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Definition: An algebraic integer is the root of a monic polynomial in Z[x]. An algebraic number is the root
of a nonzero polynomial in Z[x].

A number field is a finite extension K of Q and we shall suppose it is in C. Our object of study is the ring of
algebraic integers in K.

Basic: Suppose L and K are finite extensions of Q. L is an extension of K if K ⊂ L. The dimension of L
over K in this case is [L : K]. Suppose next that H is a field with K ⊆ H ⊆ L. Then H is said to be an
intermediate field of K and L. We have [L : K] = [L : H][H : K].

A polynomial f in K[x] is said to be irreducible if whenever f = gh with g, h ∈ K[x] then either g or h is a
constant.

Recall: K[x] is a Principal Ideal Domain.

Definition: Let K ⊂ C. Let θ ∈ C be algebraic over K. A minimal polynomial f of θ over K is a monic
polynomial in K[x] which has θ as a root and has minimal degree with this property.

Theorem 1: Let K ⊆ C. If θ ∈ C is algebraic over K then θ has a unique minimal polynomial.
Proof: Suppose that p1(x) and p2(x) are minimal polynomials for θ over K. By the Division Algorithm
for K[x], ∃c ∈ K and r(x) ∈ K[x] such that p1(x) = cp2(x) + r(x) with r(x) the zero polynomial or
deg r < deg p1 = deg p2. But p1(θ) = cp2(θ) + r(θ) hence r(θ) = 0. By the minimality of the degree we see
that r is the zero polynomial.

Since p1 and p2 are monic we see that c = 1 hence p1 = p2 as required.

Definition: Suppose that θ is algebraic over K. Then the degree of θ over K is the degree of the minimal
polynomial of θ over K.

Remark: Let θ be algebraic over K and let p ∈ K[x] be the minimal polynomial of θ over K. If f ∈ K[x] is
a polynomial for which f(θ) = 0 then p | f in K[x].

Theorem 2: Let f ∈ K[x] with K ⊆ C. If f is irreducible over K of degree n (≥ 1) then f has n distinct
roots.
Proof: Suppose that f has a root α of multiplicity larger than 1. Then f(x) = an(x − α)2f1(x) with
f1 ∈ K(α)[x]. Thus

f ′(x) = 2an(x− α) · f1(x) + an(x− α)2f ′1(x),

hence f ′(α) = 0 and note that f ′ ∈ K[x]. Let p(x) be the minimal polynomial for α over K. Observe that
p(x) divides f(x) and it divides f ′(x). Observe that p(x) divides f(x) and it divides f ′(x). Therefore f is
reducible which is a contradiction.

Let θ be algebraic over K and let p ∈ K[x] be the minimal polynomial of θ. Suppose that the degree of p is
n. Then p has n distinct roots θ1, . . . , θn and these are known as the conjugates of θ over K.
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Definition: Let K ⊆ C and let θ be algebraic over K. K(θ) is defined to be the smallest field containing K
and θ. K(θ) is said to be a simple algebraic extension of K.
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If K ⊆ C, θ is algebraic over K.

K(θ) := smallest field containing θ ∈ K = { f(θ)/g(θ) : f , g ∈ K[x] with g(θ) 6= 0 }.

Theorem 3: Let K ⊂ C, θ be algebraic over K. degk(θ) = n. Then every element α ∈ K(θ) has a unique
representation of the form:

α = a0 + a1θ + · · ·+ an−1θ
n−1

for a0, . . . , an−1 ∈ K.
Proof: Since α ∈ K(θ), α = f(θ)/g(θ). Let p be minimal polynomial of θ over K. Now p(x) and g(x) are
coprime polynomials. There exists s, t ∈ K[x] by Euclidean algorithm such that

p(x)t(x) + g(x)s(x) = 1

or g(θ)s(θ) = 1 =⇒ α = f(θ)s(θ). Now f(x)s(x) = q(x)p(x) + r(x) by division so f(θ)s(θ) = r(θ),
deg r(θ) ≤ n− 1.
Proof of uniqueness:
α = r1(θ) = r2(θ); r1, r2 ∈ K[x].
r1(x)− r2(x) is polynomial of degree < n having θ as root. This is not possible otherwise degk(θ) 6= n

K(θ) = K[θ].

Definition: Let R and S be rings. An injective homomorphism φ : R→ S is an embedding of R in S.

Theorem 4: Let K ⊂ C and L be finite extensions of K. Each embedding of K in C extends to exactly
degk(L) ([L : K]) embeddings of L in C.
Proof: By induction on [L : K].
Let α ∈ L \ K, p(x): minimal polynomial of α/K, let σ be an embedding of K in C. p(x) =

∑n
i=0 aix

i,
g(x) =

∑n
i=0 σ(ai)x

i is irreducible over σ(K).

For each root β of g, define an embedding λβ of K[α] in C by λβ : K[α]→ C,

λβ(l0 + l1α+ · · ·+ ln−1α
n−1) = σ(l0) + σ(l1)β + · · ·+ σ(ln−1)βn−1.

One can check λβ is an embedding by checking it is an injective homomorphism and extends σ on K.

Further, there are no other embeddings since λ(0) = 0 = p(α) = λp(α) = g(λα) (λα is a root of g)
Applying inductive hypothesis to [L : K(α)], there are exactly [L : K(α)][K(α) : K] embeddings of L in C.
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Theorem 5: Let K ⊆ L ⊆ C and let L be a finite extension of K. Then L = K(θ) for some θ in L.
Proof: Note that

L = K(γ1, . . . , γn)

for some γ1, . . . , γn algebraic over K. We’ll now show our result by induction. It suffices to show that if
L = K(α, β) with α, β algebraic over K then there exists θ ∈ L such that

L = K(θ).

Let α = α1, . . . , αn be the conjugates of α over K. Let β = β1, . . . , βm be the conjugates of β over K.
Consider for each i and k 6= 1 the equation

αi + xβk = α1 + xβ1.
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There is precisely one solution. Now choose an element c in K \ {0} which is not one of these solutions and
put θ = α+ cβ.

We claim θ works. Notice that K(θ) ⊆ K(α, β). To show that K(α, β) ⊆ K(θ) it suffices to show that α and
β are in K(θ). Observe that it suffices to show that β is in K(θ) since then automatically α is also in K(θ).

Let f be the minimal polynomial of α over K and let g be the minimal polynomial of β over K. Thus β is
a root of g(x) and also of f(θ − cx). Notice that f(θ − cx) ∈ K(θ)[x]. Further observe that β is the only
common root of g(x) and f(θ − cx), by our choice of c.

Let p be the minimal polynomial of β over K(θ). Then p divides g and p divides f(θ − cx). Therefore p is
linear, in particular γ1β + γ2 = 0 with γ1, γ2 ∈ K(θ), γ1 6= 0 hence β ∈ K(θ).

Definition: Let K ⊆ L ⊆ C with [L : K] <∞. We say that L is normal over K if L is closed under taking
conjugates over K.

Theorem 6: Let K ⊆ L ⊆ C with [L : K] < ∞. L is normal over K ⇐⇒ Each embedding σ of L in C
which fixes each element of K is an automorphism.
Proof: ⇒ By Theorem 5 there exists a α ∈ L with L = K[α]. Further let α = α1, . . . , αn be the conjugates
of α over K. Then there are precisely n embeddings λ1, . . . , λn of L in C which fix each element of K. We
have λi(α) = αi for i = 1, . . . , n.

Since L is normal λi : L→ L for i = 1, . . . , n. Next note [K(αi) : K] = n for i = 1, . . . , n hence L = K(αi)
for i = 1, . . . , n and thus λi is an automorphism for i = 1, . . . , n.

⇐ Let α ∈ L and let β1, . . . , βm be the conjugates of β over K.

Notice that each embedding of K(β) in C which fixes elements of K can be extended to an embedding of L
in C which fixes K. Each such embedding is an automorphism and so βi ∈ L for i = 1, . . . , m as required.

Remark: Theorem 4 =⇒ [L : K] embeddings of L in C which fix K. Thus by Theorem 6 L is normal over
K ⇐⇒ there are [L : K] automorphisms of L which fix K.

Theorem 7: Let K ⊆ C. Let α1, . . . , αn ∈ C be algebraic over K. Put L = K(α1, . . . , αn). If L contains
the conjugates of α1, . . . , αn over K then L is normal over K.
Proof: We have K(α1, . . . , αn) = K[α1, . . . , αn]. Next by Theorem 5 there exists θ ∈ L such that L = K[θ].
Then θ = f(α1, . . . , αn) for some f ∈ K[x1, . . . , xn].

Let σ be an embedding of L in C which fixes K. Then σ(θ) = f(σα1, . . . , σαn) ∈ L. Therefore L is normal
over K.
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Corollary 8: Let K ⊆ L ⊆ C and let L be a finite extension of K. Then there is a finite extension H of L
which is normal over K.
Proof: By Theorem 5, L = K[θ] where θ is algebraic over K. Let θ = θ1, . . . , θn be the conjugates of θ over
K. We put H = K(θ1, . . . , θn) and the result follows by Theorem 7.
Remark: H is normal over K and also normal over L.

Note that Q( 3
√

2) is not a normal extension of Q since ω 3
√

2 is a conjugate of 3
√

2 over Q where ω = e2πi/3

and ω 3
√

2 /∈ R whereas Q( 3
√

2) ⊆ R. Observe that by Corollary 8, H = Q( 3
√

2, ω 3
√

2, ω2 3
√

2) is normal over Q.
H = Q( 3

√
2, ω) so [H : Q( 3

√
2)] = 2.

Let K ⊆ L ⊆ C with [L : K] <∞. We define the Galois group Gal(L/K) to be the group of automorphisms
of L which fixes each element of K. This is a group under the binary operation of composition. The identity
element is the identity map. By Theorem 4 and Theorem 6

L is normal over K ⇐⇒ |Gal(L/K)| = [L : K].
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For each subgroup H of G = Gal(L/K) we define FH to be the fixed field of H, in other words

FH = {α ∈ L : σα = α for all σ ∈ H }.

Note that FH is a field.

Theorem 9: Let K ⊆ L ⊆ C with [L : K] <∞. Suppose that L is normal over K and that G is the Galois
group of L over K. Then K is the fixed field of G and K is not the fixed field of any proper subgroup H of G.
Proof: Plainly K is fixed by G. Suppose that there is an α ∈ L \K which is fixed by G. Then K[α] is also
fixed by G. By Theorem 4 and 6 there are exactly [L : K[α]] embeddings of L in C which fix K[α] and, since
L is normal, each of them is an automorphism of L. Similarly, by Theorem 4 and 6, there are exactly [L : K]
embeddings of L in C which fix K and since L is normal each is an automorphism. But [L : K[α]] < [L : K]
and this gives a contradiction.

We’ll now suppose that K is the fixed field of a proper subgroup H of G. Let α be such that L = K[α] and
define the polynomial f by

f(x) =
∏
σ∈H

(x− σα).

Note that since H is a subgroup of G if σ′ ∈ H then Hσ′ = {σσ′ : σ ∈ H } = H. Therefore

f(x) =
∏
σ∈H

(x− σσ′α).

Thus the coefficients of F are fixed by the elements of H. Thus f ∈ K[x] with α as a root and it is monic.
Therefore α is algebraic over K of degree at most |H|. But α is algebraic over K of degree |G| since L = K[α]
is normal over K. Finally since H is a proper subgroup of G, |H| < |G| which gives a contradiction.

As always K ⊆ L ⊆ C with [L : K] <∞. Suppose L is normal over K. Let G = Gal(L/K).
Let S1 be the set of fields F with L ⊆ F ⊆ K.
Let S2 be the set of subgroups H of G.

Define λ : S1 → S2 by λ(F ) = Gal(L/F ). Define µ : S2 → S1 by µ(H) = FH where FH is the fixed field of H.
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Let K ⊆ L ⊆ C with [L : K] <∞. L normal over K. G = Gal(L/K) the Galois group of L over K. Recall
the maps λ and µ, λ : S1 → S2 by λ(F ) = Gal(L/F ), µ : S2 → S1 by µ(H) = FH , fixed field of H.

Theorem 10: (Fundamental Theorem of Galois Theory)
µ and λ are inverses of each other. Suppose that λ(F ) = H. F is normal over K if and only if H is a normal
subgroup of G = Gal(L/K). Further if F is normal over K there is an isomorphism δ of G/H to Gal(F/K)
given by δ(σ +H) = σ|F ; where σ|F is the automorphism of F which fixes each element of K given by the
restriction of σ to F .
Proof: Note that

µ ◦ λ(F ) = µ(Gal(L/F )) = FGal(L/F )

By Theorem 9 the fixed field of Gal(L/F ) is F and so µ ◦ λ(F ) = F .

Further
λ ◦ µ(H) = λ(FH) = Gal(L/FH).

Put H ′ = Gal(L/FH). By Theorem 9, FH is the fixed field of H ′ and of no proper subgroup of H ′. Thus
H ′ ⊆ H. But if σ ∈ H then σ ∈ Gal(L/FH) so H ⊆ H ′. Thus H = H ′ so λ ◦ µ(H) = H.

Suppose now H = Gal(L/F ), γ ∈ H and σ ∈ G. Then

σ ◦ γ ◦ σ−1 is in Gal(L/σF )
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Similarly if θ ∈ Gal(L/σF ) then σ−1θσ is in Gal(L/F ).

=⇒ Gal(L/σF ) = σHσ−1.

Now if F is normal over K then σF = F for all σ in G.

F is normal over K and only every embedding of F in C which fixes K is an automorphism. Further every
embedding of F in C which fixes K can be extended to an element of G.

F normal over K ⇐⇒ σF = F ∀σ ∈ G
⇐⇒ σHσ−1 = H ∀σ ∈ G
⇐⇒ H is a normal subgroup of G

Next suppose F is normal over K. We introduce the group homomorphism in ψ from G = Gal(L/K) to
Gal(F/K) given by

ψ(σ) = σ|F ,

where σ is the restriction of σ to F .

We first observe that the map is surjective since every element of Gal(F/K) can be extended to an element
of G.

