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Definition: An algebraic integer is the root of a monic polynomial in Z[z]. An algebraic number is the root
of a nonzero polynomial in Z[z].

A number field is a finite extension K of Q and we shall suppose it is in C. Our object of study is the ring of
algebraic integers in K.

Basic: Suppose L and K are finite extensions of Q. L is an extension of K if K C L. The dimension of L
over K in this case is [L : K]. Suppose next that H is a field with K C H C L. Then H is said to be an
intermediate field of K and L. We have [L: K| =[L: H|[H : K].

A polynomial f in K[z] is said to be irreducible if whenever f = gh with g, h € K|[z] then either g or h is a
constant.

Recall: K[z] is a Principal Ideal Domain.

Definition: Let K C C. Let # € C be algebraic over K. A minimal polynomial f of  over K is a monic
polynomial in K[x] which has 6 as a root and has minimal degree with this property.

Theorem 1: Let K C C. If 6 € C is algebraic over K then # has a unique minimal polynomial.

Proof: Suppose that p;(z) and po(z) are minimal polynomials for 6 over K. By the Division Algorithm
for K[z], 3¢ € K and r(z) € K|x] such that p1(z) = epa(z) + r(x) with r(x) the zero polynomial or
degr < degp; = degps. But p1(6) = ep2(8) + r(6) hence r(6) = 0. By the minimality of the degree we see
that r is the zero polynomial.

Since p; and ps are monic we see that ¢ = 1 hence p; = ps as required.

Definition: Suppose that 6 is algebraic over K. Then the degree of 0 over K is the degree of the minimal
polynomial of § over K.

Remark: Let 6 be algebraic over K and let p € K[x] be the minimal polynomial of § over K. If f € K|[z] is
a polynomial for which f(0) = 0 then p | f in KJz].

Theorem 2: Let f € K[z] with K C C. If f is irreducible over K of degree n (> 1) then f has n distinct
roots.
Proof: Suppose that f has a root a of multiplicity larger than 1. Then f(z) = a,(x — «)?fi(z) with
f1 € K(a)[z]. Thus

(@) = 2an(z — a) - fi2) + an(z — @) fi(z),
hence f'(a) = 0 and note that f' € K[z]. Let p(z) be the minimal polynomial for o over K. Observe that
p(z) divides f(z) and it divides f’(x). Observe that p(x) divides f(x) and it divides f'(z). Therefore f is
reducible which is a contradiction.

Let 0 be algebraic over K and let p € K[z] be the minimal polynomial of . Suppose that the degree of p is
n. Then p has n distinct roots 01, ..., 8, and these are known as the conjugates of 6 over K.



Definition: Let K C C and let 6 be algebraic over K. K(#) is defined to be the smallest field containing K
and 0. K(6) is said to be a simple algebraic extension of K.
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If K CC, 0 is algebraic over K.
K (0) := smallest field containing § € K = { f(6)/9(9) : f, g € K[z] with g(0) #0}.

Theorem 3: Let K C C, 6 be algebraic over K. deg;(f) = n. Then every element o € K () has a unique
representation of the form:
a=ayg+a0+- - +a,_10""

for ag, ..., an_1 € K.
Proof: Since o € K(0), a = f(0)/g(0). Let p be minimal polynomial of § over K. Now p(z) and g(z) are
coprime polynomials. There exists s, t € K[z] by Euclidean algorithm such that

p(@)t(x) + g(x)s(z) =1

or g(@)s(d) =1 = «a = f(0)s(f). Now f(x)s(x) = q(z)p(z) + r(z) by division so f(8)s(0) = r(6),
degr(f) <n—1.

Proof of uniqueness:

a=r1(0) =r2(0); r1, ro € Klx].

r1(x) — r2(z) is polynomial of degree < n having 6 as root. This is not possible otherwise deg; (6) # n

K () = K[d).
Definition: Let R and S be rings. An injective homomorphism ¢: R — S is an embedding of R in S.

Theorem 4: Let K C C and L be finite extensions of K. FEach embedding of K in C extends to exactly
deg, (L) ([L : K]) embeddings of L in C.

Proof: By induction on [L : K.

Let @ € L\ K, p(z): minimal polynomial of /K, let ¢ be an embedding of K in C. p(z) = >, a;a’,
g(x) =Y 1, o(a;)z" is irreducible over o (K).

For each root S of g, define an embedding Ag of K[a] in C by Ag: K[a] — C,
Ao(lo +lia+ -+ 110" ) =a(lp) + o(l1)B+ -+ o(l—1)B8" .
One can check Mg is an embedding by checking it is an injective homomorphism and extends o on K.

Further, there are no other embeddings since A(0) = 0 = p(a) = Ap(a) = g(Aa) (Aq is a root of g)
Applying inductive hypothesis to [L : K(«)], there are exactly [L : K(a)|[K(«) : K] embeddings of L in C.
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Theorem 5: Let K C L C C and let L be a finite extension of K. Then L = K (6) for some 6 in L.
Proof: Note that

L:K('Yl,,'yn)

for some 71, ..., 7, algebraic over K. We’ll now show our result by induction. It suffices to show that if
L = K(«a, 8) with «, 8 algebraic over K then there exists 6 € L such that

L = K(0).

Let a = a1, ..., a, be the conjugates of a over K. Let 8 = (31, ..., B, be the conjugates of 8 over K.
Consider for each i and k # 1 the equation

a; +xfk = a1 + 261



There is precisely one solution. Now choose an element ¢ in K \ {0} which is not one of these solutions and
put 8 = a + ¢B.

We claim 6 works. Notice that K(0) C K(«, ). To show that K(«, 8) C K(6) it suffices to show that « and
B are in K (6). Observe that it suffices to show that j is in K () since then automatically « is also in K (9).

Let f be the minimal polynomial of « over K and let g be the minimal polynomial of 5 over K. Thus (3 is
a root of g(x) and also of f(6 — cx). Notice that f(0 — cx) € K(0)[z]. Further observe that f is the only
common root of g(x) and f(0 — cx), by our choice of c.

Let p be the minimal polynomial of 5 over K(6). Then p divides g and p divides f(68 — cz). Therefore p is
linear, in particular 18 + v2 = 0 with v1, v2 € K(0), 71 # 0 hence 5 € K(0).

Definition: Let K C L C C with [L : K] < oo. We say that L is normal over K if L is closed under taking
conjugates over K.

Theorem 6: Let K C L C C with [L: K] < co. L is normal over K <= FEach embedding o of L in C
which fixes each element of K is an automorphism.

Proof: = By Theorem 5 there exists a o € L with L = K[a]. Further let & = a1, ..., a;, be the conjugates
of a over K. Then there are precisely n embeddings A1, ..., A, of L in C which fix each element of K. We
have A\;(a) = a; fori=1,..., n.

Since L is normal A\;: L — L for i =1, ..., n. Next note [K(«a;) : K] =nfori=1, ..., n hence L = K(o;)
fori =1, ..., n and thus ); is an automorphism for i =1, ..., n.

< Let a € L and let By, ..., B, be the conjugates of 5 over K.

Notice that each embedding of K(8) in C which fixes elements of K can be extended to an embedding of L
in C which fixes K. Each such embedding is an automorphism and so 8; € L for : =1, ..., m as required.

Remark: Theorem 4 = [L : K] embeddings of L in C which fix K. Thus by Theorem 6 L is normal over
K <= there are [L : K] automorphisms of L which fix K.

Theorem 7: Let K C C. Let a, ..., a, € C be algebraic over K. Put L = K(ay,...,a,). If L contains
the conjugates of aq, ..., a, over K then L is normal over K.

Proof: We have K(ay,...,a,) = K|ag, ..., ay]. Next by Theorem 5 there exists § € L such that L = K[6].
Then 6 = f(a1,...,qy) for some f € K[xy,...,x,].

Let o be an embedding of L in C which fixes K. Then () = f(oaa,...,0a,) € L. Therefore L is normal

over K.
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Corollary 8: Let K C L C C and let L be a finite extension of K. Then there is a finite extension H of L
which is normal over K.

Proof: By Theorem 5, L = K[f] where 6 is algebraic over K. Let § = 64, ..., 6, be the conjugates of 6 over
K. We put H = K(04,...,0,) and the result follows by Theorem 7.

Remark: H is normal over K and also normal over L.

Note that Q(+4/2) is not a normal extension of Q since w+/2 is a conjugate of /2 over Q where w = e2mi/3
and w2 ¢ R whereas Q(\s/i) C R. Observe that by Corollary 8, H = Q(\Sﬁ,w%, w? \3/5) is normal over Q.
H=Q(V2,w) so [H:Q(V2)] = 2.

Let K C L C C with [L : K] < co. We define the Galois group Gal(L/K) to be the group of automorphisms

of L which fixes each element of K. This is a group under the binary operation of composition. The identity
element is the identity map. By Theorem 4 and Theorem 6

L is normal over K < |Gal(L/K)|=[L: K].



For each subgroup H of G = Gal(L/K) we define Fy to be the fixed field of H, in other words
Fp={acL:ca=aforalocecH}.

Note that Fy is a field.

Theorem 9: Let K C L C C with [L : K] < co. Suppose that L is normal over K and that G is the Galois
group of L over K. Then K is the fixed field of G and K is not the fixed field of any proper subgroup H of G.
Proof: Plainly K is fixed by G. Suppose that there is an « € L\ K which is fixed by G. Then K[a] is also
fixed by G. By Theorem 4 and 6 there are exactly [L : K[a]] embeddings of L in C which fix K[a] and, since
L is normal, each of them is an automorphism of L. Similarly, by Theorem 4 and 6, there are exactly [L : K]
embeddings of L in C which fix K and since L is normal each is an automorphism. But [L : K[a]] < [L: K]
and this gives a contradiction.

We'll now suppose that K is the fixed field of a proper subgroup H of G. Let a be such that L = K[a] and
define the polynomial f by
f@) = 1] (@ = oa).

oc€H
Note that since H is a subgroup of G if ¢’ € H then Ho' = {00’ : 0 € H} = H. Therefore

flz) = H (x — oo’ ).

oceH

Thus the coefficients of F' are fixed by the elements of H. Thus f € K[z] with « as a root and it is monic.
Therefore « is algebraic over K of degree at most |H|. But « is algebraic over K of degree |G| since L = K|a]
is normal over K. Finally since H is a proper subgroup of G, |H| < |G| which gives a contradiction.

As always K C L C C with [L : K] < co. Suppose L is normal over K. Let G = Gal(L/K).
Let S; be the set of fields F' with L C F C K.
Let S be the set of subgroups H of G.

Define A: S; — Sz by MF) = Gal(L/F). Define p: So — S1 by u(H) = Fy where Fy is the fixed field of H.
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Let K C L C Cwith [L: K] < co. L normal over K. G = Gal(L/K) the Galois group of L over K. Recall
the maps A and p, A: S — Sy by A(F) = Gal(L/F), p: S2 — S1 by p(H) = Fy, fixed field of H.

Theorem 10: (Fundamental Theorem of Galois Theory)

w and A are inverses of each other. Suppose that A\(F') = H. F is normal over K if and only if H is a normal
subgroup of G = Gal(L/K). Further if F' is normal over K there is an isomorphism § of G/H to Gal(F/K)
given by (0 + H) = o|p; where o|r is the automorphism of F' which fixes each element of K given by the
restriction of o to F.

Proof: Note that

poMF) = pu(Gal(L/F)) = FaaL/F)
By Theorem 9 the fixed field of Gal(L/F) is F and so o A(F) = F.

Further
Ao u(H) = ANFg) = Gal(L/Fg).

Put H' = Gal(L/Fy). By Theorem 9, Fp is the fixed field of H' and of no proper subgroup of H'. Thus
H' CH.Butifoe€ H then o € Gal(L/Fy) so H C H'. Thus H = H' so Aou(H) = H.

Suppose now H = Gal(L/F), v € H and 0 € G. Then

coyoo tisin Gal(L/oF)



Similarly if § € Gal(L/oF) then 0~ 100 is in Gal(L/F).
— Gal(L/oF) =cHo .
Now if F' is normal over K then oF = F for all ¢ in G.

