \ldots, p^{i}-1\right\}$, then writing n_{i} in base p will have a consistent set of i th order p-adic approximations $\sum_{i=0}^{\infty} a_{i} p^{i}$, where $n_{i}=\sum_{j=0}^{i-1} a_{j} p^{j} . \operatorname{So}\left(n_{1}, n_{2}, \ldots\right) \in \operatorname{im} \phi$.

PMATH 442 Lecture 28: November 18, 2011

Definition: A valuation on a field K is a function $\phi: K \rightarrow \mathbb{R}$ such that:
(1) $\phi(x) \geq 0, \phi(x)=0$ iff $x=0$
(2) $\phi(x y)=\phi(x) \phi(y)$
(3) $\phi(x+y) \leq \phi(x)+\phi(y)$

If ϕ also satisfies $\phi(x+y) \leq \max \{\phi(x), \phi(y)\}$ then we say ϕ is non-archimedean.
Assume K is a field complete with respect to a non-archimedean valuation $|\cdot|_{v}$.
Definition: The valuation ring of K is $O=\left\{x \in K:|x|_{v} \leq 1\right\}$. It is easy to see that O is a ring.
Definition: The maximal ideal of O is $M=\left\{x \in O:|x|_{v}<1\right\}$.
It is easy to see that M is the set of non-units of O, and is therefore the unique maximal ideal of O.
Definition: The field O / M is called the residue field of O (or K).
Theorem (Hensel's Lemma): Let K be complete with respect to a non-archimedean valuation $|\cdot|_{v}$. Let $f(x) \in O[x], f \not \equiv M$. Say $\bar{f}=\bar{g} \bar{h}$ in $(O / M)[x]$, where $\bar{g}, \bar{h} \in(O / M)[x]$ are relatively prime. Then $f=g h$, where $g \equiv \bar{g} \bmod M, h \equiv \bar{h} \bmod M$, and $\operatorname{deg} g=\operatorname{deg} \bar{g}$, and $g, h \in O[x]$.
Example: Say $K=\mathbb{Q}_{7}, O=\mathbb{Z}_{7}, f(x)=x^{2}-2$. Then

$$
x^{2}-2 \equiv(x+3)(x-3) \bmod 7 \text { in the residue field } \mathbb{Z} / 7 \mathbb{Z}
$$

Helsel $\Longrightarrow \exists g, h \in \mathbb{Z}_{7}[x]$ such that $\operatorname{deg} g=\operatorname{deg} h=1$ and

$$
x^{2}-2=g(x) h(x)
$$

But $\operatorname{deg} g=\operatorname{deg} h=1 \Longrightarrow g h$ has two roots in \mathbb{Z}_{7},

$$
\pm \sqrt{2} \in \mathbb{Z}_{7} \subset \mathbb{Q}_{7}
$$

PMATH 442 Lecture 29: November 21, 2011
K complete with respect to a non-archimean valuation $|\cdot|_{v}$. Let $O=\left\{a \in K:|a|_{v} \leq 1\right\}$ be the valuation ring. $M \subset O$ the maximal ideal $\left\{a \in K:|a|_{v}<1\right\}$.

$$
\begin{aligned}
K & =\mathbb{Q}_{p} \\
O & =\mathbb{Z}_{p} \\
M & =p \mathbb{Z}_{p}
\end{aligned}
$$

