
The SAT+CAS Method for Combinatorial Search with
Applications to Best Matrices

Curtis Bright · Dragomir Ž. Ðoković ·
Ilias Kotsireas · Vijay Ganesh

Abstract In this paper, we provide an overview of the SAT+CAS method that
combines satisfiability checkers (SAT solvers) and computer algebra systems
(CAS) to resolve combinatorial conjectures, and present new results vis-à-vis
best matrices. The SAT+CAS method is a variant of the Davis–Putnam–
Logemann–Loveland DPLL(T) architecture, where the T solver is replaced by
a CAS. We describe how the SAT+CAS method has been previously used to
resolve many open problems from graph theory, combinatorial design theory,
and number theory, showing that the method has broad applications across a
variety of fields. Additionally, we apply the method to construct the largest
best matrices yet known and present new skew Hadamard matrices constructed
from best matrices. We show the best matrix conjecture (that best matrices
exist in all orders of the form r2 + r + 1) which was previously known to hold
for r ≤ 6 also holds for r = 7. We also confirmed the results of the exhaustive
searches that have been previously completed for r ≤ 6.

Keywords Satisfiability checking · Combinatorial search · Symbolic
computation · SAT+CAS

1 Introduction

In recent years a number of search paradigms have emerged that allow the
solving of extraordinarily large problems in combinatorial mathematics. In
particular, one of the most successful techniques has been the “SAT paradigm”

C. Bright, D. Ðoković, V. Ganesh
University of Waterloo
200 University Ave W
Waterloo, Ontario, Canada

I. Kotsireas
Wilfrid Laurier University
75 University Ave W
Waterloo, Ontario, Canada

2 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

of reducing a problem into Boolean logic and then searching for a solution
using a SAT solver [6]. In fact, the SAT paradigm has been so successful that
it is routinely used to solve problems in areas of mathematics which don’t
seem to be directly connected to Boolean logic at first glance. In 2017, Heule,
Kullmann, and Marek [42] summarized the state-of-the-art in combinatorial
searches as follows:

Surprisingly, SAT solving is getting so strong that indeed [using SAT
solvers] seems today the best solution in most cases.

Some enormous combinatorial problems have been resolved in this way.
In particular, the cube-and-conquer SAT solving paradigm [40] by Heule and
Kullmann has achieved a number of striking successes including solving the
Boolean Pythagorean triples problem [41] and determining the value of the
fifth Schur number—a problem that resisted solution for over 100 years [39].

Briefly, in the cube-and-conquer paradigm a “look-ahead” SAT solver [44]
partitions the search space into a number of independent subspaces of roughly
equal difficulty called “cubes”. Each cube is then solved by a SAT solver using
conflict-driven clause learning [60] (possibly employing parallelization across a
large number of processors) to determine if a solution to the problem exists.
See Section 2 for more background on the cube-and-conquer paradigm.

Despite these impressive successes, the cube-and-conquer paradigm is not
appropriate for all kinds of combinatorial problems, and in particular it would
be difficult to use in problems that have properties that cannot easily be
expressed in Boolean logic. When dealing with such problems one common
approach is to employ an SMT (SAT modulo theories) solver [4,21,27,31]
based on the Davis–Putnam–Logemann–Loveland algorithm (modulo theories)
denoted by DPLL(T) [62] where T is a theory of first-order logic. SMT solvers
can solve many problems of interest in the context of automatic program
verification [8] and automatic test case generation [16]. However, modern SMT
solvers only support specific theories and in this paper we are interested in
solving combinatorial problems that have properties that cannot be easily
expressed in those theories.

By contrast, a huge number of mathematical properties of interest can
easily be expressed in computer algebra systems (CAS) such as Maple [5],
Mathematica [76], and SageMath [71]. Indeed, a common approach for solving
problems that use advanced mathematics is to write a program in the program-
ming language of a CAS. While CAS are very impressive in solving pure math
problems, they are not optimized for combinatorial problems that require both
math and search.

We therefore have developed a new “SAT+CAS” method, that combines the
best of both the SAT world (for search) and CAS (for math) and have used this
method to solve several large combinatorial problems that rely on advanced
mathematics. We do this by using a combination of SAT solvers and computer
algebra systems and use each system in ways that exploit its strengths. Namely,
we use the SAT solver as the combinatorial search engine and use the CAS to
check properties that are too difficult or cumbersome to encode into Boolean

The SAT+CAS Method for Combinatorial Search 3

logic. The SAT+CAS paradigm is a variant of DPLL(T) and can be captured
as DPLL(CAS), however, it also uses the CAS more generally. For example,
during preprocessing the CAS can often show the equivalence of subproblems
that the SAT solver would not be able to discern and would therefore otherwise
have to solve multiple times.

