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Definition: A homomorphism of rings is a function f : R→ S′ such that

1. f(a+ b) = f(a) + f(b)

2. f(ab) = f(a)f(b)

3. f(1) = 1

Definition: Let R be a ring. There is a unique homomorphism φ : Z → R given by φ(n) = n, called the
characteristic homomorphism. Since Z is a PID, there is a unique nonnegative n ∈ Z such that kerφ = (n).
The characteristic of R is n.

Definition: An extension of fields is a pair of fields L, K such that K ⊂ L. It’s written L/K.

The degree of L/K is the dimension of L as a K-vector space.
Recall: Let F be a field, R a non-zero ring, φ : F → R a homomorphism. Then φ is 1–1.

If p(x) ∈ F [x] is irreducible, then F [x]/(p(x)) is a field. As an extension of F , it has degree deg(p), with basis

{1, x, . . . , xdeg(p)−1}.

Definition: Let K be a field. A K-algebra is a ring R that contains K.
Definition: A K-algebra homomorphism is a function f : R → S that is a ring homomorphism satisfying
f(a) = a for all a ∈ K.

f(ab) = f(a)f(b)

f(cv) = cf(v)

Note that a K-algebra homomorphism is also, equivalently, a ring homomorphism that is also a K-linear
transformation.

Theorem: Let L/K be an extension of fields, p(x) ∈ K[x] an irreducible polynomial, α ∈ L an element
satisfying p(α) = 0. Then φ : K[x]/(p(x))→ K(α) given by φ(f(x)) = f(α) is a K-algebra isomorphism.
Proof: Not doing it.
So {1, α, α2, . . . , αdeg(p)−1} is a basis for K(α) over K.
Definition: In this context, p(x) is called a minimal polynomial for α over K. It is unique to multiplication
by a nonzero element of K.
Theorem: Let p(x) be a minimal polynomial for α over K. If f(x) ∈ K[x] satisfies f(α) = 0, then p(x) | f(x).
Proof: Not doing it.
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Definition: Let K be a field, L an extension of K, a ∈ L an element. Then α is algebraic over K iff there is
a polynomial p(x) ∈ K[x], p(x) 6≡ 0, such that p(α) = 0. (Otherwise, α is transcendental over K.) We say
L/K is algebraic iff every element of L is algebraic over K.

L/K is finite iff [L : K]1) <∞.

Theorem: Let L/K be a finite extension. Then L/K is algebraic.
Proof: Let α ∈ L be any element. Let n = [L : K]. The n+ 1 vectors 1, α, α2, . . . , αn are linearly dependent,

1)= dimK L
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so there exist a0, a1, . . . , an ∈ K such that a0 + a1α+ · · ·+ anα
n = 0, but not all of the ais are 0. So α is

algebraic over K, since it’s a root of p(x) = a0 + a1x+ · · ·+ anx
n ∈ K[x].

Example: Q(
√

2,
√

3,
√

5,
√

7,
√

11, . . . ) is algebraic over Q, but not finite.

Theorem: (KLM)

M

L

K

[M : K] = [M : L]
m

[L : K]
l

Proof: Let {a1, . . . , al} be a basis for L/K, {b1, . . . , bn} be a basis for M/L. Consider {aibj} i∈{1,...,l}
j∈{1,...,m}

.

Show that this set is a basis for M/K, from which the theorem immediately follows.

Linear independence: Assume
∑
i,j γi,jaibj = 0 for some γij ∈ K. Then

∑
j

(∑
i γijαi

)
bj = 0.

Since {bj} is linearly independent over L, we get
∑
i γijai = 0 for all j. Since {ai} is linearly independent

over K, we conclude that γij = 0, for all i, j.

Spanning: Choose α ∈M . Then

α =
∑
j

cjbj ,

for some cj ∈ L. For each j, there are γij in K such that cj =
∑
i γijαi. Then:

α =
∑
i,j

γijaibj ,

and we’re done.

Let L/K be an extension of field. Let Lalg be the set of elements of L algebraic over K.

Theorem: Lalg is a field.
Proof: Let α ∈ Lalg be any element. Then K(α)/K is finite, because its degree is the degree of a minimal
polynomial for α/K, which exists because α/K is algebraic. If β ∈ Lalg is any other element, then K(β)/K
is finite too.

K(α, β) = K(α)K(β)

finite

K(α) K(β)

K

finite


finite, by KLM.

So K(α, β) is also finite. It contains α+ β, α− β, αβ, and α/β (if β 6= 0), so all these must be in Lalg.

The field Lalg is called the algebraic closure of K in L.

Definition: Let M/K be an extension. Let E, F ⊂ M be subfields of M containing K. The compositum
(composite) of E and F over K is EF , defined to be the smallest subfield of M that contains E and F .

If E = K(α1, . . . , αn), F = K(β1, . . . , βm), then EF = K(α1, . . . , αn, β1, . . . , βm).

Splitting Fields
Let L/K be an extension, p(x) ∈ K[x] a non-constant polynomial. Then L is a splitting field for p(x) over K
iff :
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(1) p(x) = c(x− α1) · · · (x− αn) for some c, αi ∈ L, and

(2) L = K(α1, . . . , αn).

Example: A splitting field for x4 − 2 over Q is Q( 4
√

2, i 4
√

2,− 4
√

2,−i 4
√

2) = Q( 4
√

2, i).
Example: A splitting field for x3 + x+ 1 over F2 = Z/2Z is F2(a1, a2, a3) = F8, the field with 8 elements.
(Note a1, a2, a3 are the roots of x3 + x+ 1 in F8.)
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Splitting Fields
Let K be a field, p(x) ∈ K[x] a non-constant polynomial A splitting field for p(x) over K is a field L such
that:

(1) p(x) = c(x− a1) · · · (x− an) for some c, a1, . . . , an ∈ L and

(2) L = K(a1, . . . , an)

Fact: Up to isomorphism, there is exactly one splitting field for a given p(x) over K.
Definition: A finite field extension L/K is normal iff L is the splitting field for some p(x) ∈ K[x].
Note:

K(a1, . . . , an)
...

≤n−1

K(a1)

≤n

K


degree ≤ n!

Definition: Let K be a field. An algebraic closure of K is a field K such that:

(1) L/K is algebraic

(2) Every non-constant polynomial p(x) ∈ K[x] splits into linear factors in L[x].

Fact: Up to isomorphism, there is exactly one algebraic closure of K.
Definition: A field K is algebraically closed iff every non-constant p(x) ∈ K[x] splits into linear factors in
K[x].

Theorem: Any algebraic closure of a field K is algebraically closed.
Proof: Let L be an algebraic closure of K, and let p(x) ∈ L[x] be any non-constant polynomial. Proceed by
induction on deg(p). The base case deg(p) = 1 is trivial.
Assume every polynomial of deg ≤ n splits, and let deg(p) = n+ 1. If p is reducible, we’re done. If not, let
M/L be a splitting field for p(x) over L.
Any root α ∈M of p(x) is algebraic over L. But L is algebraic over K, so M is also algebraic over K. Let
q(x) ∈ K[x] be a minimal polynomial for α over K. Then since q(x) = 0, we get p(x) | q(x), and q(x) splits
into linear factors over K, so p(x) does too.
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Example: Union is Fp
Fp8

Fp10 Fp4 Fp6 Fp9

Fp5 Fp2 Fp3 Fp7

Fp = Z/pZ

C

R

Definition: Let K be a field, p(x) ∈ K[x] a non-constant polynomial. We say that p(x) is separable over K
iff gcd(p, p′) = 1.
Definition: The derivative of a0 + a1x+ · · ·+ anx

n is a1 + 2a2x+ · · ·+ nanx
n−1.

Theorem:

(pq)′ = p′q + pq′

(p± q)′ = p′ ± q′

(cp)′ = cp′ if c ∈ K

Proof: As if.

Theorem: Let p(x) = c
∏
i(x− ai)ni for distinct ai ∈ K. Then x− ai | p′(x) iff (x− ai)2 | p(x).

Proof: Backwards: p(x) = (x − ai)2q(x), so p′(x) = 2(x − ai)q(x) + (x − ai)2q′(x) which has a factor of
x− ai.

Forwards: p′(x) = (x− ai)q(x)

=⇒ p′(x) = q(x) + (x− ai)q′(x)

=⇒ 0 = p′(ai) = q(ai)

so x− ai | q(x) =⇒ (x− ai)2 | p(x)

So p(x) is separable iff it has no multiple roots in any extension of K.
Definition: Let L/K be an extension, α ∈ L, α algebraic over K. Then α is separable over K iff its minimal
polynomial over K is separable.
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Fact: p(x) is separable iff gcd(p, p′) = 1.
Definition: Let L/K be a field extension, α ∈ L an algebraic element. Then α is separable over K iff the
minimal polynomial for α/K is separable. We say L/K is separable iff every α ∈ L is separable over K.
Definition: A field K is perfect iff every finite extension of K is separable.
Theorem: If charK = 0, then K is perfect.
Proof: Let L/K be an extension, α ∈ L an algebraic element, p(x) ∈ K[x] its minimal polynomial over K.
Then p(x) is irreducible in K[x]. If α ∈ K, then α is trivially separable over K.
If not, then p′(x) is non-constant, of degree smaller than deg(p). So deg(gcd(p, p′)) < deg(p). Since p is
irreducible, we conclude gcd(p, p′) = 1.
What kind of polynomial has 0 derivative? Say charK = l.

p(x) = a0 + a1x+ · · ·+ anx
n

=⇒ p′(x) = a1 + 2a2x+ · · ·+ nanx
n−1

If p′ = 0 then iai = 0 for all i. This is equivalent to demanding a1 = 0 for all i prime to p.
So p′(x) = 0 iff

p(x) = a0 + alx
la2lx

2l + · · ·+ anlx
nl
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Definition: Let K be a field of characteristic l 6= 0. Define the Frobenius homomorphism

Frobl : K → K

by Frobl(a) = al.
Theorem: If charK = l 6= 0, then (a+ b)l = al + bl for all a, b ∈ K.

Proof: (a+ b)l =

l∑
i=0

(
l

i

)
aibl−i

If i 6= 0, l,
(
l
i

)
= l!

(l−i)!i! is divisible by l, so:

= al + bl

Theorem: Let K be a field of characteristic l 6= 0. Then K is perfect iff Frobl : K → K is onto (is an
isomorphism).
Proof: Backwards: Assume Frobl is onto, and let α be any algebraic element in an extension L/K. Let p(x)
be a minimal polynomial for α/K.

If p′(x) 6= 0, then gcd(p, p′) = 1, and so α is separable over K. If p′(x) = 0, then:

p(x) = a0 + alx
l + · · ·+ anlx

nl

(since Frobl is onto) = (b0)l + (b1)lxl + · · ·+ (bn)lxnl

= (b0 + b1x+ · · ·+ bnx
n)l

which is reducible. This is impossible, so p′ 6= 0.

Forwards: Since Frobl is not onto, there is some a ∈ K such that a 6= bl for any b ∈ K. Consider xl − a, and
let F/K be a splitting field for xl − a. There is some root α ∈ F of xl − a:

αl − a = 0

=⇒ xl − a = xl − αl = (x− α)l

Since α /∈ K, its minimal polynomial p(x) over K has degree at least 2, and it’s a factor of (x− α)l. So p(x)
isn’t separable.

Theorem: Every finite field is perfect.
Proof: Frobl, on a finite field is a 1–1 function from a finite set to itself. It’s therefore onto.
Example: Fl(T ) is imperfect, since T is not the lth power of any rational function, for degree reasons.

C(x) =
{ p(x)
q(x) : p,q∈C[x]

q 6≡0

}
Fl(T ) =

{ p(T )
q(T ) : p,q∈Fl[T ]

q 6≡0

}
Definition: Let L/K be a finite extension. The separable closure of K in L is the set of all elements of L
that are separable over K.
Theorem: The separable closure of K in L is a field.
Proof: Let Ksep be the separable closure of K in L. Let α, β ∈ Ksep be elements.