The kernel of ψ is Gal(L/F ) so by the First Isomorphism Theorem

Gal(L/K)/Gal(L/F ) ≈ Gal(F/K).

Theorem 11: Let α be an algebraic integer. The minimal polynomial of α over Q is in Z[x].
Proof: Let f be the minimal polynomial of α over Q, f ∈ Q[x]. Let h be a monic polynomial in Z[x] with α
as a root. Since f is the minimal polynomial over Q, f | h is in Q[x]. In particular there exist g ∈ Q[x] with
h = gf .

Since h and f are monic we see that g is monic. By Gauss’ Lemma there exist c1, c2 ∈ Q with

h = (c1g) · (c2f),

where c1 and c2 are in Q and c1g and c2f are in Z[x]. Note c1 = c2 = 1 since f and g are monic.

Corollary 12: Let d be a squarefree integer. The ring of algebraic integers in Q(
√
d) is

{ a+ b
√
d : a, b ∈ Z } if d ≡ 2, 3 (mod 4)

and { a+ b
√
d

2
: a, b ∈ Z, a ≡ b (mod 2)

}
if d ≡ 1 (mod 4).
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Corollary 12: Let d be a squarefree integer. The set of algebraic integers in Q(

√
d) is given by

{ a+ b
√
d : a, b ∈ Z } if d ≡ 2 or 3 (mod 4){ a+ b

√
d

2
: a, b ∈ Z

}
if d ≡ 1 (mod 4)

Proof: Suppose that α ∈ Q(
√
d) then α = r + s

√
d with r, s ∈ Q. Suppose that α is an algebraic integer.

First note that if s = 0 then r ∈ Z. Suppose s 6= 0. Then observe that

f(x) = (x− (r + s
√
d))(x− (r − s

√
d)) = x2 − 2rx+ (r2 − ds2)
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is a monic polynomial over Q with α as a root. Since α /∈ Q, f is the minimal polynomial of α. We need only
check when f ∈ Z[x]. Note that 2r ∈ Z so either r ∈ Z or r = a/2 with a ∈ Z and a ≡ 1 (mod 2). In the
first case then r2 − ds2 ∈ Z =⇒ ds2 ∈ Z. But d is squarefree and so s ∈ Z.

In the second case r = a/2 and then

r2 − ds2 = a2/4− ds2 ∈ Z =⇒ s = b/2 with b ≡ 1 (mod 2)

and then
a2 − db2

4
∈ Z =⇒ d ≡ 1 (mod 4)

Objective: Prove

i) the set of all algebraic integers forms a ring.

ii) For any finite extension K of Q the set of algebraic integers in K, so A ∩K, forms a ring.

For any α, β ∈ A we plan to show that α− β and αβ are in A since this shows A is a subring of C.

Let α = α1, . . . , αn be the conjugates of α. Let β = β1, . . . , βm be the conjugates of β.

Consider Q(α, β). Let σ1, . . . , . . .k be the embeddings of Q(α, β) in C which fix Q. Then put g(x) =∏k
i=1(x−σi(α−β)). Note that g is monic. To prove α−β is an algebraic integer it suffices to prove g ∈ Z[x].

This can be done using the elementary symmetric polynomials but there is an easier approach.

Theorem 13: Let α ∈ C. The following are equivalent:

i) α is an algebraic integer

ii) The additive subgroup of Z[α] in C is finitely generated

iii) α is a member of some subring of C having a finitely generated additive group.

iv) αA ⊆ A for some finitely generated additive subgroup of C.

Proof: i) =⇒ ii) by Theorem 3 since

Z[α] = { a0 + a1α+ · · ·+ an−1α
n−1 : aj ∈ Z }

where n is the degree of α over Q.

ii) =⇒ iii) =⇒ iv) immediate

Finally suppose iv) is true. Since A is a finitely generated additive subgroup of C there exist a1, . . . , an
which generate A. Since αA ⊆ A we see that for i = 1, . . . , n

αai = mi,1a1 + · · ·+mi,nan

with mi,1, . . . , mi,n ∈ Z. Put M = (mi,j). Then

(αIn −M)

a1...
an

 =

0
...
0


Since (a1, . . . , an) 6= (0, . . . , 0) =⇒ det(αIn−M) = 0 =⇒ α is a root of a monic polynomial with coefficients
in Z, hence is an algebraic integer. Thus iv) =⇒ i).

Corollary 14: If α and β are algebraic integers then so are α− β and α · β.
Proof: Suppose α has degree n over Q and β has degree m over Q then Z[α, β] is generated over Q by
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{αiβj : i = 0, . . . , n− 1, j = 0, . . . ,m− 1 }. Note α− β and αβ are in the subring generated by this. The
result follows by Theorem 13 ((i), (iii)).

Theorem 15: If α is an algebraic number then there exists a positive integer r such that rα is an algebraic
integer.
Proof: Since α is an algebraic number it is the root of a polynomial f(x) = xn + a1x

n−1 + · · ·+ an with
ai ∈ Q. Clear denominators to get that α is a root of a polynomial

bnx
n + · · ·+ b0 with bi ∈ Z.

Then note bnα is a root of
xn + bn−1x

n−1 + · · ·+ b0b
n−1
n

and so bnα is an algebraic integer.
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Assignment #1: Due next Wednesday in class

Corollary 14 =⇒ The set A of algebraic integers forms a subring of C.

Also if [K : Q] <∞ then A ∩K is also a subring of C. A ∩K is the ring of algebraic integers of K.

Corollary 12 gives a description of A ∩K when [K : Q] = 2.

Next we’ll consider the cyclotomic extensions of Q. Let n ∈ Z+ and put ζn = e2πi/n. The fields Q(ζn) for
n = 1, 2, . . . are significant. For instance they are normal extensions of Q with abelian Galois group. Further
it can be shown that if L is a normal extension of Q with an abelian Galois group (over Q) then L is a
subfield of Q(ζn).

Let h(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x] and p be a prime. The map that sends h to h ∈ Z/pZ[x] where

h = anx
n + an−1x

n−1 + · · ·+ a0

with ai = ai + pZ

is a ring homomorphism. Further

h(xp) = (h(x))p in Z/pZ[x] (∗)

since

h(xp) = anx
np + · · ·+ a1x

p + a0

= an
pxnp + · · ·+ a1

pxp + a0
p

= (anx
n + · · ·+ a0)p

= (h(x))p

We now introduce Φn(x), the nth cyclotomic polynomial for n = 1, 2, . . . . We put

Φn(x) =

n∏
j=1

(j,n)=1

(x− ζjn).

Theorem 16: Φn(x) is irreducible in Q[x] for n = 1, 2, . . . .
Proof: We’ll show that ζjn for 1 ≤ j ≤ n with (j, n) = 1 are the conjugates of ζn and so Φn(x) is then the
minimal polynomial of ζn. It is irreducible in Q[x].
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Let r(x) be the minimal polynomial of ζn. Since ζn is a root of xn − 1, ζn is an algebraic integer. Note that
then r(x) | xn − 1 in Q(x) so xn − 1 = r(x)g(x) with g(x) ∈ Q[x]. By Gauss’ Lemma, g ∈ Z[x].

Since r(x) divides xn − 1 in Q[x] we see that the conjugates of ζn lie in

{ ζjn : j = 1, . . . , n }.

Observe though that if (j, n) > 1 then (ζjn)n/(j,n) = 1 whereas (ζn)n/(j,n) 6= 1 and so ζjn is not a conjugate of
ζn. In particular the conjugates of ζn lie in

{ ζjn : j = 1, . . . , n, (j, n) = 1 }.

This is in fact the complete set of conjugates. To prove this it is enough to prove that if p is a prime which
does not divide n and θ is a root of r(x) then θp is also a root of r(x). Note that ζn is a root of r(x) and the
result follows by repeated application of the above fact.

Recall that xn − 1 = r(x)g(x). Let θ be a root of r(x). If θp is not a root of r(x) then, since θp is a root of
xn − 1, we see that θp is a root of g(x). Thus θ is a root of g(xp). Thus r(x), the minimal polynomial of θ,
divides g(xp) in Q[x] and so

g(xp) = r(x)s(x) with s ∈ Q[x].

By Gauss’ Lemma s(x) ∈ Z[x].

Since g(xp) = r(x)s(x) we see that r̄(x) | ḡ(xp) in Z/pZ[x]. Let t be an irreducible polynomial in Z/pZ[x]
which divides r̄. Now by (∗) t divides g(x) in Z/pZ[x].

Recall that xn − 1 = r(x)g(x)

so xn − 1 = r(x)g(x)

Therefore t2 | xn − 1̄ in Z/pZ[x], and so t | n̄xn−1. Since p - n, n̄ is not 0 hence t = cxg with 1 ≤ g ≤ n− 1.
But t | xn − 1̄ which gives a contradiction.

The result follows.
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Midterm Exam: Friday March 1 in class

Observe that ζjn is a conjugate of ζn for j = 1, . . . , n with (j, n) = 1. Certainly ζjn ∈ Q(ζn) and so Q(ζn) is a
normal extension of Q.

The degree of Q(ζn) over Q is φ(n), Euler’s function of n. In particular

φ(n) = |{ j : 1 ≤ j ≤ n, (j, n) = 1 }|

Theorem 17: Let n ∈ Z+. The Galois group of Q(ζn) over Q is isomorphic to (Z/nZ)×.
Proof: The elements of Gal(Q(ζn)/Q) fix Q and are determined by their action on ζ. In particular if
σ ∈ Gal(Q(ζn)/Q) then σ(ζ) = ζk for some k with 1 ≤ k ≤ n and (k, n) = 1. Denote σ by σk.

Let λ : Gal(Q(ζn)/Q)→ (Z/nZ)× by λ(σk) = k+nZ. Plainly λ is a bijection. It is also a group homomorphism
since

λ(σk ◦ σl) = λ(σkl) = kl + nZ = (k + nZ) · (l + nZ) = λ(σk) · λ(σl).

Theorem 18: Let n ∈ Z+. If n is even the only roots of unity in Q(ζn) are the nth roots of unity. If n is
odd the only roots of unity in Q(ζn) are the 2nth roots of unity.
Proof: If n is odd then Q(ζn) = Q(−ζn) = Q(ζ2n). Thus to prove our result it suffices to prove it when n is
even.
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Suppose that γ = e2πil/s with (l, s) = 1, e, s ∈ Z+. We consider γvζwn with v, w ∈ Z and note that
γvζwn ∈ Q(ζn). Then

γvζwn = e2πi(
vl
s +w

n )

= e2πi(
vln+sw

ns )

= e2πi(
1
b ) where b =

ns

(n, s)
= lcm(n, s)

Since e2πi/b ∈ Q(ζn) and degree of Q(ζn) over Q is φ(n) we see that φ(b) ≤ φ(n).

Since b = lcm(n, s) we have

b = pl11 · · · p
lk
k with pis prime and li ≥ 1 for i = 1, . . . , k

Then, by reordering the primes,

n = ph1
1 · · · phr

r with r satisfying 1 ≤ r ≤ k

and with hi ≥ 1 for i = 1, . . . , r. Note hi ≤ li for i = 1, . . . , r. We have

φ(b) = (pl11 − p
l1−1
1 ) · · · (plkk − p

lk−1
k )

and
φ(n) = φ(ph1

1 ) · · ·φ(phr
r ) = (ph1

1 − p
h1−1
1 ) · · · (phr

r − phr−1
r ).

But φ(b) ≤ φ(n).

If r < k then pk 6= 2 since n is even and plkk − p
lk−1

k > 1 hence φ(b) > φ(n) which is a contradiction. Therefore
r = k. Since li ≥ hi for i = 1, . . . , k we see that in fact li = hi for i = 1, . . . , k since φ(n) ≥ φ(b).

Let K be a finite extension of Q with [K : Q] = n. Let σ1, . . . , σn be the embeddings of K in C which fix Q.

Let α ∈ K. We define the trace of α from K to Q denoted TKQ (α), by

TKQ (α) = σ1(α) + σ2(α) + · · ·+ σn(α).

We define the norm of α from K to Q, denoted by NK
Q (α), by

NK
Q (α) = σ1(α) · · ·σn(α).

PMATH 641 Lecture 9: January 28, 2013
Let [K : Q] = n and let σ1, . . . , σn be the embeddings of K in C which fix Q. Let α ∈ K. The trace of α
from K to Q, TKQ (α) is given by TKQ (α) = σ1(α) + · · ·+ σn(α).

The norm NK
Q (α) is given by

NK
Q (α) = σ1(α) · · ·σn(α).

Note TKQ is additive on K since for α, β ∈ K

TKQ (α+ β) = TKQ (α) + TKQ (β)

and also
NK

Q (αβ) = NK
Q (α)NK

Q (β).

Since the embeddings σi fix elements of Q, for r ∈ Q we have

TKQ (rα) = σ1(rα) + · · ·+ σn(rα) = r(σ1(α) + · · ·+ σn(α)) = rTKQ (α)

9



and
NK

Q (rα) = rnNK
Q (α).

Also note Q(α) is contained in K so we can consider N
Q(α)
Q (α) and T

Q(α)
Q (α). These are coefficients in the

minimal polynomial α.

=⇒ N
Q(α)
Q (α) and T

Q(α)
Q (α) are in Q and are in Z if α is an algebraic integer.

Theorem 19: Let K be a finite extension of Q. Let α ∈ K and let l = [K : Q(α)]. Then

TKQ (α) = lT
Q(α)
Q (α)

and
NK

Q (α) = (N
Q(α)
Q (α))l.

Proof: Each of the embeddings of Q(α) in C which fix Q extend to l distinct embeddings of K in C which
fix Q by Theorem 4. The result follows.

Theorem 20: Let K be a finite extension of Q and let α ∈ A ∩K.

α is a unit in A ∩K ⇐⇒ NK
Q (α) = ±1.

Proof:

⇒ Since α is a unit there is a β ∈ A ∩K with αβ = 1. Thus NK
Q (αβ) = NK

Q (1) = 1. But NK
Q (αβ) =

NK
Q (α)NK

Q (β) and since α, β ∈ A ∩K we see that NK
Q (α), NK

β ∈ Z. Hence NK
Q (α) = ±1.