As concrete examples of this paradigm we mention three problems and the
properties that we checked using a CAS. See Section 3 for background on these
problems and Section 4 for details of how we used the SAT+CAS method to
push the state-of-the-art in these problems. We briefly mention these below:

1. The Ruskey–Savage conjecture (see [79,80]). This conjecture states that
any matching of a hypercube graph can be extended to a Hamiltonian cycle.
We encode the property that a set of edges is a matching in a SAT instance
and check that the edges extend to a Hamiltonian cycle using a CAS.

2. Enumerating Williamson matrices (see [11,12]). Williamson matrices are
square {±1}-matrices that satisfy a simple arithmetical property. They also
satisfy a more complicated property based on the discrete Fourier transform
that we check using a CAS.

3. Enumerating complex Golay pairs (see [14,15]). Complex Golay pairs are two
polynomials with coefficients in {±1,±i} that satisfy a simple arithmetical
property. The norm of the polynomials satisfy certain bounds that we check
using the nonlinear programming optimizer of a CAS.

1.1 New results

In this paper, we further extend the success of the SAT+CAS paradigm to
another class of matrices studied in combinatorial design theory known as best
matrices [34]. This case study is similar to the Williamson example from above
because best matrices are also known to satisfy a strict condition based on the
discrete Fourier transform. However, best matrices tend to be much rarer than
Williamson matrices. In particular, it is known that if circulant best matrices
of order n exist then n must be of the form r2 + r + 1 for some r ≥ 0 [25].

Before this work it was known that best matrices exist in all these orders
for r up to and including r = 5 [34] and best matrices were recently found for
r = 6 [25]. This makes it tempting to conjecture that best matrices actually
exist for all orders of the form r2+ r+1. See Section 5 for a detailed discussion
of how we applied the SAT+CAS paradigm to this problem and Section 6 for
details on our implementation and results.

The main new result of this paper is that we show for the first time that best
matrices exist for r = 7 by explicitly constructing best matrices of order 57—the
largest best matrices currently known. Additionally, we use these matrices
to construct new skew Hadamard matrices and perform the first published
verification of the counts of best matrices given in [25,34] (see Section 6).
A secondary contribution is a demonstration that the SAT+CAS method is
applicable to a wide variety of fields including graph theory, combinatorial
design theory, and number theory (see Section 4).

4 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

2 Previous work

SAT solving has been studied since the 1960s but it was not generally considered
a tractable problem at that time. In fact, SAT was often considered as a typical
example of an intractable problem after the Cook–Levin theorem showed that
SAT is NP-complete. In the 1990s new algorithmic techniques such as conflict-
driven clause learning and variable branching heuristics greatly increased the
size of problems that could be solved. This spurred what has been referred
to as a “SAT revolution” [73] and SAT solvers now routinely solve problems
with millions of variables and constraints. The ability to efficiently solve such
problems has resulted in a large number of applications of SAT solving ranging
from formal verification of hardware [74] to solving Sudoku puzzles [58]. In
this paper we focus on applications of SAT solvers to combinatorial search
problems.

The first application of SAT solvers to combinatorial problems appears to
be by McCune [61], and Stickel and Zhang [68] who in the 1990s used SAT
solvers to solve a number of open Latin square and quasigroup problems. Zhang
developed a solver called SATO [77] and applied it to numerous Latin square
problems and observed that such an approach was just as effective as using a
special-purpose solver [78]:

In the earlier stage of our study of Latin square problems, the author
wrote two special-purpose programs. After observing that these two
programs could not do better than SATO, the author has not written
any special-purpose search programs since then.

In the 2000s SAT solvers were also successfully applied to the branch of
combinatorics known as Ramsey theory and in particular to the problem of
computing van der Waerden numbers. The mathematician van der Waerden
proved [72] that any r-colouring of the natural numbers must contain k numbers
in arithmetic progression that are all the same colour (monochromatic). A van
der Waerden number is the smallest value of n such that all r-colourings of
{1, . . . , n} have a monochromatic arithmetic progression of length k.

An initial result in 2003 was by Dransfield, Marek, and Truszczyński [26]
who used a SAT solver to significantly improve the lower bounds on several
van der Waerden numbers. Two years later Kouril and Franco [54] used a
SAT solver to find a 2-colouring of {1, . . . , 1131} without any monochromatic
arithmetic progressions of length 6 and conjectured that it was not possible
to increase the size of this set. Three years later Kouril and Paul [55] used a
SAT solver to prove this, in other words they showed that all 2-colourings of
{1, . . . , 1132} contain monochromatic arithmetic progressions of length 6.

