PMATH 641 Lecture 1: January 7, 2013

Cam Stewart MC 5051
Algebraic Number Theory
Marks: Final exam 65\%
Midterm 25\%
Assignments 10\%
Grad Students: essay \& talk
No text.
Notes on my webpage.
Reference Texts: Number Fields: Marcus
Algebraic Number Theory: Lang; Stewart \& Tall; Frohlich \& Taylor
Definition: An algebraic integer is the root of a monic polynomial in $\mathbb{Z}[x]$. An algebraic number is the root of a nonzero polynomial in $\mathbb{Z}[x]$.

A number field is a finite extension K of \mathbb{Q} and we shall suppose it is in \mathbb{C}. Our object of study is the ring of algebraic integers in K.
Basic: Suppose L and K are finite extensions of $\mathbb{Q} . L$ is an extension of K if $K \subset L$. The dimension of L over K in this case is $[L: K]$. Suppose next that H is a field with $K \subseteq H \subseteq L$. Then H is said to be an intermediate field of K and L. We have $[L: K]=[L: H][H: K]$.
A polynomial f in $K[x]$ is said to be irreducible if whenever $f=g h$ with $g, h \in K[x]$ then either g or h is a constant.

Recall: $K[x]$ is a Principal Ideal Domain.
Definition: Let $K \subset \mathbb{C}$. Let $\theta \in \mathbb{C}$ be algebraic over K. A minimal polynomial f of θ over K is a monic polynomial in $K[x]$ which has θ as a root and has minimal degree with this property.
Theorem 1: Let $K \subseteq \mathbb{C}$. If $\theta \in \mathbb{C}$ is algebraic over K then θ has a unique minimal polynomial.
Proof: Suppose that $p_{1}(x)$ and $p_{2}(x)$ are minimal polynomials for θ over K. By the Division Algorithm for $K[x], \exists c \in K$ and $r(x) \in K[x]$ such that $p_{1}(x)=c p_{2}(x)+r(x)$ with $r(x)$ the zero polynomial or $\operatorname{deg} r<\operatorname{deg} p_{1}=\operatorname{deg} p_{2}$. But $p_{1}(\theta)=c p_{2}(\theta)+r(\theta)$ hence $r(\theta)=0$. By the minimality of the degree we see that r is the zero polynomial.
Since p_{1} and p_{2} are monic we see that $c=1$ hence $p_{1}=p_{2}$ as required.
Definition: Suppose that θ is algebraic over K. Then the degree of θ over K is the degree of the minimal polynomial of θ over K.

Remark: Let θ be algebraic over K and let $p \in K[x]$ be the minimal polynomial of θ over K. If $f \in K[x]$ is a polynomial for which $f(\theta)=0$ then $p \mid f$ in $K[x]$.
Theorem 2: Let $f \in K[x]$ with $K \subseteq \mathbb{C}$. If f is irreducible over K of degree $n(\geq 1)$ then f has n distinct roots.
Proof: Suppose that f has a root α of multiplicity larger than 1. Then $f(x)=a_{n}(x-\alpha)^{2} f_{1}(x)$ with $f_{1} \in K(\alpha)[x]$. Thus

$$
f^{\prime}(x)=2 a_{n}(x-\alpha) \cdot f_{1}(x)+a_{n}(x-\alpha)^{2} f_{1}^{\prime}(x)
$$

hence $f^{\prime}(\alpha)=0$ and note that $f^{\prime} \in K[x]$. Let $p(x)$ be the minimal polynomial for α over K. Observe that $p(x)$ divides $f(x)$ and it divides $f^{\prime}(x)$. Observe that $p(x)$ divides $f(x)$ and it divides $f^{\prime}(x)$. Therefore f is reducible which is a contradiction.

Let θ be algebraic over K and let $p \in K[x]$ be the minimal polynomial of θ. Suppose that the degree of p is n. Then p has n distinct roots $\theta_{1}, \ldots, \theta_{n}$ and these are known as the conjugates of θ over K.

Definition: Let $K \subseteq \mathbb{C}$ and let θ be algebraic over $K . K(\theta)$ is defined to be the smallest field containing K and $\theta . K(\theta)$ is said to be a simple algebraic extension of K.

PMATH 641 Lecture 2: January 11, 2013

If $K \subseteq \mathbb{C}, \theta$ is algebraic over K.

$$
K(\theta):=\text { smallest field containing } \theta \in K=\{f(\theta) / g(\theta): f, g \in K[x] \text { with } g(\theta) \neq 0\}
$$

Theorem 3: Let $K \subset \mathbb{C}, \theta$ be algebraic over $K . \operatorname{deg}_{k}(\theta)=n$. Then every element $\alpha \in K(\theta)$ has a unique representation of the form:

$$
\alpha=a_{0}+a_{1} \theta+\cdots+a_{n-1} \theta^{n-1}
$$

for $a_{0}, \ldots, a_{n-1} \in K$.
Proof: Since $\alpha \in K(\theta), \alpha=f(\theta) / g(\theta)$. Let p be minimal polynomial of θ over K. Now $p(x)$ and $g(x)$ are coprime polynomials. There exists $s, t \in K[x]$ by Euclidean algorithm such that

$$
p(x) t(x)+g(x) s(x)=1
$$

or $g(\theta) s(\theta)=1 \Longrightarrow \alpha=f(\theta) s(\theta)$. Now $f(x) s(x)=q(x) p(x)+r(x)$ by division so $f(\theta) s(\theta)=r(\theta)$, $\operatorname{deg} r(\theta) \leq n-1$.
Proof of uniqueness:
$\alpha=r_{1}(\theta)=r_{2}(\theta) ; r_{1}, r_{2} \in K[x]$.
$r_{1}(x)-r_{2}(x)$ is polynomial of degree $<n$ having θ as root. This is not possible otherwise $\operatorname{deg}_{k}(\theta) \neq n$

$$
K(\theta)=K[\theta]
$$

Definition: Let R and S be rings. An injective homomorphism $\phi: R \rightarrow S$ is an embedding of R in S.
Theorem 4: Let $K \subset \mathbb{C}$ and L be finite extensions of K. Each embedding of K in \mathbb{C} extends to exactly $\operatorname{deg}_{k}(L)([L: K])$ embeddings of L in \mathbb{C}.
Proof: By induction on $[L: K]$.
Let $\alpha \in L \backslash K, p(x)$: minimal polynomial of α / K, let σ be an embedding of K in $\mathbb{C} . p(x)=\sum_{i=0}^{n} a_{i} x^{i}$, $g(x)=\sum_{i=0}^{n} \sigma\left(a_{i}\right) x^{i}$ is irreducible over $\sigma(K)$.
For each root β of g, define an embedding λ_{β} of $K[\alpha]$ in \mathbb{C} by $\lambda_{\beta}: K[\alpha] \rightarrow \mathbb{C}$,

$$
\lambda_{\beta}\left(l_{0}+l_{1} \alpha+\cdots+l_{n-1} \alpha^{n-1}\right)=\sigma\left(l_{0}\right)+\sigma\left(l_{1}\right) \beta+\cdots+\sigma\left(l_{n-1}\right) \beta^{n-1} .
$$

One can check λ_{β} is an embedding by checking it is an injective homomorphism and extends σ on K.
Further, there are no other embeddings since $\lambda(0)=0=p(\alpha)=\lambda p(\alpha)=g\left(\lambda_{\alpha}\right)\left(\lambda_{\alpha}\right.$ is a root of $\left.g\right)$ Applying inductive hypothesis to $[L: K(\alpha)]$, there are exactly $[L: K(\alpha)][K(\alpha): K]$ embeddings of L in \mathbb{C}.

PMATH 641 Lecture 3: January 14, 2013

Theorem 5: Let $K \subseteq L \subseteq \mathbb{C}$ and let L be a finite extension of K. Then $L=K(\theta)$ for some θ in L.
Proof: Note that

$$
L=K\left(\gamma_{1}, \ldots, \gamma_{n}\right)
$$

for some $\gamma_{1}, \ldots, \gamma_{n}$ algebraic over K. We'll now show our result by induction. It suffices to show that if $L=K(\alpha, \beta)$ with α, β algebraic over K then there exists $\theta \in L$ such that

$$
L=K(\theta)
$$

Let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be the conjugates of α over K. Let $\beta=\beta_{1}, \ldots, \beta_{m}$ be the conjugates of β over K. Consider for each i and $k \neq 1$ the equation

$$
\alpha_{i}+x \beta_{k}=\alpha_{1}+x \beta_{1}
$$

There is precisely one solution. Now choose an element c in $K \backslash\{0\}$ which is not one of these solutions and put $\theta=\alpha+c \beta$.
We claim θ works. Notice that $K(\theta) \subseteq K(\alpha, \beta)$. To show that $K(\alpha, \beta) \subseteq K(\theta)$ it suffices to show that α and β are in $K(\theta)$. Observe that it suffices to show that β is in $K(\theta)$ since then automatically α is also in $K(\theta)$.

Let f be the minimal polynomial of α over K and let g be the minimal polynomial of β over K. Thus β is a root of $g(x)$ and also of $f(\theta-c x)$. Notice that $f(\theta-c x) \in K(\theta)[x]$. Further observe that β is the only common root of $g(x)$ and $f(\theta-c x)$, by our choice of c.

Let p be the minimal polynomial of β over $K(\theta)$. Then p divides g and p divides $f(\theta-c x)$. Therefore p is linear, in particular $\gamma_{1} \beta+\gamma_{2}=0$ with $\gamma_{1}, \gamma_{2} \in K(\theta), \gamma_{1} \neq 0$ hence $\beta \in K(\theta)$.

Definition: Let $K \subseteq L \subseteq \mathbb{C}$ with $[L: K]<\infty$. We say that L is normal over K if L is closed under taking conjugates over K.
Theorem 6: Let $K \subseteq L \subseteq \mathbb{C}$ with $[L: K]<\infty$. L is normal over $K \Longleftrightarrow$ Each embedding σ of L in \mathbb{C} which fixes each element of K is an automorphism.
Proof: \Rightarrow By Theorem 5 there exists a $\alpha \in L$ with $L=K[\alpha]$. Further let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be the conjugates of α over K. Then there are precisely n embeddings $\lambda_{1}, \ldots, \lambda_{n}$ of L in \mathbb{C} which fix each element of K. We have $\lambda_{i}(\alpha)=\alpha_{i}$ for $i=1, \ldots, n$.

Since L is normal $\lambda_{i}: L \rightarrow L$ for $i=1, \ldots, n$. Next note $\left[K\left(\alpha_{i}\right): K\right]=n$ for $i=1, \ldots, n$ hence $L=K\left(\alpha_{i}\right)$ for $i=1, \ldots, n$ and thus λ_{i} is an automorphism for $i=1, \ldots, n$.
\Leftarrow Let $\alpha \in L$ and let $\beta_{1}, \ldots, \beta_{m}$ be the conjugates of β over K.
Notice that each embedding of $K(\beta)$ in \mathbb{C} which fixes elements of K can be extended to an embedding of L in \mathbb{C} which fixes K. Each such embedding is an automorphism and so $\beta_{i} \in L$ for $i=1, \ldots, m$ as required.
Remark: Theorem $4 \Longrightarrow[L: K]$ embeddings of L in \mathbb{C} which fix K. Thus by Theorem $6 L$ is normal over $K \Longleftrightarrow$ there are $[L: K]$ automorphisms of L which fix K.
Theorem 7: Let $K \subseteq \mathbb{C}$. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ be algebraic over K. Put $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. If L contains the conjugates of $\alpha_{1}, \ldots, \alpha_{n}$ over K then L is normal over K.
Proof: We have $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)=K\left[\alpha_{1}, \ldots, \alpha_{n}\right]$. Next by Theorem 5 there exists $\theta \in L$ such that $L=K[\theta]$. Then $\theta=f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some $f \in K\left[x_{1}, \ldots, x_{n}\right]$.

Let σ be an embedding of L in \mathbb{C} which fixes K. Then $\sigma(\theta)=f\left(\sigma \alpha_{1}, \ldots, \sigma \alpha_{n}\right) \in L$. Therefore L is normal over K.

PMATH 641 Lecture 4: January 16, 2013

Corollary 8: Let $K \subseteq L \subseteq \mathbb{C}$ and let L be a finite extension of K. Then there is a finite extension H of L which is normal over K.
Proof: By Theorem $5, L=K[\theta]$ where θ is algebraic over K. Let $\theta=\theta_{1}, \ldots, \theta_{n}$ be the conjugates of θ over K. We put $H=K\left(\theta_{1}, \ldots, \theta_{n}\right)$ and the result follows by Theorem 7 .
Remark: H is normal over K and also normal over L.
Note that $\mathbb{Q}(\sqrt[3]{2})$ is not a normal extension of \mathbb{Q} since $\omega \sqrt[3]{2}$ is a conjugate of $\sqrt[3]{2}$ over \mathbb{Q} where $\omega=e^{2 \pi i / 3}$ and $\omega \sqrt[3]{2} \notin \mathbb{R}$ whereas $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$. Observe that by Corollary $8, H=\mathbb{Q}\left(\sqrt[3]{2}, \omega \sqrt[3]{2}, \omega^{2} \sqrt[3]{2}\right)$ is normal over \mathbb{Q}. $H=\mathbb{Q}(\sqrt[3]{2}, \omega)$ so $[H: \mathbb{Q}(\sqrt[3]{2})]=2$.

Let $K \subseteq L \subseteq \mathbb{C}$ with $[L: K]<\infty$. We define the Galois group $\operatorname{Gal}(L / K)$ to be the group of automorphisms of L which fixes each element of K. This is a group under the binary operation of composition. The identity element is the identity map. By Theorem 4 and Theorem 6

$$
L \text { is normal over } K \Longleftrightarrow|\operatorname{Gal}(L / K)|=[L: K] .
$$

For each subgroup H of $G=\operatorname{Gal}(L / K)$ we define F_{H} to be the fixed field of H, in other words

$$
F_{H}=\{\alpha \in L: \sigma \alpha=\alpha \text { for all } \sigma \in H\}
$$

Note that F_{H} is a field.
Theorem 9: Let $K \subseteq L \subseteq \mathbb{C}$ with $[L: K]<\infty$. Suppose that L is normal over K and that G is the Galois group of L over K. Then K is the fixed field of G and K is not the fixed field of any proper subgroup H of G. Proof: Plainly K is fixed by G. Suppose that there is an $\alpha \in L \backslash K$ which is fixed by G. Then $K[\alpha]$ is also fixed by G. By Theorem 4 and 6 there are exactly $[L: K[\alpha]]$ embeddings of L in \mathbb{C} which fix $K[\alpha]$ and, since L is normal, each of them is an automorphism of L. Similarly, by Theorem 4 and 6 , there are exactly $[L: K]$ embeddings of L in \mathbb{C} which fix K and since L is normal each is an automorphism. But $[L: K[\alpha]]<[L: K]$ and this gives a contradiction.

We'll now suppose that K is the fixed field of a proper subgroup H of G. Let α be such that $L=K[\alpha]$ and define the polynomial f by

$$
f(x)=\prod_{\sigma \in H}(x-\sigma \alpha)
$$

Note that since H is a subgroup of G if $\sigma^{\prime} \in H$ then $H \sigma^{\prime}=\left\{\sigma \sigma^{\prime}: \sigma \in H\right\}=H$. Therefore

$$
f(x)=\prod_{\sigma \in H}\left(x-\sigma \sigma^{\prime} \alpha\right)
$$

Thus the coefficients of F are fixed by the elements of H. Thus $f \in K[x]$ with α as a root and it is monic. Therefore α is algebraic over K of degree at most $|H|$. But α is algebraic over K of degree $|G|$ since $L=K[\alpha]$ is normal over K. Finally since H is a proper subgroup of $G,|H|<|G|$ which gives a contradiction.

As always $K \subseteq L \subseteq \mathbb{C}$ with $[L: K]<\infty$. Suppose L is normal over K. Let $G=\operatorname{Gal}(L / K)$. Let S_{1} be the set of fields F with $L \subseteq F \subseteq K$.
Let S_{2} be the set of subgroups H of G.
Define $\lambda: S_{1} \rightarrow S_{2}$ by $\lambda(F)=\operatorname{Gal}(L / F)$. Define $\mu: S_{2} \rightarrow S_{1}$ by $\mu(H)=F_{H}$ where F_{H} is the fixed field of H.

PMATH 641 Lecture 5: January 18, 2013

Let $K \subseteq L \subseteq \mathbb{C}$ with $[L: K]<\infty$. L normal over $K . G=\operatorname{Gal}(L / K)$ the Galois group of L over K. Recall the maps λ and $\mu, \lambda: S_{1} \rightarrow S_{2}$ by $\lambda(F)=\operatorname{Gal}(L / F), \mu: S_{2} \rightarrow S_{1}$ by $\mu(H)=F_{H}$, fixed field of H.

Theorem 10: (Fundamental Theorem of Galois Theory)
μ and λ are inverses of each other. Suppose that $\lambda(F)=H . F$ is normal over K if and only if H is a normal subgroup of $G=\operatorname{Gal}(L / K)$. Further if F is normal over K there is an isomorphism δ of G / H to $\operatorname{Gal}(F / K)$ given by $\delta(\sigma+H)=\left.\sigma\right|_{F}$; where $\left.\sigma\right|_{F}$ is the automorphism of F which fixes each element of K given by the restriction of σ to F.
Proof: Note that

$$
\mu \circ \lambda(F)=\mu(\operatorname{Gal}(L / F))=F_{\operatorname{Gal}(L / F)}
$$

By Theorem 9 the fixed field of $\operatorname{Gal}(L / F)$ is F and so $\mu \circ \lambda(F)=F$.
Further

$$
\lambda \circ \mu(H)=\lambda\left(F_{H}\right)=\operatorname{Gal}\left(L / F_{H}\right)
$$

Put $H^{\prime}=\operatorname{Gal}\left(L / F_{H}\right)$. By Theorem $9, F_{H}$ is the fixed field of H^{\prime} and of no proper subgroup of H^{\prime}. Thus $H^{\prime} \subseteq H$. But if $\sigma \in H$ then $\sigma \in \operatorname{Gal}\left(L / F_{H}\right)$ so $H \subseteq H^{\prime}$. Thus $H=H^{\prime}$ so $\lambda \circ \mu(H)=H$.

Suppose now $H=\operatorname{Gal}(L / F), \gamma \in H$ and $\sigma \in G$. Then

$$
\sigma \circ \gamma \circ \sigma^{-1} \text { is in } \operatorname{Gal}(L / \sigma F)
$$

Similarly if $\theta \in \operatorname{Gal}(L / \sigma F)$ then $\sigma^{-1} \theta \sigma$ is in $\operatorname{Gal}(L / F)$.

$$
\Longrightarrow \operatorname{Gal}(L / \sigma F)=\sigma H \sigma^{-1}
$$

Now if F is normal over K then $\sigma F=F$ for all σ in G.
F is normal over K and only every embedding of F in \mathbb{C} which fixes K is an automorphism. Further every embedding of F in \mathbb{C} which fixes K can be extended to an element of G.

$$
\begin{aligned}
F \text { normal over } K & \Longleftrightarrow \sigma F=F \forall \sigma \in G \\
& \Longleftrightarrow \sigma H \sigma^{-1}=H \forall \sigma \in G \\
& \Longleftrightarrow H \text { is a normal subgroup of } G
\end{aligned}
$$

Next suppose F is normal over K. We introduce the group homomorphism in ψ from $G=\operatorname{Gal}(L / K)$ to $\operatorname{Gal}(F / K)$ given by

$$
\psi(\sigma)=\left.\sigma\right|_{F}
$$

where σ is the restriction of σ to F.
We first observe that the map is surjective since every element of $\operatorname{Gal}(F / K)$ can be extended to an element of G.

The kernel of ψ is $\operatorname{Gal}(L / F)$ so by the First Isomorphism Theorem

$$
\operatorname{Gal}(L / K) / \operatorname{Gal}(L / F) \approx \operatorname{Gal}(F / K)
$$

Theorem 11: Let α be an algebraic integer. The minimal polynomial of α over \mathbb{Q} is in $\mathbb{Z}[x]$.
Proof: Let f be the minimal polynomial of α over $\mathbb{Q}, f \in \mathbb{Q}[x]$. Let h be a monic polynomial in $\mathbb{Z}[x]$ with α as a root. Since f is the minimal polynomial over $\mathbb{Q}, f \mid h$ is in $\mathbb{Q}[x]$. In particular there exist $g \in \mathbb{Q}[x]$ with $h=g f$.

Since h and f are monic we see that g is monic. By Gauss' Lemma there exist $c_{1}, c_{2} \in \mathbb{Q}$ with

$$
h=\left(c_{1} g\right) \cdot\left(c_{2} f\right)
$$

where c_{1} and c_{2} are in \mathbb{Q} and $c_{1} g$ and $c_{2} f$ are in $\mathbb{Z}[x]$. Note $c_{1}=c_{2}=1$ since f and g are monic.
Corollary 12: Let d be a squarefree integer. The ring of algebraic integers in $\mathbb{Q}(\sqrt{d})$ is

$$
\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} \text { if } d \equiv 2,3 \quad(\bmod 4)
$$

and

$$
\begin{aligned}
& \qquad\left\{\frac{a+b \sqrt{d}}{2}: a, b \in \mathbb{Z}, a \equiv b \quad(\bmod 2)\right\} \text { if } d \equiv 1 \quad(\bmod 4) . \\
& \text { PMATH } 641 \text { Lecture 6: January 21, } 2013
\end{aligned}
$$

Corollary 12: Let d be a squarefree integer. The set of algebraic integers in $\mathbb{Q}(\sqrt{d})$ is given by

$$
\begin{gathered}
\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} \text { if } d \equiv 2 \text { or } 3 \quad(\bmod 4) \\
\left\{\frac{a+b \sqrt{d}}{2}: a, b \in \mathbb{Z}\right\} \text { if } d \equiv 1 \quad(\bmod 4)
\end{gathered}
$$

Proof: Suppose that $\alpha \in \mathbb{Q}(\sqrt{d})$ then $\alpha=r+s \sqrt{d}$ with $r, s \in \mathbb{Q}$. Suppose that α is an algebraic integer.
First note that if $s=0$ then $r \in \mathbb{Z}$. Suppose $s \neq 0$. Then observe that

$$
f(x)=(x-(r+s \sqrt{d}))(x-(r-s \sqrt{d}))=x^{2}-2 r x+\left(r^{2}-d s^{2}\right)
$$

is a monic polynomial over \mathbb{Q} with α as a root. Since $\alpha \notin \mathbb{Q}, f$ is the minimal polynomial of α. We need only check when $f \in \mathbb{Z}[x]$. Note that $2 r \in \mathbb{Z}$ so either $r \in \mathbb{Z}$ or $r=a / 2$ with $a \in \mathbb{Z}$ and $a \equiv 1(\bmod 2)$. In the first case then $r^{2}-d s^{2} \in \mathbb{Z} \Longrightarrow d s^{2} \in \mathbb{Z}$. But d is squarefree and so $s \in \mathbb{Z}$.