⇐ Suppose NK
Q (α) = ±1. Then let σ1(α) = α, σ2(α), . . . , σn(α) be the images of σi.

Thus
α((−1)tσ2(α) · · ·σn(α)) = 1

where t ∈ {0, 1}. But β = (−1)tσ2(α) · · ·σn(α) is in A ∩K since β = 1
α ∈ K and σi(α) is an algebraic

integer for i = 2, . . . , n hence β ∈ A. Thus

β ∈ A ∩K.

Theorem 20 =⇒ The set of units in A ∩K is a group under multiplication hence a subgroup of C. What
happens in A ∩Q(

√
D) when D is a squarefree integer with D 6= 1?

What is the unit group?
If D 6≡ 1 (mod 4) then to determine the unit group we must find all elements l +m

√
D with l, m ∈ Z for

which
N

Q(
√
D)

Q (l +m
√
D) = ±1 (1)

hence for which (l + m
√
D)(l −m

√
D) = ±1 =⇒ l2 −Dm2 = ±1. If D ≡ 1 (mod 4) then we must also

consider l+m
√
D

2 with l and m odd integers. Hence

N
Q(
√
D)

Q

( l +m
√
D

2

)
=
l2 −Dm2

4
= ±1 =⇒ l2 −Dm2 = ±4. (2)

Theorem 21: Let D be a squarefree negative integer. The units in A ∩Q(
√
D) are ±1 unless D = −1 in

which case the units are ±1, ±i or D = −3 in which case the units are ±1, ±1±
√
−3

2 . Since D is negative we
need only consider

l2 −Dm2 = +1 in (1)

and
l2 −Dm2 = +4 in (2).
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If −D 6= 1 or −3 then the only solution of (1) in integers l and m is given by l = ±1, m = 0. Similarly if
D ≡ 1 (mod 4) and D 6= −3 there are no solutions of (2) with l odd. If D = −1 then (1) has the solutions
l = ±1, m = 0 and l = 0, m = ±1.

If D = −3 and l and m are odd then the solutions (l,m) are given by (±1,±1). Further if D = −3 then (1)
has only the solutions l = ±1, m = 0 in integers l, m.

Theorem 22: Let D be a squarefree integer larger than 1. There is a unit ε in Q(
√
D) larger than 1 with

the property that the group of units in Q(
√
D) is

{ (−1)jεk : j, k ∈ Z }.

PMATH 641 Lecture 10: January 30, 2013
Given α ∈ R how well can we approximate it with rationals p/q? How well can we approximate it in terms of
q?
Dirichlet’s Theorem: If α /∈ Q then

there exists infinitely many
p

q
∈ Q with

∣∣∣α− p

q

∣∣∣ < 1

q2
. (∗)

Lemma 23: Let α be a real irrational and let Q be an integer larger than 1. There exist integers p and q
with 0 < p ≤ Q such that |pα− q| < 1/Q. Also we have ∗.
Proof: Note that ∗ follows from our first claim since

|qα− p| < 1

Q
=⇒

∣∣∣α− p

q

∣∣∣ < 1

pQ

Thus if we pick a Q, we find |α − p1
q1
| < 1

q1Q1
≤ 1

q21
with q1 ≤ Q1. But then since α is irrational ∃Q2 such

that 1
Q2

< |q1α− p1| and so ∃p2q2 6=
p1
q1

with |α− p2
q2
| < 1

q22
. Continuing in this way we get our claim.

For any x ∈ R we define {x}, the fractional part of x to be x− [x]. We consider the Q+ 1 number 0, 1, {α},
{2α}, . . . , {(Q− 1)α}. Thus there exists an integer j with 1 ≤ j ≤ Q such that two of the numbers are in
{ j−1Q , jQ} by the pigeonhole principle.

Note 0 and 1 are not both in the interval since Q > 1. Thus either there exist i1 and i2 with {i1α}, {i2α} in[
j−1
Q , jQ

]
with 1 ≤ i1 < i2 ≤ Q or there exist t ∈ {0, 1} and i1 with 1 ≤ i1 ≤ Q with t and {i1α} in

[
j−1
Q , jQ

]
.

Then |{i1α} − {i2α}| ≤ 1/Q in the first case and |t−{i1α}| ≤ 1/Q in the second case. But {ijα} = ijα− [ijα]
for j = 1, 2. Thus in the first case |{i1α} − {i2α}| = |(i1 − i2)α− ([i1α]− [i2α])| and we take q = i1 − i2 and
p = [i1α]− [i2α]. Since α /∈ Q we see that |qα− p| < 1/Q as required. The second case follows in a similar
fashion.
Proof of Theorem 22: We’ll first find a unit γ in A ∩ Q(

√
D) which is positive and different from

1. To show this we’ll prove there exist a positive integer m and ∞-ly many β ∈ A ∩ Q(
√
D) for which

N
Q(
√
D)

Q (β) = Nβ = m. Let β = p+ q
√
D with p, q ∈ Z, q 6= 0. Then Nβ = (p+ q

√
D)(p− q

√
D) = p2−Dq2.

Then
|Nβ| =

∣∣∣p
q
−
√
D
∣∣∣q2∣∣∣p

q
+
√
D
∣∣∣

We can find, by Dirichlet’s Theorem, p, q with |pq −
√
D| < 1/q2 and then this implies |pq +

√
D| < 2

√
D + 1

hence |Nβ| < 2
√
D + 1 for ∞-ly many pairs p, q with (p, q) = 1.

But Nβ is an integer and so there is an integer m with 1 ≤ |m| ≤ 2
√
D + 1 and ∞-ly many β ∈ A ∩Q(

√
D)

for which Nβ = m. We now choose an infinite subset of the βs so that if β1 = p1 +q1
√
D and β2 = p2 +q2

√
D

are in the set then

p1 ≡ p2 mod m and

q1 ≡ q2 mod m.
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We now take from this subset β1 and β2 for which β1/β2 6= −1 and consider β1/β2.

β1
β2

= 1 +
β1 − β2
β2

= 1 +
(β1 − β2)β̃2

Nβ2

where β̃2 is the conjugate of β2. Thus

β1
β2

= 1 +
(β1 − β2

m

)
β̃2 ∈ A ∩K.

Similarly β2/β1 ∈ A ∩K. Therefore β1/β2 is a unit in A ∩Q(
√
D). It is not −1 by construction and so it is

not a root of unity. Thus one of ±β1/β2 is a positive unit different from 1. Thus there is a unit γ larger than
1.

PMATH 641 Lecture 11: February 1, 2013
Let

S = { γ : γ a unit in Q(
√
D) ∩A with γ > 0 }.

We showed there exists an element γ0 in S different from 1. By taking inverses if necessary we may suppose
that γ0 > 1.

But the elements of A ∩ Q(
√
D) ∩ R+ are of the form l+m

√
D

2 with l, m ∈ Z. Thus there are only finitely

many elements of A ∩Q(
√
D) larger than 1 and less than or equal to γ0. Let ε be the smallest elements of S

with 1 < ε ≤ γ0.

We claim S = { εn : n ∈ Z }.

Suppose that there is a unit λ in S which is not a power of ε. Then choose n ∈ Z such that

εn < λ < εn+1.

Consider λ/εn = λ(ε−1)n ∈ S since

N(λ(ε−1)n) = N(λ)(N(ε−1))n = ±1.

But 1 < λ/εn < ε contradicting the minimality of ε. The result follows.

Theorem 24: Let K, L, M be finite extensions of Q with K ⊆ L ⊆ M . Let α ∈ M then TrMK (α) =
TrLK(TrML (α)) and NM

K (α) = NL
K(NM

L (α)).

Let σ1, . . . , σn be the embeddings of L in C which fix K. Let τ1, . . . , τm be the embeddings of M in C
which fix L.

If α ∈M then

TrLK(TrLK(α)) = TrLK(τ1(α) + · · ·+ τm(α)) =

n∑
i=1

σi(τ1(α) + · · ·+ τm(α)). (∗)

Let N be a normal extension of M . We can extend σ1, . . . , σn to embeddings of N in C which fix K, let us
choose σ′1, . . . , σ′n. These are automorphisms of N which fix K. Let τ ′1, . . . , τ ′m be embeddings of N in C
which fix L.

We can compose σ′i and τ ′j and we put σ′i ◦ τ ′j |M to be the restriction of σ′i ◦ τ ′j to M . By ∗

TrLK(TrML (α)) =

n∑
i=1

σ′i(τ1(α) + · · ·+ τ ′m(α))

=
∑
i,j

σ′i ◦ τ ′j(α)

=
∑
i,j

σ′i ◦ τ ′j |M(α)
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Notice that σ′i ◦ τ ′j |M is an embedding of M in C which fixes K. If we can show that σ′i ◦ τ ′j |M are distinct as
we sum over i and j then they are the nm distinct embeddings of M in C which fix K and the result follows.

Suppose that σ′i ◦ σ′j |M = σ′r ◦ τ ′s|M . Next let γ be such that L = K[γ].

Then σ′i ◦ τ ′j |M (γ)1) = σ′i(γ) = σi(γ)

and σ′r ◦ τs|M (γ) = σ′r(γ) = σr(γ)

}
i = r.

Next choose θ such that M = L(θ)

σ′i ◦ τ ′j |M (θ)2) = τ ′j(θ) = τj(θ)

σ′i ◦ τ ′s|M (θ) = τ ′s(θ) = τs(θ)

}
j = s.

Similarly for the norm.

Definition: Let K be an extension of Q of degree n and let σ1, . . . , σn be the embeddings of K in C which
fix Q. Let α1, . . . , αn be elements of K. We define the discriminant of the set {α1, . . . , αn}, denoted by
disc{α1, . . . , αn}, by

disc{α1, . . . , αn} = (det(σi(αj)))
2.

Note by properties of the determinant that the order in which we take the αis or in which we take the σis
does not matter.

Theorem 25: Let K be an extension of Q of degree n. Let α1, . . . , αn be elements of K. Then

disc{α1, . . . , αn} = det(TrKQ (αiαj)).

Proof: Let σ1, . . . , σn be the embeddings of K in C which fix Q.

(σj(αi))(σi(αj)) = (TrKQ (αiαj)). (∗)

Thus

disc{α1, . . . , αn} = (det(σi(αj)))
2

= det(σj(αi)) · det(σi(αj))

= det((σj(αi)) · (σi(αj)))
= det(TrKQ (αiαj)) by ∗.

Remark: Since TKQ (αiαj) ∈ Q we see that {α1, . . . , αn} ∈ Q. Further if α1, . . . , αn are in A ∩ K then

αiαj ∈ A ∩K and so TKQ (αiαj) ∈ Z =⇒ disc{α1, . . . , αn} ∈ Z.

PMATH 641 Lecture 12: February 4, 2013
Let [K : Q] = n. Let α1, . . . , αn and β1, . . . , βn be bases for K (as a vector space over Q). Write

βk =

n∑
j=1

ckjαj .

Then

(ckj)

α1

...
αn

 =

β1...
βn

 .

Since α1, . . . , αn and β1, . . . , βn are bases we see that the matrix (ckj) is invertible hence that det(ckj) 6= 0.
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Let σ1, . . . , σn be the embeddings of K in C which fix Q.

(ckj)

σt(α1)
...

σt(αn)

 =

σt(β1)
...

σt(βn)

 for t = 1, . . . , n.

(ckj)

σ1(α1) · · · σn(α1)
...

σ1(αn) · · · σn(αn)

 =

σ1(β1) · · · σn(β1)
...

σ1(βn) · · · σn(βn)


(det(ckj))

2 disc{α1, . . . , αn} = disc{β1, . . . , βn}. (1)

Suppose that K = Q[θ]. Then 1, θ, . . . , θn−1 is a basis for K over Q. Then

disc{1, θ, . . . , θn−1} =

det

1 σ1(θ) · · · σ1(θn−1)
...
1 σn(θ) · · · σn(θn−1)




2

=

det

1 σ1(θ) · · · (σ1(θ))n−1

...
1 σn(θ) · · · (σn(θ))n−1




2

=

 ∏
1≤i<j≤n

(σi(θ)− σj(θ))

2

But note that σi(θ) 6= σj(θ) for i 6= j hence disc{1, θ, . . . , θn−1} 6= 0.

Thus by (1) whenever α1, . . . , αn is a basis for K over Q, disc{α1, . . . , αn} 6= 0.

Remark: If K ⊆ R and K is normal over Q then by (1) whenever α1, . . . , αn is a basis for K over Q we see
that

disc{α1, . . . , αn} ∈ R+.

Theorem 27: Let [K : Q] = n and let α1, . . . , αn be in K.

disc{α1, . . . , αn} = 0 ⇐⇒ α1, . . . , αn are linearly independent over Q.

Proof: ⇐ Immediate from the definition of discriminant.
⇒ α1, . . . , αn is not a basis =⇒ α1, . . . , αn are linearly dependent over Q.

Note: The following is useful for computing the discriminant of {1, θ, . . . , θn−1} when K = Q(θ). Let f be
the minimal polynomial of θ over Q. Then

disc{1, θ, . . . , θn−1} = (−1)n(n−1)/2NK
Q (f ′(θ)).

To see this let θ = θ1, . . . , θn be the conjugates of θ. Then

f(x) = (x− θ1) · · · (x− θn)

and

f ′(x) =

n∑
j=1

(x− θ1) · · · ̂(x− θj) · · · (x− θn)

where ̂(x− θj) means this term is removed from the product. Thus

f ′(θi) = (θi − θ1) · · · (θi − θn) where (θi − θi) is removed
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Further

NK
Q (f ′(θ)) =

n∏
i=1

σi(f
′(θ)) =

n∏
i=1

f ′(θi) =
∏
i 6=j

(θi − θj)

Note that for i 6= j
(θi − θj) · (θj − θi) = (−1) · (θi − θj)2

so

NK
Q (f ′(θ)) = (−1)n(n−1)/2

 ∏
1≤i<j≤n

(θi − θj)

2

and our result follows.

Suppose K = Q[θ], [K : Q] = n. Then we abbreviate disc{1, θ, . . . , θn−1} to disc(θ).