In 2011, Heule, Kullmann, Wieringa, and Biere [43] developed the cube-
and-conquer paradigm in the process of solving SAT instances that arose from
computing van der Waerden numbers [3]. They found that the cube-and-conquer
method performed better than any other method on these instances:

The SAT+CAS Method for Combinatorial Search 5

Results on hard van der Waerden benchmarks using our basic method
show reduced computational costs up to a factor 20 compared to the
fastest “pure” SAT solver.

The basic idea behind the cube-and-conquer method is to combine two
different SAT solving strategies, the “lookahead” and “conflict-driven” strategies.
Lookahead solvers are good at making decisions at a global level, i.e., finding
the next decision that simplifies the problem as much as possible. In contrast,
conflict-driven solvers are good at solving large problems that admit a relatively
short solution, i.e., ones that can be solved by making specific local decisions
that may not be good globally but happen to work in that specific case.

The crucial insight by Heule et al. is to employ lookahead solvers to split the
problem into many subproblems and then switch to conflict-driven solvers once
the subproblems become simple enough. In this way a cube-and-conquer solver
performs better than either a pure lookahead or pure conflict-driven solver.
Furthermore the method naturally admits parallelization as the subproblems
can be solved using separate processors.

The cube-and-conquer paradigm has been enormously successful. In particu-
lar, Heule, Kullmann, and Marek [41] used it to solve the Boolean Pythagorean
triples problem and Heule [39] used it to find the value of the fifth Schur
number—both of these problems were well-known and went unsolved for
decades. SAT solvers have also been used to compute Green–Tao numbers by
Kullmann [56] and solve a special case of the Erdős discrepancy conjecture by
Konev and Lisitsa [49].

3 Mathematical preliminaries

In this section we describe the mathematical preliminaries necessary to under-
stand the problems discussed in this paper. One of our goals is to demonstrate
that the SAT+CAS method is applicable across many fields, so to this end we
introduce problems in the fields of graph theory, combinatorial design theory,
and number theory.

Graph theory. The hypercube graph of order n is a graph on 2n vertices where
the vertices are labelled with bitstrings of length n. Two vertices are adjacent in
this graph exactly when their labels differ in a single bit. A matching of a graph
is a subset of its edges such that no two edges share a vertex. A Hamiltonian
cycle of a graph is a path through the graph that starts and ends at the same
vertex and visits each vertex exactly once.

The Ruskey–Savage conjecture says that every matching of a hypercube
graph of order n ≥ 2 can be extended into a Hamiltonian cycle of the graph [65].
This conjecture has been open for over twenty-five years.

Combinatorial design theory. A Hadamard matrix is a square matrix with ±1
entries such that any two distinct rows are orthogonal. Hadamard matrices have

6 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

a long history (first constructed in 1867 [69]) and applications to error-correcting
codes [59], image coding [63], and techniques for statistical estimation [64].
The Hadamard conjecture is that Hadamard matrices exist in all orders that
are multiples of four and much work has gone into constructing Hadamard
matrices in as many orders as possible [38,46,47,67]. One way of constructing
a Hadamard matrix of order 4n is to use a set of Williamson matrices of
order n [51].

To define Williamson matrices we require the definition of a circulant
matrix. A matrix is circulant if each row is equal to the previous row shifted
by one element to the right (with a wrap-around). Therefore, a circulant
matrix can equivalently be identified with the sequence formed by its first row.
Four circulant and symmetric matrices A, B, C, D of order n are Williamson
matrices if they have ±1 entries and A2 +B2 + C2 +D2 is the scalar matrix
4nI. The Williamson conjecture is that Williamson matrices exist in all positive
orders n [37] and the even Williamson conjecture is that Williamson matrices
exist in all even orders [13].

Best matrices are similar to Williamson matrices and will be formally defined
in Section 5. One of the major differences is that best matrices can be used to
construct skew Hadamard matrices, i.e., ones whose off-diagonal entries are
anti-symmetric. Much effort has also been spent constructing skew Hadamard
matrices in as many orders as possible. The skew Hadamard conjecture says that
they exist in all orders of the form 4n [20] but the current smallest unknown
order is n = 69 and the previous smallest unknown order n = 47 was solved in
2008 [22].

Best matrices are primarily used to construct orthogonal designs and
skew Hadamard matrices—which have applications to fields such as statistical
analysis and coding theory. For example, Kim and Solé [48] have shown that
skew Hadamard matrices of order 4n produce self-dual codes over fields of
characteristic dividing n. Applications to other combinatorial structures relying
on best matrices are given in the original paper of Georgiou, Koukouvinos, and
Seberry that defined best matrices [34]. For example, they use best matrices to
construct the first known orthogonal designs of a certain form.