K(α, β)

K(α) K(β)

K
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Cyclotomic extensions
Let n be an integer, ζn ∈ C a primitive root of unity; i.e., ζn = (e2πi/n)a for some integer a prime to n. The
nth cyclotomic extension of Q is Q(ζn). Note that this is independent of a.

n Q(ζn) degree over Q
1 Q 1
2 Q 1
3 Q(ζ3) = Q(

√
−3) 2

4 Q(i) 2
5 4
6 Q(

√
−3) 2

...
...

n φ(n)

Definition: The group µn is the group of nth roots of unity with respect to multiplication.
We have µn ∼= Cn (or Z/nZ), with generator e2πi/n, via:

e2πia/n 7→ a mod n

Note Q(ζn) = Q(µn).
Note that if d | n, then µd ⊂ µn.
Definition: The nth cyclotomic polynomial is

xn − 1 =
∏
α∈µn

(x− α) =

n∏
a=1

(x− e2πia/n)

φn(x) =
∏

(a,n)=1

(x− eπia/n)

Note that xn − 1 =
∏
d|n φd(x)

Note φn(x) has degree φ(n) = # integers prime to n between 0 and n.

Theorem: φn(x) ∈ Z[x], and is primitive. Proof: By induction on n. If n = 1, φn(x) = x − 1 and we’re
done.
Now assume φk(x) ∈ Z[x] for all k < n, and consider φn(x). We have

xn − 1 =
∏
d|n

φd(x)

= φn(x)
∏
d|n
d6=n

φd(x)

Since xn − 1, φd(x) ∈ Z[x] for d < n, we deduce φn(x) ∈ Q[x]. Since Z is a UFD and since
∏
φd(x) is

primitive (by Gauss’ Lemma), we conclude by Gauss’ Lemma that φn(x) ∈ Z[x]. φn(x) is primitive because
it’s monic.

Theorem: φn(x) is irreducible over Q.
Proof: By Gauss’ Lemma, it suffices to show that φn(x) is irreducible over Z. Assume φn(x) = f(x)g(x)
for irreducible f(x) over Q, f(x), g(x) ∈ Z[x]. Let ζn be come primitive nth root of unity. Note that if p is
prime, p - n, then φn(ζpn) = 0. f(ζn) = 0
Since xn − 1 is separable, so is φn(x), so there are 2 cases:
Case I: g(ζpn) = 0 for some prime p. Then ζn is a root of g(xp). Since f(ζn) = 0 and f is irreducible, we get

g(xp) = f(x)h(x)
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for some h(x) ∈ Z[x]. Reducing mod p:

g(xp) ≡ f(x)h(x) mod p

=⇒ g(x)p ≡ f(x)h(x) mod p

so gcd(f, g) 6≡ 1 mod p.
So φn(x) = f(x)g(x) has a multiple root mod p. But this is impossible, since φn(x) | xn − 1 and xn − 1 is
separable mod p (since p - n). So we are in:
Case II: g(ζpn) 6= 0 for all primes p - n. In this case, g(ζan) for all a prime to n. Since g | φn(x), this means
g(x) is constant and φn(x) is irreducible.

So ζn has minimal polynomial φn(x) over Q. Since deg(φn(x)) = φ(n), we conclude:

[Q(ζn) : Q] = φ(n)

If n = p is prime, then φp(x) = xp−1
x−1 = xp−1 + xp−2 + · · ·+ x+ 1.
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Let K/F be a field extension. Then AutF (K) is the set of F -algebra isomorphisms φ : K → K.
Example: AutK(K) = {1}2)

(An automorphism is an isomorphism of an object with itself.)
Example: AutR(C) = {1, σ} where σ is complex conjugation.
Example: AutQ(Q(

√
2)) = {1, σ} where σ(a+ b

√
2) = a− b

√
2.

Example: If
√
D /∈ F , then AutF (F (

√
D)) = {1, σ}, where σ(a+ b

√
D) = a− b

√
D.

i2 = −1 =⇒ σ(i2) = σ(−1)

=⇒ σ(i)2 = −1

Theorem: Let p(x) ∈ F [x] be any polynomial, E/F an extension, σ ∈ AutF (E). If α ∈ E is a root of p(x),
then so is σ(α).
Proof: Let p(x) = a0 + a1x+ · · ·+ anx

n for ai ∈ F . Then:

a0 + a1α+ · · ·+ anα
n = 0

=⇒ σ(a0 + · · ·+ anα
n) = 0

=⇒ σ(a0) + · · ·+ σ(an)σ(α)n = 0

=⇒ a0 + · · ·+ σ(α)n = 0

=⇒ p(σ(α)) = 0

Since σ is 1–1, it follows that it permutes the roots of p(x).
Example: AutQ(Q( 3

√
2)) = {1}, because σ( 3

√
2)3 = 2 =⇒ σ( 3

√
2) = 3

√
2 since Q( 3

√
2) ⊂ R.

Theorem: Let S ⊂ AutF (K) be any subset. Let E = {α ∈ K : σ(α) = α for all σ ∈ S }.
(E is called the fixed field of S.)
Then E is a field.
Proof: It suffices to show 0, 1 ∈ E (clear) and that E is closed under +, −, ·, and ÷. Thus, pick any a,
b ∈ E. Then for all σ ∈ S, σ(a) = a & σ(b) = b, so σ(a+ b) = σ(a) + σ(b), and similarly for the rest.

Theorem: Let T ⊂ K be any subset. Let H = {σ ∈ AutF (K) : σ(α) = α for all α ∈ T }.
Then H is a subgroup of AutF (K).
Proof: It suffices to show 1 ∈ H (clear) and H closed under composition and inversion. This is easy:

σ1 ∈ H, σ2 ∈ H =⇒ σi(α) = α for i = 1, 2

so σ−1
1 (α) = α and σ1(σ2(α)) = σ1(α) = α

2)id
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AutF (K) K/F
S −→ fixed field, F ⊂ E ⊂ K

fixing automorphisms H subgroup ←− T

Notice that the fixed field of S is the same as the fixed field of the subgroup generated by S.
Notice also that if T ⊂ K is any subset, then the automorphisms fixing T are the same as the automorphisms
fixing F (T ).

In particular, if α ∈ K is any element, then the F -algebra homomorphisms of K fixing α are precisely the
F -algebra homomorphisms fixing F (α).

For instance, σ ∈ AutQ(C) fixes
√

2 iff it fixes Q(
√

2).

If H1 ⊂ H2, then fix(H2) ⊂ fix(H1). If E1 ⊂ E2, then H2
3) ⊂ H1

4).

AutR(C) C/R
{1} C/R
{1, σ} R/R

For which field extensions K/F is this correspondence a bijection?
Answer: Splitting fields. Almost.
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Theorem: Let E/F be a field extension of degree n, and assume that E is the spitting field of a polynomial
p(x) ∈ F [x]. Let L be a field, φ : F → L a homomorphism, and assume that φ(p(x)) splits into linear factors
in L[x]. Then there is a homomorphism ψ : E → L extending φ, and there are at most n such extensions ψ,
with equality iff p(x) is separable.

E
ψ1 //

ψ2

**

E′ = F ′5)(

roots of φ(p(x))︷ ︸︸ ︷
α′1, . . . , α

′
d) // L

E′ = f

44

ψ1◦ψ−1
2

OO

E′ = ψ1(E) = ψ2(E)

Proof: The existence of ψ follows from the existence & uniqueness of splitting fields up to isomorphism.

Induce on n. Base case n = 1 is trivial, so assume the theorem for extensions of degree ≤ n− 1. Let q(x) be
an irreducible factor of p(x) of degree at least 2. Let α ∈ E be a root of q(x). Then:

E
ψ

// L

f(α)
Ξ // K(φ(α))}

There are m choices of Ξ, where
m = # of distinct roots of q(x)

F
φ

// K = ψ(F )

E is the splitting field for p(x) over f(α). By induction, there are at most [E : F (α)] choices of ψ for any
given Ξ, with equality iff p(x) has distinct roots. The number of choices of Ξ is at most deg(p(x)), with
equality iff q(x) has distinct roots. So the number of choices of ψ in total is:

[E : F (α)][F (α) : F ] = [E : F ] = n,

3)AutE2
(K)

4)AutE1 (K)
5)φ(F )
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with equality iff p(x) is separable.

Corollary: If E is a splitting field of some polynomial over F , then # AutF (E) ≤ [E : F ], with equality iff
p(x) is separable.

Definition: A finite extension E/F is Galois iff # AutF (E) = [E : F ].
Corollary: Splitting fields of separable polynomials are Galois.
Definition: If E/F is Galois, then Gal(E/F ) = AutF (E) is the Galois group of E/F .
Example: Gal(K/K) = {1}.
Example: Gal(C/R) = {1, σ}, σ = complex conjugation
Example: Q( 3

√
2)/Q is not Galois! Because [Q( 3

√
2) : Q] = 3, but AutQ(Q( 3

√
2)) = {1}.
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Shuntaro Yamagishi

If E is a splitting field for a separable polynomial in F [x], then E/F is Galois. If F is perfect (e.g., if
charF = 0 or F is finite) then every splitting field over F is Galois.
Example: Q(

√
2,
√

3)/Q:
To determine a homomorphism from Q(

√
2,
√

3) to itself, it is enough to figure out where
√

2 &
√

3 go.

Clearly
√

2 7→±
√

2√
3 7→±

√
3

are the only possibilities.

√
3

+ −
√

2
+ id σ2

6)

− σ3 σ6
7)

All four possibilities work, if you check them, so # AutQ(Q(
√

2,
√

3)) ≥ 4. Since [Q(
√

2,
√

3) : Q] = 4, we
conclude that # AutQ(Q(

√
2,
√

3)) = 4, and Q(
√

2,
√

3)/Q is Galois.

Gal(Q(
√

2,
√

3)/Q) ∼= (Z/2Z)× (Z/2Z).

This group has 5 subgroups.
{1} ←→ Q(

√
2,
√

3)

{1, σ3} ←→ Q(
√

3)

{1, σ2} ←→ Q(
√

2)

{1, σ6} ←→ Q(
√

6)
{1, σ2, σ3, σ6} ←→ Q

Example: F343/F7

F343 = splitting field of x343−x over F7. Since x343−x is separable, F343/F7 is Galois. Let σ = Frob7 : F343 →
F343. It’s an F7-automorphism of F343.

F343
∼= F7[x]/(x3 − 2) ∼= F7(

3
√

2)

Let Larry, Curly and Moe be the three cube roots of two F343.

σ(Larry) = Curly (wlog)

σ(Curly) = Moe

σ(Moe) = Larry

So {1, σ, σ2} are three different F7-automorphisms of F343. So F343/F7 is Galois.

6)a+ b
√
2 + c

√
3 + d

√
6 7→ a+ b

√
2− c

√
3− d

√
6

7)a+ b
√
2 + c

√
3 + d

√
6 7→ a− b

√
2− c

√
3 + d

√
6
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Example: Q( 4
√

2)/Q. Degree 4.

Q( 4
√

2)

2

}
Galois:

{ id
a+b 4√2

σ7→a−b 4√2
a,b∈Q(

√
2)

Q(
√

2)

2

}
Galois:

{
id

a+b
√

27→a−b
√

2
a,b∈Q

Q

AutQ(Q( 4
√

2)) = {id, σ} which is too small! So Q( 4
√

2)/Q is not Galois.

Definition: Let G be a group, K a field, V a (finite-dimensional) K-vector space, GL(V ) the group of
invertible K-linear transformations V → V . (e.g., V = Kn, GL(V ) = Mn(K).)
A representation of G with values in V is a homomorphism ρ : G→ GL(V ).

PMATH 442 Lecture 9: September 30, 2011
Shuntaro Yamagishi
shuntaroy@hotmail.com

Definition: G a group, K a field, V a K-vector space. A representation of G in V is a homomorphism
ρ : G→ GL 8)(V )

dim ρ = dimV

We’ll work with 1-dimensional representations, called characters:
Example: Dirichlet characters:

ρ : Z/nZ→ C

ρ(m) = e2πim/n

Example: K, L fields, φ : K → L a homomorphism. Then φ|K∗ is a 1-dim representation of K∗ in L.