Theorem 28: Let n be a positive integer. In Q(ζn) we have that disc(ζn) divides nφ(n). Further if n is a
prime we have

disc(ζn) = (−1)(p−1)/2pp−2.

Proof: We know that Φn(x) is the minimal polynomial for ζn. We have

xn − 1 = Φn(x) · g(x) with g ∈ Z[x].

=⇒ nxn−1 = Φ′n(x) · g(x) + Φn(x) · g′(x).

=⇒ nζn−1n = Φ′n(ζn) · g(ζn).

Thus

N
Q(ζn)
Q (n)N

Q(ζn)
Q = N

Q(ζn)
Q (Φ′n(ζn)) ·NQ(ζn)

Q (g(ζn))

nφ(n) = ((−1)n(n−1)/2 disc(ζn)) ·NQ(ζn)
Q (g(ζn)) ∈ Z \ {0}.

PMATH 641 Lecture 13: February 6, 2013
Assignment #2 Typos: Q1(b) 2 · 3, Q3 Q(α)→ Q(θ).

Proof of Theorem 28
N

Q(ζn)
Q (n) = N

Q(ζn)
Q (ζn)N

Q(ζn)
Q (Φ′(ζn))N

Q(ζn)
Q (∗)

where xn − 1 = Φn(x) · g(x) with g ∈ Z[x]. Now take n = p, a prime in ∗.

N
Q(ζp)
Q (p) = N

Q(ζp)
Q (ζp)N

Q(ζp)
Q (Φ′p(ζp))N

Q(ζp)
Q (g(ζp))

pp−1 = ζp(p−1)/2p (−1)(p−1)(p−2)/2 disc(ζp)N
Q(ζp)
Q (g(ζp))

pp−1 = (−1)(p−1)/2 disc(ζp) ·N
Q(ζp)
Q (g(ζp))

But xp − 1 = Φ(x)(x− 1) so g(x) = x− 1 and so

N
Q(ζp)
Q (g(ζp)) = N

Q(ζp)
Q (ζp − 1)

=

p−1∏
j=1

(ζjp − 1)

=

p−1∏
j=1

(1− ζjp)

= Φ(1)
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and since Φp(x) = xp−1
x−1 = 1 + x+ · · ·+ xp−1 we see that Φp(1) = p. Thus

disc(ζp) = (−1)(p−1)/2 · pp−2.

Definition: Let K be an extension of Q of degree n. A set of n algebraic integers {α1, . . . , αn} in K is said
to be an integral basis for K if every algebraic integer in K can be uniquely expressed as an integral linear
combination of α1, . . . , αn.

Remarks: If {α1, . . . , αn} is an integral basis for K over Q then it is a basis for K over Q. To see this note
that if γ is in K then there is a positive integer r such that rγ ∈ A ∩K. But then since {α1, . . . , αn} is an
integral basis there exist integers a1, . . . , an such that

rγ = a1α1 + · · ·+ anαn

γ =
a1
r
α1 + · · ·+ an

r
αn

so γ is a Q-linear combination of α1, . . . , αn. Further α1, . . . , αn are linearly independent over Q and this
follows since [K : Q] = n.

Theorem 29: Let [K : Q] = n. Then there exists an integral basis for K.
Proof: Consider the set of bases for K over Q which are made up of algebraic integers. The set is non-empty
since there exists an algebraic integer θ such that K = Q[θ]. Then {1, θ, . . . , θn−1} is a basis of algebraic
integers.

Let {α1, . . . , αn} be a basis for K comprised of algebraic integers for which |disc{α1, . . . , αn}| is minimal.
We claim that {α1, . . . , αn} is an integral basis for K. Suppose that it is not an integral basis. Then there
exists an element γ in A ∩K which is not an integral linear combination of α1, . . . , αn.

But {α1, . . . , αn} is a basis and so ∃r1, . . . , rn ∈ Q with

γ = r1α1 + · · ·+ rnαn.

By reordering we may suppose that r1 /∈ Z. Put b1 = r1 − br1c and note 0 < b1 < 1. Note that
γ − br1cα1 ∈ A ∩K and

γ − br1cα1 = b1α1 + r2α2 + · · ·+ rnαn.

Further observe that {γ − br1cα1, α2, . . . , αn} is also a basis for K over Q consisting of algebraic integers.
But

disc{γ − br1cα1, α2, . . . , αn} =

det

b1 r2 . . . rn
. . . 0

0 1




2

disc{α1, . . . , αn}

= b21|disc{α1, . . . , αn}|

and since 0 < b21 < 1 we have a contradiction. The result follows.

Theorem 30: Let K be a finite extension of Q. All integral bases for K have the same discriminant.
Proof: Let {α1, . . . , αn} and {β1, . . . , βn} be integral bases for K. Then

αj =

n∑
k=1

cjkβk with cjk ∈ Z.

Thus
disc{α1, . . . , αn} = (det(cjk))2 disc{β1, . . . , βn}.

Note (det(cjk))2 ∈ Z+. Thus
disc{β1, . . . , βn} | disc{α1, . . . , αn}.
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Similarly
disc{α1, . . . , αn} | disc{β1, . . . , βn}.

=⇒ disc{α1, . . . , αn} = ±{β1, . . . , βn}
and since (det(cjk))2 is positive the result follows.

PMATH 641 Lecture 14: February 11, 2013
Definition: Let K be a finite extension of Q. The discriminant of K is the discriminant of an integral basis
for K over Q.

How about quadratic extensions?

Let D be a squarefree non-zero integer. If D 6≡ 1 (mod 4) then 1,
√
D is an integral basis for A ∩Q(

√
D).

=⇒ discQ(
√
D) =

(
det

(
1
√
D

1 −
√
D

))2

= 4D.

If D ≡ 1 (mod 4) then 1, (1 +
√
D)/2 is an integral basis so

disc(Q(
√
D)) =

(
det

(
1 1+

√
D

2

1 1−
√
D

2

))2

= D.

Next we’ll show that if p is a prime then disc(Q(ζp)) = (−1)(p−1)/2pp−2. This will follow provided we show
that 1, ζp, . . . , ζ

p−1
p is an integral basis for Q(ζp), i.e.,

A ∩Q(ζp) = Z[ζp].

More generally we’ll show that if n > 1 that A ∩Q(ζn) = Z[ζn], hence that 1, ζn, . . . , ζ
φ(n)−1
n is an integral

basis for Q(ζn).

Theorem 31: Let K be a finite extension of Q. Let α1, . . . , αn be a basis for K over Q consisting of
algebraic integers. Let d be the discriminant of {α1, . . . , αn}. Then if α ∈ A ∩K there exist integers m1, . . . ,
mn with d | m2

i for i = 1, . . . , n such that

α =
m1α1 + · · ·+mnαn

d
.

Proof: Since α1, . . . , αn is a basis for K over Q there exist rationals a1, . . . , an such that

α = a1α1 + · · ·+ anαn.

Let σ1, . . . , σn be the embeddings of K in C which fix Q. Then

σj(α) = a1σj(α1) + · · ·+ anσj(αn) for j = 1, . . . , n.

Thus σ1(α1) · · · σ1(αn)
...

σn(α1) · · · σn(αn)


a1...
an

 =

σ1(α)
...

σn(α)


By Cramer’s rule

aj =

det

σ1(α) · · · σ1(α)3) · · · σ1(αn)
...

...
...

σn(α) · · · σn(α) · · · σn(αn)


det

σ1(α1) · · · σ(α1)
...

σn(α1) · · · σn(αn)


.
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Since α and α1, . . . , αn are in A ∩K and d = disc(α1, . . . , αn) we see that

aj =
γj
δ

where γj ∈ A ∩K

and where δ2 = d, for j = 1, . . . , n.

Then
daj = δγj ∈ A ∩K for j = 1, . . . , n.

But daj ∈ Q so daj is an integer say mj . It remains to show that d | m2
j for j = 1, . . . , n. But

m2
j

d
=
δ2γ2j
d

= γ2j ∈ A ∩K =⇒
m2
j

d
∈ Z =⇒ d | m2

j .

Let [K : Q] = n and let K = Q[θ]. Then for each embedding σ of K in C which fixes Q either σ(θ) ∈ R or
it is not. In the latter case there is another embedding σ(θ) since Q ⊆ R. Therefore n = r1 + 2r2 where r1
is the number of embeddings of K in C which fix Q which embed K in R and 2r2 is the number of other
embeddings.

Proposition 32: Let K be a finite extension of Q with r1 real embeddings and 2r2 complex and not real
embeddings. Then the sign of the dimension of K over Q is (−1)r2 .
Proof: Let α1, . . . , αn be an integral basis for K over Q and let σ1, . . . , σn be the embeddings of K in C
which fix Q.

Then

disc(K) =

det

σ1(α1) · · · σ1(αn)
...

σn(α1) · · · σn(αn)




2

. (∗)

Note that

det

σ1(α1) · · · σ1(αn)
...

σn(α1) · · · σn(αn)

 = (−1)r2 det

σ1(α1) · · · σ1(αn)
...

σn(α1) · · · σn(αn)


since we are interchanging r2 rows under complex conjugation. If r2 is even then det

(
σ1(α1) ··· σ1(αn)

...
σn(α1) ··· σn(αn)

)
∈ R

while if r2 is odd then det

(
σ1(α1) ··· σ1(αn)

...
σn(α1) ··· σn(αn)

)
is purely imaginary. The result follows from ∗.

We’ll first prove that if p is a prime and r ∈ Z+ then A ∩Q(ζpr ) = Z[ζpr ].

Note that

Φpr (x) =

pr∏
j=1

(j,p)=1

(x− ζjpr ).

We have

Φpr (x) =
xp

r − 1

xpr−1 − 1
= (xp

r−1

)p−1 + · · ·+ xp
r−1

+ 1

=⇒ Φpr (1) = p hence

pr∏
j=1

(1− ζjpr ) = p.

PMATH 641 Lecture 15: February 13, 2013
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Recall that if p is a prime and r ∈ Z+ then

p =

pr∏
j=1

(j,pr)=1

(1− ζjpr ).

Theorem 33: Let p be a prime and let r ∈ Z+. Then A ∩Q(ζpr ) = Z[ζpr ].
Proof: Note that Q(ζpr ) = Q(1− ζpr ). Put s = φ(pr). Then 1, 1− ζpr , . . . , (1− ζpr )s−1 is a basis for Q(ζpr )
over Q consisting of algebraic integers. By Theorem 31 if α ∈ A ∩Q(ζpr) then there exist integers m0, . . . ,
ms−1 such that

α =
m0 +m1(1− ζpr + · · ·+ms−1(1− ζpr )s−1)

disc(1− ζpr )
.

But

disc(1− ζpr ) =

 ∏
1≤i,j≤pr

(i,p)=1,(j,p)=1

((1− ζipr )− (1− ζjpr ))


2

=

 ∏
1≤i≤j≤pr

(i,p)=1,(j,p)=1

(ζipr − ζ
j
pr )


2

= disc(ζpr ).

But disc(ζpr ) is a power of p and so we can write α in the form

α =
m0 +m1(1− ζpr ) + · · ·+ms−1(1− ζpr )s−1

pj
for some integer j.

Suppose A ∩Q(ζpr ) 6= Z[1− ζpr ], in other words there exists an α ∈ A ∩Q(ζpr ) of the form

α =
l0 + l1(1− ζpr ) + · · ·+ ls−1(1− ζpr )s−1

p

where l0, . . . , ls−1 are integers not all divisible by p. Let i be the smallest integer for which p - li. Then

li(1− ζpr )i + · · ·+ ls−1(1− ζpr )s−1

p

is in A ∩Q(1− ζpr ).

For every positive integer k, 1− x divides 1− xk in Z[x]. Recall that

p =

pr∏
k=1

(k,p)=1

(1− ζkpr )

and so
p = (1− ζpr )s · λ where λ ∈ A.

Thus

(1− ζpr )s−(i+1) · λ
(
li(1− ζpr )i + · · ·+ ls−1(1− ζpr )s−1

p

)
∈ A

hence (
li(1− ζpr )i + · · ·+ ls−1(1− ζpr )s−1

(1− ζpr )i+1

)
∈ A.
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Thus li/(1− ζpr ) ∈ A say is γ. But then γ(1− ζpr ) = li and hence

N
Q(ζpr )
Q (γ) ·NQ(ζpr )

Q (1− ζpr ) = N
Q(ζpr )
Q (li).

But then since N
Q(ζpr )
Q (1 − ζpr) is p we see that p | lsi hence p | li which is a contradiction. Thus

A ∩Q(ζpr ) = Z[1− ζpr ] and since Z[1− ζpr ] = Z[ζpr ] our result follows.

Let L and K be finite extensions of Q. We denote by LK, the compositum of L and K the smallest field
containing L ∪K.

Lemma 34: Let [L : Q] = m and [K : Q] = n and suppose [LK : Q] = mn. Let σ be an embedding of L in
C which fixes Q and let τ be an embedding of K in C which fixes Q. Then there is an embedding of LK
which when restricted to L is σ and when restricted to K is τ .
Proof: For each embedding σ of L we can consider the extensions of σ to embeddings of LK. There are n of
them. Restricted to K there are n again. But there are exactly n embeddings of K and so one of them is τ .

Theorem 35: Let [L : Q] = m, [K : Q] = n and [LK : Q] = mn. Then

A ∩ LK ⊆ 1

d
(A ∩K)(A ∩ L)

where d = gcd(disc(K),disc(L)).
Proof: Ingredients: Lemma 34 and Cramer’s Rule.

See Notes.
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Theorem 36: Let n ∈ Z+. Then

A ∩Q(ζn) = Z[ζn].

Proof: By induction on the number of prime factors of n. Result true for n = 1. If n has one prime factor
the result follows from Theorem 33. Suppose now that

n = pl11 · · · p
lk
k

with li ∈ Z+ and p1, . . . , pk distinct primes. By the inductive hypothesis

A ∩Q(ζ
p
l1
1 ···p

lk−1
k−1

) = Z[ζ
p
l1
1 ···p

lk−1
k−1

]

and
A ∩Q(ζ

p
lk
k

) = Z[ζ
p
lk
k

].