Theorem: (Hensel's Lemma)
Let $f(x) \in O[x]$ be non-constant, $f \not \equiv 0 \bmod M$. Assume $\bar{f}=\bar{g} \bar{h} \bmod M$, where \bar{f} is the reduction of $f \bmod M$, and that \bar{g}, \bar{h} are relatively prime in $(O / M)[x]$. Then $f=g h$ in $\theta[x]$, where $g \equiv \bar{g}$ and $h \equiv \bar{h} \bmod M$, and $\operatorname{deg}(g)=\operatorname{deg}(\bar{g})$.
Proof: Pick $g_{0}, h_{0} \in O[x]$ willy-nilly so that $\operatorname{deg}\left(g_{0}\right)=\operatorname{deg}(\bar{g}), \operatorname{deg}\left(h_{0}\right) \leq \operatorname{deg}(\bar{h}), g_{0} \equiv \bar{g}, h_{0} \equiv \bar{h} \bmod M$. Since \bar{h}, \bar{g} are coprime in $(O / M)[x]$, there are $a(x), b(x) \in O[x]$ such that $a g_{0}+b h_{0} \equiv 1 \bmod M$.
Amongst the coefficients of $f-g_{0} h_{0}$ and $a g_{0}+b h_{0}-1$, there is (at least) one with smallest valuation. Call it π.
We show: $f \equiv g_{r} h_{r} \bmod \pi^{r+1}$.
If $r=0$, we're already done. Proceed by induction. Say $f \equiv g_{r-1} h_{r-1} \bmod \pi^{r}$, with $\operatorname{deg} g_{r-1}=\operatorname{deg} \bar{g}$, $\operatorname{deg} h_{r-1} \leq \operatorname{deg} \bar{h}$. We're looking for g_{r} and h_{r}.
Write $\left\{\begin{array}{l}g_{r}=g_{r-1}+p_{r} \pi^{r} \\ h_{r}=h_{r-1}+q_{r} \pi^{r}\end{array}\right.$, for $p_{r}, q_{r} \in O[x]$. Then:

$$
\begin{aligned}
& f-g_{r} h_{r} \equiv \pi^{r}\left(g_{r-1} g_{r}+h_{r-1} p_{r}\right) \bmod \pi^{r+1} \\
& \Longrightarrow \underbrace{\frac{1}{\pi^{r}}\left(f-g_{r} h_{r}\right)}_{f_{r}:=} \equiv g_{r-1} g_{r}+h_{r-1} p_{r} \bmod \pi
\end{aligned}
$$

Now, $q_{r}=a f_{r}$ and $p_{r}=b f_{r}$ works because $g_{r} \equiv g_{0} \bmod M, h_{r} \equiv h_{0} \bmod M$. However, this choice may not satisfy the degree constraints $\operatorname{deg} g_{r}=\operatorname{deg} \bar{g}$ and $\operatorname{deg} h_{r} \leq \operatorname{deg} \bar{h}$. So write: $b f_{r}=Q g_{0}+R$ for $\operatorname{deg} R \leq \operatorname{deg} g_{0}$, and set $p_{r}=R$. The leading coefficient of g_{0} is not in M, so it's a unit in O. The Euclidean Algorithm will show that $Q, R \in O[x]$. So:

$$
\begin{aligned}
g_{0}\left(a f_{r}+h_{0} Q\right)+h_{0} p_{r} & \equiv a g_{0} f_{r}+g_{0} h_{0} Q+h_{0} p_{r} \\
& \equiv a g_{0} f_{r}+h_{0}\left(b f_{r}-p_{r}\right)+h_{0} p_{r} \\
& \equiv a g_{0} f_{r}+b h_{0} f_{r} \\
& \equiv f_{r} \bmod \pi
\end{aligned}
$$

PMATH 442 Lecture 30: November 23, 2011

Theorem: (Hensel's Lemma) Let K be a complete field with respect to a non-archedmedian valuation, O is valuation ring, $M \subset O$ the maximal ideal. Let $f(x) \in O[x]$, and assume $\bar{f} \equiv \bar{g} \bar{h} \bmod M$ for $\operatorname{gcd}(\bar{g}, \bar{h})=1$. Then $f=g h$ in $K[x]$, where $g \equiv \bar{g} \bmod M, h \equiv \bar{h} \bmod M, \operatorname{deg}(g)=\operatorname{deg}(\bar{g})$.
Proof: (continued)

$$
\begin{gathered}
g_{0}\left(a f_{r}+h_{0} Q\right)+h_{0}\left(p_{r}\right) \equiv f_{r} \bmod \pi \\
\text { and } \operatorname{deg}\left(p_{r}\right) \leq \operatorname{deg} f-\operatorname{deg} h_{0}=\operatorname{deg}\left(g_{0}\right)
\end{gathered}
$$