In the second case $r=a / 2$ and then

$$
r^{2}-d s^{2}=a^{2} / 4-d s^{2} \in \mathbb{Z} \Longrightarrow s=b / 2 \text { with } b \equiv 1 \quad(\bmod 2)
$$

and then

$$
\frac{a^{2}-d b^{2}}{4} \in \mathbb{Z} \Longrightarrow d \equiv 1 \quad(\bmod 4)
$$

Objective: Prove
i) the set of all algebraic integers forms a ring.
ii) For any finite extension K of \mathbb{Q} the set of algebraic integers in K, so $A \cap K$, forms a ring.

For any $\alpha, \beta \in A$ we plan to show that $\alpha-\beta$ and $\alpha \beta$ are in A since this shows A is a subring of \mathbb{C}.
Let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be the conjugates of α. Let $\beta=\beta_{1}, \ldots, \beta_{m}$ be the conjugates of β.
Consider $\mathbb{Q}(\alpha, \beta)$. Let $\sigma_{1}, \ldots, \ldots k$ be the embeddings of $\mathbb{Q}(\alpha, \beta)$ in \mathbb{C} which fix \mathbb{Q}. Then put $g(x)=$ $\prod_{i=1}^{k}\left(x-\sigma_{i}(\alpha-\beta)\right)$. Note that g is monic. To prove $\alpha-\beta$ is an algebraic integer it suffices to prove $g \in \mathbb{Z}[x]$. This can be done using the elementary symmetric polynomials but there is an easier approach.
Theorem 13: Let $\alpha \in \mathbb{C}$. The following are equivalent:
i) α is an algebraic integer
ii) The additive subgroup of $\mathbb{Z}[\alpha]$ in \mathbb{C} is finitely generated
iii) α is a member of some subring of \mathbb{C} having a finitely generated additive group.
iv) $\alpha A \subseteq A$ for some finitely generated additive subgroup of \mathbb{C}.

Proof: i) \Longrightarrow ii) by Theorem 3 since

$$
\mathbb{Z}[\alpha]=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}: a_{j} \in \mathbb{Z}\right\}
$$

where n is the degree of α over \mathbb{Q}.
ii) \Longrightarrow iii) \Longrightarrow iv) immediate

Finally suppose iv) is true. Since A is a finitely generated additive subgroup of \mathbb{C} there exist a_{1}, \ldots, a_{n} which generate A. Since $\alpha A \subseteq A$ we see that for $i=1, \ldots, n$

$$
\alpha a_{i}=m_{i, 1} a_{1}+\cdots+m_{i, n} a_{n}
$$

with $m_{i, 1}, \ldots, m_{i, n} \in \mathbb{Z}$. Put $M=\left(m_{i, j}\right)$. Then

$$
\left(\alpha I_{n}-M\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

Since $\left(a_{1}, \ldots, a_{n}\right) \neq(0, \ldots, 0) \Longrightarrow \operatorname{det}\left(\alpha I_{n}-M\right)=0 \Longrightarrow \alpha$ is a root of a monic polynomial with coefficients in \mathbb{Z}, hence is an algebraic integer. Thus iv) \Longrightarrow i).
Corollary 14: If α and β are algebraic integers then so are $\alpha-\beta$ and $\alpha \cdot \beta$.
Proof: Suppose α has degree n over \mathbb{Q} and β has degree m over \mathbb{Q} then $\mathbb{Z}[\alpha, \beta]$ is generated over \mathbb{Q} by
$\left\{\alpha^{i} \beta^{j}: i=0, \ldots, n-1, j=0, \ldots, m-1\right\}$. Note $\alpha-\beta$ and $\alpha \beta$ are in the subring generated by this. The result follows by Theorem 13 ((i), (iii)).

Theorem 15: If α is an algebraic number then there exists a positive integer r such that $r \alpha$ is an algebraic integer.
Proof: Since α is an algebraic number it is the root of a polynomial $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ with $a_{i} \in \mathbb{Q}$. Clear denominators to get that α is a root of a polynomial

$$
b_{n} x^{n}+\cdots+b_{0} \text { with } b_{i} \in \mathbb{Z}
$$

Then note $b_{n} \alpha$ is a root of

$$
x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} b_{n}^{n-1}
$$

and so $b_{n} \alpha$ is an algebraic integer.

PMATH 641 Lecture 7: January 23, 2013

Assignment \#1: Due next Wednesday in class

$$
\text { Corollary } 14 \Longrightarrow \text { The set } A \text { of algebraic integers forms a subring of } \mathbb{C} \text {. }
$$

Also if $[K: \mathbb{Q}]<\infty$ then $A \cap K$ is also a subring of $\mathbb{C} . A \cap K$ is the ring of algebraic integers of K.
Corollary 12 gives a description of $A \cap K$ when $[K: \mathbb{Q}]=2$.
Next we'll consider the cyclotomic extensions of \mathbb{Q}. Let $n \in \mathbb{Z}^{+}$and put $\zeta_{n}=e^{2 \pi i / n}$. The fields $\mathbb{Q}\left(\zeta_{n}\right)$ for $n=1,2, \ldots$ are significant. For instance they are normal extensions of \mathbb{Q} with abelian Galois group. Further it can be shown that if L is a normal extension of \mathbb{Q} with an abelian Galois group (over \mathbb{Q}) then L is a subfield of $\mathbb{Q}\left(\zeta_{n}\right)$.
Let $h(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ and p be a prime. The map that sends h to $\bar{h} \in \mathbb{Z} / p \mathbb{Z}[x]$ where

$$
\begin{aligned}
\bar{h} & =\overline{a_{n}} x^{n}+\overline{a_{n-1}} x^{n-1}+\cdots+\overline{a_{0}} \\
\text { with } \overline{a_{i}} & =a_{i}+p \mathbb{Z}
\end{aligned}
$$

is a ring homomorphism. Further

$$
\begin{equation*}
\bar{h}\left(x^{p}\right)=(\bar{h}(x))^{p} \quad \text { in } \quad \mathbb{Z} / p \mathbb{Z}[x] \tag{*}
\end{equation*}
$$

since

$$
\begin{aligned}
\bar{h}\left(x^{p}\right) & =\overline{a_{n}} x^{n p}+\cdots+\overline{a_{1}} x^{p}+\overline{a_{0}} \\
& ={\overline{a_{n}}}^{p} x^{n p}+\cdots+{\overline{a_{1}}}^{p} x^{p}+{\overline{a_{0}}}^{p} \\
& =\left(\overline{a_{n}} x^{n}+\cdots+{\overline{a_{0}}}^{p}\right)^{p} \\
& =(\bar{h}(x))^{p}
\end{aligned}
$$

We now introduce $\Phi_{n}(x)$, the nth cyclotomic polynomial for $n=1,2, \ldots$ We put

$$
\Phi_{n}(x)=\prod_{\substack{j=1 \\(j, n)=1}}^{n}\left(x-\zeta_{n}^{j}\right)
$$

Theorem 16: $\Phi_{n}(x)$ is irreducible in $\mathbb{Q}[x]$ for $n=1,2, \ldots$.
Proof: We'll show that ζ_{n}^{j} for $1 \leq j \leq n$ with $(j, n)=1$ are the conjugates of ζ_{n} and so $\Phi_{n}(x)$ is then the minimal polynomial of ζ_{n}. It is irreducible in $\mathbb{Q}[x]$.

Let $r(x)$ be the minimal polynomial of ζ_{n}. Since ζ_{n} is a root of $x^{n}-1, \zeta_{n}$ is an algebraic integer. Note that then $r(x) \mid x^{n}-1$ in $\mathbb{Q}(x)$ so $x^{n}-1=r(x) g(x)$ with $g(x) \in \mathbb{Q}[x]$. By Gauss' Lemma, $g \in \mathbb{Z}[x]$.
Since $r(x)$ divides $x^{n}-1$ in $\mathbb{Q}[x]$ we see that the conjugates of ζ_{n} lie in

$$
\left\{\zeta_{n}^{j}: j=1, \ldots, n\right\}
$$

Observe though that if $(j, n)>1$ then $\left(\zeta_{n}^{j}\right)^{n /(j, n)}=1$ whereas $\left(\zeta_{n}\right)^{n /(j, n)} \neq 1$ and so ζ_{n}^{j} is not a conjugate of ζ_{n}. In particular the conjugates of ζ_{n} lie in

$$
\left\{\zeta_{n}^{j}: j=1, \ldots, n,(j, n)=1\right\}
$$

This is in fact the complete set of conjugates. To prove this it is enough to prove that if p is a prime which does not divide n and θ is a root of $r(x)$ then θ^{p} is also a root of $r(x)$. Note that ζ_{n} is a root of $r(x)$ and the result follows by repeated application of the above fact.

Recall that $x^{n}-1=r(x) g(x)$. Let θ be a root of $r(x)$. If θ^{p} is not a root of $r(x)$ then, since θ^{p} is a root of $x^{n}-1$, we see that θ^{p} is a root of $g(x)$. Thus θ is a root of $g\left(x^{p}\right)$. Thus $r(x)$, the minimal polynomial of θ, divides $g\left(x^{p}\right)$ in $\mathbb{Q}[x]$ and so

$$
g\left(x^{p}\right)=r(x) s(x) \quad \text { with } \quad s \in \mathbb{Q}[x] .
$$

By Gauss' Lemma $s(x) \in \mathbb{Z}[x]$.
Since $g\left(x^{p}\right)=r(x) s(x)$ we see that $\bar{r}(x) \mid \bar{g}\left(x^{p}\right)$ in $\mathbb{Z} / p \mathbb{Z}[x]$. Let t be an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$ which divides \bar{r}. Now by $(*) t$ divides $\bar{g}(x)$ in $\mathbb{Z} / p \mathbb{Z}[x]$.

$$
\begin{array}{r}
\text { Recall that } x^{n}-1=r(x) g(x) \\
\text { so } x^{n}-\overline{1}=\bar{r}(x) \bar{g}(x)
\end{array}
$$

Therefore $t^{2} \mid x^{n}-\overline{1}$ in $\mathbb{Z} / p \mathbb{Z}[x]$, and so $t \mid \bar{n} x^{n-1}$. Since $p \nmid n, \bar{n}$ is not $\overline{0}$ hence $t=\bar{c} x^{g}$ with $1 \leq g \leq n-1$. But $t \mid x^{n}-\overline{1}$ which gives a contradiction.

The result follows.

PMATH 641 Lecture 8: January 25, 2013

Midterm Exam: Friday March 1 in class

Observe that ζ_{n}^{j} is a conjugate of ζ_{n} for $j=1, \ldots, n$ with $(j, n)=1$. Certainly $\zeta_{n}^{j} \in \mathbb{Q}\left(\zeta_{n}\right)$ and so $\mathbb{Q}\left(\zeta_{n}\right)$ is a normal extension of \mathbb{Q}.
The degree of $\mathbb{Q}\left(\zeta_{n}\right)$ over \mathbb{Q} is $\phi(n)$, Euler's function of n. In particular

$$
\phi(n)=|\{j: 1 \leq j \leq n,(j, n)=1\}|
$$

Theorem 17: Let $n \in \mathbb{Z}^{+}$. The Galois group of $\mathbb{Q}\left(\zeta_{n}\right)$ over \mathbb{Q} is isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Proof: The elements of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ fix \mathbb{Q} and are determined by their action on ζ. In particular if $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ then $\sigma(\zeta)=\zeta^{k}$ for some k with $1 \leq k \leq n$ and $(k, n)=1$. Denote σ by σ_{k}.
Let $\lambda: \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$by $\lambda\left(\sigma_{k}\right)=k+n \mathbb{Z}$. Plainly λ is a bijection. It is also a group homomorphism since

$$
\lambda\left(\sigma_{k} \circ \sigma_{l}\right)=\lambda\left(\sigma_{k l}\right)=k l+n \mathbb{Z}=(k+n \mathbb{Z}) \cdot(l+n \mathbb{Z})=\lambda\left(\sigma_{k}\right) \cdot \lambda\left(\sigma_{l}\right)
$$

Theorem 18: Let $n \in \mathbb{Z}^{+}$. If n is even the only roots of unity in $\mathbb{Q}\left(\zeta_{n}\right)$ are the nth roots of unity. If n is odd the only roots of unity in $\mathbb{Q}\left(\zeta_{n}\right)$ are the $2 n$th roots of unity.
Proof: If n is odd then $\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(-\zeta_{n}\right)=\mathbb{Q}\left(\zeta_{2 n}\right)$. Thus to prove our result it suffices to prove it when n is even.

Suppose that $\gamma=e^{2 \pi i l / s}$ with $(l, s)=1$, e, s $\in \mathbb{Z}^{+}$. We consider $\gamma^{v} \zeta_{n}^{w}$ with $v, w \in \mathbb{Z}$ and note that $\gamma^{v} \zeta_{n}^{w} \in \mathbb{Q}\left(\zeta_{n}\right)$. Then

$$
\begin{aligned}
\gamma^{v} \zeta_{n}^{w} & =e^{2 \pi i\left(\frac{v l}{s}+\frac{w}{n}\right)} \\
& =e^{2 \pi i\left(\frac{v l n+s w}{n s}\right)} \\
& =e^{2 \pi i\left(\frac{1}{b}\right)} \quad \text { where } b=\frac{n s}{(n, s)}=\operatorname{lcm}(n, s)
\end{aligned}
$$

Since $e^{2 \pi i / b} \in \mathbb{Q}\left(\zeta_{n}\right)$ and degree of $\mathbb{Q}\left(\zeta_{n}\right)$ over \mathbb{Q} is $\phi(n)$ we see that $\phi(b) \leq \phi(n)$.
Since $b=\operatorname{lcm}(n, s)$ we have

$$
b=p_{1}^{l_{1}} \cdots p_{k}^{l_{k}} \quad \text { with } p_{i} \text { s prime and } l_{i} \geq 1 \text { for } i=1, \ldots, k
$$

Then, by reordering the primes,

$$
n=p_{1}^{h_{1}} \cdots p_{r}^{h_{r}} \quad \text { with } r \text { satisfying } 1 \leq r \leq k
$$

and with $h_{i} \geq 1$ for $i=1, \ldots, r$. Note $h_{i} \leq l_{i}$ for $i=1, \ldots, r$. We have

$$
\phi(b)=\left(p_{1}^{l_{1}}-p_{1}^{l_{1}-1}\right) \cdots\left(p_{k}^{l_{k}}-p_{k}^{l_{k}-1}\right)
$$

and

$$
\phi(n)=\phi\left(p_{1}^{h_{1}}\right) \cdots \phi\left(p_{r}^{h_{r}}\right)=\left(p_{1}^{h_{1}}-p_{1}^{h_{1}-1}\right) \cdots\left(p_{r}^{h_{r}}-p_{r}^{h_{r}-1}\right) .
$$

But $\phi(b) \leq \phi(n)$.
If $r<k$ then $p_{k} \neq 2$ since n is even and $p_{k}^{l_{k}}-p_{k}^{l_{k-1}}>1$ hence $\phi(b)>\phi(n)$ which is a contradiction. Therefore $r=k$. Since $l_{i} \geq h_{i}$ for $i=1, \ldots, k$ we see that in fact $l_{i}=h_{i}$ for $i=1, \ldots, k$ since $\phi(n) \geq \phi(b)$.
Let K be a finite extension of \mathbb{Q} with $[K: \mathbb{Q}]=n$. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}. Let $\alpha \in K$. We define the trace of α from K to \mathbb{Q} denoted $T_{\mathbb{Q}}^{K}(\alpha)$, by

$$
T_{\mathbb{Q}}^{K}(\alpha)=\sigma_{1}(\alpha)+\sigma_{2}(\alpha)+\cdots+\sigma_{n}(\alpha)
$$

We define the norm of α from K to \mathbb{Q}, denoted by $N_{\mathbb{Q}}^{K}(\alpha)$, by

$$
N_{\mathbb{Q}}^{K}(\alpha)=\sigma_{1}(\alpha) \cdots \sigma_{n}(\alpha)
$$

PMATH 641 Lecture 9: January 28, 2013

Let $[K: \mathbb{Q}]=n$ and let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}. Let $\alpha \in K$. The trace of α from K to $\mathbb{Q}, T_{\mathbb{Q}}^{K}(\alpha)$ is given by $T_{\mathbb{Q}}^{K}(\alpha)=\sigma_{1}(\alpha)+\cdots+\sigma_{n}(\alpha)$.

The norm $N_{\mathbb{Q}}^{K}(\alpha)$ is given by

$$
N_{\mathbb{Q}}^{K}(\alpha)=\sigma_{1}(\alpha) \cdots \sigma_{n}(\alpha) .
$$

Note $T_{\mathbb{Q}}^{K}$ is additive on K since for $\alpha, \beta \in K$

$$
T_{\mathbb{Q}}^{K}(\alpha+\beta)=T_{\mathbb{Q}}^{K}(\alpha)+T_{\mathbb{Q}}^{K}(\beta)
$$

and also

$$
N_{\mathbb{Q}}^{K}(\alpha \beta)=N_{\mathbb{Q}}^{K}(\alpha) N_{\mathbb{Q}}^{K}(\beta) .
$$

Since the embeddings σ_{i} fix elements of \mathbb{Q}, for $r \in \mathbb{Q}$ we have

$$
T_{\mathbb{Q}}^{K}(r \alpha)=\sigma_{1}(r \alpha)+\cdots+\sigma_{n}(r \alpha)=r\left(\sigma_{1}(\alpha)+\cdots+\sigma_{n}(\alpha)\right)=r T_{\mathbb{Q}}^{K}(\alpha)
$$

and

$$
N_{\mathbb{Q}}^{K}(r \alpha)=r^{n} N_{\mathbb{Q}}^{K}(\alpha) .
$$

Also note $\mathbb{Q}(\alpha)$ is contained in K so we can consider $N_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha)$ and $T_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha)$. These are coefficients in the minimal polynomial α.
$\Longrightarrow N_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha)$ and $T_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha)$ are in \mathbb{Q} and are in \mathbb{Z} if α is an algebraic integer.
Theorem 19: Let K be a finite extension of \mathbb{Q}. Let $\alpha \in K$ and let $l=[K: \mathbb{Q}(\alpha)]$. Then

$$
T_{\mathbb{Q}}^{K}(\alpha)=l T_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha)
$$

and

$$
N_{\mathbb{Q}}^{K}(\alpha)=\left(N_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha)\right)^{l} .
$$

Proof: Each of the embeddings of $\mathbb{Q}(\alpha)$ in \mathbb{C} which fix \mathbb{Q} extend to l distinct embeddings of K in \mathbb{C} which fix \mathbb{Q} by Theorem 4. The result follows.
Theorem 20: Let K be a finite extension of \mathbb{Q} and let $\alpha \in A \cap K$.

$$
\alpha \text { is a unit in } A \cap K \Longleftrightarrow N_{\mathbb{Q}}^{K}(\alpha)= \pm 1
$$

Proof:

\Rightarrow Since α is a unit there is a $\beta \in A \cap K$ with $\alpha \beta=1$. Thus $N_{\mathbb{Q}}^{K}(\alpha \beta)=N_{\mathbb{Q}}^{K}(1)=1$. But $N_{\mathbb{Q}}^{K}(\alpha \beta)=$ $N_{\mathbb{Q}}^{K}(\alpha) N_{\mathbb{Q}}^{K}(\beta)$ and since $\alpha, \beta \in \mathbb{A} \cap K$ we see that $N_{\mathbb{Q}}^{K}(\alpha), N_{\beta}^{K} \in \mathbb{Z}$. Hence $N_{\mathbb{Q}}^{K}(\alpha)= \pm 1$.
\Leftarrow Suppose $N_{\mathbb{Q}}^{K}(\alpha)= \pm 1$. Then let $\sigma_{1}(\alpha)=\alpha, \sigma_{2}(\alpha), \ldots, \sigma_{n}(\alpha)$ be the images of σ_{i}.
Thus

$$
\alpha\left((-1)^{t} \sigma_{2}(\alpha) \cdots \sigma_{n}(\alpha)\right)=1
$$

where $t \in\{0,1\}$. But $\beta=(-1)^{t} \sigma_{2}(\alpha) \cdots \sigma_{n}(\alpha)$ is in $\mathbb{A} \cap K$ since $\beta=\frac{1}{\alpha} \in K$ and $\sigma_{i}(\alpha)$ is an algebraic integer for $i=2, \ldots, n$ hence $\beta \in \mathbb{A}$. Thus

$$
\beta \in \mathbb{A} \cap K
$$

Theorem $20 \Longrightarrow$ The set of units in $\mathbb{A} \cap K$ is a group under multiplication hence a subgroup of \mathbb{C}. What happens in $A \cap \mathbb{Q}(\sqrt{D})$ when D is a squarefree integer with $D \neq 1$?