F is normal over K and only every embedding of F' in C which fixes K is an automorphism. Further every
embedding of F' in C which fixes K can be extended to an element of G.

F normal over K <= oF = FYo e G
< oHo '=HVoeG
<= H is a normal subgroup of G

Next suppose F' is normal over K. We introduce the group homomorphism in ¢ from G = Gal(L/K) to
Gal(F/K) given by
¥(o) = o,

where o is the restriction of o to F.

We first observe that the map is surjective since every element of Gal(F/K) can be extended to an element
of G.

The kernel of ¢ is Gal(L/F') so by the First Isomorphism Theorem
Gal(L/K)/Gal(L/F) ~ Gal(F/K).

Theorem 11: Let « be an algebraic integer. The minimal polynomial of « over Q is in Z[z].
Proof: Let f be the minimal polynomial of « over Q, f € Q[z]. Let h be a monic polynomial in Z[z] with «
as a root. Since f is the minimal polynomial over Q, f | h is in Q[z]. In particular there exist g € Q[x] with
h=gf.
Since h and f are monic we see that g is monic. By Gauss’ Lemma there exist ¢1, co € Q with
h = (c19) - (c2f),

where ¢; and ¢y are in Q and ¢;¢ and cof are in Z[z]. Note ¢; = c2 = 1 since f and g are monic.
Corollary 12: Let d be a squarefree integer. The ring of algebraic integers in Q(\/ﬁ) is

{a+bVd:a,beZ}ifd=2,3 (mod 4)
and

{%M:a,bel,azb (m0d2)}ifdzl (mod 4).
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Corollary 12: Let d be a squarefree integer. The set of algebraic integers in Q(+/d) is given by

{a+bVd:a,beZ}ifd=2o0r3 (mod 4)

{%M;a,bez}ifdzl (mod 4)

Proof: Suppose that o € Q(\/{j) then o = r + sv/d with 7, s € Q. Suppose that « is an algebraic integer.
First note that if s = 0 then r € Z. Suppose s # 0. Then observe that

@)= (z - (r+sVd)(z — (r — sVd)) = 2% — 2rz + (2 — ds?)



is a monic polynomial over Q with « as a root. Since o ¢ Q, f is the minimal polynomial of a. We need only
check when f € Z[z]. Note that 2r € Z so either r € Z or r = a/2 with a € Z and a = 1 (mod 2). In the
first case then 2 —ds? € Z = ds® € Z. But d is squarefree and so s € Z.

In the second case r = a/2 and then
r? —ds® =a?/4—ds* €Z = s=0b/2 withb=1 (mod 2)

and then
a? — db?

1 €Z = d=1 (mod 4)

Objective: Prove

i) the set of all algebraic integers forms a ring.

ii) For any finite extension K of Q the set of algebraic integers in K, so AN K, forms a ring.
For any «, 8 € A we plan to show that o — 8 and «f3 are in A since this shows A is a subring of C.

Let a = ay, ..., a, be the conjugates of a. Let 8 = (1, ..., B be the conjugates of 3.

Consider Q(a, 8). Let o1, ..., ...x be the embeddings of Q(«,3) in C which fix Q. Then put g(z) =
Hle(x —o;(a—B)). Note that g is monic. To prove a — 3 is an algebraic integer it suffices to prove g € Z[z].
This can be done using the elementary symmetric polynomials but there is an easier approach.

Theorem 13: Let o € C. The following are equivalent:
i) o is an algebraic integer

ii) The additive subgroup of Z[a] in C is finitely generated

iii) « is a member of some subring of C having a finitely generated additive group.

iv) aA C A for some finitely generated additive subgroup of C.
Proof: i) = ii) by Theorem 3 since

Zla)={ap+aia+ - +ap_1a" ' ia; €7}

where n is the degree of a over Q.
ii) = ili) = iv) immediate

Finally suppose iv) is true. Since A is a finitely generated additive subgroup of C there exist ay, ..., a,
which generate A. Since A C A we see that fori=1, ..., n

QQ; = My,101 + -+ My plp

with m; 1, ..., m; , € Z. Put M = (m; ;). Then
ay 0
(al, -M)| | =
an 0
Since (a1, ...,an) # (0,...,0) = det(al,— M) =0 = «is aroot of a monic polynomial with coefficients

in Z, hence is an algebraic integer. Thus iv) = i).

Corollary 14: If o and § are algebraic integers then so are o — 8 and « - 5.
Proof: Suppose a has degree n over Q and § has degree m over Q then Z[«, 8] is generated over Q by



{a'f?:i=0,...,n—1,j=0,...,m—1}. Note a — 3 and af are in the subring generated by this. The
result follows by Theorem 13 ((i), (iii)).

Theorem 15: If « is an algebraic number then there exists a positive integer r such that r«a is an algebraic
integer.

Proof: Since « is an algebraic number it is the root of a polynomial f(x) = 2™ + ayjz" ! +--- + a, with
a; € Q. Clear denominators to get that a is a root of a polynomial

bpa™ + -+ by with b; € Z.

Then note b, « is a root of
2" by 2™ 4 bpb

and so b, is an algebraic integer.
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Assignment #1: Due next Wednesday in class
Corollary 14 = The set A of algebraic integers forms a subring of C.

Also if [K : Q] < oo then AN K is also a subring of C. AN K is the ring of algebraic integers of K.
Corollary 12 gives a description of AN K when [K : Q] = 2.

Next we’ll consider the cyclotomic extensions of Q. Let n € ZT and put ¢, = ¢>™/". The fields Q(,) for
n=1,2, ... are significant. For instance they are normal extensions of Q with abelian Galois group. Further
it can be shown that if L is a normal extension of Q with an abelian Galois group (over Q) then L is a
subfield of Q(¢,).

Let h(z) = apz™ +ay,_12" 1+ -+ +ag € Z[z] and p be a prime. The map that sends h to h € Z/pZ[z] where
h=apa" + a1z '+ +ag
with @; = a; + pZ
is a ring homomorphism. Further
h(a?) = (h(z))"  in  Z/pLla] (%)
since
h(a?) = @pa™ + -+ arz” +ag
:mpxnp 4 +ailpl’p+a70p
= (@pa"™ + -+ +ap)?
= (h(z))

We now introduce @,,(x), the nth cyclotomic polynomial for n =1, 2, .... We put

- 11 -
=1
(7 =1

Theorem 16: &, (z) is irreducible in Q[z] for n =1, 2, ....
Proof: We’'ll show that ¢/ for 1 < j <n with (j,n) = 1 are the conjugates of (, and so @, (z) is then the
minimal polynomial of (,. It is irreducible in Q[x].



Let 7(z) be the minimal polynomial of (,. Since , is a root of ™ — 1, (, is an algebraic integer. Note that
then r(z) | 2™ — 1 in Q(x) so 2™ — 1 = r(z)g(x) with g(z) € Q[z]. By Gauss’ Lemma, g € Z[z].

Since r(x) divides 2™ — 1 in Q[z] we see that the conjugates of (, lie in

{¢:5=1,...,n}.

Observe though that if (j,n) > 1 then (¢/)"/™) = 1 whereas ((,)™ ™) # 1 and so ¢} is not a conjugate of
Cn- In particular the conjugates of (, lie in

{Cﬁ;:jil,...,’fl, (Jan):]'}

This is in fact the complete set of conjugates. To prove this it is enough to prove that if p is a prime which
does not divide n and 6 is a root of r(x) then 6P is also a root of r(x). Note that (, is a root of r(z) and the
result follows by repeated application of the above fact.

Recall that 2™ — 1 = r(x)g(z). Let 6 be a root of r(x). If 7 is not a root of 7(z) then, since 6?7 is a root of
a™ — 1, we see that 6P is a root of g(x). Thus € is a root of g(aP). Thus r(z), the minimal polynomial of 6,
divides g(z?) in Q[z] and so

g(z?) = r(z)s(x) with s € Q[z].
By Gauss’ Lemma s(x) € Z[z].
Since g(zP) = r(x)s(x) we see that 7#(x) | g(«P) in Z/pZ[x]. Let t be an irreducible polynomial in Z/pZ[z]
which divides 7. Now by (x) ¢ divides g(x) in Z/pZ][z].

Recall that 2"

r(z)g(x)

—1
— T =7(a)g(a)

so x"
Therefore t? | 2™ — 1 in Z/pZ[z], and so t | az" 1. Since pt n, 7 is not 0 hence t = ¢z9 with 1 < g <n — 1.
But ¢ | 2™ — 1 which gives a contradiction.

The result follows.
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Observe that ¢ is a conjugate of ¢, for j =1, ..., n with (j,n) = 1. Certainly ¢} € Q({,) and so Q((,) is a
normal extension of Q.

The degree of Q({,) over Q is ¢(n), Euler’s function of n. In particular

¢(n)=Kj:1<j<n, (jin) =1}

Theorem 17: Let n € ZT. The Galois group of Q((,) over Q is isomorphic to (Z/nZ)*.
Proof: The elements of Gal(Q(¢,)/Q) fix Q and are determined by their action on ¢. In particular if
o € Gal(Q(¢,)/Q) then o(¢) = ¢* for some k with 1 <k < n and (k,n) = 1. Denote o by oy.

Let A: Gal(Q((n)/Q) — (Z/nZ)* by A(ok) = k+nZ. Plainly ) is a bijection. It is also a group homomorphism
since

)\(O’k OO’[) = )\(Ukl) =kl+nZ = (k+TLZ) . (l +nZ) = )\(Jk) . )\(O’l).

Theorem 18: Let n € Z*. If n is even the only roots of unity in Q(¢,,) are the nth roots of unity. If n is
odd the only roots of unity in Q(¢,) are the 2nth roots of unity.

Proof: If n is odd then Q(¢,) = Q(—¢,) = Q(¢2y). Thus to prove our result it suffices to prove it when n is
even.



Suppose that v = €27/ with (I,s) =1, e, s € ZT. We consider v'¢* with v, w € Z and note that
v'¢Y € Q(¢rn). Then

vrw o 2mi(d 4w
AU = (5+7)

vintsw )
ns

_ 627”(

= 2i(3) where b = = lem(n, s)

ns
(n, s)
Since €27/ € Q(¢,) and degree of Q(,,) over Q is ¢(n) we see that ¢(b) < é(n).
Since b = lem(n, s) we have

b:pll1 pfj with p;s prime and I; > 1fori=1, ..., k
Then, by reordering the primes,

n=ph...ph with r satisfying 1 < r < k
and with h; > 1fori=1, ..., 7. Note h; <I[; fori=1, ..., r. We have
o) = (W =P ™) (o — )

and

o(n) = ¢(py") -~ S(p)) = (" —pi* 1) (Bl =),
But ¢(b) < é(n).

Ik—1

If r < k then pg # 2 since n is even and pgc’“ —pp ' > 1 hence ¢(b) > ¢(n) which is a contradiction. Therefore
r=k. Since l; > h; for i =1, ..., k we see that in fact I; = h; for i =1, ..., k since ¢(n) > ¢(b).

Let K be a finite extension of Q with [K : Q] = n. Let oy, ..., 0, be the embeddings of K in C which fix Q.
Let o € K. We define the trace of o from K to Q denoted Té((a), by

T§ (@) = o1(a) + o2(a) + -+ + 0u(a).
We define the norm of a from K to Q, denoted by Néf (@), by
Né,((a) =o1(a) - op(a).
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Let [K : Q] = n and let o1, ..., 0, be the embeddings of K in C which fix Q. Let o € K. The trace of «
from K to Q, Té((a) is given by Té((a) =o1(a) + -+ on(a).

The norm Néf(a) is given by
Ng(a) =o1(a) - op(a).

Note T is additive on K since for o, § € K
TE (a4 B) = T& (o) + TE(9)

and also
Ng (af) = Ng () N& (B).

Since the embeddings o; fix elements of Q, for r € Q we have

Té{(ra) =o1(ra)+ -+ op(ra) =r(o1(a) + -+ op(a)) = rTé((a)



and
Né((ra) = T”Néf(a).