Number theory. Two polynomials A and B with coefficients in {±1,±i} and of
length n (i.e., degree n−1) form a complex Golay pair if |A(z)|2+ |B(z)|2 = 2n
for all z on the unit circle. Such polynomials (with real coefficients) were first
used by Golay to solve a problem in infrared multislit spectrometry [36]. They
have since been applied to an enormous number of applications in engineering
(particularly in communications [70]). They also provide extremal examples for
various problems in number theory [7].

Craigen, Holzmann, and Kharaghani [19] study complex Golay pairs and
make a number of conjectures concerning them. For example, they conjecture
that if complex Golay pairs of prime length p do not exist then complex Golay
pairs also do not exist in any length that is divisible by p. Thus, since complex
Golay pairs of length 7 do not exist, their conjecture implies that complex

The SAT+CAS Method for Combinatorial Search 7

Golay pairs also do not exist in length 28. Additionally, they conjecture that
complex Golay pairs do not exist in length 23 based on a partial search.

4 The SAT+CAS paradigm

It is well known that one of the drawbacks of Boolean logic is that it is not
expressive enough for many domains [18]. This was a significant impetus for
the development of SAT modulo theories (SMT) solvers and the DPLL(T)
architecture [33] that can solve problems specified in more expressive theories.
A few SMT solvers have the ability to work with more mathematically complex
theories such as non-linear transcendental arithmetic [17]. However, to our
knowledge no SMT solvers can compute fast Fourier transforms or are optimized
to handle the many fragments of mathematics supported by computer algebra
systems.

Conversely, computer algebra systems (CAS) from the field of symbolic
computation are optimized to solve hard non-linear algebraic problems, among
many other fragments of mathematics. In 2015, Ábrahám [1] pointed out that
the fields of symbolic computation and SMT solving have similar aims but the
fields have developed mostly independently of each other:

The research areas of SMT solving and symbolic computation are quite
disconnected. On the one hand, SMT solving [. . .] makes use of symbolic
computation results only in a rather naive way. [. . .] On the other hand,
symbolic computation [. . .] does not exploit the achievements in SMT
solving for efficiently handling logical fragments, using heuristics and
learning to speed-up the search for satisfying solutions.

Furthermore, she made the case that these communities could mutually
benefit from exploiting the achievements of the other field. To this end the SC2

project (for symbolic computation and satisfiability checking) was started to
bridge the gap between these communities [2].

Independently of the work of Ábrahám, we started developing a system
called MathCheck in 2014 inspired by the DPLL(T) algorithm but replacing
the theory solver with a computer algebra system. We used MathCheck to
show that certain graph theoretic conjectures held up to bounds that had
not previously been verified [80]. Later we applied MathCheck to find (or
disprove the existence of) Williamson matrices [12], complex Golay pairs [14],
and good matrices [9] in certain orders. A summary of these results is presented
in Table 1.

The SAT instances that were generated in the graph theory case studies
were small enough that the instances could be solved without splitting them into
subproblems. However, in every subsequent problem we found that splitting was
essential in order to solve the largest cases. We observed very similar behaviour
to what was described by Heule [39] in the cube-and-conquer paradigm, namely,
that instances could be solved much quicker once they had been split into

8 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

Paper Conjecture Main Result
Bright et al. [9] Good Matrix Found three new counterexamples
Bright et al. [10] Williamson Found the smallest counterexample
Bright et al. [13] Even Williamson Verified orders up to 70
Bright et al. [15] Complex Golay Nonexistence in lengths 23, 25, 27, 28

Zulkoski et al. [80] Ruskey–Savage Verified in order five
Zulkoski et al. [80] Norine Verified in order six

This work Best Matrix Verified in order 57

Table 1: A summary of the results produced by the SAT+CAS system MathCheck.

Conjecture and an order n to verify

Generate SAT instances CAS

SAT solver CAS

Verification or counterexample
of conjecture in order n

Input:

Divide:

Conquer:

Output:

instances

inequivalent
instances

partial satisfying
assignment

conflict
clause

Fig. 1: An general overview of the SAT+CAS paradigm using divide and conquer.

independent subproblems. This held true even if only using a single processor
and even when accounting for the time it took to split the problem.

Our SAT+CAS method can be viewed as a special case of the cube-and-
conquer paradigm with two major differences. First, we don’t divide the
problem into subproblems specified by cubes (a conjunction of literals). Instead,
we specify the division of the problem into subproblems by using clauses in
conjunctive normal form. Second, we use a computer algebra system during
both the divide and conquer phases. During the dividing phase the computer
algebra system can often discard entire subproblems without even sending
them to a SAT solver. For example, if the CAS finds that two subproblems
are isomorphic then one can safely be discarded. However, devising a splitting
method that takes advantage of the computer algebra system and performs well
requires significant knowledge of the domain. We display a general overview of
the SAT+CAS method using divide and conquer in Figure 1.