What is the unit group?
If $D \not \equiv 1(\bmod 4)$ then to determine the unit group we must find all elements $l+m \sqrt{D}$ with $l, m \in \mathbb{Z}$ for which

$$
\begin{equation*}
N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{D})}(l+m \sqrt{D})= \pm 1 \tag{1}
\end{equation*}
$$

hence for which $(l+m \sqrt{D})(l-m \sqrt{D})= \pm 1 \Longrightarrow l^{2}-D m^{2}= \pm 1$. If $D \equiv 1(\bmod 4)$ then we must also consider $\frac{l+m \sqrt{D}}{2}$ with l and m odd integers. Hence

$$
\begin{equation*}
N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{D})}\left(\frac{l+m \sqrt{D}}{2}\right)=\frac{l^{2}-D m^{2}}{4}= \pm 1 \Longrightarrow l^{2}-D m^{2}= \pm 4 \tag{2}
\end{equation*}
$$

Theorem 21: Let D be a squarefree negative integer. The units in $\mathbb{A} \cap \mathbb{Q}(\sqrt{D})$ are ± 1 unless $D=-1$ in which case the units are $\pm 1, \pm i$ or $D=-3$ in which case the units are $\pm 1, \frac{ \pm 1 \pm \sqrt{-3}}{2}$. Since D is negative we need only consider

$$
l^{2}-D m^{2}=+1 \text { in }(1)
$$

and

$$
l^{2}-D m^{2}=+4 \text { in }(2)
$$

If $-D \neq 1$ or -3 then the only solution of (1) in integers l and m is given by $l= \pm 1, m=0$. Similarly if $D \equiv 1(\bmod 4)$ and $D \neq-3$ there are no solutions of (2) with l odd. If $D=-1$ then (1) has the solutions $l= \pm 1, m=0$ and $l=0, m= \pm 1$.
If $D=-3$ and l and m are odd then the solutions (l, m) are given by $(\pm 1, \pm 1)$. Further if $D=-3$ then (1) has only the solutions $l= \pm 1, m=0$ in integers l, m.

Theorem 22: Let D be a squarefree integer larger than 1 . There is a unit ϵ in $\mathbb{Q}(\sqrt{D})$ larger than 1 with the property that the group of units in $\mathbb{Q}(\sqrt{D})$ is

$$
\left\{(-1)^{j} \epsilon^{k}: j, k \in \mathbb{Z}\right\}
$$

PMATH 641 Lecture 10: January 30, 2013

Given $\alpha \in \mathbb{R}$ how well can we approximate it with rationals p / q ? How well can we approximate it in terms of q ?
Dirichlet's Theorem: If $\alpha \notin \mathbb{Q}$ then

$$
\begin{equation*}
\text { there exists infinitely many } \frac{p}{q} \in \mathbb{Q} \text { with }\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}} \text {. } \tag{*}
\end{equation*}
$$

Lemma 23: Let α be a real irrational and let Q be an integer larger than 1 . There exist integers p and q with $0<p \leq Q$ such that $|p \alpha-q|<1 / Q$. Also we have $*$.
Proof: Note that $*$ follows from our first claim since

$$
|q \alpha-p|<\frac{1}{Q} \Longrightarrow\left|\alpha-\frac{p}{q}\right|<\frac{1}{p Q}
$$

Thus if we pick a Q, we find $\left|\alpha-\frac{p_{1}}{q_{1}}\right|<\frac{1}{q_{1} Q_{1}} \leq \frac{1}{q_{1}^{2}}$ with $q_{1} \leq Q_{1}$. But then since α is irrational $\exists Q_{2}$ such that $\frac{1}{Q_{2}}<\left|q_{1} \alpha-p_{1}\right|$ and so $\exists \frac{p_{2}}{q_{2}} \neq \frac{p_{1}}{q_{1}}$ with $\left|\alpha-\frac{p_{2}}{q_{2}}\right|<\frac{1}{q_{2}^{2}}$. Continuing in this way we get our claim.
For any $x \in \mathbb{R}$ we define $\{x\}$, the fractional part of x to be $x-[x]$. We consider the $Q+1$ number $0,1,\{\alpha\}$, $\{2 \alpha\}, \ldots,\{(Q-1) \alpha\}$. Thus there exists an integer j with $1 \leq j \leq Q$ such that two of the numbers are in $\left\{\frac{j-1}{Q}, \frac{j}{Q}\right\}$ by the pigeonhole principle.
Note 0 and 1 are not both in the interval since $Q>1$. Thus either there exist i_{1} and i_{2} with $\left\{i_{1} \alpha\right\},\left\{i_{2} \alpha\right\}$ in $\left[\frac{j-1}{Q}, \frac{j}{Q}\right]$ with $1 \leq i_{1}<i_{2} \leq Q$ or there exist $t \in\{0,1\}$ and i_{1} with $1 \leq i_{1} \leq Q$ with t and $\left\{i_{1} \alpha\right\}$ in $\left[\frac{j-1}{Q}, \frac{j}{Q}\right]$. Then $\left|\left\{i_{1} \alpha\right\}-\left\{i_{2} \alpha\right\}\right| \leq 1 / Q$ in the first case and $\left|t-\left\{i_{1} \alpha\right\}\right| \leq 1 / Q$ in the second case. But $\left\{i_{j} \alpha\right\}=i_{j} \alpha-\left[i_{j} \alpha\right]$ for $j=1,2$. Thus in the first case $\left|\left\{i_{1} \alpha\right\}-\left\{i_{2} \alpha\right\}\right|=\left|\left(i_{1}-i_{2}\right) \alpha-\left(\left[i_{1} \alpha\right]-\left[i_{2} \alpha\right]\right)\right|$ and we take $q=i_{1}-i_{2}$ and $p=\left[i_{1} \alpha\right]-\left[i_{2} \alpha\right]$. Since $\alpha \notin \mathbb{Q}$ we see that $|q \alpha-p|<1 / Q$ as required. The second case follows in a similar fashion.
Proof of Theorem 22: We'll first find a unit γ in $A \cap \mathbb{Q}(\sqrt{D})$ which is positive and different from 1. To show this we'll prove there exist a positive integer m and ∞-ly many $\beta \in A \cap \mathbb{Q}(\sqrt{D})$ for which $N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{D})}(\beta)=N \beta=m$. Let $\beta=p+q \sqrt{D}$ with $p, q \in \mathbb{Z}, q \neq 0$. Then $N \beta=(p+q \sqrt{D})(p-q \sqrt{D})=p^{2}-D q^{2}$. Then

$$
|N \beta|=\left|\frac{p}{q}-\sqrt{D}\right| q^{2}\left|\frac{p}{q}+\sqrt{D}\right|
$$

We can find, by Dirichlet's Theorem, p, q with $\left|\frac{p}{q}-\sqrt{D}\right|<1 / q^{2}$ and then this implies $\left|\frac{p}{q}+\sqrt{D}\right|<2 \sqrt{D}+1$ hence $|N \beta|<2 \sqrt{D}+1$ for ∞-ly many pairs p, q with $(p, q)=1$.
But $N \beta$ is an integer and so there is an integer m with $1 \leq|m| \leq 2 \sqrt{D}+1$ and ∞-ly many $\beta \in A \cap \mathbb{Q}(\sqrt{D})$ for which $N \beta=m$. We now choose an infinite subset of the β s so that if $\beta_{1}=p_{1}+q_{1} \sqrt{D}$ and $\beta_{2}=p_{2}+q_{2} \sqrt{D}$ are in the set then

$$
\begin{aligned}
p_{1} & \equiv p_{2} \bmod m \text { and } \\
q_{1} & \equiv q_{2} \bmod m
\end{aligned}
$$

We now take from this subset β_{1} and β_{2} for which $\beta_{1} / \beta_{2} \neq-1$ and consider β_{1} / β_{2}.

$$
\frac{\beta_{1}}{\beta_{2}}=1+\frac{\beta_{1}-\beta_{2}}{\beta_{2}}=1+\frac{\left(\beta_{1}-\beta_{2}\right) \tilde{\beta}_{2}}{N \beta_{2}}
$$

where $\tilde{\beta}_{2}$ is the conjugate of β_{2}. Thus

$$
\frac{\beta_{1}}{\beta_{2}}=1+\left(\frac{\beta_{1}-\beta_{2}}{m}\right) \tilde{\beta}_{2} \in A \cap K .
$$

Similarly $\beta_{2} / \beta_{1} \in A \cap K$. Therefore β_{1} / β_{2} is a unit in $A \cap \mathbb{Q}(\sqrt{D})$. It is not -1 by construction and so it is not a root of unity. Thus one of $\pm \beta_{1} / \beta_{2}$ is a positive unit different from 1 . Thus there is a unit γ larger than 1.

PMATH 641 Lecture 11: February 1, 2013

Let

$$
S=\{\gamma: \gamma \text { a unit in } \mathbb{Q}(\sqrt{D}) \cap A \text { with } \gamma>0\}
$$

We showed there exists an element γ_{0} in S different from 1. By taking inverses if necessary we may suppose that $\gamma_{0}>1$.
But the elements of $A \cap \mathbb{Q}(\sqrt{D}) \cap \mathbb{R}^{+}$are of the form $\frac{l+m \sqrt{D}}{2}$ with $l, m \in \mathbb{Z}$. Thus there are only finitely many elements of $A \cap \mathbb{Q}(\sqrt{D})$ larger than 1 and less than or equal to γ_{0}. Let ϵ be the smallest elements of S with $1<\epsilon \leq \gamma_{0}$.
We claim $S=\left\{\epsilon^{n}: n \in \mathbb{Z}\right\}$.
Suppose that there is a unit λ in S which is not a power of ϵ. Then choose $n \in \mathbb{Z}$ such that

$$
\epsilon^{n}<\lambda<\epsilon^{n+1}
$$

Consider $\lambda / \epsilon^{n}=\lambda\left(\epsilon^{-1}\right)^{n} \in S$ since

$$
N\left(\lambda\left(\epsilon^{-1}\right)^{n}\right)=N(\lambda)\left(N\left(\epsilon^{-1}\right)\right)^{n}= \pm 1
$$

But $1<\lambda / \epsilon^{n}<\epsilon$ contradicting the minimality of ϵ. The result follows.
Theorem 24: Let K, L, M be finite extensions of \mathbb{Q} with $K \subseteq L \subseteq M$. Let $\alpha \in M$ then $\operatorname{Tr}_{K}^{M}(\alpha)=$ $\operatorname{Tr}_{K}^{L}\left(\operatorname{Tr}_{L}^{M}(\alpha)\right)$ and $N_{K}^{M}(\alpha)=N_{K}^{L}\left(N_{L}^{M}(\alpha)\right)$.
Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of L in \mathbb{C} which fix K. Let $\tau_{1}, \ldots, \tau_{m}$ be the embeddings of M in \mathbb{C} which fix L.

If $\alpha \in M$ then

$$
\begin{equation*}
\operatorname{Tr}_{K}^{L}\left(\operatorname{Tr}_{K}^{L}(\alpha)\right)=\operatorname{Tr}_{K}^{L}\left(\tau_{1}(\alpha)+\cdots+\tau_{m}(\alpha)\right)=\sum_{i=1}^{n} \sigma_{i}\left(\tau_{1}(\alpha)+\cdots+\tau_{m}(\alpha)\right) \tag{*}
\end{equation*}
$$

Let N be a normal extension of M. We can extend $\sigma_{1}, \ldots, \sigma_{n}$ to embeddings of N in \mathbb{C} which fix K, let us choose $\sigma_{1}^{\prime}, \ldots, \sigma_{n}^{\prime}$. These are automorphisms of N which fix K. Let $\tau_{1}^{\prime}, \ldots, \tau_{m}^{\prime}$ be embeddings of N in \mathbb{C} which fix L.

We can compose σ_{i}^{\prime} and τ_{j}^{\prime} and we put $\left.\sigma_{i}^{\prime} \circ \tau_{j}^{\prime}\right|_{M}$ to be the restriction of $\sigma_{i}^{\prime} \circ \tau_{j}^{\prime}$ to M. By *

$$
\begin{aligned}
\operatorname{Tr}_{K}^{L}\left(\operatorname{Tr}_{L}^{M}(\alpha)\right) & =\sum_{i=1}^{n} \sigma_{i}^{\prime}\left(\tau_{1}(\alpha)+\cdots+\tau_{m}^{\prime}(\alpha)\right) \\
& =\sum_{i, j} \sigma_{i}^{\prime} \circ \tau_{j}^{\prime}(\alpha) \\
& =\sum_{i, j} \sigma_{i}^{\prime} \circ \tau_{j}^{\prime} \mid M(\alpha)
\end{aligned}
$$

Notice that $\left.\sigma_{i}^{\prime} \circ \tau_{j}^{\prime}\right|_{M}$ is an embedding of M in \mathbb{C} which fixes K. If we can show that $\left.\sigma_{i}^{\prime} \circ \tau_{j}^{\prime}\right|_{M}$ are distinct as we sum over i and j then they are the $n m$ distinct embeddings of M in \mathbb{C} which fix K and the result follows. Suppose that $\left.\sigma_{i}^{\prime} \circ \sigma_{j}^{\prime}\right|_{M}=\left.\sigma_{r}^{\prime} \circ \tau_{s}^{\prime}\right|_{M}$. Next let γ be such that $L=K[\gamma]$.

$$
\left.\begin{array}{rl}
\text { Then }\left.\sigma_{i}^{\prime} \circ \tau_{j}^{\prime}\right|_{M}(\gamma)^{1)} & =\sigma_{i}^{\prime}(\gamma)=\sigma_{i}(\gamma) \\
\text { and }\left.\sigma_{r}^{\prime} \circ \tau_{s}\right|_{M}(\gamma) & =\sigma_{r}^{\prime}(\gamma)=\sigma_{r}(\gamma)
\end{array}\right\} i=r
$$

Next choose θ such that $M=L(\theta)$

$$
\left.\begin{array}{rl}
\left.\sigma_{i}^{\prime} \circ \tau_{j}^{\prime}\right|_{M}(\theta)^{2)} & =\tau_{j}^{\prime}(\theta)
\end{array}=\tau_{j}(\theta)\right\} j=s
$$

Similarly for the norm.
Definition: Let K be an extension of \mathbb{Q} of degree n and let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}. Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of K. We define the discriminant of the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, denoted by $\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, by

$$
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\left(\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)\right)^{2}
$$

Note by properties of the determinant that the order in which we take the $\alpha_{i} \mathrm{~s}$ or in which we take the $\sigma_{i} \mathrm{~s}$ does not matter.

Theorem 25: Let K be an extension of \mathbb{Q} of degree n. Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of K. Then

$$
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\operatorname{det}\left(\operatorname{Tr}_{\mathbb{Q}}^{K}\left(\alpha_{i} \alpha_{j}\right)\right)
$$

Proof: Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}.

$$
\begin{equation*}
\left(\sigma_{j}\left(\alpha_{i}\right)\right)\left(\sigma_{i}\left(\alpha_{j}\right)\right)=\left(\operatorname{Tr}_{\mathbb{Q}}^{K}\left(\alpha_{i} \alpha_{j}\right)\right) \tag{*}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left(\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)\right)^{2} \\
& =\operatorname{det}\left(\sigma_{j}\left(\alpha_{i}\right)\right) \cdot \operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right) \\
& =\operatorname{det}\left(\left(\sigma_{j}\left(\alpha_{i}\right)\right) \cdot\left(\sigma_{i}\left(\alpha_{j}\right)\right)\right) \\
& =\operatorname{det}\left(\operatorname{Tr}_{\mathbb{Q}}^{K}\left(\alpha_{i} \alpha_{j}\right)\right) \text { by } *
\end{aligned}
$$

Remark: Since $\mathrm{T}_{\mathbb{Q}}^{K}\left(\alpha_{i} \alpha_{j}\right) \in \mathbb{Q}$ we see that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in \mathbb{Q}$. Further if $\alpha_{1}, \ldots, \alpha_{n}$ are in $A \cap K$ then $\alpha_{i} \alpha_{j} \in A \cap K$ and so $\mathrm{T}_{\mathbb{Q}}^{K}\left(\alpha_{i} \alpha_{j}\right) \in \mathbb{Z} \Longrightarrow \operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in \mathbb{Z}$.

PMATH 641 Lecture 12: February 4, 2013

Let $[K: \mathbb{Q}]=n$. Let $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$ be bases for $K($ as a vector space over $\mathbb{Q})$. Write

$$
\beta_{k}=\sum_{j=1}^{n} c_{k j} \alpha_{j}
$$

Then

$$
\left(c_{k j}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right) .
$$

Since $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$ are bases we see that the matrix $\left(c_{k j}\right)$ is invertible hence that $\operatorname{det}\left(c_{k j}\right) \neq 0$.

Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}.

$$
\begin{gather*}
\left(c_{k j}\right)\left(\begin{array}{c}
\sigma_{t}\left(\alpha_{1}\right) \\
\vdots \\
\sigma_{t}\left(\alpha_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
\sigma_{t}\left(\beta_{1}\right) \\
\vdots \\
\sigma_{t}\left(\beta_{n}\right)
\end{array}\right) \quad \text { for } t=1, \ldots, n . \\
\left(c_{k j}\right)\left(\begin{array}{ccc}
\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{1}\right) \\
\vdots & & \\
\sigma_{1}\left(\alpha_{n}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\sigma_{1}\left(\beta_{1}\right) & \cdots & \sigma_{n}\left(\beta_{1}\right) \\
\vdots & \\
\sigma_{1}\left(\beta_{n}\right) & \cdots & \sigma_{n}\left(\beta_{n}\right)
\end{array}\right) \\
\left(\operatorname{det}\left(c_{k j}\right)\right)^{2} \operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\operatorname{disc}\left\{\beta_{1}, \ldots, \beta_{n}\right\} . \tag{1}
\end{gather*}
$$

Suppose that $K=\mathbb{Q}[\theta]$. Then $1, \theta, \ldots, \theta^{n-1}$ is a basis for K over \mathbb{Q}. Then

$$
\begin{aligned}
\operatorname{disc}\left\{1, \theta, \ldots, \theta^{n-1}\right\} & =\left(\operatorname{det}\left(\begin{array}{cccc}
1 & \sigma_{1}(\theta) & \cdots & \sigma_{1}\left(\theta^{n-1}\right) \\
\vdots & & & \\
1 & \sigma_{n}(\theta) & \cdots & \sigma_{n}\left(\theta^{n-1}\right)
\end{array}\right)\right)^{2} \\
& =\left(\operatorname{det}\left(\begin{array}{cccc}
1 & \sigma_{1}(\theta) & \cdots & \left(\sigma_{1}(\theta)\right)^{n-1} \\
\vdots & & & \\
1 & \sigma_{n}(\theta) & \cdots & \left(\sigma_{n}(\theta)\right)^{n-1}
\end{array}\right)\right)^{2} \\
& =\left(\prod_{1 \leq i<j \leq n}\left(\sigma_{i}(\theta)-\sigma_{j}(\theta)\right)\right)^{2}
\end{aligned}
$$

But note that $\sigma_{i}(\theta) \neq \sigma_{j}(\theta)$ for $i \neq j$ hence $\operatorname{disc}\left\{1, \theta, \ldots, \theta^{n-1}\right\} \neq 0$.
Thus by (1) whenever $\alpha_{1}, \ldots, \alpha_{n}$ is a basis for K over $\mathbb{Q}, \operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \neq 0$.
Remark: If $K \subseteq \mathbb{R}$ and K is normal over \mathbb{Q} then by (1) whenever $\alpha_{1}, \ldots, \alpha_{n}$ is a basis for K over \mathbb{Q} we see that

$$
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in \mathbb{R}^{+}
$$

Theorem 27: Let $[K: \mathbb{Q}]=n$ and let $\alpha_{1}, \ldots, \alpha_{n}$ be in K.
$\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=0 \Longleftrightarrow \alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over \mathbb{Q}.
Proof: \Leftarrow Immediate from the definition of discriminant.
$\Rightarrow \alpha_{1}, \ldots, \alpha_{n}$ is not a basis $\Longrightarrow \alpha_{1}, \ldots, \alpha_{n}$ are linearly dependent over \mathbb{Q}.
Note: The following is useful for computing the discriminant of $\left\{1, \theta, \ldots, \theta^{n-1}\right\}$ when $K=\mathbb{Q}(\theta)$. Let f be the minimal polynomial of θ over \mathbb{Q}. Then

$$
\operatorname{disc}\left\{1, \theta, \ldots, \theta^{n-1}\right\}=(-1)^{n(n-1) / 2} N_{\mathbb{Q}}^{K}\left(f^{\prime}(\theta)\right) .
$$

To see this let $\theta=\theta_{1}, \ldots, \theta_{n}$ be the conjugates of θ. Then

$$
f(x)=\left(x-\theta_{1}\right) \cdots\left(x-\theta_{n}\right)
$$

and

$$
f^{\prime}(x)=\sum_{j=1}^{n}\left(x-\theta_{1}\right) \cdots\left(\widehat{x-\theta_{j}}\right) \cdots\left(x-\theta_{n}\right)
$$

where $\left(\widehat{x-\theta_{j}}\right)$ means this term is removed from the product. Thus

$$
f^{\prime}\left(\theta_{i}\right)=\left(\theta_{i}-\theta_{1}\right) \cdots\left(\theta_{i}-\theta_{n}\right) \quad \text { where }\left(\theta_{i}-\theta_{i}\right) \text { is removed }
$$

Further

$$
N_{\mathbb{Q}}^{K}\left(f^{\prime}(\theta)\right)=\prod_{i=1}^{n} \sigma_{i}\left(f^{\prime}(\theta)\right)=\prod_{i=1}^{n} f^{\prime}\left(\theta_{i}\right)=\prod_{i \neq j}\left(\theta_{i}-\theta_{j}\right)
$$

Note that for $i \neq j$

$$
\left(\theta_{i}-\theta_{j}\right) \cdot\left(\theta_{j}-\theta_{i}\right)=(-1) \cdot\left(\theta_{i}-\theta_{j}\right)^{2}
$$

so

$$
N_{\mathbb{Q}}^{K}\left(f^{\prime}(\theta)\right)=(-1)^{n(n-1) / 2}\left(\prod_{1 \leq i<j \leq n}\left(\theta_{i}-\theta_{j}\right)\right)^{2}
$$

and our result follows.
Suppose $K=\mathbb{Q}[\theta],[K: \mathbb{Q}]=n$. Then we abbreviate $\operatorname{disc}\left\{1, \theta, \ldots, \theta^{n-1}\right\}$ to $\operatorname{disc}(\theta)$.
Theorem 28: Let n be a positive integer. In $\mathbb{Q}\left(\zeta_{n}\right)$ we have that $\operatorname{disc}\left(\zeta_{n}\right)$ divides $n^{\phi(n)}$. Further if n is a prime we have

$$
\operatorname{disc}\left(\zeta_{n}\right)=(-1)^{(p-1) / 2} p^{p-2}
$$

Proof: We know that $\Phi_{n}(x)$ is the minimal polynomial for ζ_{n}. We have

$$
\begin{aligned}
x^{n}-1 & =\Phi_{n}(x) \cdot g(x) \text { with } g \in \mathbb{Z}[x] . \\
\Longrightarrow n x^{n-1} & =\Phi_{n}^{\prime}(x) \cdot g(x)+\Phi_{n}(x) \cdot g^{\prime}(x) . \\
\Longrightarrow n \zeta_{n}^{n-1} & =\Phi_{n}^{\prime}\left(\zeta_{n}\right) \cdot g\left(\zeta_{n}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)}(n) N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)} & =N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)}\left(\Phi_{n}^{\prime}\left(\zeta_{n}\right)\right) \cdot N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)}\left(g\left(\zeta_{n}\right)\right) \\
n^{\phi(n)} & =\left((-1)^{n(n-1) / 2} \operatorname{disc}\left(\zeta_{n}\right)\right) \cdot N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)}\left(g\left(\zeta_{n}\right)\right) \in \mathbb{Z} \backslash\{0\} .
\end{aligned}
$$