So after deleting terms in $a f_{r}+h_{0} Q$ of too high degree (because they're $0 \bmod \pi$), we find q_{r}.

$$
\text { So } \begin{aligned}
g_{r+1} & =g_{r}+p_{r} \pi^{r} \\
h_{r+1} & =h_{r}+q_{r} \pi^{r}
\end{aligned}
$$

satisfies $f \equiv g_{r} h_{r} \bmod \pi^{r+1}$

$$
\begin{aligned}
& \operatorname{deg}\left(g_{r+1}\right)=\operatorname{deg}(\bar{g}) \\
& \operatorname{deg}\left(h_{r+1}\right) \leq \operatorname{deg}(\bar{h}) \\
& \left.\begin{array}{l}
g_{r+1} \equiv \bar{g} \\
h_{r+1} \equiv \bar{h}
\end{array}\right\} \bmod M
\end{aligned}
$$

So $\left\{g_{r}\right\} \&\left\{h_{r}\right\}$ are Cauchy sequences of polynomials in $K[x]$, that must converge to $g \& h$, respectively, satisfying $f=g h, \operatorname{deg} g=\operatorname{deg} \bar{g}, g \equiv \bar{g}, h \equiv \bar{h}$.
Example: $\sqrt{2} \notin \mathbb{Q}_{5}$, because if not, then $|\sqrt{2}|_{5}^{2}=|2|_{5}=1$, so $\sqrt{2} \in \mathbb{Z}_{5}$. But $x^{2}-2$ is irreducible in the residue field \mathbb{F}_{5}, so $\sqrt{2} \notin \mathbb{Z}_{5}$.
Example: $x^{p-1}-1$ splits completely in $\mathbb{F}_{p}[x]$: $x^{p-1}-1=\prod_{i=1}^{p-1}(x-i)$. By Hensel's Lemma, $x^{p-1}-1$ splits completely in $\mathbb{Q}_{p}[x]$, too. So if $n \mid p-1$, then $\zeta_{n} \in \mathbb{Q}_{p}$.
Definition: Let L / K be a finite extension, $\alpha \in L$ any element. The norm of α over K is $\operatorname{det}\left(m_{\alpha}\right)$, where

$$
\begin{gathered}
m_{\alpha}: L \rightarrow L \text { is } m_{\alpha}(x)=\alpha x \\
N_{L / K}(\alpha)=\operatorname{det}\left(m_{\alpha}\right) \\
N_{L / K}(\alpha)=(-1)^{[L: K]}(\text { constant term in characteristic polynomial })
\end{gathered}
$$

Since α is a root of the monic characteristic polynomial (by Cayley-Hamilton Theorem), the minimal polynomial of $\alpha(m(x))$ is a factor of the characteristic polynomial of $m_{\alpha}(\chi(x))$. But every root of $\chi(x)$ is a root of $m(x)$, so $\chi(x)=m(x)^{d}$, where $d=[L: K(\alpha)]$. Comparing constant terms gives $(m(0))^{d}=\chi(0)$.
$n=[L: K]$
$L=1 \cdot K+\alpha \cdot K+\cdots+\alpha^{n-1} \cdot K$
if $L=K(\alpha)$

$$
\begin{gathered}
{\left[m_{\alpha}\right]=\left[\begin{array}{cccc}
0 & 0 & & -a_{0} / a_{n} \\
1 & 0 & & -a_{1} / a_{n} \\
0 & 1 & & -a_{2} / a_{n} \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & 1 \\
m(x)=a_{n-1}+a_{1} x+\cdots+a_{n} x^{n}
\end{array}\right]} \\
\Longrightarrow \alpha^{n}=-\frac{a_{0}}{a_{1}}-\frac{a_{1}}{a_{n}} \alpha-\cdots-\frac{a_{n-1}}{a_{n}} \alpha^{n-1} \\
\operatorname{det}\left[m_{\alpha}\right]=(-1)^{n-1} \frac{-a_{0}}{a_{n}}=(-1)^{n} a_{0} \\
N_{L / K}(\alpha)=(-1)^{[L: K]}(\operatorname{constant} \text { term of monic minimal polynomials })^{[L: K(\alpha)]}
\end{gathered}
$$