Theorem: Let G be a group, L a field, χ1, . . . , χr a set of distinct characters of G over L. Then {χ1, . . . , χr}
are linearly independent over L.
Proof: Assume not, and let (after possibly renumbering) {χ1, . . . , χt} be an L-linear dependent subset of
minimal size. Then there are a1, . . . , at ∈ L such that

a1χ1(g) + · · ·+ atχt(g) = 0

for all g ∈ G. Note t ≥ 2, and choose γ ∈ G such that χ1(γ) 6= χt(γ). Then

a1χ1(γ)χ1(g) + · · ·+ atχt(γ)χt(g) = 0

and a1χt(γ)χ1(g) + · · ·+ atχt(γ)χ1(g) = 0

=⇒ (nonzero)χ1(g) + · · ·+ (something)χt−1(g) = 0

so {χ1, . . . , χt−1} is linearly dependent, which is a contradiction.

Theorem: Let K/E be a field extension, F and E-subfield of K. Let G = {σ1 = 1, σ2, . . . , σn} be
E-automorphisms of K whose fixed field is F . If G is a group, then

#G = [K : F ].

Proof: Let m = [K : F ], {w1, . . . , wn} an F -basis of K. Define

vi =

σi(w1)
...

σi(wm)

 ∈ Km

8)invertible K-linear transformation V → V
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There are n vectors in vi. If we show that the vis are K-linear independent it will follow that n ≤ m. Thus,
say a1, . . . , an ∈ K satisfy:

a1v1 + · · ·+ anvn = 0.

We want to show ai = 0 for all i. Well:

a1σ1(wj) + · · ·+ anσn(wj) = 0

for all j. Since {w1, . . . , wm} is a basis for K/F , and since the σi are all F -linear transformations, we get

a1σ1(α) + · · ·+ anσn(α) = 0

for any σ ∈ K. Since the σis are characters of K∗ in K, they’re K-linearly independent so ai = 0 for all i. So
#G ≤ [K : F ]. Let α1, . . . , αn+1 ∈ K be any elements. If we show it’s linearly independent over F , then
dimF K ≤ n. Define

ui =

σ1(αi)
...

σn(αi)

 ∈ Kn.

There are n+ 1 of the uis, so they are linearly dependent over K.
Choose β1, . . . , βn+1 ∈ K such that

(1) β1u1 + · · ·+ βn+1un+1 = 0

(2) A minimal # of βi are 0.

and (3) β1, . . . , βt are nonzero, βt+1, . . . , βn+1 = 0, βt = 1.

If all βi are in F , then {α1, . . . , αn+1} is linearly dependent over F , by looking at first coordinate of (1).

If not, assume without loss of generality that β1 /∈ F . Choose σ (in G) such that σ(β1) 6= β1. Then:

σ(β1)σ(u1) + · · ·+ σ(βt)σ(ut) = 0

But σ acts on each ui by permuting the coordinates in the same way. So:

σ(β1)u1 + · · ·+ σ(βt)ut = 0

Subtraction with (1) gives:
[β1 − σ(β1)]u1 + · · ·+ [βt − σ(βt)]

9)ut = 0

So this relation has fewer nonzero terms, which is a contradiction. So βi ∈ F for all i, and we’re done.

PMATH 442 Lecture 10: October 3, 2011
Theorem: Let K/F be a Galois extension. If p(x) ∈ F [x] is irreducible and has a root in K, then p(x) splits
into linear factors in K[x], and p(x) is separable.
Proof: Let G = Gal(K/F ) = {σ1, σ2, . . . , σn}, σ ∈ K, p(α) = 0. Let αi = σi(α) be the conjugates of α.
Define f(x) =

∏
i

10)(x− αi). Then G acts on the roots of f(x) by permutation, so the coefficients of f(x)
are fixed by G.
The fixed field of G is a field that contains F and of which K is a degree n extension, so it is F .
Now, f(α) = 0, so p(x) | f(x). Since p(αi) = 0 for all i, we get f(x) | p(x), and so f(x) is also irreducible (it’s
a constant times p(x)). Furthermore, p(x) has all its roots in K, and it’s separable (because f(x) is).

Theorem: Let K/F be a finite extension. Then K/F is Galois iff K is the splitting field for a separable
polynomial in F [x].
Proof: Let {w1, . . . , wn} be an F -basis of K. Let pi(x) be a minimal polynomial for wi over F . Let
g(x) = lcm(pi(x)). Then since each pi(x) is separable, so is g(x). Since each pi(x) splits in K, so does g(x).
Since K = F (w1, . . . , wn), K is a splitting field for g(x) over F .

9)zero!
10)distinct αi
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Theorem: Let K/F be a finite extension. Then K/F is Galois iff it is normal and separable.
Proof: Forwards: Galois −→ normal, done.
If α ∈ K, then its minimal polynomial p(x) ∈ F [x] is separable, so K/F is separable.
Backwards: Follows immediately from previous theorem.

Theorem: (The Fundamental Theorem of Galois Theory).
Let K/F be a finite Galois extension, G = Gal(K/F ). Then there is a bijection between subgroups of G and
F -subfields of K given by:

E 7−→ {σ ∈ G such that σ(α) = α for all α ∈ E}{
α ∈ E such that

σ(α)=α
for all σ ∈ H

}
←− [ H

Moreover, if E1, E2 ←→ H1, H2, then:

F -subfields of K Subgroups of G
E2 ⊂ E1 ←→ H1 ⊂ H2

[K : F ] = #H
[E : F ] = |G : H|

Gal(K/E) = AutE K ∼= H
HomF (E,K)11) ∼= G/H12){

E/F is Galois
Gal(E/F )

iff←→ H is normal in G
G/H

}
E1 ∩ E2 ←→ H1H2

E1E2 ←→ H1 ∩H2

Example: Q(
√

2,
√

3)/Q.
The Fundamental Theorem says that Q(

√
2,
√

3) has five Q-subfields.

Q(
√

2,
√

3)

Q(
√

2) Q(
√

6) Q(
√

3)

Q

Gal(Q(
√

2,
√

3)/Q) = {(0, 0), (0, 1), (1, 0), (1, 1)}

{(0, 0)}

{(0, 0), (0, 1)} {(0, 0), (1, 1)} {(0, 0), (1, 0)}

Gal(Q(
√

2,
√

3)/Q)

PMATH 442 Lecture 11: October 5, 2011
Theorem: (FTGT)

11)pointed set
12)pointed set
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Let K/F be a Galois extension, G = Gal(K/F ). Then there is a bijection

{F -subfields
E of K } ←→

{
Subgroups
H of G

}
E 7−→

{
σ ∈ G such that
σ(α)=α ∀α∈E

}
{
α ∈ K such that
σ(α) = α for

all σ ∈ H

}
←− [ H

F -fields Subgroups
E1 ⊂ E2 ←→ H2 ⊂ H1

[K : E] = #H
[E : F ] = #G/H = |G : H|

Gal(K/E) = AutE(K) = H
HomF (E,K) ∼= G/H
E/F Galois ←→ H is normal

(in the case Gal(E/F ) ∼= G/H)
E1 ∩ E2 ←→ H1H2

E1E2 ←→ H1 ∩H2

Proof: We will show that if H1 and H2 are subgroups of G with the same fixed field E, then H1 = H2. Then
E is also the fixed field of H1H2, so

[K : E] = #H1 = #H2 = #H1H2

so H1 = H2.

Now let E ⊂ K be any F -subfield. Then [K : E] = # Gal(K/E) because K/E is Galois.
But Gal(K/E) is a subgroup of G, so:

(1) E ⊂ fixed field of Gal(K/E)

and (2) [K : fixed field] = [K : E]

so E is the fixed field of Gal(K/E).

So the given correspondence is a bijection, as desired.

The inclusion-reversing property is clear.

We already proved [K : E] = #H. KLM and #H(#G/H) = #G suffice to show [E : F ] = #G/H. We
already showed Gal(K/E) is equal to H.

We will now show that HomF (E,K) ∼= G/H as pointed sets.

Definition: A pointed set is an ordered pair (S, x) where x ∈ S.

Definition: Let F be a field, A1, A2 F -algebras. Then

HomF (A1, A2) =
{
F -algebra homomorphism

φ : A1→A2

}
Remarks: HomF (A1, A2) is, in general, just a set. If A1 ⊂ A2, then HomF (A1, A2) is a pointed set, with
distinguished element i : A1 ↪→ A2 the inclusion.

Define φ : G→ HomF (E,K) by φ(σ) = σ|E13)

This maps the distinguished element of G (namely id) to that of HomF (E,K) (namely inclusion E ↪→ K).

We know φ is onto because we proved that if K/E is Galois, then homomorphisms from E → K always
extend to all of K.
If φ(σ1) = φ(σ2), then σ1|E = σ2|E , so σ1σ

−1
2 |E = idE . This implies that σ1σ

−1
2 ∈ H = Gal(K/E), so for any

f ∈ HomF (E,K) the set
{σ ∈ G : φ(α) = f }

13)the restriction of σ to E
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is a left coset of H. So we’ve shown that G/H ∼= HomF (E,K) as pointed sets.
We have the following lemma:
Lemma: Say K/F is normal, F ⊂ E ⊂ K fields. Then E/F is normal iff imφ = E for all homomorphisms
φ : E → K.

PMATH 442 Lecture 12: October 7, 2011
Office hours Tuesday Oct. 11 moved to 3:30–4:30.

Lemma: Let K/F be a finite normal field extension. E an F -subfield of K. Then E/F is normal iff imφ = E
for all F -homomorphisms φ : E → K.
Proof of lemma: Write E = F (α1, . . . , αn).
Forwards: Assume E/F normal. Then we can choose the αis so that p(x) = (x− α1) · · · (x− αn) is in F [x].
For each i, φ(αi) is a root of p(x), so since φ is injective, it permutes the roots of p(x), so:

imφ = φ(E) = F (φ(α1), . . . , φ(αn))

= F (α1, . . . , αn)

= E

Backwards: Assume that E/F is not normal. Then there is an irreducible p(x) ∈ F [x] such that p(x) has a
root α ∈ E, but p(x) does not split in E. Since p(x) splits in K, there is a root β of p(x) with β ∈ K. Since
K/F is normal, and since p(x) splits in K, we can extend the isomorphism F (α) ∼= F (β) to a homomorphism
ψ : K → K. Let φ = ψ|E . Then φ(α) = β /∈ E, so imφ 6⊃ E.

We now return to our quest to show that E/F is Galois iff H is a normal subgroup of G.

The lemma implies that E/F is Galois iff HomF (E,K) ∼= AutF (E) as pointed sets.

Let σ ∈ AutF (E). The subgroup of G fixing σ(E) is σHσ−1. So σ(E) = E for all σ ∈ G iff σHσ−1 = H for
all σ ∈ G. So E/F is Galois iff H is normal in G.

In that case, the map ψ : G→ Gal(E/F ), ψ(σ) = σ|E , is an onto homomorphism kerψ = H, so induces an
isomorphism G/H → Gal(E/F ).

We just need to show E1 ∩ E2 corresponds to H1H2, and that E1E2 corresponds to H1 ∩H2.

If σ ∈ H1H2, then certainly σ fixes E1 ∩E2. Conversely, let E be the fixed field of H1H2. Then E1 ∩E2 ⊂ E,
and since H1H2 is the smallest subgroup of G containing H1 & H2, it follows that E is the largest F -subfield of
K contained in E1 and E2. But E1 ∩E2 is the largest F -subfield of K contained in E1 & E2, so E = E1 ∩E2.

Similarly, E1E2 is the smallest F -subfield of K containing E1 & E2 so it corresponds to the largest subgroup
of G contained in H1 & H2, namely H1 ∩H2.

Example: Q( 3
√

2, γ) = K, γ = e2πi/3. What is Gal(K/Q), and what are the Q-subfields of K?

Gal(K/Q): φ φ( 3
√

2) φ(γ)

id 3
√

2 γ

γ 3
√

2 γ

γ2 3
√

2 γ
3
√

2 γ2

γ 3
√

2 γ2

γ2 3
√

2 γ2

Since φ is determined by φ( 3
√

2) and φ(γ), and since [K : Q] = 6, we know these six rows are all represented
by elements of Gal(K/Q).

PMATH 442 Lecture 13: October 12, 2011
Q( 3
√

2, γ)/Q, γ = e2πi/3

S = { 3
√

2
a
, γ 3
√

2
b
, γ2 3
√

2
c
}
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G = Gal(Q( 3
√

2, γ)/Q)
G acts on S by permutations, and this action is an isomorphism of G with S3.