PMATH 641 Lecture 13: February 6, 2013

Assignment \#2 Typos: Q1(b) $2 \cdot 3, \mathrm{Q} 3 \quad Q(\alpha) \rightarrow \mathbb{Q}(\theta)$.
Proof of Theorem 28

$$
\begin{equation*}
N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)}(n)=N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)}\left(\zeta_{n}\right) N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)}\left(\Phi^{\prime}\left(\zeta_{n}\right)\right) N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{n}\right)} \tag{*}
\end{equation*}
$$

where $x^{n}-1=\Phi_{n}(x) \cdot g(x)$ with $g \in \mathbb{Z}[x]$. Now take $n=p$, a prime in $*$.

$$
\begin{aligned}
N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}(p) & =N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}\left(\zeta_{p}\right) N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}\left(\Phi_{p}^{\prime}\left(\zeta_{p}\right)\right) N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}\left(g\left(\zeta_{p}\right)\right) \\
p^{p-1} & =\zeta_{p}^{p(p-1) / 2}(-1)^{(p-1)(p-2) / 2} \operatorname{disc}\left(\zeta_{p}\right) N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}\left(g\left(\zeta_{p}\right)\right) \\
p^{p-1} & =(-1)^{(p-1) / 2} \operatorname{disc}\left(\zeta_{p}\right) \cdot N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}\left(g\left(\zeta_{p}\right)\right)
\end{aligned}
$$

But $x^{p}-1=\Phi(x)(x-1)$ so $g(x)=x-1$ and so

$$
\begin{aligned}
N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}\left(g\left(\zeta_{p}\right)\right) & =N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p}\right)}\left(\zeta_{p}-1\right) \\
& =\prod_{j=1}^{p-1}\left(\zeta_{p}^{j}-1\right) \\
& =\prod_{j=1}^{p-1}\left(1-\zeta_{p}^{j}\right) \\
& =\Phi(1)
\end{aligned}
$$

and since $\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=1+x+\cdots+x^{p-1}$ we see that $\Phi_{p}(1)=p$. Thus

$$
\operatorname{disc}\left(\zeta_{p}\right)=(-1)^{(p-1) / 2} \cdot p^{p-2}
$$

Definition: Let K be an extension of \mathbb{Q} of degree n. A set of n algebraic integers $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ in K is said to be an integral basis for K if every algebraic integer in K can be uniquely expressed as an integral linear combination of $\alpha_{1}, \ldots, \alpha_{n}$.
Remarks: If $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an integral basis for K over \mathbb{Q} then it is a basis for K over \mathbb{Q}. To see this note that if γ is in K then there is a positive integer r such that $r \gamma \in A \cap K$. But then since $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an integral basis there exist integers a_{1}, \ldots, a_{n} such that

$$
\begin{aligned}
r \gamma & =a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n} \\
\gamma & =\frac{a_{1}}{r} \alpha_{1}+\cdots+\frac{a_{n}}{r} \alpha_{n}
\end{aligned}
$$

so γ is a \mathbb{Q}-linear combination of $\alpha_{1}, \ldots, \alpha_{n}$. Further $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over \mathbb{Q} and this follows since $[K: \mathbb{Q}]=n$.

Theorem 29: Let $[K: \mathbb{Q}]=n$. Then there exists an integral basis for K.
Proof: Consider the set of bases for K over \mathbb{Q} which are made up of algebraic integers. The set is non-empty since there exists an algebraic integer θ such that $K=\mathbb{Q}[\theta]$. Then $\left\{1, \theta, \ldots, \theta^{n-1}\right\}$ is a basis of algebraic integers.
Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a basis for K comprised of algebraic integers for which $\left|\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right|$ is minimal. We claim that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an integral basis for K. Suppose that it is not an integral basis. Then there exists an element γ in $\mathbb{A} \cap K$ which is not an integral linear combination of $\alpha_{1}, \ldots, \alpha_{n}$.
But $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis and so $\exists r_{1}, \ldots, r_{n} \in \mathbb{Q}$ with

$$
\gamma=r_{1} \alpha_{1}+\cdots+r_{n} \alpha_{n}
$$

By reordering we may suppose that $r_{1} \notin \mathbb{Z}$. Put $b_{1}=r_{1}-\left\lfloor r_{1}\right\rfloor$ and note $0<b_{1}<1$. Note that $\gamma-\left\lfloor r_{1}\right\rfloor \alpha_{1} \in \mathbb{A} \cap K$ and

$$
\gamma-\left\lfloor r_{1}\right\rfloor \alpha_{1}=b_{1} \alpha_{1}+r_{2} \alpha_{2}+\cdots+r_{n} \alpha_{n}
$$

Further observe that $\left\{\gamma-\left\lfloor r_{1}\right\rfloor \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is also a basis for K over \mathbb{Q} consisting of algebraic integers. But

$$
\begin{aligned}
\operatorname{disc}\left\{\gamma-\left\lfloor r_{1}\right\rfloor \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} & =\left(\operatorname{det}\left(\begin{array}{cccc}
b_{1} & r_{2} & \ldots & r_{n} \\
& \ddots & 0 \\
0 & & 1
\end{array}\right)\right)^{2} \operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \\
& =b_{1}^{2}\left|\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right|
\end{aligned}
$$

and since $0<b_{1}^{2}<1$ we have a contradiction. The result follows.
Theorem 30: Let K be a finite extension of \mathbb{Q}. All integral bases for K have the same discriminant.
Proof: Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ be integral bases for K. Then

$$
\alpha_{j}=\sum_{k=1}^{n} c_{j k} \beta_{k} \quad \text { with } c_{j k} \in \mathbb{Z}
$$

Thus

$$
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\left(\operatorname{det}\left(c_{j k}\right)\right)^{2} \operatorname{disc}\left\{\beta_{1}, \ldots, \beta_{n}\right\}
$$

Note $\left(\operatorname{det}\left(c_{j k}\right)\right)^{2} \in \mathbb{Z}^{+}$. Thus

$$
\operatorname{disc}\left\{\beta_{1}, \ldots, \beta_{n}\right\} \mid \operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}
$$

Similarly

$$
\begin{gathered}
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \mid \operatorname{disc}\left\{\beta_{1}, \ldots, \beta_{n}\right\} . \\
\Longrightarrow \operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}= \pm\left\{\beta_{1}, \ldots, \beta_{n}\right\}
\end{gathered}
$$

and since $\left(\operatorname{det}\left(c_{j k}\right)\right)^{2}$ is positive the result follows.

PMATH 641 Lecture 14: February 11, 2013

Definition: Let K be a finite extension of \mathbb{Q}. The discriminant of K is the discriminant of an integral basis for K over \mathbb{Q}.

How about quadratic extensions?
Let D be a squarefree non-zero integer. If $D \not \equiv 1(\bmod 4)$ then $1, \sqrt{D}$ is an integral basis for $\mathbb{A} \cap \mathbb{Q}(\sqrt{D})$.

$$
\Longrightarrow \operatorname{disc} \mathbb{Q}(\sqrt{D})=\left(\operatorname{det}\left(\begin{array}{cc}
1 & \sqrt{D} \\
1 & -\sqrt{D}
\end{array}\right)\right)^{2}=4 D
$$

If $D \equiv 1(\bmod 4)$ then $1,(1+\sqrt{D}) / 2$ is an integral basis so

$$
\operatorname{disc}(\mathbb{Q}(\sqrt{D}))=\left(\operatorname{det}\left(\begin{array}{cc}
1 & \frac{1+\sqrt{D}}{2} \\
1 & \frac{1-\sqrt{D}}{2}
\end{array}\right)\right)^{2}=D
$$

Next we'll show that if p is a prime then $\operatorname{disc}\left(\mathbb{Q}\left(\zeta_{p}\right)\right)=(-1)^{(p-1) / 2} p^{p-2}$. This will follow provided we show that $1, \zeta_{p}, \ldots, \zeta_{p}^{p-1}$ is an integral basis for $\mathbb{Q}\left(\zeta_{p}\right)$, i.e.,

$$
A \cap \mathbb{Q}\left(\zeta_{p}\right)=\mathbb{Z}\left[\zeta_{p}\right]
$$

More generally we'll show that if $n>1$ that $A \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Z}\left[\zeta_{n}\right]$, hence that $1, \zeta_{n}, \ldots, \zeta_{n}^{\phi(n)-1}$ is an integral basis for $\mathbb{Q}\left(\zeta_{n}\right)$.

Theorem 31: Let K be a finite extension of \mathbb{Q}. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for K over \mathbb{Q} consisting of algebraic integers. Let d be the discriminant of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Then if $\alpha \in \mathbb{A} \cap K$ there exist integers m_{1}, \ldots, m_{n} with $d \mid m_{i}^{2}$ for $i=1, \ldots, n$ such that

$$
\alpha=\frac{m_{1} \alpha_{1}+\cdots+m_{n} \alpha_{n}}{d} .
$$

Proof: Since $\alpha_{1}, \ldots, \alpha_{n}$ is a basis for K over \mathbb{Q} there exist rationals a_{1}, \ldots, a_{n} such that

$$
\alpha=a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}
$$

Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}. Then

$$
\sigma_{j}(\alpha)=a_{1} \sigma_{j}\left(\alpha_{1}\right)+\cdots+a_{n} \sigma_{j}\left(\alpha_{n}\right) \quad \text { for } j=1, \ldots, n
$$

Thus

$$
\left(\begin{array}{ccc}
\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma_{1}\left(\alpha_{n}\right) \\
\vdots & & \\
\sigma_{n}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
\sigma_{1}(\alpha) \\
\vdots \\
\sigma_{n}(\alpha)
\end{array}\right)
$$

By Cramer's rule

$$
a_{j}=\frac{\operatorname{det}\left(\begin{array}{ccccc}
\sigma_{1}(\alpha) & \cdots & \sigma_{1}(\alpha)^{3)} & \cdots & \sigma_{1}\left(\alpha_{n}\right) \\
\vdots & & \vdots & & \vdots \\
\sigma_{n}(\alpha) & \cdots & \sigma_{n}(\alpha) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ccc}
\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma\left(\alpha_{1}\right) \\
& \vdots & \\
\sigma_{n}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)}
$$

Since α and $\alpha_{1}, \ldots, \alpha_{n}$ are in $\mathbb{A} \cap K$ and $d=\operatorname{disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ we see that

$$
a_{j}=\frac{\gamma_{j}}{\delta} \quad \text { where } \gamma_{j} \in \mathbb{A} \cap K
$$

and where $\delta^{2}=d$, for $j=1, \ldots, n$.
Then

$$
d a_{j}=\delta \gamma_{j} \in \mathbb{A} \cap K \text { for } j=1, \ldots, n
$$

But $d a_{j} \in \mathbb{Q}$ so $d a_{j}$ is an integer say m_{j}. It remains to show that $d \mid m_{j}^{2}$ for $j=1, \ldots, n$. But

$$
\left.\frac{m_{j}^{2}}{d}=\frac{\delta^{2} \gamma_{j}^{2}}{d}=\gamma_{j}^{2} \in \mathbb{A} \cap K \Longrightarrow \frac{m_{j}^{2}}{d} \in \mathbb{Z} \Longrightarrow d \right\rvert\, m_{j}^{2}
$$

Let $[K: \mathbb{Q}]=n$ and let $K=\mathbb{Q}[\theta]$. Then for each embedding σ of K in \mathbb{C} which fixes \mathbb{Q} either $\sigma(\theta) \in \mathbb{R}$ or it is not. In the latter case there is another embedding $\overline{\sigma(\theta)}$ since $\mathbb{Q} \subseteq \mathbb{R}$. Therefore $n=r_{1}+2 r_{2}$ where r_{1} is the number of embeddings of K in \mathbb{C} which fix \mathbb{Q} which embed K in \mathbb{R} and $2 r_{2}$ is the number of other embeddings.
Proposition 32: Let K be a finite extension of \mathbb{Q} with r_{1} real embeddings and $2 r_{2}$ complex and not real embeddings. Then the sign of the dimension of K over \mathbb{Q} is $(-1)^{r_{2}}$.
Proof: Let $\alpha_{1}, \ldots, \alpha_{n}$ be an integral basis for K over \mathbb{Q} and let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}.

Then

$$
\operatorname{disc}(K)=\left(\operatorname{det}\left(\begin{array}{ccc}
\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma_{1}\left(\alpha_{n}\right) \tag{*}\\
\vdots & & \\
\sigma_{n}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)\right)^{2}
$$

Note that

$$
\operatorname{det} \overline{\left(\begin{array}{ccc}
\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma_{1}\left(\alpha_{n}\right) \\
\vdots & & \\
\sigma_{n}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)}=(-1)^{r_{2}} \operatorname{det}\left(\begin{array}{ccc}
\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma_{1}\left(\alpha_{n}\right) \\
\vdots & & \\
\sigma_{n}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)
\end{array}\right)
$$

since we are interchanging r_{2} rows under complex conjugation. If r_{2} is even then $\operatorname{det}\left(\begin{array}{ccc}\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma_{1}\left(\alpha_{n}\right) \\ \vdots & & \\ \sigma_{n}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)\end{array}\right) \in \mathbb{R}$ while if r_{2} is odd then $\operatorname{det}\left(\begin{array}{cccc}\sigma_{1}\left(\alpha_{1}\right) & \cdots & \sigma_{1}\left(\alpha_{n}\right) \\ \vdots & & \\ \sigma_{n}\left(\alpha_{1}\right) & \cdots & \sigma_{n}\left(\alpha_{n}\right)\end{array}\right)$ is purely imaginary. The result follows from $*$.
We'll first prove that if p is a prime and $r \in \mathbb{Z}^{+}$then $\mathbb{A} \cap \mathbb{Q}\left(\zeta_{p^{r}}\right)=\mathbb{Z}\left[\zeta_{p^{r}}\right]$.
Note that

$$
\Phi_{p^{r}}(x)=\prod_{\substack{j=1 \\(j, p)=1}}^{p^{r}}\left(x-\zeta_{p^{r}}^{j}\right) .
$$

We have

$$
\begin{aligned}
\Phi_{p^{r}}(x) & =\frac{x^{p^{r}}-1}{x^{p^{r-1}}-1}=\left(x^{p^{r-1}}\right)^{p-1}+\cdots+x^{p^{r-1}}+1 \\
\Longrightarrow \Phi_{p^{r}}(1) & =p \text { hence } \prod_{j=1}^{p^{r}}\left(1-\zeta_{p^{r}}^{j}\right)=p .
\end{aligned}
$$

PMATH 641 Lecture 15: February 13, 2013

Recall that if p is a prime and $r \in \mathbb{Z}^{+}$then

$$
p=\prod_{\substack{j=1 \\\left(j, p^{r}\right)=1}}^{p^{r}}\left(1-\zeta_{p^{r}}^{j}\right) .
$$

Theorem 33: Let p be a prime and let $r \in \mathbb{Z}^{+}$. Then $\mathbb{A} \cap \mathbb{Q}\left(\zeta_{p^{r}}\right)=\mathbb{Z}\left[\zeta_{p^{r}}\right]$.
Proof: Note that $\mathbb{Q}\left(\zeta_{p^{r}}\right)=\mathbb{Q}\left(1-\zeta_{p^{r}}\right)$. Put $s=\phi\left(p^{r}\right)$. Then $1,1-\zeta_{p^{r}}, \ldots,\left(1-\zeta_{p^{r}}\right)^{s-1}$ is a basis for $\mathbb{Q}\left(\zeta_{p^{r}}\right)$ over \mathbb{Q} consisting of algebraic integers. By Theorem 31 if $\alpha \in \mathbb{A} \cap \mathbb{Q}\left(\zeta_{p^{r}}\right)$ then there exist integers m_{0}, \ldots, m_{s-1} such that

$$
\alpha=\frac{m_{0}+m_{1}\left(1-\zeta_{p^{r}}+\cdots+m_{s-1}\left(1-\zeta_{p^{r}}\right)^{s-1}\right)}{\operatorname{disc}\left(1-\zeta_{p^{r}}\right)} .
$$

But

$$
\begin{aligned}
\operatorname{disc}\left(1-\zeta_{p^{r}}\right) & =\left(\prod_{\substack{1 \leq i, j \leq p^{r} \\
(i, p)=1,(\bar{j}, p)=1}}\left(\left(1-\zeta_{p^{r}}^{i}\right)-\left(1-\zeta_{p^{r}}^{j}\right)\right)\right)^{2} \\
& =\left(\prod_{\substack{1 \leq i \leq j \leq p^{r} \\
(i, p)=1,(\bar{j}, p)=1}}\left(\zeta_{p^{r}}^{i}-\zeta_{p^{r}}^{j}\right)\right)^{2}=\operatorname{disc}\left(\zeta_{p^{r}}\right) .
\end{aligned}
$$

But $\operatorname{disc}\left(\zeta_{p^{r}}\right)$ is a power of p and so we can write α in the form

$$
\alpha=\frac{m_{0}+m_{1}\left(1-\zeta_{p^{r}}\right)+\cdots+m_{s-1}\left(1-\zeta_{p^{r}}\right)^{s-1}}{p^{j}} \quad \text { for some integer } j
$$

Suppose $\mathbb{A} \cap \mathbb{Q}\left(\zeta_{p^{r}}\right) \neq \mathbb{Z}\left[1-\zeta_{p^{r}}\right]$, in other words there exists an $\alpha \in \mathbb{A} \cap \mathbb{Q}\left(\zeta_{p^{r}}\right)$ of the form

$$
\alpha=\frac{l_{0}+l_{1}\left(1-\zeta_{p^{r}}\right)+\cdots+l_{s-1}\left(1-\zeta_{p^{r}}\right)^{s-1}}{p}
$$

where l_{0}, \ldots, l_{s-1} are integers not all divisible by p. Let i be the smallest integer for which $p \nmid l_{i}$. Then

$$
\frac{l_{i}\left(1-\zeta_{p^{r}}\right)^{i}+\cdots+l_{s-1}\left(1-\zeta_{p^{r}}\right)^{s-1}}{p}
$$

is in $\mathbb{A} \cap \mathbb{Q}\left(1-\zeta_{p^{r}}\right)$.
For every positive integer $k, 1-x$ divides $1-x^{k}$ in $\mathbb{Z}[x]$. Recall that

$$
p=\prod_{\substack{k=1 \\(k, p)=1}}^{p^{r}}\left(1-\zeta_{p^{r}}^{k}\right)
$$

and so

$$
p=\left(1-\zeta_{p^{r}}\right)^{s} \cdot \lambda \text { where } \lambda \in \mathbb{A} .
$$

Thus

$$
\left(1-\zeta_{p^{r}}\right)^{s-(i+1)} \cdot \lambda\left(\frac{l_{i}\left(1-\zeta_{p^{r}}\right)^{i}+\cdots+l_{s-1}\left(1-\zeta_{p^{r}}\right)^{s-1}}{p}\right) \in \mathbb{A}
$$

hence

$$
\left(\frac{l_{i}\left(1-\zeta_{p^{r}}\right)^{i}+\cdots+l_{s-1}\left(1-\zeta_{p^{r}}\right)^{s-1}}{\left(1-\zeta_{p^{r}}\right)^{i+1}}\right) \in \mathbb{A} .
$$

Thus $l_{i} /\left(1-\zeta_{p^{r}}\right) \in \mathbb{A}$ say is γ. But then $\gamma\left(1-\zeta_{p^{r}}\right)=l_{i}$ and hence

$$
N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p^{r}}\right)}(\gamma) \cdot N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p^{r}}\right)}\left(1-\zeta_{p^{r}}\right)=N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p^{r}}\right)}\left(l_{i}\right)
$$

But then since $N_{\mathbb{Q}}^{\mathbb{Q}\left(\zeta_{p^{r}}\right)}\left(1-\zeta_{p^{r}}\right)$ is p we see that $p \mid l_{i}^{s}$ hence $p \mid l_{i}$ which is a contradiction. Thus $\mathbb{A} \cap \mathbb{Q}\left(\zeta_{p^{r}}\right)=\mathbb{Z}\left[1-\zeta_{p^{r}}\right]$ and since $\mathbb{Z}\left[1-\zeta_{p^{r}}\right]=\mathbb{Z}\left[\zeta_{p^{r}}\right]$ our result follows.
Let L and K be finite extensions of \mathbb{Q}. We denote by $L K$, the compositum of L and K the smallest field containing $L \cup K$.
Lemma 34: Let $[L: \mathbb{Q}]=m$ and $[K: \mathbb{Q}]=n$ and suppose $[L K: \mathbb{Q}]=m n$. Let σ be an embedding of L in \mathbb{C} which fixes \mathbb{Q} and let τ be an embedding of K in \mathbb{C} which fixes \mathbb{Q}. Then there is an embedding of $L K$ which when restricted to L is σ and when restricted to K is τ.
Proof: For each embedding σ of L we can consider the extensions of σ to embeddings of $L K$. There are n of them. Restricted to K there are n again. But there are exactly n embeddings of K and so one of them is τ.
Theorem 35: Let $[L: \mathbb{Q}]=m,[K: \mathbb{Q}]=n$ and $[L K: \mathbb{Q}]=m n$. Then

$$
\mathbb{A} \cap L K \subseteq \frac{1}{d}(\mathbb{A} \cap K)(\mathbb{A} \cap L)
$$

where $d=\operatorname{gcd}(\operatorname{disc}(K), \operatorname{disc}(L))$.
Proof: Ingredients: Lemma 34 and Cramer's Rule.
See Notes.