Note that the compositum of Q(ζ
p
l1
1 ···p

lk−1
k−1

) and Q(ζ
p
lk
k

) is Q(ζn) since we can find integers g and h for which

ζg
p
l1
1 ···p

lk−1
k−1

· ζh
p
lk
k

= ζn.

By Theorem 23
gcd(disc(Q(ζ

p
l1
1 ···p

lk−1
k−1

)),disc(Q(ζ
p
lk
k

))) = 1.

We now apply Theorem 35 to conclude that

A ∩Q(ζn) ⊆ A ∩Q(ζ
p
l1
1 ···p

lk−1
k−1

) · A ∩Q(ζ
p
lk
k

).

But by (1) and (2)
A ∩Q(ζ

p
l1
1 ···p

lk−1
k−1

) · A ∩Q(ζ
p
lk
k

) = Z[ζ
p
l1
1 ···p

lk−1
k−1

] · Z[ζ
p
lk
k

]
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which is
= Z[ζn] =⇒ A ∩Q(ζn) = Z[ζn].

General problem: Given a finite extension K of Q how does one compute the discriminant of K? Find a θ
which is an algebraic integer so that K = Q(θ). Determine the discriminant of θ. If it is squarefree then it is
the discriminant of K. We have seen that if [K : Q] = n then

disc(θ) = (−1)n(n−1)/2NK
Q (f ′(θ))

where f is the minimal polynomial of θ over Q. Suppose that f , g ∈ C[x] with

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

and
g(x) = bmx

m + · · ·+ b1x+ b0.

We define the resultant R(f, g) by

det



an an−1 · · · a0 0 · · · 0
an an−1 · · · a0

. . .
. . .

0 an an−1 · · · a0
bm . . . . . . . . . . . . . . . . . b0 0

. . .
. . .

0 bm . . . . . . . . . . . . . . . b0



m rows

n rows

Fact

(1) R(f, g) = 0 ⇐⇒ f and g have a common root.

(2) disc(θ) = (−1)n(n−1)/2R(f, f ′).

Example: Let f(x) = x3 − 5x+ 1. By Rational Roots Theorem since f(1) 6= 1, f(−1) 6= 1, we see that f is
irreducible over Q. Let θ be a root of f and put K = Q(θ). What is disc(K)?

First, what is disc(θ)? Thus

R(f, f ′) = det


1 0 −5 1 0
0 1 0 −5 1
3 0 −5 0 0
0 3 0 −5 0
0 0 3 0 −5



= det


1 0 −5 1 0
0 1 0 −5 1
0 0 10 −3 0
0 3 0 −5 0
0 0 3 0 −5



= det


1 0 −5 1
0 10 −3 0
0 0 10 −3
0 3 0 −5


= det

10 −3 0
0 10 −3
3 0 −5


= 10(−50) + 27 = −473 = −11 · 43

21



By (2) we see that disc(θ) = 473. Since 473 is squarefree we see that

disc(K) = 473.

Example: 2 Let f(x) = x3 + x2 − 2x+ 8. Again f is irreducible over Q by Rational Roots Theorem. Let θ
be a root of f and put K = Q(θ). Further

R(f, f ′) = det( ) = −4 · 503.

We now try to modify the basis 1, θ, θ2 in the hope of getting an integral basis. We can check that (θ+ θ2)/2
is an algebraic integer.

PMATH 641 Lecture 17: February 25, 2013
Recall: Let f(x) = x3 + x2 − 2x + 8 is irreducible over Q. Let θ be a root of f . Put K = Q(θ). We have
disc(θ) = −R(f, f ′) = −4 · 503.

Let θ = θ1, θ2, θ3 be the conjugates of θ. We can check that

g(x) =

3∏
i=1

(
x− θ2i + θi

2

)
is in Z[x]. Thus θ2+θ

2 is an algebraic integer. Then disc(1, θ, θ
2+θ
2 ) = −503. Thus 1, θ, θ2+θ

2 is an integral
basis for K since 503 is squarefree and disc(K) = −503.

The question still remains: is there an integral power basis for K? In other words, is there λ ∈ A ∩K such
that 1, λ, λ2 is an integral basis?

Suppose we have such a λ. Then there exist integers a, b, and c so that

λ = a+ bθ + c
(θ2 + θ

2

)
but then

λ2 = A+Bθ + C
(θ2 + θ

2

)
where A = (a2 − 2c2 − 8bc), B = (−2c2 + 2ab+ 2bc− b2), and C = (2b2 + 2ac+ c2). Note 1

λ
λ2

 =

1 0 0
a b c
A B C

 1
θ

θ2+θ
2


so

disc(λ) =

det

1 0 0
a b c
A B C

2

disc
(

1, θ,
θ2 + θ

2

)
=

1 0 0
a b c
A B C

 · (−503).

But det

1 0 0
a b c
A B C

2

= (bC −Bc)2

= (2b3 − bc2 + b2c+ 2c3)2

≡ (b2c− 2bc2)2 mod 2

≡ (bc(b− c))2 mod 2

≡ 0 mod 2
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Thus disc(λ) 6= −503 and so no integral power basis exists.

[K : Q] <∞. An element α in A ∩K which is not zero and not a unit is said to be an irreducible of A ∩K
if whenever α = βγ with β and γ in A ∩K then β is a unit or γ is a unit. We’ve seen that we don’t have
unique factorization into irreducibles up to units and reordering in A ∩Q(

√
−5). up to units and reordering

in A ∩Q(
√
−5).

To recover unique factorization we pass to prime ideals in the ring.

Recall that an ideal P in a commutative ring with identity is a prime ideal ⇐⇒ whenever ab ∈ P with a,
b ∈ R then a ∈ P or b ∈ P . Also an integral domain is a commutative ring with identity with no zero divisors.

Suppose R is a subfield of a ring S. Then θ in S is said to be integral over R if it is the root of a monic
polynomial with coefficients in R. R is integrally closed in S if whenever θ ∈ S is integral over R then θ ∈ R.

Definition: A Dedekind domain R is an integral domain for which

(1) Every ideal in R is finitely generated.

(2) Every non-zero prime ideal in R is maximal

(3) R is integrally closed in its field of fractions.

Proposition 37: Let [L : Q] <∞. Let I be a non-zero ideal in A ∩K. There is a positive integer in I.
Proof: Since I is non-zero there exists an α ∈ I with α 6= 0. Let α = α1, . . . , αn be the conjugates of α over
Q. Then

N
Q(α)
Q (α) = α1 · · ·αn = a ∈ Z \ {0}.

Observe that α2 · · ·αn = a/α1 ∈ K. Further α2, . . . , αn are algebraic integers so α2, . . . , αn ∈ A. Thus
α2 · · ·αn ∈ A ∩K. Thus (α1) · (α2 · · ·αn) ∈ I so a ∈ I. But −a ∈ I also.

Definition: Let [K : Q] <∞ and let I be a non-zero ideal in A ∩K. Then {α1, . . . , αn} is an integral basis
for the ideal if α1, . . . , αn are in I and every element of I has a unique representation as an integral linear
combination of α1, . . . , αn.

PMATH 641 Lecture 18: February 27, 2013
Midterm: Friday in class.

Theorem 38: Let [K : Q] < ∞ and let {ω1, . . . , ωn} be an integral basis for A ∩K. Let I be a non-zero
ideal in A ∩K. Then there exists an integral basis {α1, . . . , αn} for I of the form

α1 = a11ω1

α2 = a21ω1 + a22ω2

...

αn = an1ω1 + · · ·+ annωn

where the aij ∈ Z and aii ∈ Z+ for i = 1, . . . , n.
Proof: By Proposition 37 there exists a positive integer a in I. Thus aωi ∈ I for i = 1, . . . , n. We choose α1

to be the smallest positive multiple of ω1 which is in I and denote it by a11ω1. We then pick α2, α3, . . . by
choosing αi to be ai1ω1 + · · ·+ aiiωi where αi is the integer linear combination of ω1, . . . , ωi for which aiiωi
is such that aii is positive and minimal.

It remains to show that α1, . . . , αn is an integral basis for I. Since ω1, . . . , ωn are linearly independent over

Q and det

( a11 0
...

. . .
an1 ann

)
6= 0 we see that α1, . . . , αn are linearly independent over Q.
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It remains to show that if β ∈ I then β is an integral linear combination of α1, . . . , αn. Since {ω1, . . . , ωn} is
an integral basis for A ∩K

β = b1ω1 + · · ·+ bnωn with bi ∈ Z.

Notice that ann | bn since otherwise, by the Division Algorithm, we would contradict the minimality of ann.
Thus ann · qn = bn for some integer qn. But then β − qnαn is an integral linear combination of ω1, . . . , ωn−1.
We repeat the argument to find integers q1, . . . , qn−1 so that

β = q1α1 + · · ·+ qnαn

as required.

Theorem 39: Let [K : Q] <∞. Then A ∩K is a Dedekind Domain.
Proof: By Theorem 38 every ideal in A ∩K is finitely generated.

Let P be a non-zero prime ideal in A ∩K. We’ll show that P is maximal.

First note that there is a positive integer a in P . Next note that since P is a prime ideal A ∩K/P is an
integral domain.

Let {ω1, . . . , ωn} be an integral basis for A ∩K. Then A ∩K/P is made up of cosets of the form

a1ω1 + · · ·+ anωn + P

where the ais are integers of size at most a in absolute value. =⇒ A ∩K/p is finite.

But a finite integral domain is a field and so P is maximal.

Finally, let γ = α
β with α, β ∈ A ∩K, β 6= 0. Suppose that γ is integral over A ∩K. Thus γ is the root of a

polynomial xm + αm−1x
m−1 + · · ·+ α0 with αm−1, . . . , α0 in A∩K (∗). It remains to show that γ ∈ A∩K.

Plainly γ ∈ K. It remains to show that γ ∈ A.

We do so by considering the ring
S = Z[α0, . . . , αn−1, γ].

Plainly γ ∈ S. By Theorem 13 it suffices to show that S is finitely generated as an additive group. Let θ ∈ S
then it is enough to show that θ is an integral linear combination of terms of the form

αb00 · · ·α
bm−1

m−1 γ
bm

where bm < m and the bis for i = 0, . . . , m− 1 are less than n.

It is enough to show that if θ is of the form αc00 · · ·α
cm−1

m−1 γ
cm with c0, . . . , cm ∈ Z≥0 then this is true.

Start by using ∗, in other words
γm = −αm−1γm−1 · · · − α0,

to reduce cm to an integer of size at most m− 1.
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Theorem 40: Let R be a commutative ring. The following are equivalent:

(1) Every ideal in R is finitely generated.

(2) Every increasing sequence of ideals in R is eventually constant.

(3) Every non-empty set of ideals in R has a maximal element.
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Proof: (1) =⇒ (2). Suppose that I1 ⊆ I2 ⊆ · · · with Ii ∈ R for i = 1, 2, . . . . Put

I =

∞⋃
n=1

In.

Then I is an ideal of R and so I = (α1, . . . , αt). But notice that αj is in I so there exists an integer nj so
that αj ∈ Inj

for j = 1, . . . , t. But then I ⊆ Ib where b = max(n1, . . . , nt). Thus I = Ib = Ib+1 = · · · .

(2) =⇒ (3). Let S be a non-empty set of ideals in R. Thus there exists I1 in S. Either I1 is maximal in S or
there exists I2 in S with I1 ( I2. Either I2 is maximal in S or there exists I3 in S with I2 ( I3. Eventually
this process terminates by (2).

(3) =⇒ (1). Let I be an ideal of R. Let S be the set of finitely generated ideals of R in I. (0) is in I so S is
non-empty. Let M be a maximal element of S. Then M ⊆ I. Suppose that M ( I.

Now M is finitely generated so M = (α1, . . . , αt) say. Pick γ ∈ I \M . Then the ideal I1 = (α1, . . . , αt, γ) is
in I and so M is not a maximal element of S which is a contradiction. Thus M = I. X

Lemma 41: In a Dedekind domain every non-zero ideal contains a product of non-zero prime ideals. (Here
the product may be a product of 1 element.)
Proof: Let S be the set of non-zero ideals in the Dedekind domain R which do not contain a product of
non-zero prime ideals. Suppose that S is non-empty. Then by the definition of a Dedekind domain and
Theorem 40 we see that S has a maximal element M . Note that M is not a prime ideal. Thus there exist a,
b ∈ R with ab ∈M and a /∈M , b /∈M . Therefore

(M + (a))(M + (b)) ⊆M.

But M (M + (a) and M (M + (b). Since M is maximal both M + (a) and M + (b) contain a product of
non-zero prime ideals. Then by ∗ so does M which is a contradiction.

Lemma 42: Let I be a prime ideal in a Dedekind domain R with field of fractions K. Then there is an
element γ ∈ K \R such that γI ⊆ R.
Proof: Let a be any non-zero element of I. Then 1

a /∈ R since I is proper.
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Lemma 42: Let I be a proper ideal in a Dedekind domain R with field of fractions K. There is an element
γ in K \R for which

γI ⊆ R.

Proof: Let a be a non-zero element in I. Since I is proper a is not a unit and so 1
a ∈ K \R. (a) contains a

product of prime ideals p1 · · · pr by Lemma 41. Let us suppose that r is minimal.

Let S be the set of proper ideals in R which contains I. S is non-empty and so by Theorem 40, S contains a
maximal element M . Observe that M is a maximal ideal. Since R is a Dedekind domain, M is a prime ideal.
Next note that (a) ⊆ I and also p1 · · · pr ⊆ (a) ⊆ I ⊆M .

We claim that M ⊇ pi for some i with 1 ≤ i ≤ r. Suppose not. Then there is an element ai in pi and not in
M for i = 1, . . . , r. But then a1 · · · ar ∈M with ai /∈M for i = 1, . . . , r contradicting the fact that M is a
prime ideal. Thus M ⊇ pi for some i. Without loss of generality we may suppose M ⊇ p1. Since M is a
prime ideal M = p1.