Say K / \mathbb{Q}_{p} is a finite extension. Define

$$
|\alpha|_{v}=\sqrt[n]{\left|N_{K / \mathbb{Q}_{p}}(\alpha)\right|_{p}}
$$

where $n=\left[K: \mathbb{Q}_{p}\right]$. This is a non-archedmedian valuation:
(1) $|\alpha|_{v} \geq 0$, equality iff $\alpha=0 \checkmark$
(2) $|\alpha \beta|_{v}=\left.\left.|\alpha|_{v}\right|_{\beta}\right|_{v} \checkmark$
(3) $|\alpha+\beta|_{v} \leq \max \left\{|\alpha|_{v},|\beta|_{v}\right\}$

We will justify (3) next time.

PMATH 442 Lecture 31: November 25, 2011

$|\alpha|_{v}=\sqrt[n]{\left|N_{K / \mathbb{Q}_{p}}(\alpha)\right|_{p}}$
Theorem: $|\cdot|_{v}$ is a non-archimedean valuation on K.
Proof: All done except:

$$
|\alpha+\beta|_{v} \leq \max \left\{|\alpha|_{v},|\beta|_{v}\right\}
$$

Without loss of generality, say $|\beta|_{v} \geq|\alpha|_{v}$. Then it suffices to show:

$$
\left|\frac{\alpha}{\beta}+1\right|_{v} \leq \max \left\{\left|\frac{\alpha}{\beta}\right|_{v}, 1\right\} .
$$

Lemma: Let L be a field that's complete with respect to a non-archimedean valuation ψ. Say $f(x) \in L[x]$ is irreducible, $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Then $\psi\left(a_{i}\right) \leq \max \left\{\psi\left(a_{0}\right), \psi\left(a_{n}\right)\right\}$ for all i.
Proof of Lemma: Let O be the valuation ring. Let j be the smallest index such that $\psi\left(a_{j}\right) \geq \psi\left(a_{i}\right)$ for all i. Then $\frac{1}{a_{j}} f \in O[x]$ and

$$
f \equiv x^{j}\left(a_{j}+\cdots+a_{n} x^{n-j}\right) \bmod M
$$

where $M \subset O$ is the maximal ideal. By Hensel's Lemma, $f(x)$ factors as the product of 2 polynomials, one of $\operatorname{deg} j \&$ the other of degree $n-j$. Since f is irreducible, either $j=0$ or $n-j=0$.
\square lemma
By the lemma applied to $L=\mathbb{Q}_{p}$, we see that a monic irreducible polynomial in $\mathbb{Q}_{p}[x]$ lies in $\mathbb{Z}_{p}[x]$ iff its constant coefficient lies in \mathbb{Z}_{p}. So $N_{K / \mathbb{Q}_{p}}(\alpha) \in \mathbb{Z}_{p}$ iff monic minimal polynomial for α lies in $\mathbb{Z}_{p}[x]$. Since $\left|\frac{\alpha}{\beta}\right|_{v} \leq 1$, we get $N\left(\frac{\alpha}{\beta}\right) \in \mathbb{Z}_{p}$ so monic minimal polynomial for $\frac{\alpha}{\beta}$ has coefficients in \mathbb{Z}_{p}. If $m(x)$ is the monic minimal polynomial for $\frac{\alpha}{\beta}$, then $m(x-1)$ is the monic minimal polynomial for $\left(\frac{\alpha}{\beta}-1\right)$. So $m(x) \in \mathbb{Z}_{p}[x] \Longrightarrow m(x-1) \in \mathbb{Z}_{p}[x]$, and hence $N\left(\frac{\alpha}{\beta}+1\right) \in \mathbb{Z}_{p}$ \&

$$
\left|\frac{\alpha}{\beta}+1\right|_{v} \leq \max \left\{\left|\frac{\alpha}{\beta}\right|_{v}, 1\right\}
$$

as desired.