PMATH 641 Lecture 16: February 15, 2013

Theorem 36: Let $n \in \mathbb{Z}^{+}$. Then

$$
\mathbb{A} \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Z}\left[\zeta_{n}\right]
$$

Proof: By induction on the number of prime factors of n. Result true for $n=1$. If n has one prime factor the result follows from Theorem 33. Suppose now that

$$
n=p_{1}^{l_{1}} \cdots p_{k}^{l_{k}}
$$

with $l_{i} \in \mathbb{Z}^{+}$and p_{1}, \ldots, p_{k} distinct primes. By the inductive hypothesis

$$
\mathbb{A} \cap \mathbb{Q}\left(\zeta_{p_{1}^{l_{1} \ldots p_{k-1}}}\right)=\mathbb{Z}\left[\zeta_{p_{1}^{l_{1} \ldots p_{k-1}}}{ }^{l_{k-1}}\right]
$$

and

$$
\mathbb{A} \cap \mathbb{Q}\left(\zeta_{p_{k}^{l_{k}}}\right)=\mathbb{Z}\left[\zeta_{p_{k}^{l_{k}}}\right]
$$

Note that the compositum of $\mathbb{Q}\left(\zeta_{p_{1}^{l_{1} \ldots p_{k-1}^{l_{k-1}}}}\right)$ and $\mathbb{Q}\left(\zeta_{p_{k}^{l_{k}}}\right)$ is $\mathbb{Q}\left(\zeta_{n}\right)$ since we can find integers g and h for which

$$
\zeta_{p_{1}^{l_{1} \ldots p_{k-1}}}^{g} \cdot \zeta_{p_{k}^{l_{k-}}}^{h}=\zeta_{n}
$$

By Theorem 23

$$
\operatorname{gcd}\left(\operatorname{disc}\left(\mathbb{Q}\left(\zeta_{p_{1}^{l_{1} \ldots p_{k-1}^{l_{k-1}}}}\right)\right), \operatorname{disc}\left(\mathbb{Q}\left(\zeta_{p_{k}^{l_{k}}}\right)\right)\right)=1
$$

We now apply Theorem 35 to conclude that

$$
\mathbb{A} \cap \mathbb{Q}\left(\zeta_{n}\right) \subseteq \mathbb{A} \cap \mathbb{Q}\left(\zeta_{p_{1}^{l_{1} \ldots p_{k-1}^{l_{k-1}}}}\right) \cdot \mathbb{A} \cap \mathbb{Q}\left(\zeta_{p_{k}^{l_{k}}}\right)
$$

But by (1) and (2)

$$
\mathbb{A} \cap \mathbb{Q}\left(\zeta_{p_{1}^{l_{1}} \cdots p_{k-1}^{l_{k-1}}}\right) \cdot \mathbb{A} \cap \mathbb{Q}\left(\zeta_{p_{k}^{l_{k}}}\right)=\mathbb{Z}\left[\zeta_{p_{1}^{l_{1}} \cdots p_{k-1}^{l_{k-1}}}\right] \cdot \mathbb{Z}\left[\zeta_{p_{k}^{l_{k}}}\right]
$$

which is

$$
=\mathbb{Z}\left[\zeta_{n}\right] \Longrightarrow \mathbb{A} \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Z}\left[\zeta_{n}\right]
$$

General problem: Given a finite extension K of \mathbb{Q} how does one compute the discriminant of K ? Find a θ which is an algebraic integer so that $K=\mathbb{Q}(\theta)$. Determine the discriminant of θ. If it is squarefree then it is the discriminant of K. We have seen that if $[K: \mathbb{Q}]=n$ then

$$
\operatorname{disc}(\theta)=(-1)^{n(n-1) / 2} N_{\mathbb{Q}}^{K}\left(f^{\prime}(\theta)\right)
$$

where f is the minimal polynomial of θ over \mathbb{Q}. Suppose that $f, g \in \mathbb{C}[x]$ with

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

and

$$
g(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}
$$

We define the resultant $R(f, g)$ by

$$
\operatorname{det}\left(\begin{array}{ccccccc}
a_{n} & a_{n-1} & \cdots & a_{0} & 0 & \cdots & 0 \\
& a_{n} & a_{n-1} & \cdots & a_{0} & & \\
& & \ddots & & & \ddots & \\
0 & & & a_{n} & a_{n-1} & \cdots & a_{0} \\
b_{m} & \ldots \ldots & \ldots \ldots & b_{0} & & 0 \\
& \ddots & & & & \ddots & \\
0 & & b_{m} & \ldots \ldots \ldots \ldots \ldots \ldots & b_{0}
\end{array}\right)\{n \text { rows }
$$

Fact
(1) $R(f, g)=0 \Longleftrightarrow f$ and g have a common root.
(2) $\operatorname{disc}(\theta)=(-1)^{n(n-1) / 2} R\left(f, f^{\prime}\right)$.

Example: Let $f(x)=x^{3}-5 x+1$. By Rational Roots Theorem since $f(1) \neq 1, f(-1) \neq 1$, we see that f is irreducible over \mathbb{Q}. Let θ be a root of f and put $K=\mathbb{Q}(\theta)$. What is $\operatorname{disc}(K)$?
First, what is $\operatorname{disc}(\theta)$? Thus

$$
\begin{aligned}
R\left(f, f^{\prime}\right) & =\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & -5 & 1 & 0 \\
0 & 1 & 0 & -5 & 1 \\
3 & 0 & -5 & 0 & 0 \\
0 & 3 & 0 & -5 & 0 \\
0 & 0 & 3 & 0 & -5
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & -5 & 1 & 0 \\
0 & 1 & 0 & -5 & 1 \\
0 & 0 & 10 & -3 & 0 \\
0 & 3 & 0 & -5 & 0 \\
0 & 0 & 3 & 0 & -5
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & -5 & 1 \\
0 & 10 & -3 & 0 \\
0 & 0 & 10 & -3 \\
0 & 3 & 0 & -5
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
10 & -3 & 0 \\
0 & 10 & -3 \\
3 & 0 & -5
\end{array}\right) \\
& =10(-50)+27=-473=-11 \cdot 43
\end{aligned}
$$

By (2) we see that $\operatorname{disc}(\theta)=473$. Since 473 is squarefree we see that

$$
\operatorname{disc}(K)=473
$$

Example: 2 Let $f(x)=x^{3}+x^{2}-2 x+8$. Again f is irreducible over \mathbb{Q} by Rational Roots Theorem. Let θ be a root of f and put $K=\mathbb{Q}(\theta)$. Further

$$
R\left(f, f^{\prime}\right)=\operatorname{det}()=-4 \cdot 503
$$

We now try to modify the basis $1, \theta, \theta^{2}$ in the hope of getting an integral basis. We can check that $\left(\theta+\theta^{2}\right) / 2$ is an algebraic integer.

PMATH 641 Lecture 17: February 25, 2013

Recall: Let $f(x)=x^{3}+x^{2}-2 x+8$ is irreducible over \mathbb{Q}. Let θ be a root of f. Put $K=\mathbb{Q}(\theta)$. We have $\operatorname{disc}(\theta)=-R\left(f, f^{\prime}\right)=-4 \cdot 503$.
Let $\theta=\theta_{1}, \theta_{2}, \theta_{3}$ be the conjugates of θ. We can check that

$$
g(x)=\prod_{i=1}^{3}\left(x-\frac{\theta_{i}^{2}+\theta_{i}}{2}\right)
$$

is in $\mathbb{Z}[x]$. Thus $\frac{\theta^{2}+\theta}{2}$ is an algebraic integer. Then $\operatorname{disc}\left(1, \theta, \frac{\theta^{2}+\theta}{2}\right)=-503$. Thus $1, \theta, \frac{\theta^{2}+\theta}{2}$ is an integral basis for K since 503 is squarefree and $\operatorname{disc}(K)=-503$.

The question still remains: is there an integral power basis for K ? In other words, is there $\lambda \in \mathbb{A} \cap K$ such that $1, \lambda, \lambda^{2}$ is an integral basis?

Suppose we have such a λ. Then there exist integers a, b, and c so that

$$
\lambda=a+b \theta+c\left(\frac{\theta^{2}+\theta}{2}\right)
$$

but then

$$
\lambda^{2}=A+B \theta+C\left(\frac{\theta^{2}+\theta}{2}\right)
$$

where $A=\left(a^{2}-2 c^{2}-8 b c\right), B=\left(-2 c^{2}+2 a b+2 b c-b^{2}\right)$, and $C=\left(2 b^{2}+2 a c+c^{2}\right)$. Note

$$
\left(\begin{array}{c}
1 \\
\lambda \\
\lambda^{2}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & b & c \\
A & B & C
\end{array}\right)\left(\begin{array}{c}
1 \\
\theta \\
\frac{\theta^{2}+\theta}{2}
\end{array}\right)
$$

so

$$
\operatorname{disc}(\lambda)=\left(\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & b & c \\
A & B & C
\end{array}\right)\right)^{2} \operatorname{disc}\left(1, \theta, \frac{\theta^{2}+\theta}{2}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & b & c \\
A & B & C
\end{array}\right) \cdot(-503)
$$

But

$$
\begin{aligned}
\left(\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
a & b & c \\
A & B & C
\end{array}\right)\right)^{2} & =(b C-B c)^{2} \\
& =\left(2 b^{3}-b c^{2}+b^{2} c+2 c^{3}\right)^{2} \\
& \equiv\left(b^{2} c-2 b c^{2}\right)^{2} \bmod 2 \\
& \equiv(b c(b-c))^{2} \bmod 2 \\
& \equiv 0 \bmod 2
\end{aligned}
$$

Thus $\operatorname{disc}(\lambda) \neq-503$ and so no integral power basis exists.
$[K: \mathbb{Q}]<\infty$. An element α in $\mathbb{A} \cap K$ which is not zero and not a unit is said to be an irreducible of $\mathbb{A} \cap K$ if whenever $\alpha=\beta \gamma$ with β and γ in $\mathbb{A} \cap K$ then β is a unit or γ is a unit. We've seen that we don't have unique factorization into irreducibles up to units and reordering in $\mathbb{A} \cap \mathbb{Q}(\sqrt{-5})$. up to units and reordering in $\mathbb{A} \cap \mathbb{Q}(\sqrt{-5})$.
To recover unique factorization we pass to prime ideals in the ring.
Recall that an ideal P in a commutative ring with identity is a prime ideal \Longleftrightarrow whenever $a b \in P$ with a, $b \in R$ then $a \in P$ or $b \in P$. Also an integral domain is a commutative ring with identity with no zero divisors.

Suppose R is a subfield of a ring S. Then θ in S is said to be integral over R if it is the root of a monic polynomial with coefficients in $R . R$ is integrally closed in S if whenever $\theta \in S$ is integral over R then $\theta \in R$.

Definition: A Dedekind domain R is an integral domain for which
(1) Every ideal in R is finitely generated.
(2) Every non-zero prime ideal in R is maximal
(3) R is integrally closed in its field of fractions.

Proposition 37: Let $[L: \mathbb{Q}]<\infty$. Let I be a non-zero ideal in $\mathbb{A} \cap K$. There is a positive integer in I.
Proof: Since I is non-zero there exists an $\alpha \in I$ with $\alpha \neq 0$. Let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be the conjugates of α over \mathbb{Q}. Then

$$
N_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha)=\alpha_{1} \cdots \alpha_{n}=a \in \mathbb{Z} \backslash\{0\}
$$

Observe that $\alpha_{2} \cdots \alpha_{n}=a / \alpha_{1} \in K$. Further $\alpha_{2}, \ldots, \alpha_{n}$ are algebraic integers so $\alpha_{2}, \ldots, \alpha_{n} \in \mathbb{A}$. Thus $\alpha_{2} \cdots \alpha_{n} \in \mathbb{A} \cap K$. Thus $\left(\alpha_{1}\right) \cdot\left(\alpha_{2} \cdots \alpha_{n}\right) \in I$ so $a \in I$. But $-a \in I$ also.
Definition: Let $[K: \mathbb{Q}]<\infty$ and let I be a non-zero ideal in $\mathbb{A} \cap K$. Then $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an integral basis for the ideal if $\alpha_{1}, \ldots, \alpha_{n}$ are in I and every element of I has a unique representation as an integral linear combination of $\alpha_{1}, \ldots, \alpha_{n}$.

PMATH 641 Lecture 18: February 27, 2013

Midterm: Friday in class.
Theorem 38: Let $[K: \mathbb{Q}]<\infty$ and let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be an integral basis for $\mathbb{A} \cap K$. Let I be a non-zero ideal in $\mathbb{A} \cap K$. Then there exists an integral basis $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ for I of the form

$$
\begin{aligned}
\alpha_{1} & =a_{11} \omega_{1} \\
\alpha_{2} & =a_{21} \omega_{1}+a_{22} \omega_{2} \\
& \vdots \\
\alpha_{n} & =a_{n 1} \omega_{1}+\cdots+a_{n n} \omega_{n}
\end{aligned}
$$

where the $a_{i j} \in \mathbb{Z}$ and $a_{i i} \in \mathbb{Z}^{+}$for $i=1, \ldots, n$.
Proof: By Proposition 37 there exists a positive integer a in I. Thus $a \omega_{i} \in I$ for $i=1, \ldots, n$. We choose α_{1} to be the smallest positive multiple of ω_{1} which is in I and denote it by $a_{11} \omega_{1}$. We then pick $\alpha_{2}, \alpha_{3}, \ldots$ by choosing α_{i} to be $a_{i 1} \omega_{1}+\cdots+a_{i i} \omega_{i}$ where α_{i} is the integer linear combination of $\omega_{1}, \ldots, \omega_{i}$ for which $a_{i i} \omega_{i}$ is such that $a_{i i}$ is positive and minimal.
It remains to show that $\alpha_{1}, \ldots, \alpha_{n}$ is an integral basis for I. Since $\omega_{1}, \ldots, \omega_{n}$ are linearly independent over \mathbb{Q} and $\operatorname{det}\left(\begin{array}{ccc}a_{11} & & 0 \\ \vdots & \ddots & \\ a_{n 1} & & a_{n n}\end{array}\right) \neq 0$ we see that $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over \mathbb{Q}.

It remains to show that if $\beta \in I$ then β is an integral linear combination of $\alpha_{1}, \ldots, \alpha_{n}$. Since $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is an integral basis for $\mathbb{A} \cap K$

$$
\beta=b_{1} \omega_{1}+\cdots+b_{n} \omega_{n} \text { with } b_{i} \in \mathbb{Z}
$$

Notice that $a_{n n} \mid b_{n}$ since otherwise, by the Division Algorithm, we would contradict the minimality of $a_{n n}$. Thus $a_{n n} \cdot q_{n}=b_{n}$ for some integer q_{n}. But then $\beta-q_{n} \alpha_{n}$ is an integral linear combination of $\omega_{1}, \ldots, \omega_{n-1}$. We repeat the argument to find integers q_{1}, \ldots, q_{n-1} so that

$$
\beta=q_{1} \alpha_{1}+\cdots+q_{n} \alpha_{n}
$$

as required.
Theorem 39: Let $[K: \mathbb{Q}]<\infty$. Then $\mathbb{A} \cap K$ is a Dedekind Domain.
Proof: By Theorem 38 every ideal in $\mathbb{A} \cap K$ is finitely generated.
Let P be a non-zero prime ideal in $\mathbb{A} \cap K$. We'll show that P is maximal.
First note that there is a positive integer a in P. Next note that since P is a prime ideal $\mathbb{A} \cap K / P$ is an integral domain.
Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be an integral basis for $\mathbb{A} \cap K$. Then $\mathbb{A} \cap K / P$ is made up of cosets of the form

$$
a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}+P
$$

where the $a_{i} \mathrm{~s}$ are integers of size at most a in absolute value. $\Longrightarrow \mathbb{A} \cap K / p$ is finite.
But a finite integral domain is a field and so P is maximal.
Finally, let $\gamma=\frac{\alpha}{\beta}$ with $\alpha, \beta \in \mathbb{A} \cap K, \beta \neq 0$. Suppose that γ is integral over $\mathbb{A} \cap K$. Thus γ is the root of a polynomial $x^{m}+\alpha_{m-1} x^{m-1}+\cdots+\alpha_{0}$ with $\alpha_{m-1}, \ldots, \alpha_{0}$ in $\mathbb{A} \cap K(*)$. It remains to show that $\gamma \in \mathbb{A} \cap K$. Plainly $\gamma \in K$. It remains to show that $\gamma \in \mathbb{A}$.
We do so by considering the ring

$$
S=\mathbb{Z}\left[\alpha_{0}, \ldots, \alpha_{n-1}, \gamma\right]
$$

Plainly $\gamma \in S$. By Theorem 13 it suffices to show that S is finitely generated as an additive group. Let $\theta \in S$ then it is enough to show that θ is an integral linear combination of terms of the form

$$
\alpha_{0}^{b_{0}} \cdots \alpha_{m-1}^{b_{m-1}} \gamma^{b_{m}}
$$

where $b_{m}<m$ and the b_{i} sfor $i=0, \ldots, m-1$ are less than n.
It is enough to show that if θ is of the form $\alpha_{0}^{c_{0}} \cdots \alpha_{m-1}^{c_{m-1}} \gamma^{c_{m}}$ with $c_{0}, \ldots, c_{m} \in \mathbb{Z}_{\geq 0}$ then this is true.
Start by using $*$, in other words

$$
\gamma^{m}=-\alpha_{m-1} \gamma^{m-1} \cdots-\alpha_{0}
$$

to reduce c_{m} to an integer of size at most $m-1$.

PMATH 641 Lecture 19: March 4, 2013

Theorem 40: Let R be a commutative ring. The following are equivalent:
(1) Every ideal in R is finitely generated.
(2) Every increasing sequence of ideals in R is eventually constant.
(3) Every non-empty set of ideals in R has a maximal element.

Proof: $(1) \Longrightarrow(2)$. Suppose that $I_{1} \subseteq I_{2} \subseteq \cdots$ with $I_{i} \in R$ for $i=1,2, \ldots$ Put

$$
I=\bigcup_{n=1}^{\infty} I_{n}
$$

Then I is an ideal of R and so $I=\left(\alpha_{1}, \ldots, \alpha_{t}\right)$. But notice that α_{j} is in I so there exists an integer n_{j} so that $\alpha_{j} \in I_{n_{j}}$ for $j=1, \ldots, t$. But then $I \subseteq I_{b}$ where $b=\max \left(n_{1}, \ldots, n_{t}\right)$. Thus $I=I_{b}=I_{b+1}=\cdots$.
$(2) \Longrightarrow(3)$. Let S be a non-empty set of ideals in R. Thus there exists I_{1} in S. Either I_{1} is maximal in S or there exists I_{2} in S with $I_{1} \subsetneq I_{2}$. Either I_{2} is maximal in S or there exists I_{3} in S with $I_{2} \subsetneq I_{3}$. Eventually this process terminates by (2).
$(3) \Longrightarrow(1)$. Let I be an ideal of R. Let S be the set of finitely generated ideals of R in I. (0) is in I so S is non-empty. Let M be a maximal element of S. Then $M \subseteq I$. Suppose that $M \subsetneq I$.
Now M is finitely generated so $M=\left(\alpha_{1}, \ldots, \alpha_{t}\right)$ say. Pick $\gamma \in I \backslash M$. Then the ideal $I_{1}=\left(\alpha_{1}, \ldots, \alpha_{t}, \gamma\right)$ is in I and so M is not a maximal element of S which is a contradiction. Thus $M=I$. \checkmark
Lemma 41: In a Dedekind domain every non-zero ideal contains a product of non-zero prime ideals. (Here the product may be a product of 1 element.)
Proof: Let S be the set of non-zero ideals in the Dedekind domain R which do not contain a product of non-zero prime ideals. Suppose that S is non-empty. Then by the definition of a Dedekind domain and Theorem 40 we see that S has a maximal element M. Note that M is not a prime ideal. Thus there exist a, $b \in R$ with $a b \in M$ and $a \notin M, b \notin M$. Therefore

$$
(M+(a))(M+(b)) \subseteq M
$$

But $M \subsetneq M+(a)$ and $M \subsetneq M+(b)$. Since M is maximal both $M+(a)$ and $M+(b)$ contain a product of non-zero prime ideals. Then by $*$ so does M which is a contradiction.

Lemma 42: Let I be a prime ideal in a Dedekind domain R with field of fractions K. Then there is an element $\gamma \in K \backslash R$ such that $\gamma I \subseteq R$.
Proof: Let a be any non-zero element of I. Then $\frac{1}{a} \notin R$ since I is proper.

PMATH 641 Lecture 20: March 6, 2013

Lemma 42: Let I be a proper ideal in a Dedekind domain R with field of fractions K. There is an element γ in $K \backslash R$ for which

$$
\gamma I \subseteq R
$$

Proof: Let a be a non-zero element in I. Since I is proper a is not a unit and so $\frac{1}{a} \in K \backslash R$. (a) contains a product of prime ideals $p_{1} \cdots p_{r}$ by Lemma 41. Let us suppose that r is minimal.

Let S be the set of proper ideals in R which contains $I . S$ is non-empty and so by Theorem $40, S$ contains a maximal element M. Observe that M is a maximal ideal. Since R is a Dedekind domain, M is a prime ideal. Next note that $(a) \subseteq I$ and also $p_{1} \cdots p_{r} \subseteq(a) \subseteq I \subseteq M$.
We claim that $M \supseteq p_{i}$ for some i with $1 \leq i \leq r$. Suppose not. Then there is an element a_{i} in p_{i} and not in M for $i=1, \ldots, r$. But then $a_{1} \cdots a_{r} \in M$ with $a_{i} \notin M$ for $i=1, \ldots, r$ contradicting the fact that M is a prime ideal. Thus $M \supseteq p_{i}$ for some i. Without loss of generality we may suppose $M \supseteq p_{1}$. Since M is a prime ideal $M=p_{1}$.
Recall $(a) \supseteq p_{1} \cdots p_{r}$ with r minimal. If $r=1$ then $p_{1} \subseteq(a) \subseteq I \subseteq M$ so $p_{1}=(a)$ and then with $\gamma=\frac{1}{a}$ we have

$$
\gamma I=\frac{1}{a}(a)=R
$$

as required.