Also note Q(«) is contained in K so we can consider Ng(a)(a) and Tg(a)(a). These are coeflicients in the
minimal polynomial a.
= Ng(a) (o) and Tg(a)(a) are in Q and are in Z if « is an algebraic integer.
Theorem 19: Let K be a finite extension of Q. Let o € K and let | = [K : Q(«)]. Then
TE () = 1Tg (a)
and o
NE (@) = (NG ()"

Proof: Each of the embeddings of Q(«) in C which fix Q extend to ! distinct embeddings of K in C which
fix Q by Theorem 4. The result follows.

Theorem 20: Let K be a finite extension of Q and let « € AN K.
ais aunitin ANK < Néf(a) ==+1.

Proof:
= Since « is a unit there is a § € AN K with o = 1. Thus Né((aﬁ) = Né((l) = 1. But Néf(aﬁ) =
Ng(a)]\féf(ﬂ) and since a, f € AN K we see that Néf(oz), Né{ € Z. Hence Néf(oz) =+1.
« Suppose N (o) = £1. Then let o1(a) = @, 02(a), ..., on(a) be the images of o;.

Thus
a((~1)o5(a) - 0u(a)) = 1

where ¢ € {0,1}. But 8 = (—1)fo2(a) -+ 0 (e) is in AN K since 8 = 1 € K and 0;(e) is an algebraic
integer for i = 2, ..., n hence 8 € A. Thus

BeANK.

Theorem 20 = The set of units in A N K is a group under multiplication hence a subgroup of C. What
happens in AN Q(v/D) when D is a squarefree integer with D # 17?

What is the unit group?
If D# 1 (mod 4) then to determine the unit group we must find all elements [ + m+/D with I, m € Z for
which

vD
NZYP (i +mvD) = +1 (1)
hence for which (I +mvD)(I —mvD) = 1 = 1> — Dm? = +1. If D =1 (mod 4) then we must also
consider % with [ and m odd integers. Hence

=41 = I? - Dm? = +4. (2)

NQ(@)(l-l-m\/E) _ 12 — Dm?
Q 2 n 4

Theorem 21: Let D be a squarefree negative integer. The units in A N Q(\/ﬁ) are +1 unless D = —1 in

which case the units are +1, 47 or D = —3 in which case the units are +1, % V=3 Since D is negative we
need only consider
12— Dm? = +1in (1)

and
1> — Dm? = 44 in (2).
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If —D # 1 or —3 then the only solution of (1) in integers [ and m is given by { = £1, m = 0. Similarly if
D =1 (mod 4) and D # —3 there are no solutions of (2) with [ odd. If D = —1 then (1) has the solutions
l=41,m=0and =0, m==+1.

If D = —3 and [ and m are odd then the solutions (I,m) are given by (£1,+1). Further if D = —3 then (1)
has only the solutions | = &1, m = 0 in integers [, m.

Theorem 22: Let D be a squarefree integer larger than 1. There is a unit € in Q(v/D) larger than 1 with
the property that the group of units in Q(\/E) is

{(-1)Y":jkeZ}.
PMATH 641 Lecture 10: January 30, 2013

Given a € R how well can we approximate it with rationals p/q? How well can we approximate it in terms of
q?
Dirichlet’s Theorem: If o ¢ Q then

1
there exists infinitely many Pe Q with ‘a — B‘ < . (%)
q q q
Lemma 23: Let o be a real irrational and let (Q be an integer larger than 1. There exist integers p and ¢

with 0 < p < @ such that [pa —¢q| < 1/Q. Also we have .
Proof: Note that * follows from our first claim since

| | < ! = ’ p‘ < !
ga —p| < = e
Q gl pQ
Thus if we pick a @, we find |o — %' < qllQl < q% with ¢; < Q1. But then since « is irrational 3Q2 such
1

that é <|gia —p1| and so 3E2 £ B with o — £2] < q%. Continuing in this way we get our claim.
2

For any « € R we define {x}, the fractional part of = to be x — [x]. We consider the @ + 1 number 0, 1, {a},
{2a}, ..., {(Q — 1)a}. Thus there exists an integer j with 1 < j < @ such that two of the numbers are in
AL

%, é} by the pigeonhole principle.

Note 0 and 1 are not both in the interval since @ > 1. Thus either there exist i; and is with {i1a}, {i2a} in

[%, %} with 1 < i1 < is < Q or there exist ¢ € {0,1} and 4 with 1 < i1 < Q with ¢ and {i,a} in [%, %}.

Then [{i1a} — {iza}| < 1/Q in the first case and [t —{i1a}| < 1/Q in the second case. But {i;a} = ija—[i,;¢]
for j = 1, 2. Thus in the first case |{i;a} — {iza}| = |(i1 —i2)a — ([i1a] — [i2a])| and we take ¢ = i3 — i2 and
p = [i1a] — [iza]. Since a ¢ Q we see that [qa — p| < 1/Q as required. The second case follows in a similar
fashion.

Proof of Theorem 22: We’'ll first find a unit v in AN (@(\/5) which is positive and different from
1. To show this we’ll prove there exist a positive integer m and oo-ly many § € A N Q(v/D) for which

Ng(“ﬁ)(ﬂ) = NB =m. Let 8 = p+qVD withp, g € Z, ¢ # 0. Then NB = (p+qvD)(p—qvD) = p> — Dg?.
Then

INB| = ‘g = x/B‘qﬂ%’ +VD|
We can find, by Dirichlet’s Theorem, p, g with |§ —V/D| < 1/¢? and then this implies |§ +vVD| <2VD +1

hence [NB| < 2v/D + 1 for co-ly many pairs p, ¢ with (p,q) = 1.

But NJ is an integer and so there is an integer m with 1 < |m| < 2v/D + 1 and co-ly many § € ANQ(v/D)
for which N3 = m. We now choose an infinite subset of the 3s so that if 31 = p1 + ¢V D and B = pa + g2V D
are in the set then

p1 = ps mod m and

q1 = g2 mod m.

11



We now take from this subset 81 and S for which 81/8 # —1 and consider §; /0.

B _ Br— B2 (B1 — B2)P
52_1+ B2 =t Njy

where s is the conjugate of 8. Thus

B1 B1— B
By (B

Similarly 85/81 € AN K. Therefore 81/ is a unit in AN Q(v/D). It is not —1 by construction and so it is
not a root of unity. Thus one of £/, /2 is a positive unit different from 1. Thus there is a unit v larger than

1.
PMATH 641 Lecture 11: February 1, 2013

)ﬁ cANK.

Let
S ={~:~aunitin Q(vD)N A with v > 0}.

We showed there exists an element 7y in S different from 1. By taking inverses if necessary we may suppose
that yo > 1.

But the elements of AN Q(v/D) NR* are of the form M with [, m € Z. Thus there are only finitely

many elements of AN Q(v/D) larger than 1 and less than or equal to 7p. Let € be the smallest elements of S
with 1 < e < 7.

We claim S ={e":necZ}.
Suppose that there is a unit A in .S which is not a power of e. Then choose n € Z such that
€T <A<
Consider \/e" = A(e~1)™ € S since
NAED") = NON ()" = 1.
But 1 < A\/€" < e contradicting the minimality of e. The result follows.

Theorem 24: Let K, L, M be finite extensions of Q with K C L C M. Let « € M then Tr%(oz) =
Try (Try! (@) and N/ () = NE(N{' (a)).

Let o1, ..., 0, be the embeddings of L in C which fix K. Let 7, ..., 7., be the embeddings of M in C
which fix L.

If « € M then

Tri (Trig (@) = Trg (ra(a) + - + T (@) =

i

oi(r(a) + -+ n(@)). (%)

n

Let N be a normal extension of M. We can extend o1, ..., o, to embeddings of NV in C which fix K, let us
choose o1, ..., o},. These are automorphisms of N which fix K. Let 71, ..., 7/, be embeddings of N in C
which fix L.

We can compose o; and 7} and we put o} o 7/|as to be the restriction of o} o 7} to M. By *
Trh (T (o ZU mi(a) + -+ 7, (a))
= Z o o7
= Z olor

12



Notice that o} o 7/|as is an embedding of M in C which fixes K. If we can show that o} o 7}[5s are distinct as
we sum over ¢ and j then they are the nm distinct embeddings of M in C which fix K and the result follows.

Suppose that o} o 0|; = 0. 0 74|ar. Next let v be such that L = Kly].

Then o} o 7j|a (7)) = 0i(y) = 0i(7) | .
: i=r.
and o). o 75|y (v) = o,

Next choose 6 such that M = L(6)

Thorn0) = j0) =) . _
i 07| m(0) = 7(0) = 7(0)
Similarly for the norm.

Definition: Let K be an extension of Q of degree n and let o1, ..., 0, be the embeddings of K in C which
fix Q. Let a1, ..., a, be elements of K. We define the discriminant of the set {«,...,a,}, denoted by
disc{a1,...,an}, by

disc{a, ..., an} = (det(o;(a;)))>

Note by properties of the determinant that the order in which we take the a;s or in which we take the o;s
does not matter.

Theorem 25: Let K be an extension of Q of degree n. Let aq, ..., a, be elements of K. Then
disc{aq,...,an}t = det(ﬂg(aiaj)).
Proof: Let o1, ..., 0, be the embeddings of K in C which fix Q.
(0j(ai)(i(ay)) = (Trg (@iay)). (%)
Thus

disc{a, ..., an} = (det(o;(a;)))?
= det(o;(0;)) - det(o; ()
= det((0j(a;)) - (0i(ay)))
= det(Trg(aiaj)) by *.

Remark: Since Tg(aiaj) € Q we see that {a1,...,a,} € Q. Further if oy, ..., o, are in AN K then
a;a; € AN K and so Tg(aiozj) €Z = disc{ay,...,a,} € Z.

PMATH 641 Lecture 12: February 4, 2013

Let [K : Q] =n. Let ay, ..., a, and By, ..., B, be bases for K (as a vector space over Q). Write

n
ﬂk: E Crj Q.
j=1

Then
oy B
)| [ =1|:
Qnp Bn
Since a1, ..., oy and By, ..., B, are bases we see that the matrix (cy;) is invertible hence that det(cy;) # 0.

13



Let 01, ..., 0, be the embeddings of K in C which fix Q.
o(ar) ot(B1)

(cxy) : = : fort=1,...,n.

o))  \ouB)
oi(r) o onlar) o1(B1) - on(B1)

(ers) | =
Ul(an) Un(an) Ul(ﬁn) Un(ﬂn)
(det(ck;))? disc{au, ..., o} = disc{Bi, ..., Bn}- (1)
Suppose that K = Q[f]. Then 1, 0, ..., "1 is a basis for K over Q. Then
L oo(0) - (0" )\’
disc{1,0,...,0" '} = | det
1 0,00) -+ o0
L0 - (@@
= [ det | :
L oon(0) - (oa(0))"!
2
= I (eu(6)—0;(0)
1<i<j<n
But note that o;(6) # o;(6) for i # j hence disc{1,6,...,6" 1} #£ 0.
Thus by (1) whenever aq, ..., ay, is a basis for K over Q, disc{a1,...,a,} #0.
Remark: If K C R and K is normal over Q then by (1) whenever ag, ..., a, is a basis for K over Q we see
that
disc{ay,...,an} € RT.
Theorem 27: Let [K : Q] =n and let ag, ..., ay be in K.
disc{ay,...,an} =0 < ay, ..., o, are linearly independent over Q.

Proof: < Immediate from the definition of discriminant.
= aq, ..., Q is not a basis = a4, ..., a, are linearly dependent over Q.

Note: The following is useful for computing the discriminant of {1,0,...,6" 1} when K = Q(f). Let f be
the minimal polynomial of § over Q. Then

dise{1,0,...,0" '} = (=1)"""D2NE(f/(9)).
To see this let § = 6, ..., 8, be the conjugates of §. Then

f@)=(z=61)-(z—bn)

and
Fle) = 3o =0 (= ;) -z = 0n)

where (x — 6;) means this term is removed from the product. Thus

F(0;)=(0; —01)---(6; —0,)  where (6; — 6;) is removed

14



Further

Note that for ¢ # j
(0: = 0;) - (05— 0;) = (=1) - (6; — 6;)
S0
2
NE(FO) = (=021 T 0i—65)
1<i<j<n
and our result follows.
Suppose K = Ql[f], [K : Q] = n. Then we abbreviate disc{1,6,...,0" 1} to disc().