PMATH 442 Lecture 32: November 28, 2011

Example: $K=\mathbb{Q}_{3}(\sqrt{2})$
Note that $\left[K: \mathbb{Q}_{3}\right]=2$, because $|\sqrt{2}|_{3}=\sqrt{|2|_{3}}=1$. Since $\sqrt{2} \notin \mathbb{F}_{3}, \sqrt{2} \notin \mathbb{Z}_{3}$, so $\sqrt{2} \notin \mathbb{Q}_{3}$. Now,

$$
\begin{aligned}
|a+b \sqrt{2}|_{3} & \leq \max \left\{|a|_{3},|b|_{3}\right\} \\
=\sqrt{|N(a+b \sqrt{2})|_{3}} & =\sqrt{\left|a^{2}-2 b^{2}\right|_{3}}
\end{aligned}
$$

If $|a|_{3} \neq|b|_{3}$, then $|a+b \sqrt{2}|_{3}=\max \left\{|a|_{3},|b|_{3}\right\}$.
If $|a|_{3}=|b|_{3}$, then $a+b \sqrt{2}=3^{r}\left(a^{\prime}+b^{\prime} \sqrt{2}\right)$, where $a^{\prime}, b^{\prime} \in \mathbb{Z}_{3}^{*}$. In that case, $a^{\prime}= \pm b^{\prime}= \pm 1 \bmod 3$, so $\left(a^{\prime}\right)^{2}-2\left(b^{\prime}\right)^{2}=-1 \bmod 3$, so $|a+b \sqrt{2}|_{3}=|a|_{3}=|b|_{3}$. So in general,

$$
|a+b \sqrt{2}|_{3}=\max \left\{|a|_{3},|b|_{3}\right\}
$$

K / \mathbb{Q}_{p} is a finite extension.
Then $\sqrt[n]{\left|N_{K / \mathbb{Q}_{p}}(\alpha)\right|_{p}}$ is an extension of $|\cdot|_{p}$ to K. It's the only such extension, and K is complete with respect to this extension.

$$
\begin{aligned}
O & =\text { valuation ring of } K \\
& =\left\{\alpha \in K:|\alpha|_{p} \leq 1\right\} \\
& =\left\{\alpha \in K: \text { monic minimal polynomial lies in } \mathbb{Z}_{p}[x]\right\}
\end{aligned}
$$

Note that O is Galois stable, i.e., if $\alpha \in O, \sigma \in \operatorname{Aut}_{\mathbb{Q}_{p}}(K)$, then $\sigma(\alpha) \in O$.
Assume K / \mathbb{Q}_{p} is Galois.
Recall that the residue field of K is $\overbrace{O / M}^{=k}$, where $M=$ maximal ideal of O. It's an extension of \mathbb{F}_{p}, and a finite one since $\left[K: \mathbb{Q}_{p}\right]<\infty$.
Define:

$$
\psi: \operatorname{Gal}\left(K / \mathbb{Q}_{p}\right) \rightarrow \operatorname{Gal}\left(k / \mathbb{F}_{p}\right)
$$

as follows:
Say $\sigma \in \operatorname{Gal}\left(K / \mathbb{Q}_{p}\right)$. Then $\left.\sigma\right|_{O}: O \rightarrow O$ is also an automorphism. Since $|\cdot|_{p}$ is also Galois invariant, σ maps M to M. Thus, σ induces a homomorphism

$$
\psi(\sigma): \underset{=k}{O / M} \rightarrow \underset{=k}{O / M}
$$

$\psi(\sigma)$ is an automorphism because k is a finite field.
It is easy to check that ψ is a homomorphism of groups

$$
\psi: \operatorname{Gal}\left(K / \mathbb{Q}_{p}\right) \rightarrow \operatorname{Gal}\left(k / \mathbb{Q}_{p}\right)
$$