We now describe in detail the problems outlined in Sections 1 and 3 and how
we applied the SAT+CAS paradigm to derive new results about each problem.

The SAT+CAS Method for Combinatorial Search 9

We leverage some of these ideas in Section 5 and use them to construct the
largest best matrices currently known.

Graph theory. The Ruskey–Savage conjecture (that every matching of a hy-
percube can be extended into a Hamiltonian cycle) was previously known to
hold in the orders n = 2, 3, and 4 [29]. Using MathCheck we showed that
the conjecture also holds in the order n = 5 for the first time [80].

The constraint that a subset of the edges of a hypergraph forms a matching
is encoded directly into Boolean logic. However, the constraint that says that
such a matching can be extended into a Hamiltonian cycle is not straightforward
to encode in Boolean logic—but a computer algebra system can easily test this.
Therefore, whenever a satisfying assignment of the propositional constraints
(i.e., a matching of the graph) is found by the SAT solver the matching is
passed to a CAS to verify that it can be extended into a Hamiltonian cycle.

If the CAS finds that the given matching can not extend to a Hamiltonian
cycle this provides a counterexample of the conjecture. Otherwise, the CAS
provides to the SAT solver a clause that blocks this matching from being
considered in the future. It’s also possible for the CAS to provide clauses that
block other similar matchings (e.g., matchings generated via an automorphism
of the graph) and we showed that this was beneficial to the performance of the
solver [79].

Combinatorial design theory. Exhaustive searches for Williamson matrices had
been performed in all odd orders n ≤ 59 [45] and all even orders n ≤ 18 [50]
prior to our work. These searches discovered that Williamson matrices don’t
exist in the orders n = 35, 47, 53, and 59, but exist in all other orders that
were searched. Using MathCheck we were able to provide exhaustive searches
for all orders n ≤ 70 divisible by 2 or 3 (finding over 100,000 new sets of
Williamson matrices) [13,12] and verified the counterexample n = 35 [10].

Using arithmetic circuits it is possible to generate a SAT instance that
specifies that Williamson matrices exist in order n. However, this approach
was only able to find Williamson matrices for orders up to n = 30. To scale up
to n = 70 we found that it was essential to use a divide-and-conquer approach
and use CAS functionality in both the divide and conquer phases.

First, we give an overview of the divide phase. The first property that is
useful in this regard is the fact that Williamson matrices satisfy

sum(A)2 + sum(B)2 + sum(C)2 + sum(D)2 = 4n

where sum(X) denotes the rowsum of the first row of X. (We associate a
circulant matrix X with the sequence formed by its first row.) We use a
computer algebra system to solve the equation x2 + y2 + u2 + v2 = 4n in
integers and each solution provides one subproblem, namely, the subproblem
of finding a set of Williamson matrices of order n with rowsums (x, y, u, v).
This typically splits each order into a few subproblems; to further divide the
problem we use sequence compression [24].

10 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

For concreteness, suppose n is even and n = 2m. Then Williamson matrices
can be “compressed” into matrices of order m by adding together the entries that
are separated by exactly m entries in each row. For example, the compression
of the row [1,−1, 1, 1,−1,−1] is [2,−2, 0]. We generate further subproblems
using compressions; each subproblem corresponds to finding a set of Williamson
matrices that compresses to a given {±2, 0}-sequence. The reason this method
of dividing is so effective is because there are strong filtering theorems that a
CAS can use to determine that most subproblems of this form are unsatisfiable
without even using a SAT solver. An example of these filtering theorems is
described below (in the context of the conquer phase).

Second, we give an overview of the conquer phase. In this phase a SAT solver
receives a number of independent SAT instances that encode one subproblem
that was generated in the divide phase. Using an off-the-shelf SAT solver in
this stage allowed us to scale to order n = 35 (and in particular verify that 35
is the smallest counterexample of the Williamson conjecture [10]). However,
using a CAS in the conquer phase was found to be orders of magnitude faster
and allowed us to scale to n = 70.

The reason that using a CAS produces such a dramatic improvement is
because it allows the usage of filtering theorems that are very strong—but the
theorems cannot easily be directly encoded into Boolean logic. As an example,
it is known that if A = [a0, . . . , an−1] is the first row of a Williamson matrix
then the bound ∣∣∣∣n−1∑

j=0

aj exp
(
2π

√
−1jk/n

)∣∣∣∣2 ≤ 4n

holds for all integers k. This is a very strict bound that the vast majority
of A will fail to satisfy for some k. Furthermore, it is very efficient to test
because the values on the left form the power spectral density of A and can
be quickly computed using a fast Fourier transform (e.g., using the DFT and
PowerSpectrum functions of the computer algebra system Maple).