Theorem 28: Let n be a positive integer. In Q((,) we have that disc(¢,) divides (™. Further if n is a
prime we have

disc(C,) = (—1)P~D/2pp=2,
Proof: We know that &,,(z) is the minimal polynomial for ¢,. We have
" —1=o,(z) - g(x) with g € Z[z].
— e = B (2) - g(2) + Bu(2) - ¢ (2).
= n(h =0, - 9(Ga)-
Thus

ném) — ((_ yn= 1>/2 dle(Cn)) ~N8(C"‘)(9(Cn)) € Z\{0}.

PMATH 641 Lecture 13: February 6, 2013

Assignment #2 Typos: Q1(b) 2-3, Q3 Q(a) — Q(6).

Proof of Theorem 28 o) o o o)

where 2™ — 1 = @, (z) - g(x) with g € Z[z]. Now take n = p, a prime in *.

NS(CP)(p) — NS(CP)(CP)NQ(CP)<¢/ (Cp))NQ(Cp)( (<p))
Pl = Cg(p—l)/Q(_ )(P D(p=2)/2 disc(¢p )Ng(cp)(g(gp))
PPt = (~1)@ Y2 disc(G) - NS (9(6)
But 2? — 1 =@(z)(x — 1) so g(z) =z — 1 and so

NS g(G)) = NQ“% -1)

Tl
~TIo-¢)
— (1)



and since @, (z) = =L =1+ 24 --- 4+ 27! we see that @,(1) = p. Thus
P r—1 P
disc(¢y) = (=1)P~H/2. pp=2,

Definition: Let K be an extension of Q of degree n. A set of n algebraic integers {1, ..., a,} in K is said
to be an integral basis for K if every algebraic integer in K can be uniquely expressed as an integral linear
combination of oy, ..., an,.

Remarks: If {«1,...,a,} is an integral basis for K over Q then it is a basis for K over Q. To see this note
that if v is in K then there is a positive integer r such that ry € AN K. But then since {ay,...,a,} is an
integral basis there exist integers ag, ..., a, such that

Y =a100 + -+ apQy,

ay Qp,
y=—ant ot tan
T T

so vy is a Q-linear combination of ay, ..., a,. Further a1, ..., a, are linearly independent over Q and this
follows since [K : Q] = n.

Theorem 29: Let [K : Q] = n. Then there exists an integral basis for K.

Proof: Consider the set of bases for K over Q which are made up of algebraic integers. The set is non-empty
since there exists an algebraic integer 6 such that K = Q[f]. Then {1,6,...,0" '} is a basis of algebraic
integers.

Let {a1,...,a,} be a basis for K comprised of algebraic integers for which |disc{a1, ..., a,}| is minimal.
We claim that {aq,...,ay,} is an integral basis for K. Suppose that it is not an integral basis. Then there
exists an element v in A N K which is not an integral linear combination of a1, ..., ay.

But {a1,...,a,} is a basis and so 3rq, ..., r, € Q with

Y =7r1Q1 -+ Trn.

By reordering we may suppose that m ¢ Z. Put by = r1 — |r1| and note 0 < b; < 1. Note that
v—|riJas € ANK and
v = |ri]en = biar +rean + - TRy,

Further observe that {y — |ri|a1,as,...,a,} is also a basis for K over Q consisting of algebraic integers.
But
bl T2 ce Tn 2
disc{y — |r1]ai,a2,...,an} = | det 0 disc{aq,...,an}
0 1
= bi|disc{aq, ..., .}

and since 0 < b? < 1 we have a contradiction. The result follows.

Theorem 30: Let K be a finite extension of Q. All integral bases for K have the same discriminant.
Proof: Let {a1,...,a,} and {f1,..., s} be integral bases for K. Then

a; = Z Cjkﬁk with Cjk € Z.
k=1
Thus
disc{ay,...,an} = (det(cjx))? disc{Bi, . . ., Bul-
Note (det(c;))? € Z*. Thus
disc{p1,...,Bn} | disc{aq,...,an}.
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Similarly
disc{aq,...,an} | disc{B1,...,Bn}-
= disc{a,...,an} =£{B1,...,0n}

and since (det(c;x))? is positive the result follows.

PMATH 641 Lecture 14: February 11, 2013

Definition: Let K be a finite extension of Q. The discriminant of K is the discriminant of an integral basis
for K over Q.

How about quadratic extensions?
Let D be a squarefree non-zero integer. If D # 1 (mod 4) then 1, v/D is an integral basis for A N Q(v/D).
2
. 1 VD
— discQ(VD) = <det (1 —@)) =4D.
If D=1 (mod 4) then 1, (1 ++/D)/2 is an integral basis so

1B\ \?
disc(@(\/ﬁ))=<det G 12”)) _D.

Next we’ll show that if p is a prime then disc(Q((p)) = (—1)®~1/2pP=2. This will follow provided we show
that 1, ¢, ..., Cg_l is an integral basis for Q((,), i.e.,

AN Q(Cp) = Z[Cp]-
$(n)—1

More generally we’ll show that if n > 1 that AN Q({,) = Z[¢,], hence that 1, ¢, ..., (n is an integral
basis for Q(¢,)-

Theorem 31: Let K be a finite extension of Q. Let a3, ..., a, be a basis for K over Q consisting of
algebraic integers. Let d be the discriminant of {a1,...,a,}. Then if & € AN K there exist integers my, ...,
my, with d | m? for i =1, ..., n such that
_ mioy + -+ mpay

7 )
Proof: Since aq, ..., a, is a basis for K over QQ there exist rationals ay, ..., a, such that

a=ai1 + -+ apay,.

Let o1, ..., 0, be the embeddings of K in C which fix Q. Then

oj(a) =aioj(ar) + -+ anoj(on) forj=1,...,n.
Thus
o1(ar) -+ o1(an) ay o1(a)
on(aq) -+ oplan) an, on ()
By Cramer’s rule
oi(@) - o) o1(om)
det :
B opla) o opla) o oplom)
%= o1(ar) -+ o)
det
Un(al) T Un(an)

17



Since a and ay, ..., o, are in AN K and d = disc(ay, . .., a,) we see that

a; 5 where v, € AN K
and where 62 =d, for j=1, ..., n.
Then
daj=6v; e ANK forj=1,...,n.
But da; € Q so da; is an integer say m;. It remains to show that d | m? forj=1,..., n. But
2 2,2 2
mj_ 9%

= :yzeAﬂK:ﬁeZ:dmﬂ
d d J d a

Let [K : Q] = n and let K = Q[f]. Then for each embedding o of K in C which fixes Q either o(f) € R or

it is not. In the latter case there is another embedding o (6) since Q C R. Therefore n = r; + 2ro where r4

is the number of embeddings of K in C which fix Q which embed K in R and 2ry is the number of other

embeddings.

Proposition 32: Let K be a finite extension of Q with r; real embeddings and 2r, complex and not real
embeddings. Then the sign of the dimension of K over Q is (—1)"2.

Proof: Let a1, ..., a, be an integral basis for K over Q and let o1, ..., g, be the embeddings of K in C
which fix Q.
Then )
() - o1(an)
disc(K) = | det : . (%)
on(ar) o onlay)
Note that
0'1(&1) Ul(an) 01(a1) al(an)
det = (—1)" det :
on(ar) -+ oplan) on(ar) -+ op(an)

o1 (a) o1(an)

since we are interchanging ro rows under complex conjugation. If r5 is even then det( : ) eR
on(ar) - onlan)

or(ai) - oi(an)

Un(al) Un(an)

while if 79 is odd then det< ) is purely imaginary. The result follows from x.

We'll first prove that if p is a prime and r € Z* then A N Q(pr) = Z[(pr]-

Note that )
p
Dpr () = H (x_C;]ﬂ')'
o
(J,p)=1
We have
IL'pT — 1 -1
_ — (P p—1 4 . P
By (@) = e = @ e

p7
— @, (1) =p hence [J(1-¢) =p.

Jj=1

PMATH 641 Lecture 15: February 13, 2013
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Recall that if p is a prime and r € Z* then

p= (1=G)-

=~

1
)=1

S

J
(Jp
Theorem 33: Let p be a prime and let » € Z*. Then A NQ((pr) = Z[pr]-
Proof: Note that Q(¢,r) = Q(1 —(pr). Put s = ¢(p"). Then 1, 1 —(pr, ..., (1 —¢pr)* ! is a basis for Q(¢,r)
over Q consisting of algebraic integers. By Theorem 31 if @ € AN Q(({,r) then there exist integers my, ...,
me_1 such that

mo +mi(1—Cpr + -+ me_1(1—(pr)¥h)
disc(1 — Cpr) .
But

disc(l — pr) = H ((1—C;r)_(1_cgr))

1<i,j<p"

(i,p)=1,(j.p)=1

2
= II G- =dise(G).

1<i<j<p"

(i,p)=1,(4,p)=1

But disc((,r) is a power of p and so we can write « in the form
1—Con a1 (1= ¢yr )t
a:m0+m1( Cor) + _ tms1(1 = Gr) for some integer ;.

v’
Suppose A N Q((pr) # Z[1 — pr], in other words there exists an o € A N Q((pr) of the form

o (=G b bl (1= Gr)

p
where lg, ..., ls_1 are integers not all divisible by p. Let i be the smallest integer for which p{;. Then
L(l—Cpr)it 4 L1 (1= Gpr )t

p
isin ANQ(1 — ¢r).

For every positive integer k, 1 —  divides 1 — 2" in Z[z]. Recall that

k=1
(kv ):1
and so
p=(1—Cpr)®- X\ where A € A.

Thus ) )

1 S—

(1- CpT)S—(i+1) . )\(li(l —Gpr) (1= Gr) ) €A
p

hence

hu@w+~+u4awﬁl> A
(e -
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Thus I;/(1 — (pr) € A say is . But then (1 — (,r) = ; and hence
Q(¢pr Q(Cpr Q(Cpr
NG ) NG (1= Gr) = NG (),

But then since Ng(gpr)(l — (pr) is p we see that p | I hence p | I; which is a contradiction. Thus
ANQ(¢r) =Z[1 — {pr] and since Z[1 — (,r] = Z[(pr] our result follows.

Let L and K be finite extensions of Q. We denote by LK, the compositum of L and K the smallest field
containing L U K.

Lemma 34: Let [L: Q] =m and [K : Q] = n and suppose [LK : Q] = mn. Let o be an embedding of L in
C which fixes Q and let 7 be an embedding of K in C which fixes Q. Then there is an embedding of LK
which when restricted to L is o and when restricted to K is 7.

Proof: For each embedding o of L we can consider the extensions of o to embeddings of LK. There are n of
them. Restricted to K there are n again. But there are exactly n embeddings of K and so one of them is 7.

Theorem 35: Let [L: Q] =m, [K : Q] =n and [LK : Q] = mn. Then

ANLK C 2(ANK)(ANL)

SH

where d = ged(disc(K), disc(L)).
Proof: Ingredients: Lemma 34 and Cramer’s Rule.