Subgroups of G Q-subfield

{1} Q( 3
√

2, γ)

{1, (ab)} Q(γ2 3
√

2)

{1, (ac)} Q(γ 3
√

2)

{1, (bc)} Q( 3
√

2)
{1, (abc), (acb)} Q(γ)

G Q

Example: Compute the Galois group of x4 − 2.
Solution: The splitting field is Q( 4

√
2, i) which has degree 8 over Q.

Any Q-automorphism of Q( 4
√

2, i) takes i 7→ ±i and 4
√

2 to ± 4
√

2 or ±i 4
√

2, and any Q-automorphism is
completely determined by its action on 4

√
2 and i. This gives at most 8 automorphisms, so since Q( 4

√
2, i)/Q

is Galois of degree 8, they are all realised by actual automorphisms.

Let G = Gal(Q( 4
√

2, i)/Q). Then G acts on S = { 4
√

2
a
, i 4
√

2
b
,− 4
√

2
c
,−i 4
√

2
d
} by permutations. So there is a

homomorphism ψ : G → S4 which is injective because if σ ∈ kerψ then σ(i) = i & σ( 4
√

2) = 4
√

2. The
homomorphism ψ is given by:

Q-Automorphism Permutation of S

(i, 4
√

2) 1

(−i, 4
√

2) (bd)

(i, i 4
√

2) (abcd)

(−i, i 4
√

2) (ab)(cd)

(i,− 4
√

2) (ac)(bd)

(−i,− 4
√

2) (ac)

(i,−i 4
√

2) (adcb)

(−i,−i 4
√

2) (ad)(bc)

i 4
√

2 (b)

− 4
√

2 (c) 4
√

2 (a)

−i 4
√

2 (d)

Note that every permutation in ψ(G) preserves this square, so G
ψ
↪→ D4. But #G = #D4 = 8, so in fact ψ

induces an isomorphism of G with D4.

One can, as in the previous case, use this to find all the Q-subfields of Q( 4
√

2, i).

Theorem: Let K be the splitting field of a separable polynomial f(x) over a field F . Then Gal(K/F ) acts
transitively on the roots of f(x) if f(x) is irreducible.
Proof: Let α ∈ K be a root of f(x). Define:

p(x) =
∏
σ∈G

distinct σ(x)

(x− σ(x))

Then the coefficients of p(x) lie in the fixed field of G since p(x) is fixed by G. So p(x) ∈ F [x]. But p(x) = 0,
so f(x) | p(x). However, since p(x) is separable and every root of p(x) is a root of f(x), we get p(x) | f(x).
So p(x) = cf(x) for some c ∈ F . Since G acts transitively on the roots of p(x), it acts transitively on the
roots of f(x).
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PMATH 442 Lecture 14: October 14, 2011
Galois Theory of Finite Fields
Say F is a finite field. Then F has pn elements for some prime p and integer n ≥ 1. We write F = Fpn . A
finite extension of F is also a finite field, with pkn elements for some integer k ≥ 1. Let E = Fpkn . Then

[E : F ] = [Fpkn : Fpn ] = k

Consider Frobp :
Fpkn → Fpkn
E → E

.

It’s an isomorphism, with fixed field Fp. In general, Frobp only fixes Fpn is n = 1, so Frobp is not in AutF (E).
However, αp

n

= α iff α ∈ F = Fpn , so Fpn is the fixed field of (Frobp)
n, the n-fold composition of Frobp with

itself.

So let π = (Frobp)
n. Then for each a ∈ {1, . . . , k}, the a-fold composition πa is an automorphism of Fpkn = E

whose fixed field is Fpan ∩ E = Fpgn where g = gcd(a, k). So π is an F -automorphism of E of order k. So
E/F is Galois with Gal(E/F ) = {1, π, . . . , πk−1} ∼= Z/kZ.

Theorem: Say K/F is a finite Galois extension, E/F any finite extension.

KE

K E

K ∩ E

F

Then KE/E is Galois, and

Gal(KE/E) ∼= Gal(K/K ∩ E) and [KE : F ] =
[K : F ][E : F ]

K ∩ E : F
.

Proof: First, note that the formula follows formally from the isomorphism of Galois groups:

[KE : F ] = [E : F ][KE : E]

= [E : F ][K : K ∩ E]

= [E : F ]
[K : F ]

[K ∩ E : F ]

It therefore suffices to prove the theorem for F = K ∩ E.

KE

K E

F

K is the splitting field for some separable polynomial p(x) ∈ F [x]. So KE is the splitting field for p(x) ∈ E[x]
over E, and therefore KE/E is Galois.

Define ψ : Gal(KE/E) → Gal(K/F ) by ψ(σ) = σ|K , which is well defined because K/F is Galois, so
im(σ|K) = K. ψ is a homomorphism. If σ ∈ kerψ, then σ|K = id. Since σ ∈ Gal(KE/E), σ|E = id too, so
σKE = id. So ψ is injective.
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Consider imψ. Its fixed field is, say, L. Then L ⊂ K, and every element of Gal(KE/E) fixes L, so L ⊂ E.
But F ⊂ L, so L = K ∩ E = F . Therefore imψ = Gal(K/F ), and ψ is onto.

Theorem: Say K1K2 are Galois extensions of F . Then K1 ∩ K2 and K1K2 are Galois over F , and
Gal(K1K2/F ) is isomorphic to the fibre product of Gal(K1/F ) and Gal(K2/F ) over Gal(K1 ∩K2/F ).

K1K2

K1 K2

K1 ∩K2

F

Definition: Let S, T , U be sets, with functions

T

f
��

U

g
��

S

The fibre product of T and U over S is:

T ×S U = { (t, u) ∈ T × U : f(t) = g(u) }

PMATH 442 Lecture 15: October 17, 2011
Definition: Let φ : G → Sym(S) be a group action of G on a set S. Then φ is transitive iff for every a,
b ∈ S, there is a g ∈ G such that [φ(g)](a) = b.

Theorem: Let K1, K2 be Galois extensions of F . Then K1 ∩K2 and K1K2 are Galois extensions of F , and

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K1∩K2/F ) Gal(K2/F ) =
{

(σ, τ) : σ∈Gal(K1/F )
τ∈Gal(K2/F ) σ|K1∩K2

= τ |K1∩K2

}
Proof: K1 ∩ K2 is Galois over F because it’s contained in K, (& so is separable) and if p(x) ∈ F [x] is
irreducible & has a root in Ki, then by normality of Ki/F it splits into linear factors in Ki[x], and hence in
(K1 ∩K2)[x]. So K1 ∩K2/F is normal.

K1K2/F is Galois because it’s a splitting field for lcm(f1, f2) over F , where Ki is a splitting field for fi(x)
over F .

Define ψ : Gal(K1K2/F )→ G by ψ(σ) = (σ|K1
, σ|K2

). It’s clearly a homomorphism, and its image clearly
lives in G because (σ|K1

)|K2
= (σ|K2

)|K1
. It’s also injective because σ is determined by its values on K1 &

K2.

# Gal(K1K2/F ) =
[K1 : F ][K2 : F ]

[K1 ∩K2 : F ]

=
# Gal(K1/F )# Gal(K2/F )

# Gal(K1 ∩K2/F )

= # Gal(K1/F )# Gal(K2/K1 ∩K2)

= #G

because there are [K2 : K1 ∩K2] ways to extend σ|K1∩K2 to K2.

17



Therefore ψ is surjective and hence an isomorphism.
In particular, if K1 ∩K2 = F , then

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F )

Definition: Let K/F be a separable extension, and let L/F be a Galois extension containing K/F . The
Galois closure of K in L is the intersection of all Galois extensions of F that contain K/F & are contained in
L.
Note: The Galois closure of K is a Galois extension of F .
Other notes: Say K/F is finite & separable. Then K = F (α1, . . . , αn), so a splitting field for the lcm of the
minimal polynomials over F of the αis is a Galois extension of F containing K. In fact, this field is a Galois
closure of K over F . Any Galois closure of K is isomorphic to this one.

F25
∼= F5(

√
2)

(2
√

2)2 = (3
√

2)2 = −2

(
√
a)(
√
b) 6=

√
ab

1 = 1

=⇒ 1 · 1 = (−1)(−1)

=⇒
√

1 · 1 =
√

(−1)(−1)

=⇒
√

1
√

1 =
√
−1
√
−1

}
WRONG!

=⇒ 1 = −1
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Theorem: (Primitive Element) Let K/F be a finite, separable field extension. Then K = F (α) for some
α ∈ K.
Proof: First, note that is enough to show that K = F (α) iff K/F has finitely many subextensions. To
see this, assume we had proven that K = F (α) iff K has finitely many F -subfields. Then since K/F is
separable, there is a Galois extension L/F with K ⊂ L. By the Fundamental Theorem, L has only finitely
many F -subfields, so K also has only finitely many F -subfields. By our presumed fact, K = F (α) for some
α ∈ K.

Forwards: Assume K = F (α), and let E ⊂ K be an F -subfield. Let p(x) ∈ F [x] be the monic minimal
polynomial for α/F . Let p(x) = p1(x) · · · pn(x) be a factorization of p(x) into monic irreducibles in E[x]. Let
E′ be the F -field generated by the coefficients of the pi(x). Note that K = E(α) = E′(α) and α has the same
minimal polynomial over E and E′, so [K : E] = [K : E′], and hence E = E′ (since E′ ⊂ E).

Backwards: Assume K has only finitely many F -subfields.
Case I: F is infinite. Then it is enough to show that for any α, β in K, F (α, β) = F (γ) for some
γ ∈ K. Since F is infinite, and since K has only finitely many F -subfields there exist c1, c2 ∈ F such that
F (α+ c1β) = F (α+ c2β) & c1 6= c2.

Then β =
(α+ c1β)− (α+ c2β)

c1 − c2
∈ F (α+ c1β)

and α = (α+ c1β)− c1β ∈ F (α+ c1β)

so we may take γ = α+ c1β.
Case II: F finite, so K finite. By the classification of finite abelian groups, K∗ = K \ {0} ∼= (Z/nZ)× · · · ×
(Z/nZ) with ni | ni+1 for all i < r. If r ≥ 2, then there are at least n2

1 elements of K∗ with order dividing n1.
This corresponds to at least n2

1 different roots of xn1 − 1. This is a problem if n1 > 1, so we deduce that r = 1
& K∗ is cyclic.

So K = F (α) where α is a generator of the cyclic group K∗.

Let’s compute Gal(Q(ζn)/Q).
ζn = primitive nth root of unity
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Well, [Q(ζn) : Q] = φ(n)

= #(Z/nZ)∗

= #{ a ∈ {1, . . . , n} : gcd(a, n) = 1 }

We will find φ(n) automorphisms of Q(ζn)/Q, which will imply that Q(ζn)/Q is Galois.

Let ζn(x) = nth cyclotomic polynomial. The roots of ζn(x) are the primitive nth roots of unity. They are all
powers of ζn, so Q(ζn) is the splitting field for ζn(x) over Q, and so Q(ζn)/Q is Galois.

Claim: Gal(Q(ζn)/Q) ∼= (Z/nZ)∗

via σ
ψ7→ log σ(ζn)

log ζn

= a, where σ(ζn) = ζan

Proof of claim: It is easy to check that ψ is a homomorphism. If ψ(σ) = 1, then σ(ζn) = ζn =⇒ σ = id,
so ψ is 1–1. Since # Gal(Q(ζn)/Q) = #(Z/nZ)∗ = φ(n), we see that ψ is onto. claim

PMATH 442 Lecture 17: October 21, 2011
Computing Galois Groups
Given a polynomial f(x) ∈ F [x], find the Galois group of a splitting field for f(x) over F [x]. Assume f(x) is
separable.

If F = Fq and f(x) is irreducible, then splitting field is Fqd , where d = deg(f), so Gal(Fqd/Fq) ∼= Z/dZ.