Say $k=\mathbb{F}_{p}(\bar{\alpha}), \bar{m}(x)$ a minimal polynomial for $\bar{\alpha}$ over \mathbb{F}_{p}. Then by Hensel's Lemma, any polynomial $m(x) \in \mathbb{Z}_{p}[x]$ with $m \equiv \bar{m} \bmod M$ and $\operatorname{deg}(m)=\operatorname{deg}(\bar{m})$ will also be irreducible and split completely in K. $(\alpha$ a root of $m(x), \alpha \equiv \bar{\alpha} \bmod M$)
If $\bar{\sigma} \in \operatorname{Gal}\left(k / \mathbb{F}_{p}\right)$ and $\bar{\sigma}(\bar{\alpha})=\bar{\beta}$, then if $\beta \in K$ is a root of $m(x)$ with $\beta \equiv \bar{\beta} \bmod M$, then any $\sigma \in \operatorname{Gal}\left(K / \mathbb{Q}_{p}\right)$ with $\sigma(\alpha)=\beta$ satisfies $\psi(\sigma)=\bar{\sigma}$.

The kernel of ψ is called the inertia (sub)group of $\operatorname{Gal}\left(K / \mathbb{Q}_{p}\right)$.
Definition: K / \mathbb{Q}_{p} finite is unramified iff ψ is an isomorphism. Equivalently, if $\left[k: \mathbb{F}_{p}\right]=\left[K: \mathbb{Q}_{p}\right]$.
Definition: The inertia subfield of K is the fixed field of the inertia group.

$$
\begin{aligned}
& \left.\right|_{K^{\mathrm{ur}}} ^{K}\left[K: K^{\mathrm{ur}}\right]=\# I(K) \\
& \mid\left[K^{\mathrm{ur}}: \mathbb{Q}_{p}\right]=\left[k: \mathbb{F}_{p}\right] \\
& \mathbb{Q}_{p}
\end{aligned}
$$

Example:

PMATH 442 Lecture 33: November 30, 2011

Theorem: If K / \mathbb{Q}_{p} is a finite unramified extension, then it is also Galois.
Proof: By assumption, $\left[K: \mathbb{Q}_{p}\right]=\left[k: \mathbb{F}_{p}\right]$, where k is the residue field O / M of K. Write $k=\mathbb{F}_{p}(\bar{\alpha})$ for some $\bar{\alpha} \in k$. Choose $\alpha \in O \subset K$ such that $\alpha \equiv \bar{\alpha} \bmod M$. Then $\mathbb{Q}_{p}(\alpha)$ is an extension of \mathbb{Q}_{p} of degree $n=\left[K: \mathbb{Q}_{p}\right]=\left[k: \mathbb{F}_{p}\right]$, because a minimal polynomial $\bar{m}(x) \in \mathbb{F}_{p}[x]$ for $\bar{\alpha} / \mathbb{F}_{p}$ is irreducible, and also it's the reduction of a minimal polynomial $m(x)$ for α / \mathbb{Q}_{p}. Therefore $\mathbb{Q}_{p}(\alpha)=K$.
$\mathbb{Q}_{p}(\alpha)$ is clearly separable over \mathbb{Q}_{p}. But $\bar{m}(x)$ is separable, and splits completely (into linear factors) in $k(x)$. By Hensel's Lemma, since the factors are pairwise coprime, this means $m(x)$ factors completely in $K[x]$. So K is a splitting field for $m(x)$ over \mathbb{Q}_{p}, since $\mathbb{Q}_{p}(\alpha)=K$. So K / \mathbb{Q}_{p} is Galois.
This means that if K / \mathbb{Q}_{p} is unramified, then its Galois group is cyclic. Better yet, any two unramified extensions of \mathbb{Q}_{p} of degree n are isomorphic, by Hensel's Lemma and previous theorem.
So extensions of \mathbb{F}_{p} an unramified extensions of \mathbb{Q}_{p} are in a natural 1-1 correspondence.
Consequences: The composition of 2 unramified extensions of \mathbb{Q}_{p} is unramified.