See Notes.
PMATH 641 Lecture 16: February 15, 2013

Theorem 36: Let n € Z1. Then
ANQ(Cn) = Z[Gnl-

Proof: By induction on the number of prime factors of n. Result true for n = 1. If n has one prime factor
the result follows from Theorem 33. Suppose now that

l I
n:pll...pkk

with I; € ZT and py, ..., pi distinct primes. By the inductive hypothesis
AN Q(Cplll "'pick:ll ) - Z[Cpil "'Pigk:ll]
and
AN Q(szk) = Z[szk].
k k

Note that the compositum of Q(szl pzk,l) and Q(szk) is Q(¢,,) since we can find integers g and h for which
bk R

lef“-p;k:ll . Cii’llk’“ = Gn-
By Theorem 23
ged(dise(Q(Gy 1)), dise(@(G,))) = 1

k—1
We now apply Theorem 35 to conclude that
AN Q(Cn) CAN Q(C .. lk—l) AN Q(C lk)'
Py Pr_q Pp

But by (1) and (2)
ANQW, o) ANCG) =2, usi] ZIGu]

k—1 Py 1 " Pr_1 Py
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which is

General problem: Given a finite extension K of Q how does one compute the discriminant of K7 Find a 6
which is an algebraic integer so that K = Q(f). Determine the discriminant of 6. If it is squarefree then it is
the discriminant of K. We have seen that if [K : Q] = n then

disc(9) = (=1)""""VENE(f(9))
where f is the minimal polynomial of 6 over Q. Suppose that f, g € C[z] with
f(il') = apx" + anfll'nil + -+ ap

and
g(x) = bpx™ + -+ + bz + by.
We define the resultant R(f,g) by

an anfl PR ao 0 PR 0
Gnp, Gn—1 e ao
m TOws
det | O ap Qp_1 -+ QG
Dim e bo 0
7. TOWS
0 D e bo

Fact
(1) R(f,9) =0 < f and g have a common root.
(2) disc(6) = (=1)"""D/2R(f, [').

Example: Let f(r) = 2 — 5z + 1. By Rational Roots Theorem since f(1) # 1, f(—1) # 1, we see that f is
irreducible over Q. Let € be a root of f and put K = Q(#). What is disc(K)?

First, what is disc(8)? Thus

10 -5 1 0
01 0 -5 1
R(f,f)=det|3 0 =5 0 0
03 0 -5 0
00 3 0 =5
10 -5 1 0
01 0 -5 1
—det [0 0 10 -3 0
03 0 -5 0
00 3 0 -5
1 0 -5 1
0 10 =3 0
=det 1y o 10 —3
03 0 -5
10 =3 0
—det [0 10 -3
3 0 -5

= 10(—50) + 27 = —473 = —11 - 43
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By (2) we see that disc(f) = 473. Since 473 is squarefree we see that
disc(K) = 473.

Example: 2 Let f(z) = 2® + 2% — 2o + 8. Again f is irreducible over Q by Rational Roots Theorem. Let
be a root of f and put K = Q(6). Further

R(f, f') = det( ) = —4 - 503.

We now try to modify the basis 1, 6, #2 in the hope of getting an integral basis. We can check that (6 + 62)/2
is an algebraic integer.

PMATH 641 Lecture 17: February 25, 2013

Recall: Let f(z) = 2% + 2% — 22 + 8 is irreducible over Q. Let @ be a root of f. Put K = Q(#). We have
disc(0) = —R(f, f') = —4 - 503.

Let 6 = 61, 02, 63 be the conjugates of §. We can check that

oo =TI~ 252)

i=1

is in Z[z]. Thus ‘9%9 is an algebraic integer. Then disc(1, 0, GQTJFG) = —503. Thus 1, 0, 92;9 is an integral
basis for K since 503 is squarefree and disc(K) = —503.

The question still remains: is there an integral power basis for K7 In other words, is there A € A N K such
that 1, A\, A2 is an integral basis?

Suppose we have such a A\. Then there exist integers a, b, and c¢ so that

)\=a+b9+c<92+9)

but then

A2=A+Be+c(02;0)

where A = (a? — 2¢® — 8bc), B = (—2¢% + 2ab + 2bc — b?), and C = (2b% + 2ac + ¢2). Note

1 1 0 O 1
A =|a b ¢ 0
A2 A B C) \&H
0 )
1 0 0 2 1 0 O
disc(A)=[det[a b ¢ disc(l,&,e +9): a b c]-(-=503).
A B C A B C
But
10 0\\°
det|a b ¢ = (bC — Be)?
A B C

= (2b® — bc? + b2+ 2¢%)?

= (b%c — 2bc?)? mod 2

= (be(b — ¢))? mod 2
=0mod 2
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Thus disc(A) # —503 and so no integral power basis exists.

[K : Q] < co. An element o in A N K which is not zero and not a unit is said to be an irreducible of A N K
if whenever @ = By with # and v in AN K then § is a unit or v is a unit. We’ve seen that we don’t have
unique factorization into irreducibles up to units and reordering in A N Q(1/—5). up to units and reordering

in ANQ(v/-5).
To recover unique factorization we pass to prime ideals in the ring.

Recall that an ideal P in a commutative ring with identity is a prime ideal <= whenever ab € P with a,
b€ Rthena € Porbe P. Also an integral domain is a commutative ring with identity with no zero divisors.

Suppose R is a subfield of a ring S. Then 0 in S is said to be integral over R if it is the root of a monic
polynomial with coefficients in R. R is integrally closed in S if whenever 6 € S is integral over R then 6 € R.

Definition: A Dedekind domain R is an integral domain for which
(1) Every ideal in R is finitely generated.
(2) Every non-zero prime ideal in R is maximal
(3) R is integrally closed in its field of fractions.

Proposition 37: Let [L : Q] < co. Let I be a non-zero ideal in A N K. There is a positive integer in I.
Proof: Since I is non-zero there exists an o € I with « # 0. Let « = a4, ..., a;, be the conjugates of o over
Q. Then

Ng(a)(a) =1 0p =0a€ Z\{O}

Observe that ag -+, = a/a; € K. Further g, ..., a, are algebraic integers so as, ..., a, € A. Thus
ag--a, € ANK. Thus (1) - (e a,) € Isoa €l But —a € I also.

Definition: Let [K : Q] < oo and let I be a non-zero ideal in AN K. Then {aq,...,a,} is an integral basis
for the ideal if aq, ..., a, are in I and every element of I has a unique representation as an integral linear
combination of ay, ..., a,.
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Midterm: Friday in class.

Theorem 38: Let [K : Q] < oo and let {w1,...,w,} be an integral basis for AN K. Let I be a non-zero
ideal in A N K. Then there exists an integral basis {aq,...,a,} for T of the form

a1 = a11WwWq

Q2 = A21W1 + G22wW2

Ay = Qp1Wi + +° + Qppn

where the a;; € Z and a;; € Z+ fori=1, ..., n.

Proof: By Proposition 37 there exists a positive integer a in I. Thus aw; € I for i =1, ..., n. We choose a;
to be the smallest positive multiple of wy which is in I and denote it by a11wi. We then pick as, as, ... by
choosing «o; to be a;1wy + - - - + a4;w; where oy is the integer linear combination of wy, ..., w; for which a;;w;

is such that a;; is positive and minimal.

It remains to show that a1, ..., a, is an integral basis for I. Since wq, ..., w, are linearly independent over
ail 0

Q and det< : > # 0 we see that aq, ..., a, are linearly independent over Q.
An1 Ann
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It remains to show that if 8 € I then f is an integral linear combination of o, ..., a,. Since {w1,...,w,} is
an integral basis for AN K
B =biwi + -+ byw, with b; € Z.

Notice that ayy, | b, since otherwise, by the Division Algorithm, we would contradict the minimality of ay,,.
Thus anyp - ¢n = by, for some integer g,. But then 8 — g, is an integral linear combination of wy, ..., wy_1.
We repeat the argument to find integers ¢, ..., ¢,—1 so that

5ZQ1041+"'+QnC¥n

as required.

Theorem 39: Let [K : Q] < oo. Then AN K is a Dedekind Domain.
Proof: By Theorem 38 every ideal in A N K is finitely generated.

Let P be a non-zero prime ideal in A N K. We’ll show that P is maximal.

First note that there is a positive integer a in P. Next note that since P is a prime ideal AN K/P is an
integral domain.

Let {w1,...,w,} be an integral basis for AN K. Then A N K/P is made up of cosets of the form
awi + -+ apwn + P

where the a;s are integers of size at most a in absolute value. — A N K/p is finite.
But a finite integral domain is a field and so P is maximal.

Finally, let v = % with o, € AN K, § # 0. Suppose that v is integral over AN K. Thus ~ is the root of a

polynomial 2™ + a _12™ 1+ -+ g With a1, ..., @p in AN K (%). It remains to show that v € AN K.
Plainly v € K. It remains to show that v € A.

We do so by considering the ring
S =Zag,...,an_1,7]

Plainly v € S. By Theorem 13 it suffices to show that S is finitely generated as an additive group. Let 6 € S
then it is enough to show that € is an integral linear combination of terms of the form

b b’l’7b7 m
ag’ -y
where b,, < m and the b;s for i =0, ..., m — 1 are less than n.
It is enough to show that if @ is of the form o’ - - a,™ '™ with cg, ..., ¢ € Z>g then this is true.
Start by using *, in other words
’Ym = *Ofm—lf}/mi1 s O,

to reduce ¢,, to an integer of size at most m — 1.
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Theorem 40: Let R be a commutative ring. The following are equivalent:
(1) Every ideal in R is finitely generated.
(2) Every increasing sequence of ideals in R is eventually constant.

(3) Every non-empty set of ideals in R has a maximal element.
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Proof: (1) = (2). Suppose that Iy C I, C--- with [; e Rfori=1,2,.... Put

o0
I:UQ.
n=1

Then I is an ideal of R and so I = (a1,..., o). But notice that «; is in I so there exists an integer n; so
that a; € I,,, for j =1, ..., t. But then I C I;, where b =max(ni,...,n¢). Thus [ = I = Iy =---.

(2) = (3). Let S be a non-empty set of ideals in R. Thus there exists I; in S. Either I; is maximal in S or
there exists Iy in .S with I1y C I». Either I is maximal in S or there exists I3 in S with Iy C Is. Eventually
this process terminates by (2).

(3) = (1). Let I be an ideal of R. Let S be the set of finitely generated ideals of R in I. (0) is in I so S is
non-empty. Let M be a maximal element of S. Then M C I. Suppose that M C I.

Now M is finitely generated so M = (au,...,q;) say. Pick v € I'\ M. Then the ideal I} = (a1,...,04,7) is
in I and so M is not a maximal element of S which is a contradiction. Thus M =1. v

Lemma 41: In a Dedekind domain every non-zero ideal contains a product of non-zero prime ideals. (Here
the product may be a product of 1 element.)

Proof: Let S be the set of non-zero ideals in the Dedekind domain R which do not contain a product of
non-zero prime ideals. Suppose that S is non-empty. Then by the definition of a Dedekind domain and
Theorem 40 we see that S has a maximal element M. Note that M is not a prime ideal. Thus there exist a,
be R withabe M and a ¢ M, b¢ M. Therefore

(M + (a))(M + (b)) € M

But M C M + (a) and M C M + (b). Since M is maximal both M + (a) and M + (b) contain a product of
non-zero prime ideals. Then by % so does M which is a contradiction.

Lemma 42: Let I be a prime ideal in a Dedekind domain R with field of fractions K. Then there is an
element v € K \ R such that vI C R.
Proof: Let a be any non-zero element of I. Then % ¢ R since I is proper.
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Lemma 42: Let I be a proper ideal in a Dedekind domain R with field of fractions K. There is an element
v in K \ R for which
~vI C R.

Proof: Let a be a non-zero element in I. Since I is proper a is not a unit and so % € K\ R. (a) contains a
product of prime ideals p; - - - p, by Lemma 41. Let us suppose that r is minimal.

Let S be the set of proper ideals in R which contains I. S is non-empty and so by Theorem 40, S contains a
maximal element M. Observe that M is a maximal ideal. Since R is a Dedekind domain, M is a prime ideal.
Next note that (a) C I and also p1-+-p. C (a) ST C M.

We claim that M D p; for some ¢ with 1 <4 < r. Suppose not. Then there is an element a; in p; and not in
M fori=1,...,r. But then ay---a, € M with a; ¢ M for i =1, ..., r contradicting the fact that M is a
prime ideal. Thus M D p; for some i. Without loss of generality we may suppose M D p;. Since M is a
prime ideal M = p;.

Recall (a) 2 p; -+ - p, with r minimal. If r = 1 then p; C (a) €I C M so p; = (a) and then with v = 1 we
have

as required.
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If > 1 then we consider ps - - - p,.. Note that ps---p, is non-empty and not contained in (a). Thus there

exists an element b in ps - - - p, which is not in (a). We now take v = £. Observe that v € K \ R.