If F = Q, the problem is much, much harder, in general.
Say deg(f(x)) = 2, f(x) irreducible. Then a splitting field has degree ≤ 2!, so it has degree 2. Therefore its
Galois group is Z/2Z.
Now say deg(f(x)) = 3, f irreducible. Let K be the splitting field for f(x) over Q. Then Gal(K/Q) acts
transitively on the three roots of f(x), giving a homomorphism ψ : Gal(K/Q) → S3. Moreover, ψ is 1–1
because ψ is completely determined by its values on the roots of f(x). The transitive subgroups of S3 are:

A3 (cyclic of order 3)
S3

Let F be a field, and let K = F (a1, . . . , an) for indeterminates ai. Sn acts on K by permuting the ai.
Let M = fixed field of Sn. Then [K : M ] = n! = #Sn.
Consider f(x) = (x− a1) · · · (x− an). The coefficients of f(x) all lie in M . They are:

si = sum of all products of i dinstinct ais,

up to multiplication by ±1. The polynomial si is called the ith elementary symmetric polynomial.

Now, K is a splitting field for f(x) over M , and also K is a splitting field for f(x) over F (s1, . . . , sn) ⊂M .
By comparing degrees, we see that M = F (s1, . . . , sn).

This action of Sn descends to F [a1, . . . , an]. If E/F is a splitting field for a separable polynomial p(x) ∈ F [x],
then we get a homomorphism

ψ : Gal(E/F )→ Gal(K/M)

σ 7→ permutation corresponding to action of σ on roots of p(x), ordered.

ψ is injective because σ is determined by its values on the roots of p(x), so we can pretend Gal(E/F ) is a
subgroup of Gal(K/M).

An is a normal subgroup of Sn, of index 2. Its fixed field is therefore a quadratic extension of M . What is
this fixed field?
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Definition: Let R be a ring, r1, . . . , rn elements of R. The discriminant of r1, . . . , rn is:

Disc(r1, . . . , rn) =
∏
i<j

(ri − rj)2

This is symmetric in r1, . . . , rn. The fixed field of An in K is M(
√

Disc(a1, . . . , an)). So Gal(E/F ) fixes

F (
√

Disc(α1, . . . , αn)) iff ψ(Gal(E/F )) ⊂ An. This happens iff
√

Disc(α1, . . . , αn) ∈ F .

PMATH 442 Lecture 18: October 26, 2011
Assume that 2 6= 0.

F (a1, . . . , an)

Gal=G∼=Sn

F (s1, . . . , sn)

si = ith elementary symmetric polynomial in ais.
This is the splitting field for

(x− a1) · · · (x− an) = f(x).

If E/F is Galois, then Gal(E/F ) embeds in Gal(F (a1, . . . , an)/F (s1, . . . , sn)) ∼= Sn by numbering the roots
α1, . . . , αn of p(x) over F .

Define D(f(x)) =
∏
i<j

(ai − aj)2

∈ F (s1, . . . , sn)

F (s1, . . . , sn,
√
D) is the fixed field of An.

Definition: Let p(x) ∈ F [x] be any polynomial p(x) = tn
∏n
i=1(x− αi). The discriminant of p(x) is

Disc(p(x)) = t2n−2
n

∏
i<j

(αi − αj)2

Notice that this corresponds to D(f(x)) if p(x) is monic.

So F (
√
D) is the fixed field of Gal(E/F ) ∩ An, where we view Gal(E/F ) as a subgroup of Sn using the

correspondence described earlier (permutation action on the roots of p(x)).

Say p(x) has degree 3, E/F a splitting field. Assume 3 6= 0. Then Gal(E/F ) is either isomorphic to A3 or to
S3. So Gal(E/F ) ∼= A3 iff F = F (

√
D) iff D is a square in F .

How can we compute D without knowing the roots of p(x)?

Definition: Let f(x), g(x) be polynomials in F [x] for some field F , with f(x) = tnx
n + · · · + t0, g(x) =

umx
m + · · ·+ u0. The resultant of f and g is:

Res(f, g) = det



tn tn−1 · · · t0
tn tn−1 · · · t0

. . .
. . .

tn tn−1 · · · t0
um . . . . . . . . . . . . . . . . u0

. . .
. . .

um . . . . . . . . . . . . . . . u0


14)

14)m rows on top, n rows on bottom, main diagonal pointed out
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Res(x2 + x+ 1, x3 − 2x+ 2) = det


1 1 1

1 1 1
1 1 1

1 0 −2 2
1 0 −2 2


Claim: Disc(p(x)) = Res(p,p′)

tn

Theorem: Let f(x) = tn
∏n
i=1(x− αi), g(x) = um

∏m
i=1(x− βi) be polynomials in F [x]. Then:

Res(f, g) = tmn u
n
m

∏
i,j

(αi − βj)

Proof: Write φ(x) = Tn
∏
i(x−ai), ψ(x) = Um

∏
i(x−bi), where all these ais, bis, Tn, Um are indeterminants

over F . It suffices to prove the theorem for φ & ψ.

Note that tn divides all the coefficients of φ(x), and um divides all the coefficients ui of ψ(x), so

Res(φ, ψ) = tmn u
n
m(sym poly in ais & bis)

PMATH 442 Lecture 19: October 28, 2011
Let f(x) = tnx

n + · · ·+ t0. Then

Disc(f) =
(−1)n(n−1)/2 Res(f, f ′)

tn

This is what we will prove, eventually.

Lemma: f(x) = tn

n∏
i=1

(x− αi)

g(x) = um

m∏
i=1

(x− βi)

Then Res(f, g) = tmn u
n
m

∏
i,j(αi − βj)

Proof of lemma: We showed Res(f, g) = tmn u
n
m(symmetric polynomial in αi, βj) by showing that

φ(x) = Tn
∏

(x− ai)

ψ(x) = Um
∏

(x− bi)

satisfy Res(φ, ψ) = Tmn U
n
m · (some polynomial symmetric in ai and bj)

Next, we will show that Res(f, g) = 0 iff gcd(f, g) 6= 1. To see this, note that gcd(f, g) 6= 1 iff there are
polynomials p(x), q(x) of degrees at most m− 1, n− 1, respectively, such that fp = gq.

This is equivalent to saying that {f, xf, . . . , xm−1f, g, xg, . . . , xn−1g} is linearly dependent. Writing this out
in terms of the basis {1, x, . . . , xn+m−1}, we see that gcd(f, g) 6= 1 iff

det



tn tn−1 . . . t0
tn . . . . . . . t0

. . .
. . .

tn . . . . . . . t0
um um−1 . . . . . . . u0

. . .
. . .

um . . . . . . . . . . . u0


15) = 0 = Res(f, g)

15)m rows, n rows
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Therefore, Res(φ, ψ) = CTmn U
n
m

∏
i,j(ai − bj) for some C ∈ F .

To find C, compute Res(xn, xm − 1).

= det



1
. . .

1
1 −1

. . .
. . .

1 . . . . . . . . −1


16) = (−1)n

Res(xn, xm − 1) = C

n∏
i=1

m∏
j=1

(0− βj)

= C

m∏
j=1

(−βj)n

= C(−1)mn
( m∏
j=1

βj

)n
= C(−1)mn

(
(−1)m+1

)n
= C(−1)n

=⇒ C = 1 lemma

g(αi) = um
∏
j(αi − βj)

=⇒ Res(f, g) = tmn

n∏
i=1

g(αi)

= (−1)nmunm

m∏
j=1

f(βj)

Now, Disc(f) = t2n−2
n

∏
i<j(αi − αj)2, and f ′(αi) = d

dx

∣∣
x=αi

tn
∏n
j=1(x− αj) =

∏
j 6=i(αi − αj).

So
Res(f, f ′)

tn
= tn−2

n

n∏
i=1

f ′(αi)

= tn−2
n tnn

n∏
i=1

∏
j 6=i

(αi − αj)

= (−1)n(n−1)/217)t2n−2
n

∏
i<j

(αi − αj)2

= (−1)n(n−1)/2 Disc(f, f ′)

This proves the claim!

16)m rows, n rows
17)one factor of −1 for each pair (i, j), i 6= j
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Example: f(x) = x2 + bx+ c

=⇒ Disc(f) = −Res(f, f ′)

= −Res(x2 + bx+ c, 2x+ b)

= −det

1 b c
2 b 0
0 2 b


= −(b2 + 4c− 2b2) = b2 − 4c

This looks familiar:

x =
−b±

√
b2 − 4c

2

PMATH 442 Lecture 20: October 31, 2011

Disc(f) =
(−1)n(n−1)/2 Res(f, f ′)

lead coeff. of f
=
∏
i 6=j

(αi − αj)218)

If we add c to all the αi, the product won’t change. In other words, Disc(f(x)) = Disc(f(x + c)) for all
constants c.

Disc(x3 + ax2 + bx+ c)
a = −α1 − α2 − α3

If we subtract a
3 from each αi, their sum will become zero:

(x− a
3 )3 + a(x− a

3 )2 + b(x− a
3 ) + c = x3 −��ax2 + a2

3 x−
a3

27 +��ax2 − 2a2

3 x+ a3

9 + bx− ab

3
+ c

= x3 + (b− a2

3
)x+ ( 2a3

27 −
ab
3 + c)

This has the same discriminant & Galois group as our original polynomial, and roots that only differ by a
3

from the original roots.

So, we can calculate a “general” discriminant of degree 3 by:

Disc(x3 + ax+ b) = (−1)3(3−1)/2 Res(f, f ′)

= −Res(f, f ′)

= −det


1 0 a b

1 0 a b
3 0 a

3 0 a
3 0 a



= −det


1 0 a b 0
0 1 0 a b
0 0 −2a −3b 0
0 0 0 −2a −3b
0 0 3 0 a


= −(4a3 + 27b2)

= −4a3 − 27b2

18)αi are roots of f , with multiplicity
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Example: Compute the Galois group of x3 + 3x2 + 3, x3 + 3x2 − 3

 (x− 1)3 + 3(x− 1)2 + 3  x3 − 3x− 1

= x3x− 1− 6x+ 3 + 3 Disc = −4(−3)3 − 27(−1)2

= x3 − 3x+ 5 = 108− 27

Disc = −4(−3)3 − 27(5)2 = 81

= 108− 675 = 92

= −567 =⇒ Gal ∼= A3

Not a square, so

Galois group ∼= S3

Q: What are the transitive subgroups of S4? Possible orders:

�A1 �A2 �A3 4 �A6 8 12 24
C4 D4 A4 S4

C2 × C2

In A4?
C4: group generated by 4-cycle No
C2 × C2: group of double-flips Yes

D4: generated by double flips & one 4-cycle No
A4: even permutations Yes

S4: all of ’em No

Let G be a finite group, S a finite set on which G acts. Then:

#G =
∑
a∈S

(# orbits of a)(stab(a))

If S has 1 G-orbit, then #(orbit) | #G.

PMATH 442 Lecture 21: November 2, 2011
Question #6: Assume f & g are monic.
Tuesday November 8 4:30 MC 2065
Info session for Waterloo Math Grad School
Refreshments/Snacks

Galois Groups of degree 4 polynomials (irreducible):

Disc a square? Gal group of resolvent
C2 × C2 Yes {1} (factors completely)
C4 No S2 (linear · quadratic)
D4 No S2 (linear · quadratic)
A4 Yes A3 (irreducible)
S4 No S3 (irreducible)

Resolvent cubic:
Let α1, . . . , α4 be the roots of f(x). Then Gal(f(x)) permutes the following three elements of the splitting
field:

θ1 = (α1 + α2)(α3 + α4)

θ2 = (α1 + α3)(α2 + α4)

θ3 = (α1 + α4)(α2 + α3)

So p(x) = (x− θ1)(x− θ2)(x− θ3) has coefficients in the ground field F .
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If f(x) = x4 + ax3 + bx2 + cx + d, then its discriminant and resolvent cubic are heinous. Substituting
x = x − a

4 will eliminate the x3 term without changing the discriminant, galois group, or galois group &
splitting behaviour of the resolvent cubic.

So we assume a = 0. In that case:

= 16b4d− 4b3c2 − 128b2d2 + 144bc2d− 27c4 + 256d3

& resolvent cubic is:
x3 − 2bx2 + (b2 − 4d)x+ c2

Example: Find Galois group of x4 + 2x2 − x+ 3 over Q.
Solution: Disc = not a square
Resolvent cubic:

x3 − 4x2 − 8x+ 1 irreducible over Q (rational roots theorem)

=⇒ Gal ∼= S4.

Example: Same for x4 + 2x2 + 4.