Recall (a) ⊇ p1 · · · pr with r minimal. If r = 1 then p1 ⊆ (a) ⊆ I ⊆M so p1 = (a) and then with γ = 1
a we

have

γI =
1

a
(a) = R

as required.
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If r > 1 then we consider p2 · · · pr. Note that p2 · · · pr is non-empty and not contained in (a). Thus there
exists an element b in p2 · · · pr which is not in (a). We now take γ = b

a . Observe that γ ∈ K \R.

Then

γI =
b

a
I

⊆ b

a
p1

⊆ (b)p1
a

⊆ 1

a
p1 · · · pr

⊆ 1

a
(a)

= R,

as required.

Theorem 43: Let R be a Dedekind domain and let I be an ideal of R. Then there is an ideal J of R for
which

IJ is a principal ideal of R.

Proof: If I = (0) the result is immediate so suppose that I is not (0). Let α be a non-zero element of I.

Define J to be the following set in R:

J = {β ∈ R : βI ⊆ (α) }.

Note that J is an ideal of R and
IJ ⊆ (α).

We want to show that in fact IJ = (α). Put B = 1
αIJ and note B is an ideal of R. If B = R we are done

since then IJ = (α).

Suppose then that B is a proper ideal of R. Then by Lemma 42 there exists a γ ∈ K \R for which γB ⊆ R;
here K is the field of fractions of R. Since α ∈ I we have that J ⊆ 1

αIJ = B. Thus

γJ ⊆ γB ⊆ R.

Thus γJI ⊆ (α) and so by the definition of J , γJ ⊆ J . But J is a finitely generated additive subgroup of the
field of fractions of the Dedekind domain R.

By Theorem 13 with C replaced by the field of fractions of a Dedekind domain we see that γ is the root of a
monic polynomial with coefficients in R. Since R is a Dedekind domain it is integrally closed in its field of
fractions. Thus γ ∈ R which is a contradiction.
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Theorem 43

...

γJ ⊂ J

J is a finitely generated ideal in R so J = (a1, . . . , an).

Then there exist mij in R so that
γai = mi1a1 + · · ·+minan
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for i = 1, . . . , n. Then

(γIn −M)

a1...
an

 =

0
...
0


where M = (mij). J 6= (0) so

( a1
...
an

)
=

(
0
...
0

)
=⇒ det(γIn −M) = 0. Thus γ is the root of a monic

polynomial with entries in R. But R is a Dedekind domain so R is integrally closed in its field of fractions K.
Since γ ∈ K we see that γ ∈ R. This is a contradiction.

Corollary 44: Let A, B and C be non-zero ideals in a Dedekind domain R with AC = BC then A = B.
Proof: There exists an ideal J in R so that CJ is principal. Say CJ = (α) with α ∈ R. Note that

ACJ = BCJ

so A(α) = B(α).
=⇒ Aα = Bα

=⇒ A = B since α 6= 0.

Corollary 45: Let A and B be non-zero ideal in a Dedekind domain R.

A | B ⇐⇒ B ⊆ A.

Proof: ⇒ Since A | B there exists an ideal C in R with AC = B. Then immediately B ⊆ A.
⇐ By Theorem 43 there exists a non-zero element α in R and an ideal J of R such that AJ = (α). Consider
1
αBJ . Note that 1

αBJ is an ideal of R since B ⊆ A. Further A( 1
αBJ) = B( 1

αAJ) = B( 1
α (α)) = B.

Theorem 46: Every non-zero proper ideal in a Dedekind domain R can be written as a product of prime
ideals of R and this representation as a product is unique up to ordering.
Proof: We first prove existence.

Let S be the set of non-zero proper ideals which cannot be written as a product of prime ideals. Since R is a
Dedekind domain S has a maximal element M . Note that M is contained in a maximal ideal of R which,
since R is a Dedekind domain, is a prime ideal of R, say P .

Thus M ⊆ P . Note M 6= P since M is in S. Thus M ( P . Therefore by Corollary 45 there exists an ideal A
such that

M = PA.

Further M ( A. But A is not a product of prime ideals since otherwise by ∗ M is a product of prime ideals.
But then A ∈ S and M is not maximal in S which is a contradiction. Therefore S is empty as required.

“Uniqueness”
Suppose that p1, . . . , pr and q1, . . . , qs are prime ideals with

p1 · · ·r = q1 · · · qs.

Note that p1 | q1 · · · qs. Thus by Corollary 45, p1 ⊇ q1 · · · qs. Since p1 is a prime ideal p1 ⊇ qi for some i.
Without loss of generality we may suppose p1 ⊇ q1. Prime ideals are maximal ideals in R so p1 = q1. By
Corollary 44, p2 · · · pr = q2 · · · qs. Repeating this argument the result follows.

Remark: Let [K : Q] < ∞. Then A ∩K is a Dedekind domain and so we have unique factorization into
prime ideals, up to ordering, in A ∩K.

Definition: Let R be a commutative ring with identity. An element c of R is said to be irreducible of R if

(1) c 6= 0 and c is not a unit of R.

27



(2) If c = ab with a, b in R then a is a unit or b is a unit.

An element c of R is said to be a prime of R if

(1) c 6= 0 and c is not a unit of R

(2) If c | ab with a, b in R then c | a or c | b.

Note in UFDs the concepts are the same.
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Theorem 47: Let [K : Q] < ∞. The factorization of elements of A ∩K into irreducibles is unique up to
reordering and units if and only if every ideal in A ∩K is principal.
Proof: ⇐ It is enough to show that every non-zero prime ideal P in A ∩K is principal. By Proposition 37
there is an integer a with a > 1 in P . Let a = π1 · · ·πt be the decomposition of a into irreducibles in A ∩K.

Then a ∈ P so P ⊇ (a) = (π1) · · · (πt). Thus P | (π1) · · · (πt) so P | (πi) for some i with 1 ≤ i ≤ t. Without
loss of generality we may suppose that P | (π1) so P ⊇ (π1).

Notice that P = (π1) since (π1) is a prime ideal. This follows since otherwise (π1)δ = βγ with β and γ not in
(π1). But π1 is irreducible so π1 | β or π1 | γ by unique factorization which is a contradiction.

⇒ Suppose that
π1 · · ·πr = λ1 · · ·λs

where the πi and λj are irreducibles in A ∩K. Notice that then

(π1) · · · (πr) = (λ1) · · · (λs).

Therefore it suffices to show that if π is an irreducible of A ∩K then (π) is a prime ideal. We have unique
factorization into prime ideals of A ∩K so if (π) is not a prime ideal then (π) = AB with A and B proper
non-zero ideals of A ∩K.

Since every ideal in A∩K is principal there exists α, β ∈ A∩K with A = (α) and B = (β). Then (π) = (α)(β).
Thus there exists δ, γ ∈ A∩K such that π = {αδ} · {βγ}. But π is irreducible so either αδ is a unit in which
case α is a unit or βγ is a unit in which case β is a unit. This contradicts the fact that A and B are proper
ideals.

The only rings A ∩Q(
√
−D) which have unique factorization into irreducibles with D > 0 are those with

D = 1, 2, 3, 7, 11, 19, 43, 67, 163.

Given a prime ideal P in A ∩K with [K : Q] <∞ we can find an integer a > 1 with a ∈ P . Let a = p1 · · · pt
be a factorization of a into primes in Z. Then P ⊇ (a) so P | (p1) · · · (pt) hence P | (pi) for some prime pi in
Z.

Suppose P | (p) are P | (q) for two distinct primes p, q in Z. Then since there exist integers r and s with

rp+ sq = 1

we see that
(r)(p) + (s)(q) = (1)

and so
P | (1)

which is a contradiction. Thus to each prime ideal P in A ∩K there is a unique prime p in Z associated to it
with P | (p).
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Definition: Let [K : Q] <∞ and let p be a prime in Z. We say that p ramifies in A ∩K if there exists a
prime ideal P in A ∩K such that P 2 | (p).

Dedekind proved that the primes p that ramify are exactly the primes that divide the discriminant D.
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Theorem 48: Let [K : Q] <∞. Let D be the discriminant of K. If p is a prime which does not divide D
then p is unramified in A ∩K.
Proof: We’ll prove the contrapositive.

Suppose that P is a prime ideal and P 2 | (p). We’ll show that then p | D.

Since P 2 | (p) there is an ideal Q with P 2Q = (p). Then there exists an α ∈ A ∩ K with α ∈ PQ but
α /∈ P 2Q.

But then α2 ∈ P 2Q2 and so α2 ∈ (p) hence α2/p ∈ A ∩K. Thus αp/p ∈ A ∩K and so for each β ∈ A ∩K,
(αβ)p/p ∈ A ∩K. Notice then that TKQ (αβ)p = TKQ (p(αβ)p/p) = pTKQ ((αβ)p/p). Since TKQ ((αβ)p/p) is an

integer we see that p | TKQ (αβ)p. But

(TKQ αβ)p =
(∑

σ

σ(αβ)
)p

=
∑
σ

σ(αβ)p + pγ

where γ is an integer by the multinomial expansion so

(TKQ αβ)p = TKQ (αβ)p + pγ

and since p | TKQ (αβ)p we see that p | (TKQ αβ)p. Since p is a prime we see that p | TKQ αβ.

Let {ω1, . . . , ωn} be an integral basis for A ∩K. Then for i = 1, . . . , n we have TKQ (αωi) is divisible by p.
We have

α = a1ω1 + · · ·+ anωn

with a1, . . . , an integers. Since α /∈ (p) hence α/p /∈ A ∩K we see that at least one of a1, . . . , an is not
divisible by p without loss of generality suppose p - a1.

Observe that since p | TKQ (αωi) we see that p divides

TKQ (α1ω1 + · · ·+ αnωn)ωi = a1T
K
Q ω1ωi + a2T

K
Q ω2ωi + · · ·+ anT

K
Q ωnωi.

By Theorem 25 we have

a1D = det


a1T

K
Q (ω1ω1) · · · a1T

K
Q (ω1ωn)

TKQ (ω2ω1) · · ·
...

...
...

TKQ (ωnω1) · · · TKQ (ωnωn)



= det


a1T

K
Q (ω1ω1) + a2T

K
Q (ω2ω1) + · · ·+ anT

K
Q (ωnω1) · · · a1T

K
Q (ω1ωn) + · · ·+ anT

K
Q (ωnωn)

TKQ (ω2ω1) · · ·
...

TKQ (ωnω1) · · · TKQ (ωnωn)


Since p divides each integer in the top row of the matrix we see that p | a1D. But p - a1 hence p | D as
required.

Let [K : Q] <∞. We define the norm of an ideal I of A ∩K, denoted by NI,

NI = |A ∩K/I|.
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Thus NI is the number of residue classes modulo I. NI is also denoted by NK
Q (I).

Theorem 49: Let [K : Q] = n. Let I be a non-zero ideal of A ∩K and let α1, . . . , αn be an integral basis
for I. Then

NI =
∣∣∣disc(α1, . . . , αn)

D

∣∣∣1/2,
where D is the discriminant of K.
Proof: We first remark that all integral bases for I have the same discriminant. This follows just as for the
discriminant of K.

Let ω1, . . . , ωn be an integral basis for K. Then we can find an integral basis α1, . . . , αn of I of the form

α1 = a11ω1

α2 = a21ω1 + a22ω2

...

αn = an1ω1 + · · ·+ annωn

with aii ∈ Z+, by Theorem 38. Since

disc{α1, . . . , αn} =


a11 0

...
. . .

an1 · · · ann




2

D

we see that it suffices to show that
NI = a11 · · · ann.

Suppose that
r1ω1 + · · ·+ rnωn ≡ s1ω1 + · · ·+ snωn (mod I)

with 0 ≤ ri < aii for i = 1, . . . , n and with 0 ≤ si < aii . . . .

=⇒ (r1 − s1)ω1 + · · ·+ (rn − sn)ωn ∈ I
=⇒ (s1 − r1)ω1 + · · ·+ (sn − rn)ωn ∈ I

Recall from the proof of Theorem 38 that ann is chosen to be minimal and positive.

=⇒ ann | rn − sn =⇒ rn = sn since 0 ≤ |rn − sn| < ann

Similarly rn−1 = sn−1, . . . , r1 = s1.

Thus NI ≥ a11 · · · ann.
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Theorem 44 . . .
{α1, . . . , αn} a basis for I

disc{α1, . . . , αn} =


a11 0

...
. . .

an1 · · · ann




2

D

= (a11 · · · ann)2D

We showed that NI ≥ a11 · · · ann.
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To conclude suppose γ ∈ A ∩K. Then γ = b1ω1 + · · ·+ bnωn with bi ∈ Z; here {ω1, . . . , ωn} is an integral
basis for A ∩ K. Note that, by the Division Algorithm, bn = qnann + rn with 0 ≤ rn < ann and then
γ − qnαn = d1ω1 + · · ·+ dn−1ωn−1 + rnωn.

Repeating this n− 1 times we find that there exist integers q1, . . . , qn−1 so that

γ − qnαn − qn−1αn−1 + · · ·+ q1α1 = r1ω1 + · · ·+ rnωn

with 0 ≤ ri < aii. Thus
NI ≤ a11 · · · ann =⇒ NI = a11 · · · ann.

Corollary 50: [K : Q] <∞. Let α be a non-zero element of A ∩K. Then N(α) = |NK
Q (α)|.

Proof: Let {ω1, . . . , ωn} be an integral basis for A ∩K. Then the principal ideal (α) has {αω1, . . . , αωn} as
an integral basis.

Let σ1, . . . , σn be the embeddings of K in C which fix Q. Then

disc{αω1, . . . , αωn} = (det(σi(αωj)))
2

D = disc{ω1, . . . , ωn} = (det(σi(ωj)))
2

But we have

disc{αω1, . . . , αωn} =

det

σ1(α) 0
. . .

0 σn(α)




2

·D

= (NK
Q (α))2 ·D.

By Theorem 49 =⇒ (N(α))2 = (NK
Q (α))2. Thus N(α) = |NK

Q (α)| since N(α) is a non-negative integer.

Theorem 51: (Fermat’s Theorem) Let [K : Q] < ∞ and let P be a prime ideal of A ∩K. Let α be an
element of A ∩K with P - (α) then

αNP−1 ≡ 1 mod P.