If $r>1$ then we consider $p_{2} \cdots p_{r}$. Note that $p_{2} \cdots p_{r}$ is non-empty and not contained in (a). Thus there exists an element b in $p_{2} \cdots p_{r}$ which is not in (a). We now take $\gamma=\frac{b}{a}$. Observe that $\gamma \in K \backslash R$.
Then

$$
\begin{aligned}
\gamma I & =\frac{b}{a} I \\
& \subseteq \frac{b}{a} p_{1} \\
& \subseteq \frac{(b) p_{1}}{a} \\
& \subseteq \frac{1}{a} p_{1} \cdots p_{r} \\
& \subseteq \frac{1}{a}(a) \\
& =R
\end{aligned}
$$

as required.
Theorem 43: Let R be a Dedekind domain and let I be an ideal of R. Then there is an ideal J of R for which

$$
I J \text { is a principal ideal of } R \text {. }
$$

Proof: If $I=(0)$ the result is immediate so suppose that I is not (0). Let α be a non-zero element of I.
Define J to be the following set in R :

$$
J=\{\beta \in R: \beta I \subseteq(\alpha)\}
$$

Note that J is an ideal of R and

$$
I J \subseteq(\alpha)
$$

We want to show that in fact $I J=(\alpha)$. Put $B=\frac{1}{\alpha} I J$ and note B is an ideal of R. If $B=R$ we are done since then $I J=(\alpha)$.

Suppose then that B is a proper ideal of R. Then by Lemma 42 there exists a $\gamma \in K \backslash R$ for which $\gamma B \subseteq R$; here K is the field of fractions of R. Since $\alpha \in I$ we have that $J \subseteq \frac{1}{\alpha} I J=B$. Thus

$$
\gamma J \subseteq \gamma B \subseteq R
$$

Thus $\gamma J I \subseteq(\alpha)$ and so by the definition of $J, \gamma J \subseteq J$. But J is a finitely generated additive subgroup of the field of fractions of the Dedekind domain R.

By Theorem 13 with \mathbb{C} replaced by the field of fractions of a Dedekind domain we see that γ is the root of a monic polynomial with coefficients in R. Since R is a Dedekind domain it is integrally closed in its field of fractions. Thus $\gamma \in R$ which is a contradiction.

PMATH 641 Lecture 21: March 8, 2013

Theorem 43

$$
\begin{gathered}
\vdots \\
\gamma J \subset J
\end{gathered}
$$

J is a finitely generated ideal in R so $J=\left(a_{1}, \ldots, a_{n}\right)$.
Then there exist $m_{i j}$ in R so that

$$
\gamma a_{i}=m_{i 1} a_{1}+\cdots+m_{i n} a_{n}
$$

for $i=1, \ldots, n$. Then

$$
\left(\gamma I_{n}-M\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

where $M=\left(m_{i j}\right)$. $J \neq(0)$ so $\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)=\left(\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right) \Longrightarrow \operatorname{det}\left(\gamma I_{n}-M\right)=0$. Thus γ is the root of a monic polynomial with entries in R. But R is a Dedekind domain so R is integrally closed in its field of fractions K. Since $\gamma \in K$ we see that $\gamma \in R$. This is a contradiction.

Corollary 44: Let A, B and C be non-zero ideals in a Dedekind domain R with $A C=B C$ then $A=B$. Proof: There exists an ideal J in R so that $C J$ is principal. Say $C J=(\alpha)$ with $\alpha \in R$. Note that

$$
A C J=B C J
$$

so $A(\alpha)=B(\alpha)$.

$$
\Longrightarrow A \alpha=B \alpha
$$

$\Longrightarrow A=B$ since $\alpha \neq 0$.
Corollary 45: Let A and B be non-zero ideal in a Dedekind domain R.

$$
A \mid B \Longleftrightarrow B \subseteq A
$$

Proof: \Rightarrow Since $A \mid B$ there exists an ideal C in R with $A C=B$. Then immediately $B \subseteq A$.
\Leftarrow By Theorem 43 there exists a non-zero element α in R and an ideal J of R such that $A J=(\alpha)$. Consider $\frac{1}{\alpha} B J$. Note that $\frac{1}{\alpha} B J$ is an ideal of R since $B \subseteq A$. Further $A\left(\frac{1}{\alpha} B J\right)=B\left(\frac{1}{\alpha} A J\right)=B\left(\frac{1}{\alpha}(\alpha)\right)=B$.
Theorem 46: Every non-zero proper ideal in a Dedekind domain R can be written as a product of prime ideals of R and this representation as a product is unique up to ordering.
Proof: We first prove existence.
Let S be the set of non-zero proper ideals which cannot be written as a product of prime ideals. Since R is a Dedekind domain S has a maximal element M. Note that M is contained in a maximal ideal of R which, since R is a Dedekind domain, is a prime ideal of R, say P.

Thus $M \subseteq P$. Note $M \neq P$ since M is in S. Thus $M \subsetneq P$. Therefore by Corollary 45 there exists an ideal A such that

$$
M=P A
$$

Further $M \subsetneq A$. But A is not a product of prime ideals since otherwise by $* M$ is a product of prime ideals. But then $A \in S$ and M is not maximal in S which is a contradiction. Therefore S is empty as required.
"Uniqueness"
Suppose that p_{1}, \ldots, p_{r} and q_{1}, \ldots, q_{s} are prime ideals with

$$
p_{1} \cdots{ }_{r}=q_{1} \cdots q_{s} .
$$

Note that $p_{1} \mid q_{1} \cdots q_{s}$. Thus by Corollary $45, p_{1} \supseteq q_{1} \cdots q_{s}$. Since p_{1} is a prime ideal $p_{1} \supseteq q_{i}$ for some i. Without loss of generality we may suppose $p_{1} \supseteq q_{1}$. Prime ideals are maximal ideals in R so $p_{1}=q_{1}$. By Corollary 44, $p_{2} \cdots p_{r}=q_{2} \cdots q_{s}$. Repeating this argument the result follows.

Remark: Let $[K: \mathbb{Q}]<\infty$. Then $\mathbb{A} \cap K$ is a Dedekind domain and so we have unique factorization into prime ideals, up to ordering, in $\mathbb{A} \cap K$.

Definition: Let R be a commutative ring with identity. An element c of R is said to be irreducible of R if
(1) $c \neq 0$ and c is not a unit of R.
(2) If $c=a b$ with a, b in R then a is a unit or b is a unit.

An element c of R is said to be a prime of R if
(1) $c \neq 0$ and c is not a unit of R
(2) If $c \mid a b$ with a, b in R then $c \mid a$ or $c \mid b$.

Note in UFDs the concepts are the same.

PMATH 641 Lecture 22: March 11, 2013

Theorem 47: Let $[K: \mathbb{Q}]<\infty$. The factorization of elements of $\mathbb{A} \cap K$ into irreducibles is unique up to reordering and units if and only if every ideal in $\mathbb{A} \cap K$ is principal.
Proof: \Leftarrow It is enough to show that every non-zero prime ideal P in $\mathbb{A} \cap K$ is principal. By Proposition 37 there is an integer a with $a>1$ in P. Let $a=\pi_{1} \cdots \pi_{t}$ be the decomposition of a into irreducibles in $\mathbb{A} \cap K$.

Then $a \in P$ so $P \supseteq(a)=\left(\pi_{1}\right) \cdots\left(\pi_{t}\right)$. Thus $P \mid\left(\pi_{1}\right) \cdots\left(\pi_{t}\right)$ so $P \mid\left(\pi_{i}\right)$ for some i with $1 \leq i \leq t$. Without loss of generality we may suppose that $P \mid\left(\pi_{1}\right)$ so $P \supseteq\left(\pi_{1}\right)$.

Notice that $P=\left(\pi_{1}\right)$ since $\left(\pi_{1}\right)$ is a prime ideal. This follows since otherwise $\left(\pi_{1}\right) \delta=\beta \gamma$ with β and γ not in $\left(\pi_{1}\right)$. But π_{1} is irreducible so $\pi_{1} \mid \beta$ or $\pi_{1} \mid \gamma$ by unique factorization which is a contradiction.
\Rightarrow Suppose that

$$
\pi_{1} \cdots \pi_{r}=\lambda_{1} \cdots \lambda_{s}
$$

where the π_{i} and λ_{j} are irreducibles in $\mathbb{A} \cap K$. Notice that then

$$
\left(\pi_{1}\right) \cdots\left(\pi_{r}\right)=\left(\lambda_{1}\right) \cdots\left(\lambda_{s}\right)
$$

Therefore it suffices to show that if π is an irreducible of $\mathbb{A} \cap K$ then (π) is a prime ideal. We have unique factorization into prime ideals of $\mathbb{A} \cap K$ so if (π) is not a prime ideal then $(\pi)=A B$ with A and B proper non-zero ideals of $\mathbb{A} \cap K$.

Since every ideal in $\mathbb{A} \cap K$ is principal there exists $\alpha, \beta \in \mathbb{A} \cap K$ with $A=(\alpha)$ and $B=(\beta)$. Then $(\pi)=(\alpha)(\beta)$. Thus there exists $\delta, \gamma \in \mathbb{A} \cap K$ such that $\pi=\{\alpha \delta\} \cdot\{\beta \gamma\}$. But π is irreducible so either $\alpha \delta$ is a unit in which case α is a unit or $\beta \gamma$ is a unit in which case β is a unit. This contradicts the fact that A and B are proper ideals.

The only rings $\mathbb{A} \cap \mathbb{Q}(\sqrt{-D})$ which have unique factorization into irreducibles with $D>0$ are those with

$$
D=1,2,3,7,11,19,43,67,163
$$

Given a prime ideal P in $\mathbb{A} \cap K$ with $[K: \mathbb{Q}]<\infty$ we can find an integer $a>1$ with $a \in P$. Let $a=p_{1} \cdots p_{t}$ be a factorization of a into primes in \mathbb{Z}. Then $P \supseteq(a)$ so $P \mid\left(p_{1}\right) \cdots\left(p_{t}\right)$ hence $P \mid\left(p_{i}\right)$ for some prime p_{i} in \mathbb{Z}.

Suppose $P \mid(p)$ are $P \mid(q)$ for two distinct primes p, q in \mathbb{Z}. Then since there exist integers r and s with

$$
r p+s q=1
$$

we see that

$$
(r)(p)+(s)(q)=(1)
$$

and so

$$
P \mid(1)
$$

which is a contradiction. Thus to each prime ideal P in $\mathbb{A} \cap K$ there is a unique prime p in \mathbb{Z} associated to it with $P \mid(p)$.

Definition: Let $[K: \mathbb{Q}]<\infty$ and let p be a prime in \mathbb{Z}. We say that p ramifies in $\mathbb{A} \cap K$ if there exists a prime ideal P in $\mathbb{A} \cap K$ such that $P^{2} \mid(p)$.
Dedekind proved that the primes p that ramify are exactly the primes that divide the discriminant D.

PMATH 641 Lecture 23: March 13, 2013

Theorem 48: Let $[K: \mathbb{Q}]<\infty$. Let D be the discriminant of K. If p is a prime which does not divide D then p is unramified in $\mathbb{A} \cap K$.
Proof: We'll prove the contrapositive.
Suppose that P is a prime ideal and $P^{2} \mid(p)$. We'll show that then $p \mid D$.
Since $P^{2} \mid(p)$ there is an ideal Q with $P^{2} Q=(p)$. Then there exists an $\alpha \in \mathbb{A} \cap K$ with $\alpha \in P Q$ but $\alpha \notin P^{2} Q$.

But then $\alpha^{2} \in P^{2} Q^{2}$ and so $\alpha^{2} \in(p)$ hence $\alpha^{2} / p \in \mathbb{A} \cap K$. Thus $\alpha^{p} / p \in \mathbb{A} \cap K$ and so for each $\beta \in \mathbb{A} \cap K$, $(\alpha \beta)^{p} / p \in \mathbb{A} \cap K$. Notice then that $T_{\mathbb{Q}}^{K}(\alpha \beta)^{p}=T_{\mathbb{Q}}^{K}\left(p(\alpha \beta)^{p} / p\right)=p T_{\mathbb{Q}}^{K}\left((\alpha \beta)^{p} / p\right)$. Since $T_{\mathbb{Q}}^{K}\left((\alpha \beta)^{p} / p\right)$ is an integer we see that $p \mid T_{\mathbb{Q}}^{K}(\alpha \beta)^{p}$. But

$$
\left(T_{\mathbb{Q}}^{K} \alpha \beta\right)^{p}=\left(\sum_{\sigma} \sigma(\alpha \beta)\right)^{p}=\sum_{\sigma} \sigma(\alpha \beta)^{p}+p \gamma
$$

where γ is an integer by the multinomial expansion so

$$
\left(T_{\mathbb{Q}}^{K} \alpha \beta\right)^{p}=T_{\mathbb{Q}}^{K}(\alpha \beta)^{p}+p \gamma
$$

and since $p \mid T_{\mathbb{Q}}^{K}(\alpha \beta)^{p}$ we see that $p \mid\left(T_{\mathbb{Q}}^{K} \alpha \beta\right)^{p}$. Since p is a prime we see that $p \mid T_{\mathbb{Q}}^{K} \alpha \beta$.
Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be an integral basis for $\mathbb{A} \cap K$. Then for $i=1, \ldots, n$ we have $T_{\mathbb{Q}}^{K}\left(\alpha \omega_{i}\right)$ is divisible by p. We have

$$
\alpha=a_{1} \omega_{1}+\cdots+a_{n} \omega_{n}
$$

with a_{1}, \ldots, a_{n} integers. Since $\alpha \notin(p)$ hence $\alpha / p \notin \mathbb{A} \cap K$ we see that at least one of a_{1}, \ldots, a_{n} is not divisible by p without loss of generality suppose $p \nmid a_{1}$.
Observe that since $p \mid T_{\mathbb{Q}}^{K}\left(\alpha \omega_{i}\right)$ we see that p divides

$$
T_{\mathbb{Q}}^{K}\left(\alpha_{1} \omega_{1}+\cdots+\alpha_{n} \omega_{n}\right) \omega_{i}=a_{1} T_{\mathbb{Q}}^{K} \omega_{1} \omega_{i}+a_{2} T_{\mathbb{Q}}^{K} \omega_{2} \omega_{i}+\cdots+a_{n} T_{\mathbb{Q}}^{K} \omega_{n} \omega_{i} .
$$

By Theorem 25 we have

$$
\begin{aligned}
a_{1} D & =\operatorname{det}\left(\begin{array}{ccc}
a_{1} T_{\mathbb{Q}}^{K}\left(\omega_{1} \omega_{1}\right) & \cdots & a_{1} T_{\mathbb{Q}}^{K}\left(\omega_{1} \omega_{n}\right) \\
T_{\mathbb{Q}}^{K}\left(\omega_{2} \omega_{1}\right) & \cdots & \vdots \\
\vdots & & \vdots \\
T_{\mathbb{Q}}^{K}\left(\omega_{n} \omega_{1}\right) & \cdots & T_{\mathbb{Q}}^{K}\left(\omega_{n} \omega_{n}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
a_{1} T_{\mathbb{Q}}^{K}\left(\omega_{1} \omega_{1}\right)+a_{2} T_{\mathbb{Q}}^{K}\left(\omega_{2} \omega_{1}\right)+\cdots+a_{n} T_{\mathbb{Q}}^{K}\left(\omega_{n} \omega_{1}\right) & \cdots & a_{1} T_{\mathbb{Q}}^{K}\left(\omega_{1} \omega_{n}\right)+\cdots+a_{n} T_{\mathbb{Q}}^{K}\left(\omega_{n} \omega_{n}\right) \\
T_{\mathbb{Q}}^{K}\left(\omega_{2} \omega_{1}\right) & \cdots & \\
\vdots & \cdots & T_{\mathbb{Q}}^{K}\left(\omega_{n} \omega_{n}\right)
\end{array}\right.
\end{aligned}
$$

Since p divides each integer in the top row of the matrix we see that $p \mid a_{1} D$. But $p \nmid a_{1}$ hence $p \mid D$ as required.

Let $[K: \mathbb{Q}]<\infty$. We define the norm of an ideal I of $\mathbb{A} \cap K$, denoted by $N I$,

$$
N I=|\mathbb{A} \cap K / I| .
$$

Thus $N I$ is the number of residue classes modulo $I . N I$ is also denoted by $N_{\mathbb{Q}}^{K}(I)$.
Theorem 49: Let $[K: \mathbb{Q}]=n$. Let I be a non-zero ideal of $\mathbb{A} \cap K$ and let $\alpha_{1}, \ldots, \alpha_{n}$ be an integral basis for I. Then

$$
N I=\left|\frac{\operatorname{disc}\left(\alpha_{1}, \ldots, \alpha_{n}\right)}{D}\right|^{1 / 2}
$$

where D is the discriminant of K.
Proof: We first remark that all integral bases for I have the same discriminant. This follows just as for the discriminant of K.

Let $\omega_{1}, \ldots, \omega_{n}$ be an integral basis for K. Then we can find an integral basis $\alpha_{1}, \ldots, \alpha_{n}$ of I of the form

$$
\begin{aligned}
\alpha_{1} & =a_{11} \omega_{1} \\
\alpha_{2} & =a_{21} \omega_{1}+a_{22} \omega_{2} \\
\quad & \vdots \\
\alpha_{n} & =a_{n 1} \omega_{1}+\cdots+a_{n n} \omega_{n}
\end{aligned}
$$

with $a_{i i} \in \mathbb{Z}^{+}$, by Theorem 38. Since

$$
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=\left(\left(\begin{array}{ccc}
a_{11} & & 0 \\
\vdots & \ddots & \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)\right)^{2} D
$$

we see that it suffices to show that

$$
N I=a_{11} \cdots a_{n n} .
$$

Suppose that

$$
r_{1} \omega_{1}+\cdots+r_{n} \omega_{n} \equiv s_{1} \omega_{1}+\cdots+s_{n} \omega_{n} \quad(\bmod I)
$$

with $0 \leq r_{i}<a_{i i}$ for $i=1, \ldots, n$ and with $0 \leq s_{i}<a_{i i} \ldots$

$$
\begin{aligned}
& \Longrightarrow\left(r_{1}-s_{1}\right) \omega_{1}+\cdots+\left(r_{n}-s_{n}\right) \omega_{n} \in I \\
& \Longrightarrow\left(s_{1}-r_{1}\right) \omega_{1}+\cdots+\left(s_{n}-r_{n}\right) \omega_{n} \in I
\end{aligned}
$$

Recall from the proof of Theorem 38 that $a_{n n}$ is chosen to be minimal and positive.

$$
\Longrightarrow a_{n n} \mid r_{n}-s_{n} \Longrightarrow r_{n}=s_{n} \text { since } 0 \leq\left|r_{n}-s_{n}\right|<a_{n n}
$$

Similarly $r_{n-1}=s_{n-1}, \ldots, r_{1}=s_{1}$.
Thus $N I \geq a_{11} \cdots a_{n n}$.

PMATH 641 Lecture 24: March 15, 2013

Theorem $44 \ldots$
$\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ a basis for I

$$
\begin{aligned}
\operatorname{disc}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} & =\left(\left(\begin{array}{ccc}
a_{11} & & 0 \\
\vdots & \ddots & \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)\right)^{2} D \\
& =\left(a_{11} \cdots a_{n n}\right)^{2} D
\end{aligned}
$$

We showed that $N I \geq a_{11} \cdots a_{n n}$.

To conclude suppose $\gamma \in \mathbb{A} \cap K$. Then $\gamma=b_{1} \omega_{1}+\cdots+b_{n} \omega_{n}$ with $b_{i} \in \mathbb{Z}$; here $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is an integral basis for $\mathbb{A} \cap K$. Note that, by the Division Algorithm, $b_{n}=q_{n} a_{n n}+r_{n}$ with $0 \leq r_{n}<a_{n n}$ and then $\gamma-q_{n} \alpha_{n}=d_{1} \omega_{1}+\cdots+d_{n-1} \omega_{n-1}+r_{n} \omega_{n}$.
Repeating this $n-1$ times we find that there exist integers q_{1}, \ldots, q_{n-1} so that

$$
\gamma-q_{n} \alpha_{n}-q_{n-1} \alpha_{n-1}+\cdots+q_{1} \alpha_{1}=r_{1} \omega_{1}+\cdots+r_{n} \omega_{n}
$$

with $0 \leq r_{i}<a_{i i}$. Thus

$$
N I \leq a_{11} \cdots a_{n n} \Longrightarrow N I=a_{11} \cdots a_{n n} .
$$

Corollary 50: $[K: \mathbb{Q}]<\infty$. Let α be a non-zero element of $\mathbb{A} \cap K$. Then $N(\alpha)=\left|N_{\mathbb{Q}}^{K}(\alpha)\right|$.
Proof: Let $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be an integral basis for $\mathbb{A} \cap K$. Then the principal ideal (α) has $\left\{\alpha \omega_{1}, \ldots, \alpha \omega_{n}\right\}$ as an integral basis.
Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}. Then

$$
\begin{aligned}
\operatorname{disc}\left\{\alpha \omega_{1}, \ldots, \alpha \omega_{n}\right\} & =\left(\operatorname{det}\left(\sigma_{i}\left(\alpha \omega_{j}\right)\right)\right)^{2} \\
D=\operatorname{disc}\left\{\omega_{1}, \ldots, \omega_{n}\right\} & =\left(\operatorname{det}\left(\sigma_{i}\left(\omega_{j}\right)\right)\right)^{2}
\end{aligned}
$$

But we have

$$
\begin{aligned}
\operatorname{disc}\left\{\alpha \omega_{1}, \ldots, \alpha \omega_{n}\right\} & =\left(\operatorname{det}\left(\begin{array}{ccc}
\sigma_{1}(\alpha) & & 0 \\
& \ddots & \\
0 & & \sigma_{n}(\alpha)
\end{array}\right)\right)^{2} \cdot D \\
& =\left(N_{\mathbb{Q}}^{K}(\alpha)\right)^{2} \cdot D .
\end{aligned}
$$

By Theorem $49 \Longrightarrow(N(\alpha))^{2}=\left(N_{\mathbb{Q}}^{K}(\alpha)\right)^{2}$. Thus $N(\alpha)=\left|N_{\mathbb{Q}}^{K}(\alpha)\right|$ since $N(\alpha)$ is a non-negative integer.
Theorem 51: (Fermat's Theorem) Let $[K: \mathbb{Q}]<\infty$ and let P be a prime ideal of $\mathbb{A} \cap K$. Let α be an element of $\mathbb{A} \cap K$ with $P \nmid(\alpha)$ then

$$
\alpha^{N P-1} \equiv 1 \bmod P .
$$

Proof: Let $\beta_{1}, \ldots, \beta_{N P}$ be a complete set of representatives for the cosets $\mathbb{A} \cap K / P$ (in $\mathbb{A} \cap K$ modulo P). We may suppose $\beta_{N P}$ is congruent to $0 \bmod P$. Then since $P \nmid(\alpha)$ we see that

$$
\alpha \beta_{1}, \ldots, \alpha \beta_{N P}
$$

is again a complete set of representatives $\bmod P$ with $\alpha \beta_{N P}$ congruent to 0 modulo P. Therefore

$$
\begin{aligned}
\alpha \beta_{1} \cdots \alpha \beta_{N P-1} & \equiv \beta_{1} \cdots \beta_{N P-1} \bmod P \\
\Longrightarrow \alpha^{N P-1} & \equiv 1 \bmod P
\end{aligned}
$$

as required.
Proposition 52: Let $[K: \mathbb{Q}]<\infty$. Let A be a non-zero ideal of $\mathbb{A} \cap K$. Then $N A \in A$.
Proof: Let $\beta_{1}, \ldots, \beta_{N A}$ be a complete set of representatives modulo A. Then

$$
1+\beta_{1}, \ldots, 1+\beta_{N P}
$$

is also a complete set of representatives modulo A.

$$
\begin{aligned}
\Longrightarrow \beta_{1}+\cdots+\beta_{N A} & \equiv\left(1+\beta_{1}\right)+\cdots+\left(1+\beta_{N A}\right) \bmod A \\
0 & \equiv N A \bmod A
\end{aligned}
$$

Notice that for any positive integer t there are only finitely many ideals A of $\mathbb{A} \cap K$ with $N A=t$.