In the conquer phase the SAT solver proceeds as normal until a partial
satisfying assignment of the propositional constraints are such that the values
of A can be determined. At this point A is passed to a CAS which computes its
power spectrum. If the power spectral density bound is violated then a conflict
clause is returned to the SAT solver that blocks this A from being considered
in the future. The same condition is also checked with B, C, and D.

Number theory. All complex Golay pairs up to length n = 19 were enumerated
in [19] and it was conjectured (based on their partial search and patterns
that they noticed) that such pairs do not exist for n = 23 and 28. This was
proven in [28] where a complete enumeration was performed up to n = 28.
However, this result had never been independently verified. Using MathCheck
we performed the first independent verification of this result [15] by explicitly
finding all complex Golay pairs for n ≤ 28, and further provided a complete
enumeration of all inequivalent complex Golay pairs up to 28.

The SAT+CAS Method for Combinatorial Search 11

At first it is not even obvious that a search for complex Golay pairs of
length n could be translated into SAT, since there are an infinite number of z
on the unit circle. In fact, using arithmetic circuits and other properties of
complex Golay pairs it is possible to generate a SAT instance that specifies
that complex Golay pairs exist in length n. However, in our experience these
instances could only be solved up to n = 16 before incorporating a CAS. Similar
to the previous case study we employ a divide and conquer approach and use
CAS functionality in both phases.

In the divide phase we perform a search for all possible polynomials A that
could appear as a member of a complex Golay pair. A number of properties
that A must satisfy are used as filtering criteria, the main one being that
|A(z)|2 ≤ 2n for all z on the unit circle. To test this bound we find the maximum
of the non-linear function |A(z)|2 for z on the unit circle; for example, this can
be done with the Maple command NLPSolve.

In the conquer phase we solve a SAT instance for each possible A that was
found in the dividing phase; a satisfying assignment of such an instance will
produce a B such that (A,B) form a complex Golay pair. To do this we use
the relationship NA +NB = [2n, 0, . . . , 0] where NX is the autocorrelation of
the coefficients of X. For example, NB can be computed with the Maple com-
mand AutoCorrelation once the coefficients of B are known. An important
optimization is that most values of NB can be computed with only partial
knowledge of B; this allows one to learn shorter conflict clauses based on only
a partial assignment of the SAT instance.

5 Best matrices

We now apply our experience using MathCheck on the three case studies
described in Section 4 to a new problem, namely, the problem of finding
best matrices from combinatorial design theory. Best matrices are similar to
Williamson matrices but exist in fewer orders; in fact, if best matrices exist in
order n then n must be of the form r2 + r + 1. The best known result [25] is
that best matrices exist for all r ≤ 6 and we use MathCheck to extend this
result to r ≤ 7. It is unknown if best matrices exist for any r ≥ 8.

5.1 Background

Let X be a square matrix of order n. Recall that X is symmetric if xi,j = xj,i

for all indices (i, j), skew if xi,j = −xj,i for all indices i ̸= j and xi,i = 1, and
circulant if xi,j = xi+1,j+1 for all indices reduced mod n.

Four matrices A, B, C, D of order n with ±1 entries and positive diagonal
entries are best matrices if they satisfy the following three conditions:

(1) A, B, and C are skew and D is symmetric.
(2) A, B, C, and D are pairwise commutative.
(3) AAT +BBT + CCT +DDT is the scalar matrix 4nI.

12 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

An example of best matrices of order three (where “+” denotes 1 and “−”
denotes −1) are

A = B = C =

+ − +
+ + −
− + +

 D =

+ + +
+ + +
+ + +

 .

In this paper we will only consider circulant best matrices in which case
condition (2) is always satisfied. Furthermore, condition (1) is easy to enforce
since, for example, once the first half of the entries in the first row are known
they uniquely determine the values of the entries in the second half. This
still leaves an enormous search space, however. Since there are (n − 1)/2
undetermined entries in each matrix a naive brute-force search would check
24(n−1)/2 = 4n−1 quadruples—making the search space for best matrices of
order 57 about a quarter of a billion times larger than the search space for best
matrices of order 43 (the previous largest best matrices known). Nevertheless,
we were successful in our search for best matrices of order 57 by employing
a number of powerful filtering theorems and using SAT solvers to search the
remaining space.

5.2 Equivalence operations

There are three operations on best matrices A, B, C, D that can be used to
produce a new equivalent set of best matrices:

1. Reorder A, B, and C in any way.
2. Apply the operation f(i) := −i mod n to the indices of the first row of A,

B, or C. (Since D is symmetric such an operation has no effect on it.)
3. Apply an automorphism of the cyclic group Zn to the indices of the first

rows of A, B, C, and D simultaneously.