Proof: Let β1, . . . , βNP be a complete set of representatives for the cosets A ∩K/P (in A ∩K modulo P ).
We may suppose βNP is congruent to 0 mod P . Then since P - (α) we see that

αβ1, . . . , αβNP

is again a complete set of representatives mod P with αβNP congruent to 0 modulo P . Therefore

αβ1 · · ·αβNP−1 ≡ β1 · · ·βNP−1 mod P.

=⇒ αNP−1 ≡ 1 mod P

as required.

Proposition 52: Let [K : Q] <∞. Let A be a non-zero ideal of A ∩K. Then NA ∈ A.
Proof: Let β1, . . . , βNA be a complete set of representatives modulo A. Then

1 + β1, . . . , 1 + βNP

is also a complete set of representatives modulo A.

=⇒ β1 + · · ·+ βNA ≡ (1 + β1) + · · ·+ (1 + βNA) mod A

0 ≡ NA mod A

Notice that for any positive integer t there are only finitely many ideals A of A ∩K with NA = t.
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Still to show: The norm map on ideals is multiplicative, i.e., for A, B ideals in A ∩K

NAB = NA ·NB.

If we have this and
NA = p with p a prime

then A is a prime ideal. Further if p is a prime in Z then

N(p) = |NK
Q p| = pn where n = [K : Q].

Every prime ideal P of A ∩K divides (p) for exactly one prime.

=⇒ NP = pf

for some integer f with 1 ≤ f ≤ n.
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Let [K : Q] <∞. Let A and B be ideals of A ∩K. We say that an ideal C of A ∩K is a greatest common
divisor of A and B if it is a common divisor of A and B and all other common divisors of A and B divide it.

In fact there can be at most 1 greatest common divisor of A and B since if C and D are greatest common
divisors of A and B then C | D and D | C hence C ⊇ D and D ⊇ C so D = C.

In fact there is one since ifA = (α1, . . . , αn) andB = (β1, . . . , βs) then we may take C = (α1, . . . , αn, β1, . . . , βn).
Certainly A ⊆ C and B ⊆ C hence C | A and C | B. Further if D | A and D | B then D ⊇ A and D ⊇ B
hence α1, . . . , αr and β1, . . . , βs are in D so D ⊇ C = (α1, . . . , αr, β1, . . . , βs). Thus D | C. Therefore there
is a unique greatest common divisor of A and B and we denote it by gcd(A,B).

gcd(A,B) = (1) is equivalent to A and B being coprime.

Since we have unique factorization into prime ideals in A ∩K if

A = pa11 · · · parr

and
B = pb11 · · · pbrr

with p1, . . . , pr distinct prime ideals and a1, . . . , ar, b1, . . . , br non-negative integers then

gcd(A,B) = pc11 · · · pcrr

where
ci = min(ai, bi) for i = 1, . . . , r.

Lemma 53: Let [K : Q] < ∞. Let A and B be non-zero ideals of A ∩K. Then there exists an element

α ∈ A for which gcd( (α)
A , B) = (1).

Proof: If B = (1) the result is immediate. Suppose then that there are exactly r distinct prime ideals p1,
. . . , pr which divide B. We’ll prove the result by induction on r.

First suppose that r = 1.
Choose α so that α is in A but not in Ap1. This is possible since A 6= Ap1. But then gcd((α)/A, p1) is
a divisor of p1. Since p1 is a prime ideal it is either p1 or (1). If it is p1 so gcd((α)/A, p1) = p1 then
gcd((α), Ap1) = Ap1. Thus Ap1 | (α) hence (α) ⊆ Ap1 and so α ∈ Ap1 which is a contradiction.

Now suppose r > 1. Let

Am = A
P1 · · ·Pr
Pm

, for m = 1, . . . , r.
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Choose αm in Am, by the case r = 1, so that

gcd
( (αm)

Am
, Pm

)
= (1), for m = 1, . . . , r.

We now put
α = α1 + · · ·+ αr.

Since α1 ∈ Ai and A | Ai for i = 1, . . . , r we see that αi ∈ A for i = 1, . . . , r we see that αi ∈ A for i = 1,
. . . , r. Thus α ∈ A.

Note that α /∈ APm for m = 1, . . . , r. To see this observe first that APm | Ai whenever i 6= m. Therefore αi
is in APm for i 6= m. But α = α1 + · · · + αr so if α is in APm for some m with 1 ≤ m ≤ r then αm is in
APm. But gcd((αm)/Am, Pm) = (1).

Since P1, . . . , Pr are distinct prime ideals

gcd
( (αm)

A
,Pm

)
= (1). (∗)

=⇒ gcd((αm), APm) = A.

But αm ∈ APm so (αm) ⊆ APm hence APm | (αm). Thus Pm | (αm)
A and this contradicts ∗.

We now show that gcd((α)/A,B) = 1. Suppose otherwise. Then gcd((α)/A,B) is divisible by Pm for some
integer m with 1 ≤ m ≤ r. Then Pm divides (α)/A so APm divides (α). In particular α ∈ APm which is a
contradiction.
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Theorem 54: [K : Q] <∞. Let A and B be non-zero ideals of A ∩K. Then

NAB = NA ·NB.

Proof: Let α1, . . . , αNA be a complete set of representatives modulo A. Similarly let β1, . . . , βNB be a
complete set of representatives modulo B.

By Lemma 53 there exists γ in A for which gcd((γ)/A,B) = (1) =⇒ gcd((γ), AB) = A.

Consider the terms αi + γβj with 1 ≤ i ≤ NA and 1 ≤ j ≤ NB. These terms are all distinct mod AB since
otherwise there exists i, j, k, l with 1 ≤ i ≤ NA, 1 ≤ j ≤ NB, 1 ≤ k ≤ NA, 1 ≤ l ≤ NB for which

αi + γβj ≡ αk + γβl (mod AB).

Then
αi − αk ≡ γ(βj − βl) (mod AB).

Since γ is in A we see that αi − αk ≡ 0 (mod A) hence i = k. But then

γ(βj − βl) ≡ 0 (mod AB).

Thus AB | (γ)(βj − βl)

=⇒ B | (γ)

A
(βj − βl)

=⇒ B | (βj − βl)
=⇒ βj ≡ βl (mod B) =⇒ j = l

Thus
NAB ≥ NANB.
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Suppose α ∈ A ∩K. Then α ≡ αi (mod A) for some i with 1 ≤ i ≤ NA. Recall by ∗ gcd((γ), AB) = A.
Thus

α− αi = γ · λ+ δ

with λ ∈ A ∩ K and δ ∈ AB. Then λ ≡ βj (mod B) for some j with 1 ≤ j ≤ NB. Therefore α =
αi + γβj + γ(λ− βj) + δ. Now since γ ∈ A and λ− βj is in B we see that

α ≡ αi + γβj mod AB.

Thus NAB ≤ NA ·NB and so NAB = NANB.

Let [K : Q] <∞. We define a notation ∼ on the non-zero ideals of A ∩K by A ∼ B if and only if there exist
α, β ∈ A ∩K with αβ 6= 0 so that

(α)A = (β)B.

This is an equivalence relation

(1) A ∼ A α = β = 1 X

(2) A ∼ B ⇐⇒ B ∼ A X

(3) If A ∼ B and B ∼ C then there exist α, β, γ, δ in A∩K \{0} such that (α)A = (β)B and (γ)B = (δ)C
so then

(αγ)A = (α)(γ)A = (γ)(β)B = (δ)(β)C = (δβ)C.

Thus A ∼ C.

The equivalence classes under the relation ∼ are known as the ideal classes of A ∩K. Note that if we have
just one equivalence class then all of the ideals are principal. The number of ideal classes is known as the
class number of K and it is denoted by h or hK .

Let C = { [A] : A is an ideal of A ∩K }; here [A] denotes the ideal class of which A is a representative.

We define a multiplication on C by
[A] · [B] = [AB].

Note that this definition does not depend on the representatives chosen since if A ∼ C and B ∼ D then
AB ∼ CD.

Observe that C is an abelian group under multiplication. To see this note that multiplication is associative
since

[A] · ([B] · [C]) = [A] · [BC] = [A(BC)] = [(AB)C] = [AB] · [C] = ([A] · [B]) · [C].

The principal ideal class is the identity element of the group since [(1)] · [B] = [B] = [B] · [(1)]. Plainly also
[A] · [B] = [B] · [A].

Further [A] has an inverse. To see this note that there is a positive integer a in A (take α ∈ A. . . ) since A is
not (0).

Thus (a) ⊆ A hence A | (a). Therefore there exists an ideal B with AB = (a). Thus [A] · [B] = [(a)] = [(1)]
and so

[B] = [A]−1.

Therefore C is an abelian group under ·.
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h: class number of K
[K : Q] <∞. h is finite as we’ll show.

Another important invariant of K is the regulator R. It often arises together with h.
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Suppose that [K : Q] < n and there exist r1 real embeddings of K in C and 2r2 embeddings which are not
into R. Let σ1, . . . , σr1 be the real embeddings and let σr1+1, . . . , σr1+2r2 be the other embeddings where
we arrange that

σr1+i = σr1+r2+i for i = 1, . . . , r2.

Thus r1 + 2r2 = n. Put
r = r1 + r2 − 1.

Let U(K) be the group of units in A ∩K. Dirichlet proved that

U(K) ≈ Tor× Zr

where Tor is a finite group corresponding to the roots of unity in K.

In particular there exist a system of fundamental units ε1, . . . , εr such that if ε is in U(K) then there exists
a root of unity ζ and integers a1, . . . , ar such that

ε = ζεa11 · · · εarr .

Note that if (aij) is an r × r matrix with integer entries which has an inverse with integer entries then

{εa111 · · · εa1rr , . . . , εar11 , . . . , εarrr }

is again a fundamental system of units.

Let L : K∗ → Rr1+r2 be the logarithmic embedding of K∗ in Rr1+r2 given by

L(α) = (log|σ1(α)|, . . . , log|σr1(α)|, 2 log|σr1+1(α)|, . . . , 2 log|σr1+r2(α)|).

The kernel of L consists of the roots of unity of K. Further if α ∈ K with α 6= 0 then

log|NK
Q (α)| = log|σ1(α)|+ · · ·+ log|σr1+2r2(α)|

= log|σ1(α)|+ · · ·+ log|σr1(α)|+ 2 log|σr1+1(α)|+ · · ·+ 2 log|σr1+r2(α)|

Notice that if α ∈ U(K) then L(α) lies in the subgroup of Rr1+r2 given by x1 + · · · + xr1+r2 = 0. In fact
they determine a lattice of rank r1 + r2 − 1. We can ask for the volume of a fundamental region of the lattice.
This is called the regulator R. Equivalently

R =

∣∣∣∣det(ei log|σi(εj)|)i=1,...,r
j=1,...,r

∣∣∣∣
where ei = 1 if 1 ≤ i ≤ r1 and ei = 2 otherwise.

For [K : Q] = 2 with K real quadratic then R = log ε where ε is the fundamental unit larger than 1. If K is
imaginary quadratic take

R = 1.

Let MK(x) be the number of ideals of A ∩K with norm at most x. One can prove

lim
x→∞

MK(x)

x
= 2r1(2π)r2

hR

W
√
|d|

where W is the number of roots of unity in K. The number of integers up to x is x+O(1). The number of
primes π(x) up to x satisfies

lim
x→∞

π(x)

x/ log x
= 1.

35



Let πK(x) denote the number of prime ideals up to x. Landau proved that

lim
x→∞

πK(x)

x/ log x
= 1.

ζ(s) =

∞∑
n=1

1

ns

=
∏
p

( 1

1− 1
ps

)
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Corrections to Question 4 on the assignment. Replace “Let d be the discriminant of K. . . ” by “Let d be the
discriminant of θ. . . ”. Also “. . . of the form

1

d
(a0 + a1θ + · · ·+ ai−1θ

i−1)

with a0, a1, . . . , ai−1 integers and ai−1. . . ”

Theorem 55: Let [K : Q] <∞. There exists a positive number C0 which depends on K such that if A is a
non-zero ideal of A ∩K then there exists a non-zero element α of A for which

|NK
Q (α)| ≤ C0NA.

Proof: Let ω1, . . . , ωn be an integral basis for K. Next put

t = [(NA)1/n]

and consider the elements β in A ∩K of the form

a1ω1 + · · ·+ anωn (∗)

with 0 ≤ ai ≤ t for i = 1, . . . , n. There are (t + 1)n such elements and since (t + 1)n > NA there exist
β1, β2 of the form ∗ which are equivalent modulo A. In particular α = β1 − β2 = b1ω1 + · · ·+ bnωn where
0 ≤ |bi| ≤ t.

Then let σ1, . . . , σn be the embeddings of K in C which fix Q. Thus

|NK
Q (α)| =

n∏
i=1

|σi(b1ω1 + · · ·+ bnωn)|

≤ tn
( n∏
i=1

n
(

max
1≤j≤n

|σi(ωj)|
))

≤ NA · C0
4)

Theorem 56: Let [K : Q] <∞. The class number of K is finite.
Proof: We’ll show that every non-zero ideal of A∩K is equivalent to an ideal of norm at most C0, where C0

is from Theorem 55. Since there are only finitely many ideals of norm at most C0 the result then follows.

Let I be a non-zero ideal of A ∩K. Then there exists an ideal A such that AI ∼ (1).

By Theorem 55 there exists a non-zero α in A for which

|NK
Q (α)| ≤ C0NA.

4)where C0 is above quantity
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Note that α ∈ A =⇒ (α) ⊆ A so A | (α) hence there exists B such that AB = (α). But

NA ·NB = NAB = N(α) = |NK
Q (α)| ≤ C0NA.

Thus NB ≤ C0.

Further AB ∼ (1) and since AI ∼ (1) =⇒ B ∼ I. Thus I is equivalent to an ideal of norm at most C0.

If h is the class number of K then by Lagrange’s Theorem for any non-zero ideal A of A ∩K we have

[A]h = [(1)].

Equivalently Ah is principal for any ideal A.