Solution: Disc = 16 · 24 · 4− 128 · 22 · 42 + 256 · 43

= 210 − 213 + 214

= 210(1− 8 + 16)

= 210 · 9
= (3 · 25)2

Resolvent: x3 − 4x2 − 12x = x(x− 6)(x+ 2)
Therefore Gal ∼= C2 × C2

Theorem: Let f(x) be an irreducible polynomial in Z[x], primitive. Let p ∈ Z be a prime such that
f(x) is separable mod p, and p does not divide the leading coefficient of f(x). If f(x) factors mod p as
f(x) = m1(x) · · ·mr(x), deg(mi) = di, then Gal(f) over Q contains a permutation with cycle structure
(d1) · · · (dr).

Example: Compute Gal(x4 + 5x2 + 11).
Previous techniques =⇒ C4 or D4.
Mod 2: x4 + x2 + 1 = (x2 + x+ 1)2

�A
Mod 3: x4 − x2 − 1 = (x2 + 1)2

�A
Mod 5: x4 + 1 = (x2 + 2)(x2 − 2) �A

PMATH 442 Lecture 22: November 4, 2011
Compute Gal(x4 + 5x2 + 11)
Reduce mod 17:

x4 + 5x2 + 11 = (x+ 1)(x− 1)(x2 + 6)

=⇒ Gal contains a permutation with cycle structure (1)(1)(2), and so cannot be C4.

When can the roots of a polynomial in x be expressed in terms of +, −, ·, ÷, n
√
·, and the coefficients?

Theorem: Let F be a field that contains all the nth roots of unity. Let a ∈ F . Then F ( n
√
a)/F is Galois,

with cyclic Galois group, provided charF - n.
Proof: First, we may assume that [F ( n

√
a) : F ] = n, since otherwise we may replace n with

k = min
i
{( n
√
a)i ∈ F}

and we will have k | n.

Write xn− a = (x− n
√
a)(x− ζ n

√
a) · · · (x− ζn−1 n

√
a) where ζ is a primitive nth root of unity. Therefore, since

ζ ∈ F , F ( n
√
a) is a splitting field for xn − a over F . Since charF - n = [F ( n

√
a) : F ], we see that F ( n

√
a)/F is

separable, so it’s Galois.
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Let σ ∈ Gal(F ( n
√
a)/F ) be such that σ( n

√
a) = ζ n

√
a. Since ζ ∈ F , σ(ζ) = ζ, so σ(ζr n

√
a) = ζr+1 n

√
a.

Therefore σ has order n and Gal(F ( n
√
a)/F ) = 〈σ〉 is cyclic.

Theorem: Let F be a field containing the nth roots of unity. Let K/F be a finite Galois extension with
cyclic Galois group. Then K = F ( n

√
a) for some a ∈ F , n = [K : F ].19)

Proof: Say α ∈ K, ζ a primitive nth root of unity. Define

(α, ζ) = α+ ζσ(α) + ζ2σ2(α) + · · ·+ ζn−1σn−1(α)

where Gal(K/F ) = 〈a〉. Then

σ((α, ζ)) = σ(α) + ζσ2(α) + · · ·+ ζn−1σn(α)

ζ−1(α, ζ) = ζ−1α+ σ(α) + ζσ2(α) + · · ·+ ζn−2σn−1(α)

Since ζ−1α = ζn−1σn(α), we see that σ((α, ζ)) = ζ−1(α, ζ).
In particular, σ((α, ζ)n) = (σ, ζ)n, so (α, ζ)n ∈ F . Furthermore, if 1 ≤ k ≤ n − 1, then σk((α, ζ)) =
ζ−k(α, ζ) 6= (α, ζ), so (α, ζ) does not lie in any proper subfield of K. So we may set a = (α, ζ)n to get
K = F ( n

√
a).

Theorem: Assume F contains the nth roots of unity, a, b ∈ F ∗. Then F ( n
√
a) ∼= F ( n

√
b) iff 〈a〉 ≡

〈b〉 mod (F ∗)n, where
(F ∗)n = {αn : α ∈ F ∗ }

(that is, ak = blαn for some α ∈ F , 1 ≤ k, l ≤ n− 1.)
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Definition: Let L/F be an extension, α ∈ L any element. Then α is solvable in radicals over F iff α ∈ K
for some field K such that

F = K0 = K1 ⊂ K2 ⊂ · · · ⊂ Kn = K

where Ki = Ki−1( ri
√
ai) for some ai ∈ Ki−1, and ri ∈ Z>0, charF - ri.

We say p(x) ∈ F [x] non-constant is solvable in radicals iff all its roots are. We call an extension like K/F a
solvable extension.

Theorem: Let α ∈ K be solvable in radicals over F . Then α is contained in a Galois solvable extension.
Proof: First, adjoin all the rith roots of unity to f ;

Q( 4
√

2, i)

Q( 4
√

2) Q(i,
√

2)

Q(
√

2) Q(i)

Q

this is an extension of solvable form. Next, notice that to compute the Galois closure of K over F , one need
only adjoin elements of the form ri

√
bi for some elements bi ∈ Ki−1, although there may be several of them for

each i.

Definition: A group G is solvable iff there is a set of subgroups

{1} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

19)charF - n
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such that Gi−1 is a normal subgroup of Gi, with Gi/Gi−1 an abelian group.

Say G is a group, N ⊂ G a normal subgroup. Then G/N is abelian iff for all g, h ∈ G, we have ghg−1h−1 ∈ N .

Definition: The commutator of g & h is [g, h] = ghg−1h−1. The commutator subgroup of G is the subgroup
of G generated by the commutators of G. It’s denoted [G,G].
Notice that G/N is abelian iff [G,G] ⊂ N . Also notice that [G,G] is a normal subgroup of G, because for
any homomorphism f (like, say, conjugation by σ), f(ghg−1h−1) = f(g)f(h)f(g)−1f(h)−1 = [f(g), f(h)].

We can construct the commutator series of G:
G(0) = G
G(i) = [G(i−1), G(i−1)]
So G(0) ⊃ G(1) ⊃ G(2) ⊃ · · · and G(i)/G(i−1) is abelian! If G(n) = {1} for some n, then G is solvable.
Conversely, if G is finite, then if G(n) 6= {1} for all n, then G is not solvable.

Theorem: Let G be a finite solvable group. Then any subgroup or quotient group of G is also solvable.
Proof: Say H is a subgroup of G, and say G0 = {1} ⊂ G1 ⊂ · · · ⊂ Gn = G satisfy Gi/Gi−1 abelian. Let
Hi = H ∩Gi. Then Hi is a normal subgroup of Hi+1 and Hi+1/Hi ↪→ Gi+1/Gi, so Hi+1/Hi is abelian. Since
H0 ⊂ G0 = {1}, we conclude that H is solvable.

Similarly, if N is a normal subgroup of G & q : G→ G/N is the “reduce mod N” homomorphism, then the
chain

q(G0) ⊂ q(G1) ⊂ · · · ⊂ q(Gn)

shows that G/N is solvable.
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Theorem: Let G be a group, N a normal subgroup. If N is solvable and G/N is solvable, then so is G.
Proof: G is solvable iff its commutator series G(i) satisfies G(n) = {1} for some n. Since G(i) mod N =
(G/N)(i), we see that G(n) ⊂ N for some M (G/N is solvable). Since N is solvable, its subgroup G(i) is also
solvable, so the groups G(i) satisfy G(n) = {1} for some n, as desired.
Theorem: Let F be a field of characteristic 0, f(x) ∈ F [x] a non-constant polynomial. Then f(x) is solvable
in radicals iff Gal(f) over F is solvable.
Proof: Forwards: If f(x) is solvable in radicals, then its splitting field admits subfields satisfying

F = K0 ⊂ K1 ⊂ · · · ⊂ Kn = splitting field

and Ki = Ki−1( ni
√
ai). Moreover, we can insist that Ki/Ki−1 is Galois for each i, by adjoining all relevant

roots of unity first. This may make Kn larger than a splitting field for f(x); this is OK & we’ll consider it
later.

So Gal(Ki/Ki−1) is abelian for all i, making Gal(Kn/F ) solvable. Since a splitting field K is contained in
Kn, its Galois group over F is a quotient of Gal(Kn/F ), and so is solvable.

Backwards: Let K/F be a splitting field for f(x). Then since Gal(K/F ) is solvable, we get a chain of subgroups
{1} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = Gal(K/F ) such that Gi/Gi−1 is abelian. By refining this chain, we may assume
that Gi/Gi−1 is cyclic for all i. But if Ki corresponds to Gi, then Gi/Gi−1 cyclic =⇒ Ki−1 = Ki(

ni−1

√
ai−1))

for some ai−1 ∈ Ki−1, provided that Ki contains all (ni−1)th roots of unity. So if we adjoin a large finite
number of roots of unity to F , then we can construct a chain of subfields of a suitable form to prove that f(x)
is solvable in radicals.

Question: Is every finite group solvable?
Answer: No. If n ≥ 5, An has no nontrivial normal subgroups and is not abelian, and so is not solvable.

Furthermore, the only normal subgroups of Sn for n ≥ 5 are {1}, An, and Sn. So if n ≥ 5, then Sn isn’t
solvable.
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I’d like to thank my parents, God and L. Ron Hubbard.

S3 : {1} ⊂ A3
cyclic
⊂ S3 solvable X

S4 : {1} ⊂ V4
double
flips

⊂ A4 ⊂ S4

So S4 is solvable too. But S5 is not solvable.
Example: The Galois group of x5 − 15x+ 5 over Q is S5.
Proof: The polynomial is irreducible by Eisenstein’s Criterion using p = 5.

Since x5 − 15x + 5 is irreducible of degree 5, its Galois group acts transitively on a 5-element set, so by
orbit–stabilizer, the Galois group’s order is divisible by 5. Let G = Gal(f(x)) = Gal(x5 − 15x + 5). By
Cauchy’s Theorem, G contains an element of order 5. So G must contain a 5-cycle.
f ′(x) = 5x4 − 15
Roots x = ± 4

√
3

x

y +ve

−ve

−ve

+ve

We see that f(x) has exactly 3 real roots. Therefore, the action of complex conjugation on the roots of f(x)
is as a transposition. So G contains a transposition.

A simple bubble sort shows that G must be all of S5.
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Definition: A valuation on a field K is a function φ : K → R≥0 satisfying:

∀a, b ∈ K (1) φ(ab) = φ(a)φ(b)

(2) φ(a) = 0 iff a = 0

(3) φ(a+ b) ≤ φ(a) + φ(b)

Example: Let K = Q, p ∈ Z prime. For a
b ∈ Q in lowest terms, define

∣∣a
b

∣∣
p

= 0 if a = 0. If a 6= 0, write
a
b = pr a

′

b′ for a′, b′ ∈ Z, p - a′b′, and let ∣∣∣a
b

∣∣∣
p

=
1

pr

(1) and (2) are clear. For (3), note that (if r ≤ t without loss of generality)∣∣∣pr a1b1 + pt a2b2

∣∣∣
p

= p−r
∣∣∣a1b1 + pt−r a2b2

∣∣∣
p

≤ p−r

so |a+ b|p ≤ max{|a|p, |b|p}.

This is called the p-adic absolute value on Q.
Example: | 8

37 |2 = 1
8 , | 12

17 |3 = 1
3 |

12
17 |2 = 1

4
So pn → 0 p-adically.
Example: 1 + p+ p2 + · · · =

∑∞
i=0 p

i = 1
1−p if

∑∞
i=0 p

i converges. If we interpret this sequence classically.∑
pi does not converge.
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Theorem: Let
∑∞
i=0 ai be an infinite series. Then

∑∞
i=0 ai is Cauchy p-adically iff |ai|p → 0. (ai ∈ Q)

Proof: Forwards is clear. Backwards is harder. Say |ai|p → 0. Then |
∑n
i=0 ai|p ≤ maxi∈{1,...,n}{|ai|p}. So

∣∣∣ n∑
i=0

ai −
m∑
i=0

ai

∣∣∣
p

=
∣∣∣ n∑
i=m+1

ai

∣∣∣
p
≤ max
i∈{m+1,...,n}

{|ai|p}

which is going to 0. So
∑∞
i=0 ai induces a Cauchy sequence.

So
∑∞
i=0 2i = −1.