Such equivalence operations are well-known [25]. The “cyclic shift” operation
is sometimes also considered an equivalence operation but we did not use it as
it generally disturbs the symmetry and anti-symmetry of the matrices.

5.3 Divide phase

Our aim in this phase is to split the problem of finding best matrices of given
order n into subproblems such that each subproblem is easy enough to be
solved with a SAT solver (coupled with a CAS).

For concreteness we will focus on the case n = 57 and use the fact that
57 = 3 · 19 which allows us to “3-compress” the rows of best matrices to form
compressed best matrices of order 19. If X is a sequence of length 57 then its
compression X̄ is a sequence of length 19 such that its kth entry is

x̄k := xk + xk+19 + xk+2·19 for 0 ≤ k < 19.

The SAT+CAS Method for Combinatorial Search 13

The reason why compression is so important is because of the following PSD
equality that the compressions of best matrices must satisfy [24]:

PSDĀ(k) + PSDB̄(k) + PSDC̄(k) + PSDD̄(k) = 4n for all k. (∗)

Here PSDX̄ denotes the power spectral density of X̄ defined by

PSDX̄(k) :=

∣∣∣∣ 18∑
j=0

x̄j exp
(
2π

√
−1jk/19

)∣∣∣∣2.
Our implementation (see Section 6 for details) finds 15,178 inequivalent possible
quadruples (Ā, B̄, C̄, D̄) that satisfy the necessary relationship (∗) for n = 57.
For each quadruple we generate a SAT instance with the 2n − 2 variables
{ ai, bi, ci, di : 1 ≤ i < (n+ 1)/2 }. The remaining entries are determined via
the relationships

ak = −an−k, bk = −bn−k, ck = −cn−k, dk = dn−k for k ̸= 0.

For clarity we will use variables with indices greater than (n + 1)/2 with
the understanding they refer to variables in our SAT instance using these
relationships. Variables will be assigned true when they represent the entry 1
and false when they represent the entry −1 (by abuse of notation we use the
same variable name for both but it will be clear from context if the variable is
an integer or a Boolean).

Each of the 15,178 possible compressions will specify a single independent
SAT subproblem. This is achieved by encoding the compression constraints
in conjunctive normal form. Because the sum of three ±1 entries must be ±3
or ±1 these constraints come in four forms.

The first form is when ak + ak+19 + ak+2·19 = 3. In this case, we add the
cube ak ∧ ak+19 ∧ ak+2·19 to the SAT subproblem. The second form is when
ak + ak+19 + ak+2·19 = 1. In this case, we add

(ak ∨ ak+19) ∧ (ak ∨ ak+2·19) ∧ (ak+19 ∨ ak+2·19) ∧ (¬ak ∨ ¬ak+19 ∨ ¬ak+2·19)

to the SAT subproblem. The cases with −1 and −3 are handled in the same
way with the polarity of the literals in the clauses reversed. We also add similar
clauses for the entries of B, C, and D.

5.4 Conquer phase

Our aim in this phase is to solve the subproblems generated in the dividing
phase. To do this, we employ a SAT solver with a programmatic interface [32]
that allows it to learn conflict clauses by querying a CAS. A programmatic
SAT solver is simply a variant of DPLL(T), the key difference being that in
the programmatic SAT context the T solver can be specialized to individual
formulas (like an advice string in a non-uniform computation model), whereas

14 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

DPLL(T) was envisioned with the T solver being a decision procedure for an
entire theory.

The property that the CAS checks is the uncompressed form of the PSD
equality (∗), namely,

PSDA(k) + PSDB(k) + PSDC(k) + PSDD(k) = 4n for all k.

Note that although this condition can only be verified to hold once all entries
of A, B, C, D are known, in many cases it can be verified to not hold with
only partial information. In particular, since PSD values are non-negative we
must have the PSD criterion∑

X∈S

PSDX(k) ≤ 4n

where S is any subset of {A,B,C,D}.
In particular, if a partial assignment specifies enough entries such that the

PSD criterion is violated then a conflict clause is learned that tells the SAT
solver to avoid that partial assignment in the future. An important optimization
is to choose S in the PSD criterion to be as small as possible. For example, if
both S = {A,B} and S = {C} violate the PSD criterion we prefer the latter
because in that case we learn a shorter conflict clause. In the latter case the
learned clause would say that at least one variable { ci : 0 ≤ i < n } has to be
assigned differently to its current assignment.