Note that:

Let's find all quadratic extensions of \mathbb{Q}_{p} for $p \neq 2$.
They are classified by $\left(\mathbb{Q}_{p}^{*}\right) /\left(\mathbb{Q}_{p}^{*}\right)^{2}$
Any $\alpha \in \mathbb{Q}_{p}^{*}$ is, up to squares, an element of either \mathbb{Z}_{p} or $p \mathbb{Z}_{p}$.

$$
\mathbb{Z}_{p} \cong\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{i} \in \mathbb{Z} / p \mathbb{Z}, a_{1} \equiv a_{1+j} \bmod p^{i} \forall j \geq 0\right\}
$$

If $\left(a_{1}, \ldots\right) \in\left(\mathbb{Q}_{p}\right)^{2}$, then $a_{1} \in\left(\mathbb{F}_{p}\right)^{2}$.
So modulo squares, there are 2 choices for a_{1}. For all $i \geq 2$, there are again only 2 choices for a_{i}, up to squares, so there are exactly 2 units in \mathbb{Z}_{p}, up to squares.
Similarly, there are 2 elements of $p \mathbb{Z}_{p}$ up to squares. So $\left(\mathbb{Q}_{p}^{*}\right) /\left(\mathbb{Q}_{p}^{*}\right)^{2}$ has order 4 . There are therefore 3 nontrivial quadratic extensions of \mathbb{Q}_{p} :
unramified: $\quad \mathbb{Q}_{p}(\sqrt{a}) \leftarrow$ a non-residue $\bmod p$
ramified: $\quad \mathbb{Q}_{p}(\sqrt{p})$
ramified: $\quad \mathbb{Q}_{p}(\sqrt{a p})$

Newton Polygons

For $a_{i} \in \mathbb{Q}_{p}^{*}$, define $v(a)=-\log |a|_{p}=$ biggest power of p dividing a.
Let $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Q}_{p}[x]$ be a polynomial, $a_{n} \neq 0$. Plot all the points $\left(i, v\left(a_{i}\right)\right)$ for $a_{i} \neq 0$. The Newton polygon of $f(x)$ is the lower convex hull of these points.
Example: $p=3, f(x)=x^{3}+\frac{3}{4} x^{2}+\frac{7}{9}$
Plot: $(3,0),(2,1),(0,-2)$

PMATH 442 Lecture 34: December 2, 2011

Newton Polygons

$v(a)=-\log |a|_{p}$ for $a \in \mathbb{Q}_{p}^{*}$. Newton polygon of $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ is lower convex hull of $\left\{\left(i, v\left(a_{i}\right)\right)\right\}$.
Theorem: Let $f(x)=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Q}_{p}[x]$ be a polynomial of degree n. Say $\left(r, v\left(a_{r}\right)\right)$ and $\left(s, v\left(a_{s}\right)\right)$ are the endpoints of a line segment in the Newton polygon of $f(x)$, of slope $-m$. Then $f(x)$ has (in some extension of $\left.\mathbb{Q}_{p}\right)|r-s|$ roots α_{i} with $\left|a_{i}\right|_{p}=p^{-m}$.

Note: The Galois group of $f(x)$ does not change the valuation of roots of $f(x)$. Thus, this theorem tells us that line segments in the Newton polygon correspond to factors of $f(x)$ in $\mathbb{Q}_{p}[x]$.
Proof: Assume without loss of generality that $a_{n}=1$.