Then

v =

N

N

N

N

as required.

Theorem 43: Let R be a Dedekind domain and let I be an ideal of R. Then there is an ideal J of R for
which
1J is a principal ideal of R.

Proof: If I = (0) the result is immediate so suppose that I is not (0). Let « be a non-zero element of I.

Define J to be the following set in R:
J={BeR:BIC (a)}.

Note that J is an ideal of R and
1J C ().

We want to show that in fact IJ = («). Put B = 11J and note B is an ideal of R. If B = R we are done
since then IJ = (a).

Suppose then that B is a proper ideal of R. Then by Lemma 42 there exists a v € K \ R for which yB C R;
here K is the field of fractions of R. Since o € I we have that J C éIJ = B. Thus

vJ C~vB C R.

Thus vJI C («) and so by the definition of J, vJ C J. But J is a finitely generated additive subgroup of the
field of fractions of the Dedekind domain R.

By Theorem 13 with C replaced by the field of fractions of a Dedekind domain we see that «y is the root of a
monic polynomial with coefficients in R. Since R is a Dedekind domain it is integrally closed in its field of
fractions. Thus v € R which is a contradiction.
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Theorem 43

yJ CJ
J is a finitely generated ideal in R so J = (a1,...,an,).

Then there exist m;; in R so that
V@i = My1a1 + -+ Mindn
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fori=1,..., n. Then

aq 0
(vIn — M) =
an 0
al 0
where M = (m;;). J # (0) so ( ) = () = det(yl, — M) = 0. Thus ~ is the root of a monic
An

0
polynomial with entries in R. But R is a Dedekind domain so R is integrally closed in its field of fractions K.
Since 7 € K we see that v € R. This is a contradiction.

Corollary 44: Let A, B and C be non-zero ideals in a Dedekind domain R with AC = BC then A = B.
Proof: There exists an ideal J in R so that CJ is principal. Say CJ = (o) with @ € R. Note that
ACJ = BCJ
so A(a) = B(a).
= Aa = Ba
= A = B since a # 0.

Corollary 45: Let A and B be non-zero ideal in a Dedekind domain R.
A|B < BCA.

Proof: = Since A | B there exists an ideal C' in R with AC = B. Then immediately B C A.
< By Theorem 43 there exists a non-zero element « in R and an ideal J of R such that AJ = («). Consider
1BJ. Note that X BJ is an ideal of R since B C A. Further A(LBJ) = B(1AJ) = B(1(a)) = B.

Theorem 46: Every non-zero proper ideal in a Dedekind domain R can be written as a product of prime
ideals of R and this representation as a product is unique up to ordering.
Proof: We first prove existence.

Let S be the set of non-zero proper ideals which cannot be written as a product of prime ideals. Since R is a
Dedekind domain S has a maximal element M. Note that M is contained in a maximal ideal of R which,
since R is a Dedekind domain, is a prime ideal of R, say P.

Thus M C P. Note M # P since M is in S. Thus M C P. Therefore by Corollary 45 there exists an ideal A
such that
M = PA.

Further M C A. But A is not a product of prime ideals since otherwise by * M is a product of prime ideals.
But then A € S and M is not maximal in S which is a contradiction. Therefore S is empty as required.

“Uniqueness”
Suppose that py, ..., p, and q1, ..., qs are prime ideals with
pl...T:ql...qS_

Note that p; | ¢1---gs. Thus by Corollary 45, p1 D g1 -+ ¢s. Since pp is a prime ideal p; D ¢; for some i.
Without loss of generality we may suppose p; 2 ¢1. Prime ideals are maximal ideals in R so p; = ¢1. By
Corollary 44, ps---p, = q2 - - - ¢s. Repeating this argument the result follows.

Remark: Let [K : Q] < co. Then AN K is a Dedekind domain and so we have unique factorization into
prime ideals, up to ordering, in AN K.

Definition: Let R be a commutative ring with identity. An element ¢ of R is said to be irreducible of R if

(1) ¢# 0 and c is not a unit of R.
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(2) If ¢ = ab with a, b in R then a is a unit or b is a unit.
An element c of R is said to be a prime of R if

(1) ¢# 0 and c is not a unit of R

(2) If ¢ | ab with a, b in R then ¢ | a or ¢ | b.

Note in UFDs the concepts are the same.
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Theorem 47: Let [K : Q] < oco. The factorization of elements of A N K into irreducibles is unique up to
reordering and units if and only if every ideal in A N K is principal.

Proof: < It is enough to show that every non-zero prime ideal P in A N K is principal. By Proposition 37
there is an integer ¢ with @ > 1 in P. Let a = my - - - m; be the decomposition of a into irreducibles in A N K.

Then a € Pso P D (a) = (m) -+ (m¢). Thus P | (mwy)---(m) so P | (m;) for some i with 1 <14 <t Without
loss of generality we may suppose that P | (71) so P 2 ().

Notice that P = (1) since (1) is a prime ideal. This follows since otherwise (m1)d = S with § and « not in
(m1). But m is irreducible so m | S or 71 | v by unique factorization which is a contradiction.

= Suppose that
771"'777":A1"'As

where the m; and A; are irreducibles in A N K. Notice that then

(1) -+ (mr) = (A1) -+ (As)-

Therefore it suffices to show that if 7 is an irreducible of A N K then () is a prime ideal. We have unique
factorization into prime ideals of A N K so if () is not a prime ideal then (7) = AB with A and B proper
non-zero ideals of AN K.

Since every ideal in AN K is principal there exists o, 5 € ANK with A = («) and B = (). Then (7) = (a)(5).
Thus there exists §, v € AN K such that 7 = {ad} - {8~}. But 7 is irreducible so either ad is a unit in which
case « is a unit or 7 is a unit in which case £ is a unit. This contradicts the fact that A and B are proper
ideals.

The only rings A N Q(v/—D) which have unique factorization into irreducibles with D > 0 are those with
D =1,2,3,7,11,19,43, 67, 163.

Given a prime ideal P in AN K with [K : Q] < oo we can find an integer a > 1 with a € P. Let a=p;y -+ p;
be a factorization of @ into primes in Z. Then P D (a) so P | (p1)--- (p:) hence P | (p;) for some prime p; in
7.

Suppose P | (p) are P | (q) for two distinct primes p, g in Z. Then since there exist integers r and s with
rp+sqg=1

we see that

and so
P(1)

which is a contradiction. Thus to each prime ideal P in A N K there is a unique prime p in Z associated to it
with P | (p).
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Definition: Let [K : Q] < co and let p be a prime in Z. We say that p ramifies in A N K if there exists a
prime ideal P in A N K such that P? | (p).

Dedekind proved that the primes p that ramify are exactly the primes that divide the discriminant D.
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Theorem 48: Let [K : Q] < co. Let D be the discriminant of K. If p is a prime which does not divide D
then p is unramified in AN K.
Proof: We'll prove the contrapositive.

Suppose that P is a prime ideal and P? | (p). We’ll show that then p | D.

Since P? | (p) there is an ideal Q with P?Q = (p). Then there exists an a € AN K with a € PQ but
a ¢ P2Q.

But then o? € P2Q? and so o? € (p) hence a?/p € AN K. Thus o /p € AN K and so for each 8 € AN K,
(aB)?/p € AN K. Notice then that Té((ozﬁ)p = Té((p(a,b’)p/p) = pTg((aﬁ)p/p). Since Tg((aﬁ)p/p) is an
integer we see that p | T (a3)P. But

(T apy = (Y o) =Y olapy +p

(e (e

where v is an integer by the multinomial expansion so
(Tg aB)” = T (aB)? + py
and since p | Téf(aﬁ)p we see that p | (Téfaﬁ)p. Since p is a prime we see that p | Téfaﬁ.

Let {w1,...,wy} be an integral basis for AN K. Then for i =1, ..., n we have Té((ozwi) is divisible by p.
We have

a=aiwi + -+ apwn

with a1, ..., a, integers. Since o ¢ (p) hence a/p ¢ AN K we see that at least one of a1, ..., a, is not
divisible by p without loss of generality suppose p 1t a;.

Observe that since p | Téf (aw;) we see that p divides
Té{(alwl + 4 anwn)wi = alTé{wlwi + agTé(wzwi + 4 anTgwnwi.

By Theorem 25 we have

a1 T (W) -+ e T (wiwn)
K
a1 D = det TQ (wawn)
Té( (Wpw1) -+ Té{ (Wnwn)

alTé{(wlwl) + agTé((Wle) 4+ anTé((wnwl) i alTé((wlwn) 4.+ anTé{(wnwn)

Té((ww)l) e
= det .

T (wnwi) e T (wnwn)

Since p divides each integer in the top row of the matrix we see that p | a1 D. But p { ay hence p | D as
required.

Let [K : Q] < co. We define the norm of an ideal I of AN K, denoted by N1,
NI=|ANK/I|.
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Thus NI is the number of residue classes modulo I. NI is also denoted by Ng([).

Theorem 49: Let [K : Q] = n. Let I be a non-zero ideal of AN K and let a4, ..., a;, be an integral basis

for I. Then disc( )12
isc(aq,...,an,
NI = |—2Zb )
D )

where D is the discriminant of K.
Proof: We first remark that all integral bases for I have the same discriminant. This follows just as for the
discriminant of K.

Let w1, ..., w, be an integral basis for K. Then we can find an integral basis a1, ..., a, of I of the form

Q1 = a11wi

Q2 = A21W1 + G22wW2

Oy = Ap1wi + + + Gppwp
with a;; € ZT, by Theorem 38. Since

2

disc{aq,...,a,} = D

we see that it suffices to show that
NI = a11 * " Apnp-

Suppose that
w1 + -+ Thwp = S1w1 + -+ Spwy, (mod T)

with 0 <7; <aj fori=1,...,nand with 0 <s; <ag ....

= (r1—s1)wi+-+(rp —sp)wp €1
= (s1—r)wi+ -+ (sp —rn)wn €1

Recall from the proof of Theorem 38 that a.,, is chosen to be minimal and positive.
= Qnn | "n— Sn = Th = Sy since 0 < |1, — 8| < ann

Similarly r,_1 = $p_1, ..., 1 = 1.
Thus NI > ay1---apn-
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Theorem 44 ...
{ai1,...,a,} a basis for T

ail 0
disc{aq,...,a,} = o D
apl e Ann

- (all e ann)2D

We showed that NI > a1 anp-
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To conclude suppose v € AN K. Then v = byjwy + - - + byw, with b; € Z; here {wy,...,w,} is an integral
basis for A N K. Note that, by the Division Algorithm, b, = g,ann, + r, with 0 < r, < ay,, and then
Y — qnQn = dlwl +--+ dn—lwn—l + TrWn-

Repeating this n — 1 times we find that there exist integers ¢, ..., g,—1 so that
Y= @nOn = Gn-1Qp—1 + -+ Qa1 = 1w + -+ Wy

with 0 < r; < a;;. Thus
NI§a11~~~ann = NI:a11-~~ann.

Corollary 50: [K : Q] < co. Let a be a non-zero element of AN K. Then N(a) = |Néf(o¢)|.
Proof: Let {ws,...,w,} be an integral basis for A N K. Then the principal ideal («) has {aws,...,aw,} as
an integral basis.

Let 01, ..., 0, be the embeddings of K in C which fix Q. Then
disc{aws, . .., aw, } = (det(o;(aw;)))?
D = disc{ws,...,wn} = (det(o(w;)))?

But we have

o1(a@) 0 2

disc{awr,...,aw,} = | det -D
0 on(a)
= (Ng (a))?- D.
By Theorem 49 = (N(a))? = (Néf(a))z. Thus N(a) = |N(§f(a)| since N(«) is a non-negative integer.

Theorem 51: (Fermat’s Theorem) Let [K : Q] < oo and let P be a prime ideal of AN K. Let « be an
element of AN K with Pt («) then
a1 =1mod P.