Is Q p-adically complete?
No: 32 ≡ 2 mod 7 so 3 is 7-adically close to

√
2. Sort of, “|3−

√
2|7 ≤

1
7”.

Let’s look for a2 ∈ Z/72Z such that a2
2 ≡ 2 mod 72.

Say a2 ≡ 3 mod 7. Then a2 ≡ 3 + 7k mod 72

=⇒ (3 + 7k)2 ≡ 9 + 42k mod 49

=⇒ 2 ≡ 9 + 42k mod 49

=⇒ −7 ≡ 42k mod 49

=⇒ −1 ≡ 6k mod 7

=⇒ k ≡ mod7

=⇒ a2 = 3 + 7 = 10 works!

By iterating this procedure, we can find integers ar such that a2
r ≡ 2 mod 7r for all r ∈ Z>0. So {ar} is a

Cauchy sequence, whose limit if it exists is
√

2 /∈ Q. Therefore Q is not 7-adically complete.
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Let R be the ring of p-adic Cauchy sequences of rational numbers, with

{ai}+ {bi} = {ai + bi}
{ai}{bi} = {aibi}

It is easy to see that the sum & product of Cauchy sequences is again Cauchy.

Let M = R be the set of null sequences in R; namely, the set of sequences whose limit exists and is 0. It is
easy to see that M is an ideal of R, since it is closed under + & −, and multiplication by arbitrary Cauchy
sequences.

Theorem: M is a maximal ideal of R.
Proof: We will show that every element of R−M is a unit, so M is maximal. Say {ai} is a p-adic Cauchy
sequence which does not converge to 0. Then there are only finitely many ai such that ai = 0, since {ai}
is Cauchy & not null. After adding a null sequence, then, we may assume that ai 6= 0 for all i. Consider
{ 1
ai
}. It is clearly an inverse to {ai}. Is it Cauchy? Yes: The sequence {|ai|p} is also Cauchy, and therefore

convergent. So if limi→∞|ai|p = L, then {| 1
ai
|p} → 1

L 6= 0 and∣∣∣∣ 1

an
− 1

am

∣∣∣∣
p

=
∣∣ an
→ 1
L

∣∣
p

−1∣∣am
→ 1
L

∣∣
p

−1∣∣ am − an
→small as you like

∣∣
p

so { 1
an
} is Cauchy.

|an|p − |am|p ≤ |an − am|p by 4 inequality

|am|p − |an|p ≤ |am − an|p by 4 inequality

a−1 = (a−1(a)a−1
1 ) = a−1

1

So R/M is a field containing Q. We call it Qp, the field of p-adic numbers.
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It is easy to see that Qp is complete. The absolute value of Qp is

|{an}|p = lim
n→∞

|an|p.

Q ↪→ Qp via x 7→ {x}.

So what the heck is Qp? Some elements of Qp include:

1 + p+ p2 + · · ·
2 + 3p2 − 4p3 + p4 + · · ·

More generally, if 0 ≤ ai ≤ p− 1, ai ∈ Z, then
∑∞
i=0 aip

i ∈ Qp. In fact, for any n ∈ Z, the series
∑∞
i=n aip

i is
in Qp.

We will show that every elements of Qp is of the form
∑∞
i=n aip

i for 0 ≤ ai ≤ p− 1, ai, n ∈ Z.

Theorem: Let α ∈ Q∗p. Then α can be written uniquely as α = pru for |u|p = 1.

Proof: |α|p = p−r for some r. So |p−rα|p = 1, so α = pr(p−rα). If α = pku, then |α|p = p−r =⇒ k = r,
and then u = p−rα.

Definition: The ring of p-adic integers is Zp = {α ∈ Qp : |α|p ≤ 1 }. This is a ring because of |a +
b|p ≤ max{|a|p, |b|p}. It’s not a field, since p ∈ Zp but 1

p /∈ Zp. Note Z∗p = {α ∈ Qp : |α|p = 1 }. So

Q∗p = { pru : u ∈ Z∗p }. In particular, Qp is the fraction field of Zp.
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Theorem: Zp = the closure of Z in Qp.
Proof: If {xi} is a Cauchy sequence of integers xi ∈ Z, then |{xi}|p ≤ 1 because |xi|p ≤ 1 for all i. So
Z ⊂ Zp.

Conversely, say {xi} ∈ Zp. Then limi→∞|xi|p ≤ 1. If limi|xi|p = 0, then {xi} = 0 ∈ Z. Otherwise, we have
|xn|p = limi|xi|p for all large enough n. Write xn = pr anbn for p - anbn. Then for every positive integer m,
there is an integer αn,m such that

αn,m ≡ xn mod pm ⇐⇒ |αn,m − xn|p ≤ p−m

So up to messing around with finitely initial terms, the sequence {αn,n} ∈ Z is equal in Qp to {xn}, so
{xn} ∈ Z.

Theorem: Zp/prZp ∼= Z/prZ.
Proof: Consider φ : Z→ Zp/prZp. It is clear that kerφ = prZ. So there is an injection φ : Z/prZ→ Zp/prZp.
It is onto because any α ∈ Zp satisfies

|α− n|p ≤ p−r for some n ∈ Z, ⇐⇒ α ≡ n mod prZp ⇐⇒ α ≡ φ(n)X

Say α ∈ Qp. If α = 0, then α is clearly of the form α =
∑∞
i=n for 0 ≤ ai ≤ p− 1. If α 6= 0, write α = pr ab ,

where p - ab. It suffices to write a
b =

∑∞
i=n aip

i.

But a
b ∈ Zp, so for each r ≥ 1, we can find mr ∈ Z such that a

b ≡ mr mod prZp. So if we choose
mr ∈ {0, . . . , p− 1}, we write mr in base pi and get

a

b
= a0 + a1p+ · · ·+ ar−1p

r−1 + Epr

for 0 ≤ ai ≤ p− 1. Moreover, note that mr+t ≡ mr mod pr. So we get a well defined series

a

b
=

∞∑
i=0

aip
i
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where ai ∈ {0, . . . , p− 1}. So Qp really is

Qp =

{ ∞∑
i=n

aip
i : ai ∈ {0, . . . , p− 1}

}

�0�0�0
7
0

−1
. . . 666

=

∞∑
n=0

6 · 7n

in Q7

Define R ⊂ (Z/pZ)× (Z/p2Z)× · · · by

R =
{

(a1, a2, . . . ) : ai ≡ ai+r mod pi, ai ∈ Z/piZ
}

= H

Theorem: Zp ∼= R.
Proof: Define φ : Zp → H by φ(α) = (α mod p, α mod p2, · · · ). Clearly imφ ⊂, so φ : Zp → R. Since
kerφ = {0}, φ is injective. For surjectivity, say (n1, n2, . . . ) ∈ R. If we choose ni ∈ {0, . . . , pi − 1},
then writing ni in base p will have a consistent set of ith order p-adic approximations

∑∞
i=0 aip

i, where

ni =
∑i−1
j=0 ajp

j . So (n1, n2, . . . ) ∈ imφ.
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Definition: A valuation on a field K is a function φ : K → R such that:

(1) φ(x) ≥ 0, φ(x) = 0 iff x = 0

(2) φ(xy) = φ(x)φ(y)

(3) φ(x+ y) ≤ φ(x) + φ(y)

If φ also satisfies φ(x+ y) ≤ max{φ(x), φ(y)} then we say φ is non-archimedean.

Assume K is a field complete with respect to a non-archimedean valuation |·|v.
Definition: The valuation ring of K is O = {x ∈ K : |x|v ≤ 1 }. It is easy to see that O is a ring.
Definition: The maximal ideal of O is M = {x ∈ O : |x|v < 1 }.
It is easy to see that M is the set of non-units of O, and is therefore the unique maximal ideal of O.
Definition: The field O/M is called the residue field of O (or K).
Theorem (Hensel’s Lemma): Let K be complete with respect to a non-archimedean valuation |·|v. Let
f(x) ∈ O[x], f 6≡ M . Say f = gh in (O/M)[x], where g, h ∈ (O/M)[x] are relatively prime. Then f = gh,
where g ≡ g mod M , h ≡ h mod M , and deg g = deg g, and g, h ∈ O[x].

Example: Say K = Q7, O = Z7, f(x) = x2 − 2. Then

x2 − 2 ≡ (x+ 3)(x− 3) mod 7 in the residue field Z/7Z.

Helsel =⇒ ∃g, h ∈ Z7[x] such that deg g = deg h = 1 and

x2 − 2 = g(x)h(x).

But deg g = deg h = 1 =⇒ gh has two roots in Z7,

±
√

2 ∈ Z7 ⊂ Q7.
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K complete with respect to a non-archimean valuation |·|v. Let O = { a ∈ K : |a|v ≤ 1 } be the valuation
ring. M ⊂ O the maximal ideal { a ∈ K : |a|v < 1 }.

K = Qp
O = Zp
M = pZp

Theorem: (Hensel’s Lemma)
Let f(x) ∈ O[x] be non-constant, f 6≡ 0 mod M . Assume f = gh mod M , where f is the reduction of f mod M ,
and that g, h are relatively prime in (O/M)[x]. Then f = gh in θ[x], where g ≡ g and h ≡ h mod M , and
deg(g) = deg(g).

Proof: Pick g0, h0 ∈ O[x] willy-nilly so that deg(g0) = deg(g), deg(h0) ≤ deg(h), g0 ≡ g, h0 ≡ h mod M .
Since h, g are coprime in (O/M)[x], there are a(x), b(x) ∈ O[x] such that ag0 + bh0 ≡ 1 mod M .
Amongst the coefficients of f − g0h0 and ag0 + bh0 − 1, there is (at least) one with smallest valuation. Call it
π.
We show: f ≡ grhr mod πr+1.
If r = 0, we’re already done. Proceed by induction. Say f ≡ gr−1hr−1 mod πr, with deg gr−1 = deg g,
deg hr−1 ≤ deg h. We’re looking for gr and hr.

Write
{
gr=gr−1+prπ

r

hr=hr−1+qrπ
r , for pr, qr ∈ O[x]. Then:

f − grhr ≡ πr(gr−1gr + hr−1pr) mod πr+1

=⇒ 1

πr
(f − grhr)︸ ︷︷ ︸
fr:=

≡ gr−1gr + hr−1pr mod π

Now, qr = afr and pr = bfr works because gr ≡ g0 mod M , hr ≡ h0 mod M . However, this choice may not
satisfy the degree constraints deg gr = deg g and deg hr ≤ deg h. So write: bfr = Qg0 +R for degR ≤ deg g0,
and set pr = R. The leading coefficient of g0 is not in M , so it’s a unit in O. The Euclidean Algorithm will
show that Q, R ∈ O[x]. So:

g0(afr + h0Q) + h0pr ≡ ag0fr + g0h0Q+ h0pr

≡ ag0fr + h0(bfr − pr) + h0pr

≡ ag0fr + bh0fr

≡ fr mod π

PMATH 442 Lecture 30: November 23, 2011
Theorem: (Hensel’s Lemma) Let K be a complete field with respect to a non-archedmedian valuation, O
is valuation ring, M ⊂ O the maximal ideal. Let f(x) ∈ O[x], and assume f ≡ gh mod M for gcd(g, h) = 1.
Then f = gh in K[x], where g ≡ g mod M , h ≡ h mod M , deg(g) = deg(g).
Proof: (continued)

g0(afr + h0Q) + h0(pr) ≡ fr mod π

and deg(pr) ≤ deg f − deg h0 = deg(g0)

So after deleting terms in afr + h0Q of too high degree (because they’re 0 mod π), we find qr.

So gr+1 = gr + prπ
r

hr+1 = hr + qrπ
r

satisfies f ≡ grhr mod πr+1

deg(gr+1) = deg(g)

deg(hr+1) ≤ deg(h)

gr+1 ≡ g
hr+1 ≡ h

}
mod M
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So {gr} & {hr} are Cauchy sequences of polynomials in K[x], that must converge to g & h, respectively,
satisfying f = gh, deg g = deg g, g ≡ g, h ≡ h.

Example:
√

2 /∈ Q5, because if not, then |
√

2|25 = |2|5 = 1, so
√

2 ∈ Z5. But x2 − 2 is irreducible in the

residue field F5, so
√

2 /∈ Z5.
Example: xp−1 − 1 splits completely in Fp[x]: xp−1 − 1 =

∏p−1
i=1 (x− i). By Hensel’s Lemma, xp−1 − 1 splits

completely in Qp[x], too. So if n | p− 1, then ζn ∈ Qp.