Suppose q is a positive integer coprime with h and Aq ∼ Bq then A ∼ B. To see this note that if gcd(q, h) = 1
then there exists r, s with rq + sh = 1 and then

Arq ∼ Brq so A1−sh ∼ B1−sh =⇒ A ∼ B.

It can be shown that we can take C0 =
√
|d| where d is the discriminant of K.

Example: Consider K = Q(
√
−5). We have d = −20 so C0 =

√
20. Therefore we need only consider

ideals of norm at most
√

20 hence at most 4 we must check how (2) and (3) decompose into prime ideals in
A ∩Q(

√
−5).

(2) = (2, 1 +
√
−5)(2, 1−

√
−5)

= (4, 2− 2
√
−5, 2 + 2

√
−5, 6)

= (2, 2(1 +
√
−5))

= (2)
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Class number of Q(

√
−5). It suffices to consider ideals of norm at most 4. Note that

(2, 1 +
√
−5) · (2, 1−

√
−5) = (4, 2(1 +

√
−5), 2(1−

√
−5), 6) = (2).

Also observe that
2− (1 +

√
−5) = 1−

√
−5

and so
(2, 1 +

√
−5) = (2, 1−

√
−5).

Put P = (2, 1 +
√
−5). Thus (2) = P2. Also note that

(3, 1 +
√
−5)(3, 1−

√
−5) = (9, 3(1 +

√
5), 3(1−

√
5), 6) = (3).

Put Q = (3, 1 +
√
−5) and Q′ = (3, 1−

√
−5). We have NQNQ′ = 9.

Could we have NQ = 1? Then Q = (1). In particular 1 ∈ Q hence there exist a, b, c, d ∈ Z with

3(a+ b
√
−5) + (1 +

√
−5)(c+ d

√
−5) = 1.

=⇒ 3a+ c− 5d = 1

3b+ c+ d = 0
3a− 3b− 6d = 1
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and since 3 - 1. #

Similarly NQ′ 6= 1 hence NQ = NQ′ = 3 and Q and Q′ are prime ideals. Thus (1), P, P2, Q, and Q′ are
the ideals of norm at most 4. Since P2 is principal

P2 ∼ (1)

and so we need to consider only the ideal classes of (1), P, Q, and Q′.

We have

(3, 1 +
√
−5)(2, 1 +

√
−5) = (6, 2(1 +

√
−5), 3(1 +

√
−5), (1 +

√
−5)2) = (1 +

√
−5).

QP ∼ (1).

(3, 1−
√
−5)(2, 1 +

√
−5) = (1−

√
−5)

Q′P ∼ (1)

QP ∼ (1)

}
=⇒ Q ∼ Q′

QQ′ ∼ (1)

QP ∼ (1)

}
=⇒ Q′ ∼ P

Thus
C = {[(1)], [P]}.

Could we have P ∼ (1), so P principal? Then P = (a+ b
√
−5) and since NP = 2

a2 − 5b2 = 2 =⇒ a2 ≡ 2 (mod 5) #.

Therefore h = 2.

Suppose [K : Q] <∞.

There is an extension E of K which is Galois over K and has the property that the Galois group of E over
K is isomorphic to the ideal class group of K. Also every ideal of A ∩K becomes principal in E.

E is the Hilbert class field of K.
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Lattices, Λ in Rn

Let α1, . . . , αn be linearly independent vectors over R in Rn. The set of points

Λ = {m1α1 + · · ·+mnαn : mi ∈ Z, i = 1, . . . , n },

is known as a lattice. The lattice is said to be generated by α1, . . . , αn. Notice that if (vij) is a matrix with
integer entries and det(vij) = ±1 and we put

α′i =

n∑
j=1

vijαj

then α′1, . . . , α′n is also a basis for Λ.

Put d(Λ) = |det(α1, . . . , αn)|. Then d(Λ) does not depend on the choice of generators α1, . . . , αn for Λ since

det(α1, . . . , αn) = ±det(α′1, . . . , α
′
n)

whenever α′1, . . . , α′n also generate Λ.
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For generators α1, . . . , αn of Λ we can define an associated fundamental parallelogram P in Rn given by

P = { θ1α1 + · · ·+ θnαn : 0 ≤ θi < 1 for i = 1, . . . , n }.

Notice that every element β in Rn has a unique representation in the form

β = λ+ γ,

with λ ∈ Λ and γ ∈ P .

Note also that µ(P ) the Lebesgue measure or volume of P is just

µ(P ) = d(Λ).

Remark: Since α1, . . . , αn are linearly independent over R, d(Λ) > 0.
Example: Let Λ be the lattice in Rn generated by e1, . . . , en where

ej = (0, . . . , 0,
jth position

1, 0, . . . , 0)

Λ0 = { (m1, . . . ,mn) : mi ∈ Z for i = 1, . . . , n }.
d(Λ0) = 1

Theorem 57: (Blichfeldt’s Theorem) Let m, n ∈ Z+. Let Λ be a lattice in Rn. Let S be a set in Rn with
Lebesgue measure µ(S). Suppose that either µ(S) > md(Λ) or S is compact and

µ(S) ≥ md(Λ)

then there exist distinct points x1, . . . , xm+1 in S with with xi − xj ∈ Λ for 1 ≤ i, j ≤ m.
Proof: Let α1, . . . , αn generate Λ and let P be the fundamental parallelogram associated with α1, . . . , αn.

For each λ ∈ Λ we define R(λ) to be the set of points v ∈ P such that

λ+ v ∈ S.

We then have ∑
λ∈Λ

µ(R(λ)) = µ(S) > md(Λ) = mµ(P ).

Therefore there is a point v0 ∈ S which is associated with m+ 1 distinct lattice points λ1, . . . , λm+1. We
now take xi = v0 + λi for i = 1, . . . , m+ 1. But then

xi − xj = λi − λj ∈ Λ

as required.

Suppose now that S is compact and
µ(S) = md(Λ).

Let ε1, ε2, . . . be a sequence of positive real numbers with limr→∞ εr = 0. Then

µ((1 + εr)S) > µ(S) = md(Λ).

Thus there exist points x1,r, . . . , xm+1,r in (1 + εr)S for which

ur(i, j) = xi,r − xj,r ∈ Λ for 1 ≤ i, j ≤ m+ 1.

Since S is compact we can extract a subsequence and so suppose that limr→∞ xi,r = x′i for i = 1, . . . , m+ 1
with x′i ∈ S. Notice that since Λ is discrete the ur(i, j)’s are all the same for r sufficiently large. Therefore
x′1, . . . , x′m+1 are in S and

x′i − x′j ∈ Λ for 1 ≤ i, j ≤ m+ 1.
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? from last class: Note that

1

1 + εr
xi,r ∈ S.

Definition: Let S be a subset of Rn. We say that S is symmetric about the origin if whenever x ∈ S then
−x ∈ S. We say that S is convex if whenever x, y are in S then λx + (1 − λ)y ∈ S for any λ ∈ R with
0 ≤ λ < 1.

Theorem 58: (Minkowski’s Theorem).
Let m, n ∈ Z+. Let S be a subset of Rn which is symmetric about the origin and convex of Lebesgue measure
µ(S). Let Λ be a lattice in Rn. If either

µ(S) > m2nd(Λ)

or
µ(S) ≥ m2nd(Λ)

and S is compact then there exist m pairs of non-zero points ±λ1, ±λ2, . . . , ±λm from Λ and in S.
Proof: We apply Theorem 57 to 1

2S. Note that µ( 1
2S) = 1

2nµ(S). Therefore there exist distinct non-zero
points 1

2x1, . . . , 1
2xm in 1

2S which have the property that

1

2
xi −

1

2
xj ∈ Λ for 1 ≤ i, j ≤ m.

Let us suppose without loss of generality that

x1
∼
> x2

∼
> · · ·

∼
> xm

where
∼
> indicates that the first non-zero coordinate in xi−xi+1 is positive for i = 1, . . . , m− 1. We now take

λj =
1

2
xj −

1

2
xm+1 for j = 1, . . . , m.

Note that since S is symmetric about 0 we see that −xm+1 is in S. Since S is convex

1

2
xj +

1

2
(−xm+1) =

1

2
xi −

1

2
xm+1 = λj

is in S.

=⇒ λ1, . . . , λm are non-zero and distinct with first non-zero coordinate positive. Also −λ1, . . . , −λm are
in S, by symmetry, and in Λ. The result follows.

Observe that the lower bounds in the theorem can’t be improved. Take

S = { (x1, . . . , xn) ∈ Rn : |x1| < m and |x2| < 1, . . . , |xn| < 1 }.

µ(S) = m2n. S is convex and symmetric about 0. Take the lattice Λ0 with d(Λ0) = 1. The points of Λ0 is in
S are (±j, 0, . . . , 0) for j = 0, . . . , m− 1.

Suppose [K : Q] = n and let K = Q(θ). Suppose θ = θ1, . . . , θn are the conjugates of θ over Q. Suppose that
σ1, . . . , σn are the embeddings of K in C which fix Q. Let r1 be the number of embeddings in R, equivalently
the number of θ1, . . . , θn which are in R. Let σ1, . . . , σr1 be the real embeddings and σr1+1, . . . , σr1+2r2 be
the other embeddings, with σr1+j = σr1+r2+j for j = 1, . . . , r2.

Let σ̃ : K → Rr1 × Cr2 be given by

σ̃(x) = (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x)).
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σ̃ is an injective ring homomorphism. We may identify C with R2 by considering real and imaginary parts.
Let us define

σ : K → Rn

by
σ(x) = (σ1(x), . . . , σr1(x),<(σr1+1(x)),=(σr1+1(x)), . . . ,<(σr1+r2(x)),=(σr1+r2(x))).

Lemma 59: [K : Q] <∞. A a non-zero ideal in A ∩K. Then σ(A) is a lattice in Rn with

d(Λ) = 2−r2 |D|1/2NA

where D is the discriminant of K.
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Recall our map σ : K → Rn given by

σ(x) =
(
σ1(x), . . . , σr1(x),<(σr1+1(x)),=(σr1+1(x)), . . . ,<(σr1+r2(x)),=(σr1+r2(x))

)
.

Lemma 59: Let A be a non-zero ideal in A ∩K. Then σ(A) is a lattice Λ in Rn with

d(Λ) = 2−r2 |D|1/2NA,

where D is the discriminant of K.
Proof: Let α1, . . . , αn be an integral basis for A. The coordinates of σ(αi) in Rn are(

σ1(αi), . . . , σr1(αi), . . . ,=(σr1+r2(αi))
)
. (∗)

Note that for z ∈ C, <(z) = z+z
2 and =(z) = − z−z2 = − 1

i

(
z −

(
z+z
2

))
. Thus

D = det(σi(αj)) =
( 1

−2i

)r2
d(Λ)

where d(Λ) is the determinant of the matrix whose ith row is ∗. Since D 6= 0 we see that d(Λ) is not 0 and so
σ(A) = Λ is a lattice in Rn. Now by Theorem 49 our result follows.

Theorem 60: Suppose [K : Q] = n with n = r1 + 2r2 where r1 is the number of real embeddings of K in C
and 2r2 is the number of other embeddings. Let A be a non-zero ideal in A∩K. Then there exists a non-zero
α in A for which

|NK
Q (α)| ≤

( 2

π

)r2√
|D|NA.

Proof: Let t ∈ R+ and let St be the set of (x1, . . . , xn) in Rn for which |xi| ≤ t for i = 1, . . . , r1 and for
which x2r1+j + x2r1+1+j ≤ t2 for j = 1, 3, 5, . . . , 2r2 − 1.

Note that St is compact, convex and symmetric about the origin 0. Further

µ(St) = (2t)r1(πt2)r2 = 2r1πr2tn.

We now take

t =
( 2n

2r1+r2πr2
|D|1/2NA

)1/n
.

Then

µ(St) = 2n
( |D|1/2NA

2r2

)
= 2nd(Λ),
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where Λ is the lattice associated with the ideal A. By Minkowski’s Theorem there is a non-zero lattice point
of Λ in St. Let α be the associated element of A. Then, let σ1, . . . , σn be the embeddings of K in C which
fix Q,

|NK
Q (α)| =

n∏
i=1

|σi(α)| =
r1∏
i=1

|σi(α)|
r1+r2∏
i=r1+1

|σi(α)σi(α)|

=

r1∏
i=1

|σi(α)|
r1+r2∏
i=r1+1

(
<(σi(α))2 + =(σi(α))2

)
≤ tr1 · t2r2 = tn =

2n

2r1+r2πr2
|D|1/2NA

=
( 2

π

)r2
|D|1/2NA.

Suppose [K : Q] = n. Let θ be in A∩K and such that K = Q(θ). Let f be the minimal polynomial of θ. Let
t be the index of Z[θ] in A ∩K. Let p be a prime in Z.

? How does (p) decompose in A ∩K? Consider f in Fp[x] where Fp is the finite field of p elements. Identify
Fp with Z/pZ. Suppose p - t. In Fp[x],

f(x) = f1(x)e1 · · · fg(x)eg

where fi is irreducible in Fp[x] of degree di. We have

(p) = P e11 · · ·P egg

where Pi is a prime ideal in A ∩K. In fact

Pi = (p, fi(θ)).

If also p - D then e1 = · · · = eg = 1. Thus

n = d1 + · · ·+ dg (∗)

and so is a partition of n.

Let θ = θ1, . . . , θn be the conjugates of θ over Q and put L = Q(θ1, . . . , θn). Let G = Gal(L/Q) be the
Galois group of L over Q. If σ is in Gal(L/Q) then σ induces a permutation of θ1, . . . , θn and so an element
σ̃ of Sn. We can decompose σ̃ as a product of cycles say σ̃ = c1 · · · cl and then

n = |c1|+ · · ·+ |cl| (∗∗)

where |ci| is the length of the cycle ci. ∗∗ is another partition of n.

1880 Frobenius
# of primes up to x with a given partition ∗

# of primes up to x
→ tends to a limit.

and the limit is the proportion of elements σ of G with the same partition of n in ∗∗.

Office Hours
Mon Apr 8 2:40–3:40
Wed Apr 10 2:00–3:00
Thurs Apr 11 2:00–3:00
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