Proof: Let 81, ..., Bnp be a complete set of representatives for the cosets AN K/P (in AN K modulo P).
We may suppose Sy p is congruent to 0 mod P. Then since P 1 («) we see that

aﬂlv sy aﬂNP
is again a complete set of representatives mod P with afSyp congruent to 0 modulo P. Therefore

apy---afyp-1 =P Byp-1 mod P.

— oV’ 1=1mod P

as required.

Proposition 52: Let [K : Q] < co. Let A be a non-zero ideal of AN K. Then NA € A.
Proof: Let 81, ..., Bnya be a complete set of representatives modulo A. Then

1+61a"'71+6NP

is also a complete set of representatives modulo A.

= B+ +Bva=1+p1)+ -+ (14 Bna) mod A
0=NAmod A

Notice that for any positive integer ¢ there are only finitely many ideals A of AN K with NA =t.
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Still to show: The norm map on ideals is multiplicative, i.e., for A, B ideals in A N K
NAB =NA-NB.

If we have this and
NA = p with p a prime

then A is a prime ideal. Further if p is a prime in Z then
N(p) = |N(pr| = p" where n = [K : Q).
Every prime ideal P of AN K divides (p) for exactly one prime.
— NP =p/

for some integer f with 1 < f < n.
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Let [K : Q] < co. Let A and B be ideals of AN K. We say that an ideal C' of AN K is a greatest common
divisor of A and B if it is a common divisor of A and B and all other common divisors of A and B divide it.

In fact there can be at most 1 greatest common divisor of A and B since if C' and D are greatest common
divisors of A and B then C' | D and D | C hence C D D and D D C so D =C.

In fact there is one since if A = (o, ..., a,) and B = (A, .. ., ;) then we may take C' = (v, ..., ap, B1y- -+, Bn)-
Certainly A C C and B C C hence C | A and C | B. Further if D | Aand D | B then D D Aand D DO B
hence a1, ..., a, and By, ..., Bs arein D so D 2 C' = (aq,...,0p,P1,...,08s). Thus D | C. Therefore there
is a unique greatest common divisor of A and B and we denote it by ged(A4, B).

ged(A, B) = (1) is equivalent to A and B being coprime.

Since we have unique factorization into prime ideals in A N K if

A :p‘lll ...pi"
and
b -
B=7p.. .p?
with pq, ..., p, distinct prime ideals and a4, ..., a,, by, ..., b, non-negative integers then
ged(A, B) =pi* - py”
where

¢;i = min(a;, b;) for i =1, ..., r.

Lemma 53: Let [K : Q] < co. Let A and B be non-zero ideals of AN K. Then there exists an element

a € A for which gcd((%),B) =(1).

Proof: If B = (1) the result is immediate. Suppose then that there are exactly r distinct prime ideals py,
.., pr which divide B. We'll prove the result by induction on r.

First suppose that » = 1.
Choose « so that « is in A but not in Ap;. This is possible since A # Ap;. But then ged((a)/A,p1) is
a divisor of p;. Since p; is a prime ideal it is either p; or (1). If it is p; so ged((«)/A,p1) = p1 then
ged((a), Apy) = Apy. Thus Ap; | (@) hence () C Ap; and so a € Apy which is a contradiction.
Now suppose r > 1. Let

P---P

Am:ATT, form=1,...,r.
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Choose a, in A,,, by the case r = 1, so that

gcd(M,Pm) = (1), form=1,...,r.
A,
We now put
a=qa)+ -+ Q.
Since a; € A; and A | A; fori=1, ..., r we see that oy € Afori =1, ..., r we see that a;; € A for i =1,
..., r. Thus a € A.
Note that a ¢ AP, for m =1, ..., r. To see this observe first that AP, | A; whenever i # m. Therefore «;

isin AP, fori #m. But @« = a3 + -+ 4+ «a, so if a is in AP, for some m with 1 < m < r then «, is in
AP,,. But ged((ay)/Am, Pm) = (1).

Since P, ..., P, are distinct prime ideals

gcd(%,Pm> - (). (%)

= ged((am), AP,) = A.
But a,,, € AP, so (ay,) C AP, hence AP, | (ay,). Thus P, | (O‘X‘) and this contradicts *.

We now show that ged((«)/A, B) = 1. Suppose otherwise. Then ged((«)/A, B) is divisible by P,, for some
integer m with 1 < m <r. Then P,, divides («)/A so AP,, divides («). In particular o € AP,, which is a

contradiction.
PMATH 641 Lecture 26: March 20, 2013

Theorem 54: [K : Q] < co. Let A and B be non-zero ideals of AN K. Then

NAB=NA-NB.

Proof: Let a;, ..., aya be a complete set of representatives modulo A. Similarly let 51, ..., Byp be a
complete set of representatives modulo B.

By Lemma 53 there exists v in A for which ged((y)/A4, B) = (1) = ged((v), AB) = A.

Consider the terms a; +v3; with 1 <7 < NA and 1 < j < NB. These terms are all distinct mod AB since
otherwise there exists 7, j, k, I with 1 <i < NA, 1 <j< NB,1<k<NA, 1< < NB for which

a; +vB; = ar +v6; (mod AB).

Then
a; — o =v(B; — B1) (mod AB).

Since v is in A we see that a; — o =0 (mod A) hence ¢ = k. But then
(8= f) =0 (mod AB).
Thus AB | (7)(8; — 1)

%(ﬁj - B1)

= B|(B; — )
= B;=0/ (mod B) = j=1I

= B

Thus
NAB > NANB.
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Suppose & € AN K. Then a = a; (mod A) for some ¢ with 1 < i < NA. Recall by * ged((v), AB) = A.
Thus
a—a; =7-A+6

with A € ANK and 6 € AB. Then A = ; (mod B) for some j with 1 < j < NB. Therefore a =
a; +v6; +v(A— ;) + 9. Now since v € A and A — f3; is in B we see that

o = a; +vB; mod AB.

Thus NAB< NA-NB and so NAB = NANB.

Let [K : Q] < co. We define a notation ~ on the non-zero ideals of AN K by A ~ B if and only if there exist
a, B € AN K with a8 # 0 so that

This is an equivalence relation
(1) AvA a=p8=1V
(2) A~B <= B~AV

(3) If A~ B and B ~ C then there exist a, 8, v, § in AN K\ {0} such that (a)A = (5)B and (v)B = (§)C
so then

(ay)A = (a)(v)A = ((B)B = (6)(B)C = (6B)C.
Thus A ~ C.

The equivalence classes under the relation ~ are known as the ideal classes of A N K. Note that if we have
just one equivalence class then all of the ideals are principal. The number of ideal classes is known as the
class number of K and it is denoted by h or hg.

Let C = {[A] : A is an ideal of A N K }; here [A] denotes the ideal class of which A is a representative.

We define a multiplication on C by
[A] - [B] = [AB].

Note that this definition does not depend on the representatives chosen since if A ~ C and B ~ D then
AB ~ CD.

Observe that C is an abelian group under multiplication. To see this note that multiplication is associative
since

[A]- ([B] - [€]) = [A] - [BC] = [A(BO)] = [(AB)C] = [AB] - [C] = ([A] - [B]) - [C].

The principal ideal class is the identity element of the group since [(1)] - [B] = [B] = [B] - [(1)]. Plainly also
[A] - [B] = [B] - [A]

Further [A] has an inverse. To see this note that there is a positive integer a in A (take o € A...) since A is
not (0).

Thus (a) C A hence A | (a). Therefore there exists an ideal B with AB = (a). Thus [A4] - [B] = [(a)] = [(1)]
and so

Therefore C is an abelian group under -.
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h: class number of K
[K : Q] < co. his finite as we’ll show.

Another important invariant of K is the regulator R. It often arises together with h.
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Suppose that [K : Q] < n and there exist 71 real embeddings of K in C and 2ry embeddings which are not
into R. Let o4, ..., o,, be the real embeddings and let o, 11, ..., 0r +2,, be the other embeddings where
we arrange that

Opi4i = Opqrati for it =1, ..., ro.

Thus r1 + 2r; = n. Put
r=ry+ry—1.

Let U(K) be the group of units in A N K. Dirichlet proved that
U(K) =~ Tor x Z"

where Tor is a finite group corresponding to the roots of unity in K.

In particular there exist a system of fundamental units €y, ..., €, such that if € is in U(K) then there exists
a root of unity ¢ and integers ag, ..., a, such that

€ = Cﬁ?l . Egr.
Note that if (a;;) is an r x 7 matrix with integer entries which has an inverse with integer entries then

ail a ar1 a
{ef* et el err)

is again a fundamental system of units.

Let L: K* — R™*72 be the logarithmic embedding of K* in R™*"2 given by

L(e) = (loglo1(a)l,...,loglor, ()], 210g|ov, +1(a)l, - . -, 21og|or, 1+, (@)])-

The kernel of L consists of the roots of unity of K. Further if & € K with « # 0 then

log| N (@)| = log|o1 (a)] + -+~ + log|oy, +2r, ()]
= loglo1(a)| + - - - + logloy, ()| + 2logloy, 41 (a)| + - - - + 2]og|or, 4r, ()]
Notice that if o € U(K) then L(«) lies in the subgroup of R"*"2 given by x1 + -+ + @, 1, = 0. In fact

they determine a lattice of rank r1 +ry — 1. We can ask for the volume of a fundamental region of the lattice.
This is called the regulator R. Equivalently

R = |det(e; logloi(€j)])i=1,...
-1

where e; = 1if 1 <1i <7y and e; = 2 otherwise.

For [K : Q] = 2 with K real quadratic then R = loge where € is the fundamental unit larger than 1. If K is
imaginary quadratic take
R=1.

Let Mk (x) be the number of ideals of AN K with norm at most 2. One can prove

lim Mi() _ 2" (2m)" i

where W is the number of roots of unity in K. The number of integers up to z is  + O(1). The number of
primes 7(x) up to z satisfies

()

e300 xz/logx
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Let mx (x) denote the number of prime ideals up to z. Landau proved that

tim TE@)
z—oo x/log x

1
ns
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Corrections to Question 4 on the assignment. Replace “Let d be the discriminant of K...” by “Let d be the
discriminant of #...7. Also “...of the form

NE

((s) =

n=1

I
==

1 .
a(ao + a10 4+ 4 ai_lekl)

with ag, a1, ..., a;_1 integers and a;_1. ..

b2

Theorem 55: Let [K : Q] < oo. There exists a positive number Cy which depends on K such that if A is a
non-zero ideal of A N K then there exists a non-zero element o of A for which

INE ()| < CoNA.
Proof: Let wy, ..., w, be an integral basis for K. Next put
t=[(VA)"]
and consider the elements 5 in A N K of the form
ajwy + -+ apn (%)

with 0 < a; <t fori=1, ..., n. There are (¢t + 1)" such elements and since (¢t + 1)” > NA there exist
1, B2 of the form % which are equivalent modulo A. In particular o = 81 — B2 = bywy + - - - + byw, where
0<|bi| <t

Then let 04, ..., o, be the embeddings of K in C which fix Q. Thus

|N([I§(O‘)| = H|Ui(b1w1 +--+ bnwn)|
=1

<t (gn(gﬁgnm(wjn))
< NA-CyY

Theorem 56: Let [K : Q] < co. The class number of K is finite.
Proof: We’ll show that every non-zero ideal of A N K is equivalent to an ideal of norm at most Cy, where Cj
is from Theorem 55. Since there are only finitely many ideals of norm at most Cy the result then follows.

Let I be a non-zero ideal of A N K. Then there exists an ideal A such that AT ~ (1).

By Theorem 55 there exists a non-zero « in A for which

INE ()| < CoNA.

Ywhere Cp is above quantity
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Note that « € A = () C A so A | («) hence there exists B such that AB = («). But
NA-NB=NAB = N(a) = [N ()| < CoNA.
Thus NB < Cy.

Further AB ~ (1) and since Al ~ (1) = B ~ I. Thus I is equivalent to an ideal of norm at most Cy.