Still to show: The norm map on ideals is multiplicative, i.e., for A, B ideals in $\mathbb{A} \cap K$

$$
N A B=N A \cdot N B
$$

If we have this and

$$
N A=p \text { with } p \text { a prime }
$$

then A is a prime ideal. Further if p is a prime in \mathbb{Z} then

$$
N(p)=\left|N_{\mathbb{Q}}^{K} p\right|=p^{n} \text { where } n=[K: \mathbb{Q}] .
$$

Every prime ideal P of $\mathbb{A} \cap K$ divides (p) for exactly one prime.

$$
\Longrightarrow N P=p^{f}
$$

for some integer f with $1 \leq f \leq n$.

PMATH 641 Lecture 25: March 18, 2013

Let $[K: \mathbb{Q}]<\infty$. Let A and B be ideals of $\mathbb{A} \cap K$. We say that an ideal C of $\mathbb{A} \cap K$ is a greatest common divisor of A and B if it is a common divisor of A and B and all other common divisors of A and B divide it.

In fact there can be at most 1 greatest common divisor of A and B since if C and D are greatest common divisors of A and B then $C \mid D$ and $D \mid C$ hence $C \supseteq D$ and $D \supseteq C$ so $D=C$.
In fact there is one since if $A=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $B=\left(\beta_{1}, \ldots, \beta_{s}\right)$ then we may take $C=\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}\right)$. Certainly $A \subseteq C$ and $B \subseteq C$ hence $C \mid A$ and $C \mid B$. Further if $D \mid A$ and $D \mid B$ then $D \supseteq A$ and $D \supseteq B$ hence $\alpha_{1}, \ldots, \alpha_{r}$ and $\beta_{1}, \ldots, \beta_{s}$ are in D so $D \supseteq C=\left(\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s}\right)$. Thus $D \mid C$. Therefore there is a unique greatest common divisor of A and B and we denote it by $\operatorname{gcd}(A, B)$.
$\operatorname{gcd}(A, B)=(1)$ is equivalent to A and B being coprime.
Since we have unique factorization into prime ideals in $\mathbb{A} \cap K$ if

$$
A=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}
$$

and

$$
B=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}
$$

with p_{1}, \ldots, p_{r} distinct prime ideals and $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r}$ non-negative integers then

$$
\operatorname{gcd}(A, B)=p_{1}^{c_{1}} \cdots p_{r}^{c_{r}}
$$

where

$$
c_{i}=\min \left(a_{i}, b_{i}\right) \text { for } i=1, \ldots, r
$$

Lemma 53: Let $[K: \mathbb{Q}]<\infty$. Let A and B be non-zero ideals of $\mathbb{A} \cap K$. Then there exists an element $\alpha \in A$ for which $\operatorname{gcd}\left(\frac{(\alpha)}{A}, B\right)=(1)$.
Proof: If $B=(1)$ the result is immediate. Suppose then that there are exactly r distinct prime ideals p_{1}, \ldots, p_{r} which divide B. We'll prove the result by induction on r.
First suppose that $r=1$.
Choose α so that α is in A but not in $A p_{1}$. This is possible since $A \neq A p_{1}$. But then $\operatorname{gcd}\left((\alpha) / A, p_{1}\right)$ is a divisor of p_{1}. Since p_{1} is a prime ideal it is either p_{1} or (1). If it is p_{1} so $\operatorname{gcd}\left((\alpha) / A, p_{1}\right)=p_{1}$ then $\operatorname{gcd}\left((\alpha), A p_{1}\right)=A p_{1}$. Thus $A p_{1} \mid(\alpha)$ hence $(\alpha) \subseteq A p_{1}$ and so $\alpha \in A p_{1}$ which is a contradiction.

Now suppose $r>1$. Let

$$
A_{m}=A \frac{P_{1} \cdots P_{r}}{P_{m}}, \text { for } m=1, \ldots, r
$$

Choose α_{m} in A_{m}, by the case $r=1$, so that

$$
\operatorname{gcd}\left(\frac{\left(\alpha_{m}\right)}{A_{m}}, P_{m}\right)=(1), \text { for } m=1, \ldots, r
$$

We now put

$$
\alpha=\alpha_{1}+\cdots+\alpha_{r}
$$

Since $\alpha_{1} \in A_{i}$ and $A \mid A_{i}$ for $i=1, \ldots, r$ we see that $\alpha_{i} \in A$ for $i=1, \ldots, r$ we see that $\alpha_{i} \in A$ for $i=1$, \ldots, r. Thus $\alpha \in A$.

Note that $\alpha \notin A P_{m}$ for $m=1, \ldots, r$. To see this observe first that $A P_{m} \mid A_{i}$ whenever $i \neq m$. Therefore α_{i} is in $A P_{m}$ for $i \neq m$. But $\alpha=\alpha_{1}+\cdots+\alpha_{r}$ so if α is in $A P_{m}$ for some m with $1 \leq m \leq r$ then α_{m} is in $A P_{m}$. But $\operatorname{gcd}\left(\left(\alpha_{m}\right) / A_{m}, P_{m}\right)=(1)$.

Since P_{1}, \ldots, P_{r} are distinct prime ideals

$$
\begin{align*}
& \operatorname{gcd}\left(\frac{\left(\alpha_{m}\right)}{A}, P_{m}\right)=(1) \tag{*}\\
\Longrightarrow & \operatorname{gcd}\left(\left(\alpha_{m}\right), A P_{m}\right)=A
\end{align*}
$$

But $\alpha_{m} \in A P_{m}$ so $\left(\alpha_{m}\right) \subseteq A P_{m}$ hence $A P_{m} \mid\left(\alpha_{m}\right)$. Thus $P_{m} \left\lvert\, \frac{\left(\alpha_{m}\right)}{A}\right.$ and this contradicts $*$.
We now show that $\operatorname{gcd}((\alpha) / A, B)=1$. Suppose otherwise. Then $\operatorname{gcd}((\alpha) / A, B)$ is divisible by P_{m} for some integer m with $1 \leq m \leq r$. Then P_{m} divides $(\alpha) / A$ so $A P_{m}$ divides (α). In particular $\alpha \in A P_{m}$ which is a contradiction.

PMATH 641 Lecture 26: March 20, 2013

Theorem 54: $[K: \mathbb{Q}]<\infty$. Let A and B be non-zero ideals of $\mathbb{A} \cap K$. Then

$$
N A B=N A \cdot N B
$$

Proof: Let $\alpha_{1}, \ldots, \alpha_{N A}$ be a complete set of representatives modulo A. Similarly let $\beta_{1}, \ldots, \beta_{N B}$ be a complete set of representatives modulo B.

By Lemma 53 there exists γ in A for which $\operatorname{gcd}((\gamma) / A, B)=(1) \Longrightarrow \operatorname{gcd}((\gamma), A B)=A$.
Consider the terms $\alpha_{i}+\gamma \beta_{j}$ with $1 \leq i \leq N A$ and $1 \leq j \leq N B$. These terms are all distinct mod $A B$ since otherwise there exists i, j, k, l with $1 \leq i \leq N A, 1 \leq j \leq N B, 1 \leq k \leq N A, 1 \leq l \leq N B$ for which

$$
\alpha_{i}+\gamma \beta_{j} \equiv \alpha_{k}+\gamma \beta_{l} \quad(\bmod A B)
$$

Then

$$
\alpha_{i}-\alpha_{k} \equiv \gamma\left(\beta_{j}-\beta_{l}\right) \quad(\bmod A B)
$$

Since γ is in A we see that $\alpha_{i}-\alpha_{k} \equiv 0(\bmod A)$ hence $i=k$. But then

$$
\gamma\left(\beta_{j}-\beta_{l}\right) \equiv 0 \quad(\bmod A B)
$$

Thus $A B \mid(\gamma)\left(\beta_{j}-\beta_{l}\right)$

$$
\begin{aligned}
& \Longrightarrow B \left\lvert\, \frac{(\gamma)}{A}\left(\beta_{j}-\beta_{l}\right)\right. \\
& \Longrightarrow B \mid\left(\beta_{j}-\beta_{l}\right) \\
& \Longrightarrow \beta_{j} \equiv \beta_{l} \quad(\bmod B) \Longrightarrow j=l
\end{aligned}
$$

Thus

$$
N A B \geq N A N B
$$

Suppose $\alpha \in \mathbb{A} \cap K$. Then $\alpha \equiv \alpha_{i}(\bmod A)$ for some i with $1 \leq i \leq N A$. Recall by $* \operatorname{gcd}((\gamma), A B)=A$. Thus

$$
\alpha-\alpha_{i}=\gamma \cdot \lambda+\delta
$$

with $\lambda \in \mathbb{A} \cap K$ and $\delta \in A B$. Then $\lambda \equiv \beta_{j}(\bmod B)$ for some j with $1 \leq j \leq N B$. Therefore $\alpha=$ $\alpha_{i}+\gamma \beta_{j}+\gamma\left(\lambda-\beta_{j}\right)+\delta$. Now since $\gamma \in A$ and $\lambda-\beta_{j}$ is in B we see that

$$
\alpha \equiv \alpha_{i}+\gamma \beta_{j} \bmod A B
$$

Thus $N A B \leq N A \cdot N B$ and so $N A B=N A N B$.
Let $[K: \mathbb{Q}]<\infty$. We define a notation \sim on the non-zero ideals of $\mathbb{A} \cap K$ by $A \sim B$ if and only if there exist $\alpha, \beta \in \mathbb{A} \cap K$ with $\alpha \beta \neq 0$ so that

$$
(\alpha) A=(\beta) B
$$

This is an equivalence relation
(1) $A \sim A \quad \alpha=\beta=1 \checkmark$
(2) $A \sim B \Longleftrightarrow B \sim A \checkmark$
(3) If $A \sim B$ and $B \sim C$ then there exist $\alpha, \beta, \gamma, \delta$ in $\mathbb{A} \cap K \backslash\{0\}$ such that $(\alpha) A=(\beta) B$ and $(\gamma) B=(\delta) C$ so then

$$
(\alpha \gamma) A=(\alpha)(\gamma) A=(\gamma)(\beta) B=(\delta)(\beta) C=(\delta \beta) C
$$

Thus $A \sim C$.
The equivalence classes under the relation \sim are known as the ideal classes of $\mathbb{A} \cap K$. Note that if we have just one equivalence class then all of the ideals are principal. The number of ideal classes is known as the class number of K and it is denoted by h or h_{K}.

Let $\mathcal{C}=\{[A]: A$ is an ideal of $\mathbb{A} \cap K\}$; here $[A]$ denotes the ideal class of which A is a representative.
We define a multiplication on \mathcal{C} by

$$
[A] \cdot[B]=[A B]
$$

Note that this definition does not depend on the representatives chosen since if $A \sim C$ and $B \sim D$ then $A B \sim C D$.

Observe that \mathcal{C} is an abelian group under multiplication. To see this note that multiplication is associative since

$$
[A] \cdot([B] \cdot[C])=[A] \cdot[B C]=[A(B C)]=[(A B) C]=[A B] \cdot[C]=([A] \cdot[B]) \cdot[C]
$$

The principal ideal class is the identity element of the group since $[(1)] \cdot[B]=[B]=[B] \cdot[(1)]$. Plainly also $[A] \cdot[B]=[B] \cdot[A]$.

Further $[A]$ has an inverse. To see this note that there is a positive integer a in A (take $\alpha \in A \ldots$) since A is not (0).
Thus $(a) \subseteq A$ hence $A \mid(a)$. Therefore there exists an ideal B with $A B=(a)$. Thus $[A] \cdot[B]=[(a)]=[(1)]$ and so

$$
[B]=[A]^{-1}
$$

Therefore \mathcal{C} is an abelian group under \cdot.

PMATH 641 Lecture 27: March 22, 2013

h : class number of K
$[K: \mathbb{Q}]<\infty . h$ is finite as we'll show.
Another important invariant of K is the regulator R. It often arises together with h.

Suppose that $[K: \mathbb{Q}]<n$ and there exist r_{1} real embeddings of K in \mathbb{C} and $2 r_{2}$ embeddings which are not into \mathbb{R}. Let $\sigma_{1}, \ldots, \sigma_{r_{1}}$ be the real embeddings and let $\sigma_{r_{1}+1}, \ldots, \sigma_{r_{1}+2 r_{2}}$ be the other embeddings where we arrange that

$$
\sigma_{r_{1}+i}=\overline{\sigma_{r_{1}+r_{2}+i}} \text { for } i=1, \ldots, r_{2} .
$$

Thus $r_{1}+2 r_{2}=n$. Put

$$
r=r_{1}+r_{2}-1
$$

Let $U(K)$ be the group of units in $\mathbb{A} \cap K$. Dirichlet proved that

$$
U(K) \approx \operatorname{Tor} \times \mathbb{Z}^{r}
$$

where Tor is a finite group corresponding to the roots of unity in K.
In particular there exist a system of fundamental units $\epsilon_{1}, \ldots, \epsilon_{r}$ such that if ϵ is in $U(K)$ then there exists a root of unity ζ and integers a_{1}, \ldots, a_{r} such that

$$
\epsilon=\zeta \epsilon_{1}^{a_{1}} \cdots \epsilon_{r}^{a_{r}} .
$$

Note that if $\left(a_{i j}\right)$ is an $r \times r$ matrix with integer entries which has an inverse with integer entries then

$$
\left\{\epsilon_{1}^{a_{11}} \cdots \epsilon_{r}^{a_{1 r}}, \ldots, \epsilon_{1}^{a_{r 1}}, \ldots, \epsilon_{r}^{a_{r r}}\right\}
$$

is again a fundamental system of units.
Let $L: K^{*} \rightarrow \mathbb{R}^{r_{1}+r_{2}}$ be the logarithmic embedding of K^{*} in $\mathbb{R}^{r_{1}+r_{2}}$ given by

$$
L(\alpha)=\left(\log \left|\sigma_{1}(\alpha)\right|, \ldots, \log \left|\sigma_{r_{1}}(\alpha)\right|, 2 \log \left|\sigma_{r_{1}+1}(\alpha)\right|, \ldots, 2 \log \left|\sigma_{r_{1}+r_{2}}(\alpha)\right|\right)
$$

The kernel of L consists of the roots of unity of K. Further if $\alpha \in K$ with $\alpha \neq 0$ then

$$
\begin{aligned}
\log \left|N_{\mathbb{Q}}^{K}(\alpha)\right| & =\log \left|\sigma_{1}(\alpha)\right|+\cdots+\log \left|\sigma_{r_{1}+2 r_{2}}(\alpha)\right| \\
& =\log \left|\sigma_{1}(\alpha)\right|+\cdots+\log \left|\sigma_{r_{1}}(\alpha)\right|+2 \log \left|\sigma_{r_{1}+1}(\alpha)\right|+\cdots+2 \log \left|\sigma_{r_{1}+r_{2}}(\alpha)\right|
\end{aligned}
$$

Notice that if $\alpha \in U(K)$ then $L(\alpha)$ lies in the subgroup of $\mathbb{R}^{r_{1}+r_{2}}$ given by $x_{1}+\cdots+x_{r_{1}+r_{2}}=0$. In fact they determine a lattice of rank $r_{1}+r_{2}-1$. We can ask for the volume of a fundamental region of the lattice. This is called the regulator R. Equivalently

$$
R=\left|\operatorname{det}\left(e_{i} \log \left|\sigma_{i}\left(\epsilon_{j}\right)\right|\right)_{\substack{i=1, \ldots, r \\ j=1, \ldots, r}}\right|
$$

where $e_{i}=1$ if $1 \leq i \leq r_{1}$ and $e_{i}=2$ otherwise.
For $[K: \mathbb{Q}]=2$ with K real quadratic then $R=\log \epsilon$ where ϵ is the fundamental unit larger than 1 . If K is imaginary quadratic take

$$
R=1
$$

Let $M_{K}(x)$ be the number of ideals of $\mathbb{A} \cap K$ with norm at most x. One can prove

$$
\lim _{x \rightarrow \infty} \frac{M_{K}(x)}{x}=2^{r_{1}}(2 \pi)^{r_{2}} \frac{h R}{W \sqrt{|d|}}
$$

where W is the number of roots of unity in K. The number of integers up to x is $x+O(1)$. The number of primes $\pi(x)$ up to x satisfies

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

Let $\pi_{K}(x)$ denote the number of prime ideals up to x. Landau proved that

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\pi_{K}(x)}{x / \log x}=1 . \\
& \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \\
& =\prod_{p}\left(\frac{1}{1-\frac{1}{p^{s}}}\right)
\end{aligned}
$$

PMATH 641 Lecture 28: March 25, 2013

Corrections to Question 4 on the assignment. Replace "Let d be the discriminant of $K \ldots$... by "Let d be the discriminant of $\theta \ldots$ ". Also ". . of the form

$$
\frac{1}{d}\left(a_{0}+a_{1} \theta+\cdots+a_{i-1} \theta^{i-1}\right)
$$

with $a_{0}, a_{1}, \ldots, a_{i-1}$ integers and $a_{i-1} \ldots "$
Theorem 55: Let $[K: \mathbb{Q}]<\infty$. There exists a positive number C_{0} which depends on K such that if A is a non-zero ideal of $\mathbb{A} \cap K$ then there exists a non-zero element α of A for which

$$
\left|N_{\mathbb{Q}}^{K}(\alpha)\right| \leq C_{0} N A
$$

Proof: Let $\omega_{1}, \ldots, \omega_{n}$ be an integral basis for K. Next put

$$
t=\left[(N A)^{1 / n}\right]
$$

and consider the elements β in $\mathbb{A} \cap K$ of the form

$$
\begin{equation*}
a_{1} \omega_{1}+\cdots+a_{n} \omega_{n} \tag{*}
\end{equation*}
$$

with $0 \leq a_{i} \leq t$ for $i=1, \ldots, n$. There are $(t+1)^{n}$ such elements and since $(t+1)^{n}>N A$ there exist β_{1}, β_{2} of the form $*$ which are equivalent modulo A. In particular $\alpha=\beta_{1}-\beta_{2}=b_{1} \omega_{1}+\cdots+b_{n} \omega_{n}$ where $0 \leq\left|b_{i}\right| \leq t$.
Then let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q}. Thus

$$
\begin{aligned}
\left|N_{\mathbb{Q}}^{K}(\alpha)\right| & =\prod_{i=1}^{n}\left|\sigma_{i}\left(b_{1} \omega_{1}+\cdots+b_{n} \omega_{n}\right)\right| \\
& \leq t^{n}\left(\prod_{i=1}^{n} n\left(\max _{1 \leq j \leq n}\left|\sigma_{i}\left(\omega_{j}\right)\right|\right)\right) \\
& \leq N A \cdot C_{0}{ }^{4)}
\end{aligned}
$$

Theorem 56: Let $[K: \mathbb{Q}]<\infty$. The class number of K is finite.
Proof: We'll show that every non-zero ideal of $\mathbb{A} \cap K$ is equivalent to an ideal of norm at most C_{0}, where C_{0} is from Theorem 55. Since there are only finitely many ideals of norm at most C_{0} the result then follows.