Definition: Let L/K be a finite extension, α ∈ L any element. The norm of α over K is det(mα), where

mα : L→ L is mα(x) = αx

NL/K(α) = det(mα)

NL/K(α) = (−1)[L:K](constant term in characteristic polynomial)

Since α is a root of the monic characteristic polynomial (by Cayley–Hamilton Theorem), the minimal
polynomial of α (m(x)) is a factor of the characteristic polynomial of mα (χ(x)). But every root of χ(x) is a
root of m(x), so χ(x) = m(x)d, where d = [L : K(α)]. Comparing constant terms gives (m(0))d = χ(0).

n = [L : K]
L = 1 ·K + α ·K + · · ·+ αn−1 ·K
if L = K(α)

[mα] =


0 0 −a0/an
1 0 −a1/an
0 1 −a2/an
...

. . .
...

0 . . . 0 1 −an−1/an


m(x) = a0 + a1x+ · · ·+ anx

n

=⇒ αn = −a0

a1
− a1

an
α− · · · − an−1

an
αn−1

det[mα] = (−1)n−1−a0

an
= (−1)na0

NL/K(α) = (−1)[L:K](constant term of monic minimal polynomials)[L:K(α)]

Say K/Qp is a finite extension. Define

|α|v = n

√
|NK/Qp(α)|p

where n = [K : Qp]. This is a non-archedmedian valuation:

(1) |α|v ≥ 0, equality iff α = 0 X

(2) |αβ|v = |α|v|β|v X

(3) |α+ β|v ≤ max{|α|v, |β|v}

We will justify (3) next time.

PMATH 442 Lecture 31: November 25, 2011

|α|v = n

√
|NK/Qp(α)|p

Theorem: |·|v is a non-archimedean valuation on K.
Proof: All done except:

|α+ β|v ≤ max{|α|v, |β|v}.

Without loss of generality, say |β|v ≥ |α|v. Then it suffices to show:∣∣∣α
β

+ 1
∣∣∣
v
≤ max

{∣∣∣α
β

∣∣∣
v
, 1
}
.
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Lemma: Let L be a field that’s complete with respect to a non-archimedean valuation ψ. Say f(x) ∈ L[x] is
irreducible, f(x) = a0 + a1x+ · · ·+ anx

n. Then ψ(ai) ≤ max{ψ(a0), ψ(an)} for all i.
Proof of Lemma: Let O be the valuation ring. Let j be the smallest index such that ψ(aj) ≥ ψ(ai) for all
i. Then 1

aj
f ∈ O[x] and

f ≡ xj(aj + · · ·+ anx
n−j) mod M

where M ⊂ O is the maximal ideal. By Hensel’s Lemma, f(x) factors as the product of 2 polynomials, one of
deg j & the other of degree n− j. Since f is irreducible, either j = 0 or n− j = 0. lemma

By the lemma applied to L = Qp, we see that a monic irreducible polynomial in Qp[x] lies in Zp[x] iff
its constant coefficient lies in Zp. So NK/Qp(α) ∈ Zp iff monic minimal polynomial for α lies in Zp[x].
Since |αβ |v ≤ 1, we get N(αβ ) ∈ Zp so monic minimal polynomial for α

β has coefficients in Zp. If m(x) is

the monic minimal polynomial for α
β , then m(x − 1) is the monic minimal polynomial for (αβ − 1). So

m(x) ∈ Zp[x] =⇒ m(x− 1) ∈ Zp[x], and hence N(αβ + 1) ∈ Zp &∣∣∣α
β

+ 1
∣∣∣
v
≤ max

{∣∣∣α
β

∣∣∣
v
, 1
}

as desired.

PMATH 442 Lecture 32: November 28, 2011
Example: K = Q3(

√
2)

Note that [K : Q3] = 2, because |
√

2|3 =
√
|2|3 = 1. Since

√
2 /∈ F3,

√
2 /∈ Z3, so

√
2 /∈ Q3. Now,

|a+ b
√

2|3 ≤ max{|a|3, |b|3}

=

√
|N(a+ b

√
2)|3 =

√
|a2 − 2b2|3

If |a|3 6= |b|3, then |a+ b
√

2|3 = max{|a|3, |b|3}.
If |a|3 = |b|3, then a + b

√
2 = 3r(a′ + b′

√
2), where a′, b′ ∈ Z∗3. In that case, a′ = ±b′ = ±1 mod 3, so

(a′)2 − 2(b′)2 = −1 mod 3, so |a+ b
√

2|3 = |a|3 = |b|3. So in general,

|a+ b
√

2|3 = max{|a|3, |b|3}.

K/Qp is a finite extension.

Then n

√
|NK/Qp(α)|p is an extension of |·|p to K. It’s the only such extension, and K is complete with respect

to this extension.

O = valuation ring of K

= {α ∈ K : |α|p ≤ 1 }
= {α ∈ K : monic minimal polynomial lies in Zp[x] }

Note that O is Galois stable, i.e., if α ∈ O, σ ∈ AutQp(K), then σ(α) ∈ O.

Assume K/Qp is Galois.

Recall that the residue field of K is

=k︷ ︸︸ ︷
O/M , where M = maximal ideal of O. It’s an extension of Fp, and a

finite one since [K : Qp] <∞.
Define:

ψ : Gal(K/Qp)→ Gal(k/Fp)

as follows:

Say σ ∈ Gal(K/Qp). Then σ|O : O → O is also an automorphism. Since |·|p is also Galois invariant, σ maps
M to M . Thus, σ induces a homomorphism

ψ(σ) : O/M
=k

→ O/M
=k

.
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ψ(σ) is an automorphism because k is a finite field.
It is easy to check that ψ is a homomorphism of groups

ψ : Gal(K/Qp)→ Gal(k/Qp).

Say k = Fp(α), m(x) a minimal polynomial for α over Fp. Then by Hensel’s Lemma, any polynomial
m(x) ∈ Zp[x] with m ≡ m mod M and deg(m) = deg(m) will also be irreducible and split completely in K.
(α a root of m(x), α ≡ α mod M)
If σ ∈ Gal(k/Fp) and σ(α) = β, then if β ∈ K is a root of m(x) with β ≡ β mod M , then any σ ∈ Gal(K/Qp)
with σ(α) = β satisfies ψ(σ) = σ.

The kernel of ψ is called the inertia (sub)group of Gal(K/Qp).

Definition: K/Qp finite is unramified iff ψ is an isomorphism. Equivalently, if [k : Fp] = [K : Qp].

Definition: The inertia subfield of K is the fixed field of the inertia group.

K

Kur

Qp

[K : Kur] = #I(K)

[Kur : Qp] = [k : Fp]

Example: Q3(
√

2,
√

3)

ramified

Q3(
√

2)

ramified

Q3
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Theorem: If K/Qp is a finite unramified extension, then it is also Galois.
Proof: By assumption, [K : Qp] = [k : Fp], where k is the residue field O/M of K. Write k = Fp(α) for
some α ∈ k. Choose α ∈ O ⊂ K such that α ≡ α mod M . Then Qp(α) is an extension of Qp of degree
n = [K : Qp] = [k : Fp], because a minimal polynomial m(x) ∈ Fp[x] for α/Fp is irreducible, and also it’s the
reduction of a minimal polynomial m(x) for α/Qp. Therefore Qp(α) = K.

Qp(α) is clearly separable over Qp. But m(x) is separable, and splits completely (into linear factors) in k(x).
By Hensel’s Lemma, since the factors are pairwise coprime, this means m(x) factors completely in K[x]. So
K is a splitting field for m(x) over Qp, since Qp(α) = K. So K/Qp is Galois.

This means that if K/Qp is unramified, then its Galois group is cyclic. Better yet, any two unramified
extensions of Qp of degree n are isomorphic, by Hensel’s Lemma and previous theorem.

So extensions of Fp an unramified extensions of Qp are in a natural 1–1 correspondence.

Consequences: The composition of 2 unramified extensions of Qp is unramified.
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Note that:
K1K2

K1 K2

Qp

k1k2

k1

d1

k2

d2

Fp


lcm(d1, d2)

Let’s find all quadratic extensions of Qp for p 6= 2.
They are classified by (Q∗p)/(Q∗p)2

Any α ∈ Q∗p is, up to squares, an element of either Zp or pZp.

Zp ∼= { (a1, a2, a3, . . . ) : ai ∈ Z/pZ, a1 ≡ a1+j mod pi ∀j ≥ 0 }

If (a1, . . . ) ∈ (Qp)2, then a1 ∈ (Fp)2.
So modulo squares, there are 2 choices for a1. For all i ≥ 2, there are again only 2 choices for ai, up to
squares, so there are exactly 2 units in Zp, up to squares.
Similarly, there are 2 elements of pZp up to squares. So (Q∗p)/(Q∗p)2 has order 4. There are therefore 3
nontrivial quadratic extensions of Qp:

unramified: Qp(
√
a) ← a non-residue mod p

ramified: Qp(
√
p)

ramified: Qp(
√
ap)

Newton Polygons
For ai ∈ Q∗p, define v(a) = − log|a|p = biggest power of p dividing a.
Let anx

n + an−1x
n−1 + · · ·+ a0 ∈ Qp[x] be a polynomial, an 6= 0. Plot all the points (i, v(ai)) for ai 6= 0. The

Newton polygon of f(x) is the lower convex hull of these points.
Example: p = 3, f(x) = x3 + 3

4x
2 + 7

9
Plot: (3, 0), (2, 1), (0,−2)

index

v

1

2 3

Newton polygon

−2

PMATH 442 Lecture 34: December 2, 2011
Newton Polygons
v(a) = − log|a|p for a ∈ Q∗p. Newton polygon of a0 + a1x+ · · ·+ anx

n is lower convex hull of {(i, v(ai))}.

Theorem: Let f(x) = a0 + · · · + anx
n ∈ Qp[x] be a polynomial of degree n. Say (r, v(ar)) and (s, v(as))

are the endpoints of a line segment in the Newton polygon of f(x), of slope −m. Then f(x) has (in some
extension of Qp) |r − s| roots αi with |ai|p = p−m.

Note: The Galois group of f(x) does not change the valuation of roots of f(x). Thus, this theorem tells us
that line segments in the Newton polygon correspond to factors of f(x) in Qp[x].
Proof: Assume without loss of generality that an = 1.
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Order the roots of f(x) as follows:

α1, . . . , αt1← v(αi) = m1 > m1αt1+1, . . . , αt2← v(αi) = m2

...
αtr+1, . . . , αn← v(αi) = mr+1 > mr

so v(an) = 0

v(an−1) ≥ min{v(αi)} = m1

v(an−1) ≥ min{v(αiαj)} = 2m1

...

v(an−t1) = t1m1

v(an−t1−1) ≥ t1m1 +m2

...

v(an−t1−t2) = t1m1 + (t2 − t1)m2

Continuing in this fashion, one sees that the Newton polygon of f(x) has vertices

(n− t0, t1m1 + (t2 − t1)m2 + · · ·+ (tc − tc−1)mc),

and has r + 1 segments of slopes −m1, −m2, . . . , −mr+1.

Example: x2 + x− 6, Q3.

= (x+ 3)(x− 2)

(2, 0)

(1, 0)

(0, 1)

Theorem: Assume that the Newton polygon of f(x) intersects Z2 in exactly two points. Then f(x) is
irreducible in Qp[x].
Proof: Say f(x) = g(x)h(x), and assume without loss of generality that f , g, h are all monic. We know that
the Newton polygon of f(x) is a single line segment of slope m, since the Newton polygon only has vertices at
lattice points. Say deg(f) = n.

So v(α) = m for all roots α of f , and thus for all roots of g and h, too. If deg(g) = d, then |g(0)|p = p−dm

and |h(0)|p = p−(n−d)m. The Newton polygon joins (n, 0) to (0, nm), which contains the point (d, (n− d)m).
Thus, either d = n or d = 0, and so f(x) is irreducible.

So x5 + 2x4 + 4 is irreducible over Q2, because its Newton polygon has exactly 2 lattice points, one at each
end.
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