If h is the class number of K then by Lagrange’s Theorem for any non-zero ideal A of A N K we have

Equivalently A" is principal for any ideal A.
Suppose ¢ is a positive integer coprime with h and A% ~ B? then A ~ B. To see this note that if ged(q,h) =1
then there exists r, s with rq + sh = 1 and then

A" ~ B™ g0 A7 ~ BT — A~ B.

It can be shown that we can take Cy = 1/|d| where d is the discriminant of K.

Example: Consider K = Q(v/—5). We have d = —20 so Cy = +/20. Therefore we need only consider
ideals of norm at most v/20 hence at most 4 we must check how (2) and (3) decompose into prime ideals in

ANQ(v/-5).
2,14++/-5)(2,1 — v/=5)
,2 —2v/=5,2+2v/-5,6)

2,2(1+ v-5))
2)

(2)=(
= (4
= (
= (
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Class number of Q(v/—5). It suffices to consider ideals of norm at most 4. Note that
(2,1+v-5)- (2,1 -v-5)= (4,21 +vV-5),2(1 —v—-5),6) = (2).

Also observe that

2—(1+v=5)=1-+-5

and so

(2,1+v=5) = (2,1 — V=5).
Put P = (2,14 +/=5). Thus (2) = P2 Also note that
(3,14+vV=5)(3,1 — vV=5) = (9,3(1 + v5),3(1 — V5),6) = (3).
Put @ =(3,14++v/-5) and @ = (3,1 — /—5). We have NONQ' = 9.
Could we have NQ = 17 Then Q = (1). In particular 1 € Q hence there exist a, b, ¢, d € Z with
3(a+bv—=5)+ (1++vV=5)(c+dv-5)=1.

— 3a+c—5d=1

3b+c+d=0
3a—3b—6d=1
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and since 311. #

Similarly NQ’ # 1 hence NQ = NQ' = 3 and Q and Q' are prime ideals. Thus (1), P, P2, Q, and Q' are
the ideals of norm at most 4. Since P? is principal

P2~ (1)

and so we need to consider only the ideal classes of (1), P, Q, and Q'.

We have
(3,1+vV=5)(2,1+V=5) = (6,2(1 + vV=5),3(1 + vV=5), (1 + V=5)2) = (1 + V=5).
QP ~ (1).
(3,1 —vV=5)(2,1 +V-5) = (1 —V/-5)

QP ~ (1) )
P ~ (1)} = Q~Q
Q0" ~ (1) ,
QPN(l)} == Q' ~P

Thus

¢ =Ll [P}
Could we have P ~ (1), so P principal? Then P = (a + b\/—5) and since NP = 2
a? -5 =2 = a*=2 (mod 5) #.
Therefore h = 2.
Suppose [K : Q] < oo.

There is an extension E of K which is Galois over K and has the property that the Galois group of E over
K is isomorphic to the ideal class group of K. Also every ideal of AN K becomes principal in FE.

E is the Hilbert class field of K.
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Lattices, A in R™
Let aq, ..., ay, be linearly independent vectors over R in R™. The set of points

A={mag 4+ +mpa,, :m; €Z,i=1,...,n},

is known as a lattice. The lattice is said to be generated by a1, ..., a,. Notice that if (v;;) is a matrix with
integer entries and det(v;;) = £1 and we put

n
a; = E Vij &g
=1

then of, ..., o/, is also a basis for A.

Put d(A) = |det(aq, ..., a,)|- Then d(A) does not depend on the choice of generators o, ..., ay, for A since
det(aq,...,an) = £det(ay,...,al,)

n

whenever of, ..., o, also generate A.

38



For generators ag, ..., a, of A we can define an associated fundamental parallelogram P in R™ given by
P={0a1+ - 4+0,0,:0<0;<1lfori=1,...,n}.
Notice that every element  in R™ has a unique representation in the form
B=XA+7,
with A € Aand v € P.

Note also that u(P) the Lebesgue measure or volume of P is just

u(P) = d(A).

Remark: Since aq, ..., a,, are linearly independent over R, d(A) > 0.

Example: Let A be the lattice in R™ generated by eq, ..., e, where
jth position

ej =(0,...,0,1,0,...,0)
Ao ={(my,...,myp) :my € Zfori=1,...,n}.
d(Ag) =1

Theorem 57: (Blichfeldt’s Theorem) Let m, n € Z*. Let A be a lattice in R™. Let S be a set in R" with
Lebesgue measure u(S). Suppose that either p(S) > md(A) or S is compact and

1(S) = md(4A)

then there exist distinct points x1, ..., Tp4q in S with with z; —2; € Afor 1 <4,5 <m.
Proof: Let aq, ..., a, generate A and let P be the fundamental parallelogram associated with aq, ..., au,.

For each A € A we define R(\) to be the set of points v € P such that
A+veds.

We then have
S (RO = u(S) > md(4) = mu(P).

AEA
Therefore there is a point vg € S which is associated with m + 1 distinct lattice points A1, ..., Apy1. We
now take x; = vg+ \; fori =1, ..., m + 1. But then

x,-—:rj:)\i—)\je/l
as required.

Suppose now that S is compact and
u(S) = md(4).

Let €1, €9, ... be a sequence of positive real numbers with lim,_,.. €, = 0. Then
w((1+€.)8) > u(S) = md(A).
Thus there exist points 1 ,, ..., Tm11,» i (1 + €.)S for which
ur(i,j) =xip —xj, €A for 1 <i,j<m+1.

Since S is compact we can extract a subsequence and so suppose that lim, ,. z;, =z fori=1,..., m+1
with 2} € S. Notice that since A is discrete the u, (4, j)’s are all the same for r sufficiently large. Therefore
xh, ..., ), arein S and

m;—xg-eA for 1 <i,j <m-+1.
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? from last class: Note that

1
—xz; . €8S
14¢ 7
Definition: Let .S be a subset of R™. We say that S is symmetric about the origin if whenever x € S then
—z € S. We say that S is convex if whenever x, y are in S then Az + (1 — Ny € S for any A € R with
0< A<

Theorem 58: (Minkowski’s Theorem).
Let m, n € Z*. Let S be a subset of R” which is symmetric about the origin and convex of Lebesgue measure
1(S). Let A be a lattice in R™. If either

w(S) > m2™d(A)

or
pu(S) = m2"d(A)

and S is compact then there exist m pairs of non-zero points £\1, &Ao, ..., £\, from A and in S.

Proof: We apply Theorem 57 to 5. Note that p(15) = 54(S). Therefore there exist distinct non-zero

points %xl, ceey %xm in %S which have the property that

1 1
5301-—5%-6/1 for 1 <i,j <m.

Let us suppose without loss of generality that

where > indicates that the first non-zero coordinate in i — Ziy1 is positive for i =1, ..., m —1. We now take
1 1
)\J:§xj—§acm+1 forjzl,...,m.

Note that since S is symmetric about 0 we see that —z,,,+1 is in S. Since S is convex

1 1 1
5% T (_$m+1) ST — = Tmgl = Aj
2 2
isin S.
= A1, ..., Ay are non-zero and distinct with first non-zero coordinate positive. Also —Aq, ..., —\,, are

in S, by symmetry, and in A. The result follows.

Observe that the lower bounds in the theorem can’t be improved. Take
S={(z1,...,2,) ER" : |z1| <moand |z2| <1, ..., |z, <1}

u(S) =m2m". S is convex and symmetric about 0. Take the lattice Ag with d(A¢) = 1. The points of Ay is in
S are (£4,0,...,0) for j=0,..., m— 1.

Suppose [K : Q] = n and let K = Q(6). Suppose 6 =6y, ..., 0, are the conjugates of § over Q. Suppose that
01, - .., 0y are the embeddings of K in C which fix Q. Let r; be the number of embeddings in R, equivalently
the number of 64, ..., 8, which are in R. Let o1, ..., 0., be the real embeddings and o, 41, ..., 0y +2r, be
the other embeddings, with o,,4; =0, 11, for j =1, ..., .

Let 6: K — R™ x C™ be given by

&(I) = (0'1(33), sy Oy (I)70T1+1(‘T)7 s Orydry (35))
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& is an injective ring homomorphism. We may identify C with R? by considering real and imaginary parts.
Let us define
o: K - R"

by
0(1’) = (Ul (‘T)v cees Oy ((E), :)R(JﬁJrl(x))v %<O—T1+1(x))v ceey 8%(0—7“1Jr7“2 (x))v %(UT1+T2 (l’)))

Lemma 59: [K : Q] < oo. A a non-zero ideal in AN K. Then o(A) is a lattice in R with
d(A) =27"|D|'"*NA

where D is the discriminant of K.
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Recall our map o: K — R" given by
o(z) = (01(2),- ., 0r, (2), R(0r,41(2)), S(07,41(2)), - -, R(Ory 1y (), S(py 4, (2)))-
Lemma 59: Let A be a non-zero ideal in AN K. Then o(A) is a lattice A in R™ with
d(A) =27"2|D|"*NA,

where D is the discriminant of K.

Proof: Let aq, ..., a, be an integral basis for A. The coordinates of o(«;) in R™ are
(1), s 0ry (@)oo (O, 4y () (%)
Note that for z € C, R(2) = 2% and S(z) = — %2 = —1(z — (££2)). Thus

1

D = det(oi(cj)) = (—722

)”d(A)

where d(A) is the determinant of the matrix whose ith row is *. Since D # 0 we see that d(A) is not 0 and so
o(A) = A is a lattice in R”. Now by Theorem 49 our result follows.

Theorem 60: Suppose [K : Q] = n with n = r1 + 2ry where r; is the number of real embeddings of K in C
and 2ry is the number of other embeddings. Let A be a non-zero ideal in AN K. Then there exists a non-zero

o in A for which o\ r
NE (@) < (Z) VDINA.

Proof: Let t € RT and let S; be the set of (z1,...,2,) in R" for which |z;| <t fori=1, ..., r; and for
Whichm$1+j+xfl+1+j <t?forj=1,3,5,...,2r — 1.

Note that S; is compact, convex and symmetric about the origin 0. Further
w(Sy) = (2t)"™ (mt?)"2 = 2" 72",

We now take

_(_ 2 1)
Then 12
_ogn(IDITNAN
u(s) = 2 (125 ) = 2nd(4),
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where A is the lattice associated with the ideal A. By Minkowski’s Theorem there is a non-zero lattice point

of Ain S;. Let a be the associated element of A. Then, let o1, ..., 0, be the embeddings of K in C which
fix Q,
n 1 r1+T2
ING (@) = [Tlos(@)| = Tlos(@)] ] loi(@)7i(a)]
i=1 i=1 i=ri+1
1 T1+72
=[Tlec@ T (R(oi()? +S(0i())?)
i=1 i=ri+1
2n
r142re _4n 1/2
St =t = DN A

_ (3)”|D|1/2NA.

™

Suppose [K : Q] = n. Let 8 be in AN K and such that K = Q(#). Let f be the minimal polynomial of 6. Let
t be the index of Z[f] in AN K. Let p be a prime in Z.

? How does (p) decompose in AN K7 Consider f in Fy[z] where I, is the finite field of p elements. Identify
F, with Z/pZ. Suppose ptt. In Fp[z],

f(x) = fi(@)™ - fola)®
where f; is irreducible in F,[z] of degree d;. We have
(v) = P Py
where P; is a prime ideal in A N K. In fact

If also pt D then ey =--- =e, = 1. Thus

n=dy+---+d, (%)
and so is a partition of n.
Let 6 = 64, ..., 6, be the conjugates of § over Q and put L = Q(04,...,0,). Let G = Gal(L/Q) be the
Galois group of L over Q. If ¢ is in Gal(L/Q) then ¢ induces a permutation of 61, ..., ,, and so an element

& of S,. We can decompose & as a product of cycles say 6 = ¢1 - - - ¢; and then
n=le|+--- +lal (%)

where |¢;| is the length of the cycle ¢;. #x is another partition of n.

1880 Frobenius . ) i .
# of primes up to = with a given partition x* L
— tends to a limit.

# of primes up to x

and the limit is the proportion of elements o of G with the same partition of n in xx.

Office Hours

Mon Apr 8 2:40-3:40
Wed Apr 10 2:00-3:00
Thurs Apr 11 2:00-3:00
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