Let I be a non-zero ideal of $\mathbb{A} \cap K$. Then there exists an ideal A such that $A I \sim(1)$.
By Theorem 55 there exists a non-zero α in A for which

$$
\left|N_{\mathbb{Q}}^{K}(\alpha)\right| \leq C_{0} N A
$$

[^0]Note that $\alpha \in A \Longrightarrow(\alpha) \subseteq A$ so $A \mid(\alpha)$ hence there exists B such that $A B=(\alpha)$. But

$$
N A \cdot N B=N A B=N(\alpha)=\left|N_{\mathbb{Q}}^{K}(\alpha)\right| \leq C_{0} N A
$$

Thus $N B \leq C_{0}$.
Further $A B \sim(1)$ and since $A I \sim(1) \Longrightarrow B \sim I$. Thus I is equivalent to an ideal of norm at most C_{0}.
If h is the class number of K then by Lagrange's Theorem for any non-zero ideal A of $\mathbb{A} \cap K$ we have

$$
[A]^{h}=[(1)]
$$

Equivalently A^{h} is principal for any ideal A.
Suppose q is a positive integer coprime with h and $A^{q} \sim B^{q}$ then $A \sim B$. To see this note that if $\operatorname{gcd}(q, h)=1$ then there exists r, s with $r q+s h=1$ and then

$$
A^{r q} \sim B^{r q} \text { so } A^{1-s h} \sim B^{1-s h} \Longrightarrow A \sim B
$$

It can be shown that we can take $C_{0}=\sqrt{|d|}$ where d is the discriminant of K.
Example: Consider $K=\mathbb{Q}(\sqrt{-5})$. We have $d=-20$ so $C_{0}=\sqrt{20}$. Therefore we need only consider ideals of norm at most $\sqrt{20}$ hence at most 4 we must check how (2) and (3) decompose into prime ideals in $\mathbb{A} \cap \mathbb{Q}(\sqrt{-5})$.

$$
\begin{aligned}
(2) & =(2,1+\sqrt{-5})(2,1-\sqrt{-5}) \\
& =(4,2-2 \sqrt{-5}, 2+2 \sqrt{-5}, 6) \\
& =(2,2(1+\sqrt{-5})) \\
& =(2)
\end{aligned}
$$

PMATH 641 Lecture 29: March 27, 2013

Class number of $\mathbb{Q}(\sqrt{-5})$. It suffices to consider ideals of norm at most 4 . Note that

$$
(2,1+\sqrt{-5}) \cdot(2,1-\sqrt{-5})=(4,2(1+\sqrt{-5}), 2(1-\sqrt{-5}), 6)=(2)
$$

Also observe that

$$
2-(1+\sqrt{-5})=1-\sqrt{-5}
$$

and so

$$
(2,1+\sqrt{-5})=(2,1-\sqrt{-5})
$$

Put $\mathcal{P}=(2,1+\sqrt{-5})$. Thus $(2)=\mathcal{P}^{2}$. Also note that

$$
(3,1+\sqrt{-5})(3,1-\sqrt{-5})=(9,3(1+\sqrt{5}), 3(1-\sqrt{5}), 6)=(3)
$$

Put $\mathcal{Q}=(3,1+\sqrt{-5})$ and $\mathcal{Q}^{\prime}=(3,1-\sqrt{-5})$. We have $N \mathcal{Q} N \mathcal{Q}^{\prime}=9$.
Could we have $N \mathcal{Q}=1$? Then $\mathcal{Q}=(1)$. In particular $1 \in \mathcal{Q}$ hence there exist $a, b, c, d \in \mathbb{Z}$ with

$$
\begin{gathered}
3(a+b \sqrt{-5})+(1+\sqrt{-5})(c+d \sqrt{-5})=1 \\
\Longrightarrow 3 a+c-5 d=1
\end{gathered}
$$

$$
\begin{array}{r}
3 b+c+d=0 \\
3 a-3 b-6 d=1
\end{array}
$$

and since $3 \nmid 1$. \#
Similarly $N \mathcal{Q}^{\prime} \neq 1$ hence $N \mathcal{Q}=N \mathcal{Q}^{\prime}=3$ and \mathcal{Q} and \mathcal{Q}^{\prime} are prime ideals. Thus (1), $\mathcal{P}, \mathcal{P}^{2}, \mathcal{Q}$, and \mathcal{Q}^{\prime} are the ideals of norm at most 4 . Since \mathcal{P}^{2} is principal

$$
\mathcal{P}^{2} \sim(1)
$$

and so we need to consider only the ideal classes of $(1), \mathcal{P}, \mathcal{Q}$, and \mathcal{Q}^{\prime}.
We have

$$
\left.\begin{array}{rl}
(3,1+\sqrt{-5})(2,1+\sqrt{-5})=\left(6,2(1+\sqrt{-5}), 3(1+\sqrt{-5}),(1+\sqrt{-5})^{2}\right)=(1+\sqrt{-5}) \\
\mathcal{Q P} \sim(1) \\
(3,1-\sqrt{-5})(2,1+\sqrt{-5})=(1-\sqrt{-5}) \\
\mathcal{Q}^{\prime} \mathcal{P} \sim(1) \\
\mathcal{Q} \mathcal{P} \sim(1)
\end{array}\right\} \Longrightarrow \mathcal{Q} \sim \mathcal{Q}^{\prime} .
$$

Thus

$$
\mathcal{C}=\{[(1)],[\mathcal{P}]\}
$$

Could we have $\mathcal{P} \sim(1)$, so \mathcal{P} principal? Then $\mathcal{P}=(a+b \sqrt{-5})$ and since $N \mathcal{P}=2$

$$
a^{2}-5 b^{2}=2 \Longrightarrow a^{2} \equiv 2 \quad(\bmod 5) \quad \#
$$

Therefore $h=2$.
Suppose $[K: \mathbb{Q}]<\infty$.
There is an extension E of K which is Galois over K and has the property that the Galois group of E over K is isomorphic to the ideal class group of K. Also every ideal of $\mathbb{A} \cap K$ becomes principal in E.
E is the Hilbert class field of K.
PMATH 641 Lecture 30: April 1, 2013

Lattices, $\boldsymbol{\Lambda}$ in $\mathbb{R}^{\boldsymbol{n}}$

Let $\alpha_{1}, \ldots, \alpha_{n}$ be linearly independent vectors over \mathbb{R} in \mathbb{R}^{n}. The set of points

$$
\Lambda=\left\{m_{1} \alpha_{1}+\cdots+m_{n} \alpha_{n}: m_{i} \in \mathbb{Z}, i=1, \ldots, n\right\}
$$

is known as a lattice. The lattice is said to be generated by $\alpha_{1}, \ldots, \alpha_{n}$. Notice that if $\left(v_{i j}\right)$ is a matrix with integer entries and $\operatorname{det}\left(v_{i j}\right)= \pm 1$ and we put

$$
\alpha_{i}^{\prime}=\sum_{j=1}^{n} v_{i j} \alpha_{j}
$$

then $\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}$ is also a basis for Λ.
Put $d(\Lambda)=\left|\operatorname{det}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right|$. Then $d(\Lambda)$ does not depend on the choice of generators $\alpha_{1}, \ldots, \alpha_{n}$ for Λ since

$$
\operatorname{det}\left(\alpha_{1}, \ldots, \alpha_{n}\right)= \pm \operatorname{det}\left(\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right)
$$

whenever $\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}$ also generate Λ.

For generators $\alpha_{1}, \ldots, \alpha_{n}$ of Λ we can define an associated fundamental parallelogram P in \mathbb{R}^{n} given by

$$
P=\left\{\theta_{1} \alpha_{1}+\cdots+\theta_{n} \alpha_{n}: 0 \leq \theta_{i}<1 \text { for } i=1, \ldots, n\right\} .
$$

Notice that every element β in \mathbb{R}^{n} has a unique representation in the form

$$
\beta=\lambda+\gamma
$$

with $\lambda \in \Lambda$ and $\gamma \in P$.
Note also that $\mu(P)$ the Lebesgue measure or volume of P is just

$$
\mu(P)=d(\Lambda)
$$

Remark: Since $\alpha_{1}, \ldots, \alpha_{n}$ are linearly independent over $\mathbb{R}, d(\Lambda)>0$.
Example: Let Λ be the lattice in \mathbb{R}^{n} generated by e_{1}, \ldots, e_{n} where

$$
\begin{gathered}
e_{j}=(0, \ldots, 0,1,0, \ldots, 0) \\
\Lambda_{0}=\left\{\left(m_{1}, \ldots, m_{n}\right): m_{i} \in \mathbb{Z} \text { for } i=1, \ldots, n\right\}
\end{gathered}
$$

$d\left(\Lambda_{0}\right)=1$
Theorem 57: (Blichfeldt's Theorem) Let $m, n \in \mathbb{Z}^{+}$. Let Λ be a lattice in \mathbb{R}^{n}. Let S be a set in \mathbb{R}^{n} with Lebesgue measure $\mu(S)$. Suppose that either $\mu(S)>m d(\Lambda)$ or S is compact and

$$
\mu(S) \geq m d(\Lambda)
$$

then there exist distinct points x_{1}, \ldots, x_{m+1} in S with with $x_{i}-x_{j} \in \Lambda$ for $1 \leq i, j \leq m$.
Proof: Let $\alpha_{1}, \ldots, \alpha_{n}$ generate Λ and let P be the fundamental parallelogram associated with $\alpha_{1}, \ldots, \alpha_{n}$.
For each $\lambda \in \Lambda$ we define $R(\lambda)$ to be the set of points $v \in P$ such that

$$
\lambda+v \in S
$$

We then have

$$
\sum_{\lambda \in \Lambda} \mu(R(\lambda))=\mu(S)>m d(\Lambda)=m \mu(P)
$$

Therefore there is a point $v_{0} \in S$ which is associated with $m+1$ distinct lattice points $\lambda_{1}, \ldots, \lambda_{m+1}$. We now take $x_{i}=v_{0}+\lambda_{i}$ for $i=1, \ldots, m+1$. But then

$$
x_{i}-x_{j}=\lambda_{i}-\lambda_{j} \in \Lambda
$$

as required.
Suppose now that S is compact and

$$
\mu(S)=\operatorname{md}(\Lambda)
$$

Let $\epsilon_{1}, \epsilon_{2}, \ldots$ be a sequence of positive real numbers with $\lim _{r \rightarrow \infty} \epsilon_{r}=0$. Then

$$
\mu\left(\left(1+\epsilon_{r}\right) S\right)>\mu(S)=\operatorname{md}(\Lambda)
$$

Thus there exist points $x_{1, r}, \ldots, x_{m+1, r}$ in $\left(1+\epsilon_{r}\right) S$ for which

$$
u_{r}(i, j)=x_{i, r}-x_{j, r} \in \Lambda \quad \text { for } 1 \leq i, j \leq m+1
$$

Since S is compact we can extract a subsequence and so suppose that $\lim _{r \rightarrow \infty} x_{i, r}=x_{i}^{\prime}$ for $i=1, \ldots, m+1$ with $x_{i}^{\prime} \in S$. Notice that since Λ is discrete the $u_{r}(i, j)$'s are all the same for r sufficiently large. Therefore $x_{1}^{\prime}, \ldots, x_{m+1}^{\prime}$ are in S and

$$
x_{i}^{\prime}-x_{j}^{\prime} \in \Lambda \quad \text { for } 1 \leq i, j \leq m+1
$$

PMATH 641 Lecture 31: April 3, 2013

? from last class: Note that

$$
\frac{1}{1+\epsilon_{r}} x_{i, r} \in S
$$

Definition: Let S be a subset of \mathbb{R}^{n}. We say that S is symmetric about the origin if whenever $x \in S$ then $-x \in S$. We say that S is convex if whenever x, y are in S then $\lambda x+(1-\lambda) y \in S$ for any $\lambda \in \mathbb{R}$ with $0 \leq \lambda<1$.
Theorem 58: (Minkowski's Theorem).
Let $m, n \in \mathbb{Z}^{+}$. Let S be a subset of \mathbb{R}^{n} which is symmetric about the origin and convex of Lebesgue measure $\mu(S)$. Let Λ be a lattice in \mathbb{R}^{n}. If either

$$
\mu(S)>m 2^{n} d(\Lambda)
$$

or

$$
\mu(S) \geq m 2^{n} d(\Lambda)
$$

and S is compact then there exist m pairs of non-zero points $\pm \lambda_{1}, \pm \lambda_{2}, \ldots, \pm \lambda_{m}$ from Λ and in S.
Proof: We apply Theorem 57 to $\frac{1}{2} S$. Note that $\mu\left(\frac{1}{2} S\right)=\frac{1}{2^{n}} \mu(S)$. Therefore there exist distinct non-zero points $\frac{1}{2} x_{1}, \ldots, \frac{1}{2} x_{m}$ in $\frac{1}{2} S$ which have the property that

$$
\frac{1}{2} x_{i}-\frac{1}{2} x_{j} \in \Lambda \quad \text { for } 1 \leq i, j \leq m
$$

Let us suppose without loss of generality that

$$
x_{1} \tilde{>} x_{2} \tilde{>} \ldots \tilde{>} x_{m}
$$

where $\tilde{>}$ indicates that the first non-zero coordinate in $x_{i}-x_{i+1}$ is positive for $i=1, \ldots, m-1$. We now take

$$
\lambda_{j}=\frac{1}{2} x_{j}-\frac{1}{2} x_{m+1} \quad \text { for } j=1, \ldots, m .
$$

Note that since S is symmetric about $\mathbf{0}$ we see that $-x_{m+1}$ is in S. Since S is convex

$$
\frac{1}{2} x_{j}+\frac{1}{2}\left(-x_{m+1}\right)=\frac{1}{2} x_{i}-\frac{1}{2} x_{m+1}=\lambda_{j}
$$

is in S.
$\Longrightarrow \lambda_{1}, \ldots, \lambda_{m}$ are non-zero and distinct with first non-zero coordinate positive. Also $-\lambda_{1}, \ldots,-\lambda_{m}$ are in S, by symmetry, and in Λ. The result follows.
Observe that the lower bounds in the theorem can't be improved. Take

$$
S=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:\left|x_{1}\right|<m \text { and }\left|x_{2}\right|<1, \ldots,\left|x_{n}\right|<1\right\} .
$$

$\mu(S)=m 2^{n}$. S is convex and symmetric about $\mathbf{0}$. Take the lattice Λ_{0} with $d\left(\Lambda_{0}\right)=1$. The points of Λ_{0} is in S are $(\pm j, 0, \ldots, 0)$ for $j=0, \ldots, m-1$.
Suppose $[K: \mathbb{Q}]=n$ and let $K=\mathbb{Q}(\theta)$. Suppose $\theta=\theta_{1}, \ldots, \theta_{n}$ are the conjugates of θ over \mathbb{Q}. Suppose that $\sigma_{1}, \ldots, \sigma_{n}$ are the embeddings of K in \mathbb{C} which fix \mathbb{Q}. Let r_{1} be the number of embeddings in \mathbb{R}, equivalently the number of $\theta_{1}, \ldots, \theta_{n}$ which are in \mathbb{R}. Let $\sigma_{1}, \ldots, \sigma_{r_{1}}$ be the real embeddings and $\sigma_{r_{1}+1}, \ldots, \sigma_{r_{1}+2 r_{2}}$ be the other embeddings, with $\sigma_{r_{1}+j}=\overline{\sigma_{r_{1}+r_{2}+j}}$ for $j=1, \ldots, r_{2}$.
Let $\tilde{\sigma}: K \rightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ be given by

$$
\tilde{\sigma}(x)=\left(\sigma_{1}(x), \ldots, \sigma_{r_{1}}(x), \sigma_{r_{1}+1}(x), \ldots, \sigma_{r_{1}+r_{2}}(x)\right) .
$$

$\tilde{\sigma}$ is an injective ring homomorphism. We may identify \mathbb{C} with \mathbb{R}^{2} by considering real and imaginary parts. Let us define

$$
\sigma: K \rightarrow \mathbb{R}^{n}
$$

by

$$
\sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{r_{1}}(x), \Re\left(\sigma_{r_{1}+1}(x)\right), \Im\left(\sigma_{r_{1}+1}(x)\right), \ldots, \Re\left(\sigma_{r_{1}+r_{2}}(x)\right), \Im\left(\sigma_{r_{1}+r_{2}}(x)\right)\right) .
$$

Lemma 59: $[K: \mathbb{Q}]<\infty . A$ a non-zero ideal in $\mathbb{A} \cap K$. Then $\sigma(A)$ is a lattice in \mathbb{R}^{n} with

$$
d(\Lambda)=2^{-r_{2}}|D|^{1 / 2} N A
$$

where D is the discriminant of K.

PMATH 641 Lecture 32: April 5, 2013

Recall our map $\sigma: K \rightarrow \mathbb{R}^{n}$ given by

$$
\sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{r_{1}}(x), \Re\left(\sigma_{r_{1}+1}(x)\right), \Im\left(\sigma_{r_{1}+1}(x)\right), \ldots, \Re\left(\sigma_{r_{1}+r_{2}}(x)\right), \Im\left(\sigma_{r_{1}+r_{2}}(x)\right)\right) .
$$

Lemma 59: Let A be a non-zero ideal in $\mathbb{A} \cap K$. Then $\sigma(A)$ is a lattice Λ in \mathbb{R}^{n} with

$$
d(\Lambda)=2^{-r_{2}}|D|^{1 / 2} N A,
$$

where D is the discriminant of K.
Proof: Let $\alpha_{1}, \ldots, \alpha_{n}$ be an integral basis for A. The coordinates of $\sigma\left(\alpha_{i}\right)$ in \mathbb{R}^{n} are

$$
\begin{equation*}
\left(\sigma_{1}\left(\alpha_{i}\right), \ldots, \sigma_{r_{1}}\left(\alpha_{i}\right), \ldots, \Im\left(\sigma_{r_{1}+r_{2}}\left(\alpha_{i}\right)\right)\right) . \tag{*}
\end{equation*}
$$

Note that for $z \in \mathbb{C}, \Re(z)=\frac{z+\bar{z}}{2}$ and $\Im(z)=-\frac{z-\bar{z}}{2}=-\frac{1}{i}\left(\bar{z}-\left(\frac{z+\bar{z}}{2}\right)\right)$. Thus

$$
D=\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right)=\left(\frac{1}{-2 i}\right)^{r_{2}} d(\Lambda)
$$

where $d(\Lambda)$ is the determinant of the matrix whose i th row is $*$. Since $D \neq 0$ we see that $d(\Lambda)$ is not 0 and so $\sigma(A)=\Lambda$ is a lattice in \mathbb{R}^{n}. Now by Theorem 49 our result follows.

Theorem 60: Suppose $[K: \mathbb{Q}]=n$ with $n=r_{1}+2 r_{2}$ where r_{1} is the number of real embeddings of K in \mathbb{C} and $2 r_{2}$ is the number of other embeddings. Let A be a non-zero ideal in $\mathbb{A} \cap K$. Then there exists a non-zero α in A for which

$$
\left|N_{\mathbb{Q}}^{K}(\alpha)\right| \leq\left(\frac{2}{\pi}\right)^{r_{2}} \sqrt{|D|} N A .
$$

Proof: Let $t \in \mathbb{R}^{+}$and let S_{t} be the set of $\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} for which $\left|x_{i}\right| \leq t$ for $i=1, \ldots, r_{1}$ and for which $x_{r_{1}+j}^{2}+x_{r_{1}+1+j}^{2} \leq t^{2}$ for $j=1,3,5, \ldots, 2 r_{2}-1$.
Note that S_{t} is compact, convex and symmetric about the origin $\mathbf{0}$. Further

$$
\mu\left(S_{t}\right)=(2 t)^{r_{1}}\left(\pi t^{2}\right)^{r_{2}}=2^{r_{1}} \pi^{r_{2}} t^{n} .
$$

We now take

$$
t=\left(\frac{2^{n}}{2^{r_{1}+r_{2}} \pi^{r_{2}}}|D|^{1 / 2} N A\right)^{1 / n}
$$

Then

$$
\mu\left(S_{t}\right)=2^{n}\left(\frac{|D|^{1 / 2} N A}{2^{r_{2}}}\right)=2^{n} d(\Lambda),
$$

where Λ is the lattice associated with the ideal A. By Minkowski's Theorem there is a non-zero lattice point of Λ in S_{t}. Let α be the associated element of A. Then, let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings of K in \mathbb{C} which fix \mathbb{Q},

$$
\begin{aligned}
\left|N_{\mathbb{Q}}^{K}(\alpha)\right| & =\prod_{i=1}^{n}\left|\sigma_{i}(\alpha)\right|=\prod_{i=1}^{r_{1}}\left|\sigma_{i}(\alpha)\right| \prod_{i=r_{1}+1}^{r_{1}+r_{2}}\left|\sigma_{i}(\alpha) \overline{\sigma_{i}}(\alpha)\right| \\
& =\prod_{i=1}^{r_{1}}\left|\sigma_{i}(\alpha)\right| \prod_{i=r_{1}+1}^{r_{1}+r_{2}}\left(\Re\left(\sigma_{i}(\alpha)\right)^{2}+\Im\left(\sigma_{i}(\alpha)\right)^{2}\right) \\
& \leq t^{r_{1}} \cdot t^{2 r_{2}}=t^{n}=\frac{2^{n}}{2^{r_{1}+r_{2}} \pi^{r_{2}}}|D|^{1 / 2} N A \\
& =\left(\frac{2}{\pi}\right)^{r_{2}}|D|^{1 / 2} N A .
\end{aligned}
$$

Suppose $[K: \mathbb{Q}]=n$. Let θ be in $\mathbb{A} \cap K$ and such that $K=\mathbb{Q}(\theta)$. Let f be the minimal polynomial of θ. Let t be the index of $\mathbb{Z}[\theta]$ in $\mathbb{A} \cap K$. Let p be a prime in \mathbb{Z}.
? How does (p) decompose in $\mathbb{A} \cap K$? Consider f in $\mathbb{F}_{p}[x]$ where \mathbb{F}_{p} is the finite field of p elements. Identify \mathbb{F}_{p} with $\mathbb{Z} / p \mathbb{Z}$. Suppose $p \nmid t$. In $\mathbb{F}_{p}[x]$,

$$
f(x)=f_{1}(x)^{e_{1}} \cdots f_{g}(x)^{e_{g}}
$$

where f_{i} is irreducible in $\mathbb{F}_{p}[x]$ of degree d_{i}. We have

$$
(p)=P_{1}^{e_{1}} \cdots P_{g}^{e_{g}}
$$

where P_{i} is a prime ideal in $\mathbb{A} \cap K$. In fact

$$
P_{i}=\left(p, f_{i}(\theta)\right)
$$

If also $p \nmid D$ then $e_{1}=\cdots=e_{g}=1$. Thus

$$
\begin{equation*}
n=d_{1}+\cdots+d_{g} \tag{*}
\end{equation*}
$$

and so is a partition of n.
Let $\theta=\theta_{1}, \ldots, \theta_{n}$ be the conjugates of θ over \mathbb{Q} and put $L=\mathbb{Q}\left(\theta_{1}, \ldots, \theta_{n}\right)$. Let $G=\operatorname{Gal}(L / \mathbb{Q})$ be the Galois group of L over \mathbb{Q}. If σ is in $\operatorname{Gal}(L / \mathbb{Q})$ then σ induces a permutation of $\theta_{1}, \ldots, \theta_{n}$ and so an element $\tilde{\sigma}$ of S_{n}. We can decompose $\tilde{\sigma}$ as a product of cycles say $\tilde{\sigma}=c_{1} \cdots c_{l}$ and then

$$
\begin{equation*}
n=\left|c_{1}\right|+\cdots+\left|c_{l}\right| \tag{**}
\end{equation*}
$$

where $\left|c_{i}\right|$ is the length of the cycle $c_{i} . * *$ is another partition of n.
1880 Frobenius

$$
\frac{\# \text { of primes up to } x \text { with a given partition } *}{\# \text { of primes up to } x} \rightarrow \text { tends to a limit. }
$$

and the limit is the proportion of elements σ of G with the same partition of n in $* *$.
Office Hours
Mon Apr 8 2:40-3:40
Wed Apr 10 2:00-3:00
Thurs Apr 11 2:00-3:00

[^0]: ${ }^{4)}$ where C_{0} is above quantity