Order the roots of $f(x)$ as follows:

$$
\begin{aligned}
& \alpha_{1}, \ldots, \alpha_{t_{1}} \leftarrow v\left(\alpha_{i}\right)=m_{1} \quad>m_{1} \\
& \alpha_{t_{1}+1}, \ldots, \alpha_{t_{2}} \leftarrow v\left(\alpha_{i}\right)=m_{2} \\
& \vdots \\
& \alpha_{t_{r}+1}, \ldots, \alpha_{n} \leftarrow v\left(\alpha_{i}\right)=m_{r+1}>m_{r} \\
& \text { so } v\left(a_{n}\right)=0 \\
& v\left(a_{n-1}\right) \geq \min \left\{v\left(\alpha_{i}\right)\right\}=m_{1} \\
& v\left(a_{n-1}\right) \geq \min \left\{v\left(\alpha_{i} \alpha_{j}\right)\right\}=2 m_{1} \\
& \vdots \\
& v\left(a_{n-t_{1}}\right)=t_{1} m_{1} \\
& v\left(a_{n-t_{1}-1}\right) \geq t_{1} m_{1}+m_{2} \\
& \vdots \\
& v\left(a_{n-t_{1}-t_{2}}\right)=t_{1} m_{1}+\left(t_{2}-t_{1}\right) m_{2}
\end{aligned}
$$

Continuing in this fashion, one sees that the Newton polygon of $f(x)$ has vertices

$$
\left(n-t_{0}, t_{1} m_{1}+\left(t_{2}-t_{1}\right) m_{2}+\cdots+\left(t_{c}-t_{c-1}\right) m_{c}\right)
$$

and has $r+1$ segments of slopes $-m_{1},-m_{2}, \ldots,-m_{r+1}$.
Example: $x^{2}+x-6, \mathbb{Q}_{3}$.

$$
=(x+3)(x-2)
$$

Theorem: Assume that the Newton polygon of $f(x)$ intersects \mathbb{Z}^{2} in exactly two points. Then $f(x)$ is irreducible in $\mathbb{Q}_{p}[x]$.
Proof: Say $f(x)=g(x) h(x)$, and assume without loss of generality that f, g, h are all monic. We know that the Newton polygon of $f(x)$ is a single line segment of slope m, since the Newton polygon only has vertices at lattice points. Say $\operatorname{deg}(f)=n$.

So $v(\alpha)=m$ for all roots α of f, and thus for all roots of g and h, too. If $\operatorname{deg}(g)=d$, then $|g(0)|_{p}=p^{-d m}$ and $|h(0)|_{p}=p^{-(n-d) m}$. The Newton polygon joins $(n, 0)$ to $(0, n m)$, which contains the point $(d,(n-d) m)$. Thus, either $d=n$ or $d=0$, and so $f(x)$ is irreducible.
So $x^{5}+2 x^{4}+4$ is irreducible over \mathbb{Q}_{2}, because its Newton polygon has exactly 2 lattice points, one at each end.

[^0]: ${ }^{1)}=\operatorname{dim}_{K} L$

[^1]: ${ }^{2)}$ id

[^2]: ${ }^{3)} \mathrm{Aut}_{E_{2}}(K)$
 ${ }^{4)} \mathrm{Aut}_{E_{1}}(K)$
 5) $\phi(F)$

[^3]: ${ }^{6)} a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mapsto a+b \sqrt{2}-c \sqrt{3}-d \sqrt{6}$
 $\left.{ }^{7}\right) a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mapsto a-b \sqrt{2}-c \sqrt{3}+d \sqrt{6}$

[^4]: ${ }^{8)}$ invertible K-linear transformation $V \rightarrow V$

[^5]: ${ }^{9)}$ zero!
 10) distinct α_{i}

[^6]: ${ }^{11)}$ pointed set
 ${ }^{12)}$ pointed set

[^7]: ${ }^{13)}$ the restriction of σ to E

[^8]: ${ }^{14)} m$ rows on top, n rows on bottom, main diagonal pointed out

[^9]: ${ }^{15)} m$ rows, n rows

[^10]: ${ }^{16)} m$ rows, n rows
 ${ }^{17)}$ one factor of -1 for each pair $(i, j), i \neq j$

[^11]: ${ }^{18)} \alpha_{i}$ are roots of f, with multiplicity

[^12]: 19) char $F \nmid n$