Additionally, the entries of best matrices can be shown to satisfy cer-
tain constraints similar to constraints that Williamson matrices [75], good
matrices [9], and the coefficients of complex Golay pairs [15] satisfy. In the
appendix we show that the entries of best matrices satisfy the relationship
akbkckdka2kb2kc2k = −1 for k ̸= 0 with indices reduced mod n. Because of the
anti-symmetry of A, B, and C, when k = n/3 the product constraint reduces
to dk = 1 and in this case can be encoded as a unit clause. In general we encode
the product constraint in SAT by breaking it up into the six constraints

x0 = akbk, x1 = x0ck, x2 = x1dk, x3 = x2a2k, x4 = x3b2k, x5 = x4c2k

with x5 = −1, where the xi are new variables. For example the first of these
constraints is represented in conjunctive normal form as

(x0 ∨ ak ∨ bk) ∧ (¬x0 ∨ ¬ak ∨ bk) ∧ (x0 ∨ ¬ak ∨ ¬bk) ∧ (¬x0 ∨ ak ∨ ¬bk)

and the others are represented similarly.

5.5 Example

We now present an example of applying our method on a small order, namely,
the order n = 3. Let (Ā, B̄, C̄, D̄) be the 3-compression of the first rows of a
set of best matrices (A,B,C,D) of order 3.

The SAT+CAS Method for Combinatorial Search 15

With the help of a CAS we find that the only possible solutions for
(Ā, B̄, C̄, D̄) whose PSDs sum to 12 have ā0 = ±1, b̄0 = ±1, c̄0 = ±1,
and d̄0 = ±3. A CAS can also show that all (ā0, b̄0, c̄0, d̄0) are equivalent
to (1, 1, 1, 3).

A SAT instance is generated with the variables (ai, bi, ci, di) for 0 ≤ i < 3
and the following fifteen clauses:

a0 ∨ a1, a0 ∨ a2, a1 ∨ a2, ¬a0 ∨ ¬a1 ∨ ¬a2,
b0 ∨ b1, b0 ∨ b2, b1 ∨ b2, ¬b0 ∨ ¬b1 ∨ ¬b2,
c0 ∨ c1, c0 ∨ c2, c1 ∨ c2, ¬c0 ∨ ¬c1 ∨ ¬c2,

d0, d1, d2.

Finally, if the SAT solver finds a partial satisfying assignment of these clauses
such that

∑
X∈S PSDX(k) > 4n for some subset S of {A,B,C,D} and integer k

then a conflict clause is programmatically learned that blocks the variables
that appear in S from being assigned the way they are in the partial satisfying
assignment.

In this case the only solutions are equivalent to those that assign the
variables {a1, b1, c1} to false and the other variables to true. This solution leads
to the example of best matrices given in Section 5.1.

The product relationship a1b1c1d1a2b2c2 = −1 with a1 = −a2, b1 = −b2,
and c1 = −c2 reduces to d1 = 1. The unit clause d1 has already been included
in the SAT instance, so this gives us no extra information in this case. However,
it can still be instructive to see how this fact can be derived directly from the
definition of best matrices. (We focus on the case n = 3; see the appendix for
a general derivation.)

Consider the generating function A(x) := a0 + a1x + a2x
2 where x is an

indeterminate variable with x3 = 1 and similarly for B, C, and D. Note that
A(x)A(x−1) expands to

(a20 + a21 + a22) + (a0a1 + a1a2 + a2a0)x+ (a0a2 + a1a0 + a2a1)x
2.

This corresponds with the entries of the first row of the circulant matrix AAT ,
namely,[

a20 + a21 + a22 a0a1 + a1a2 + a2a0 a0a2 + a1a0 + a2a1
]
.

Thus, it follows that for A, B, C, D to be best matrices we must have

A(x)A(x−1) +B(x)B(x−1) + C(x)C(x−1) +D(x)D(x−1) = 4 · 3.

Using a1 = −a2, b1 = −b2, c1 = −c2, d0 = 1, and d1 = d2, we can derive

A(x)A(x−1) = 3− x− x2,

B(x)B(x−1) = 3− x− x2,

C(x)C(x−1) = 3− x− x2,

D(x)D(x−1) = 3 + (1 + 2d1)x+ (1 + 2d1)x
2.

16 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

Order n of exhaustive search

Find all solutions of
the PSD equality CAS

Generate a SAT in-
stance for each solution CAS

SAT solver CAS

Best matrices of order n
(or proof of nonexistence)

Input:

Preproc:

Divide:

Conquer:

Output:

sequences

PSDs

instances

inequivalent
instances

partial satisfying
assignment

conflict
clause

Fig. 2: A flowchart of our method for enumerating best matrices of order n. The PSD
equality (∗) and divide step are described in Section 5.3 and the conquer step is described in
Section 5.4.

Summing these together, we have

4 · 3 + (−2 + 2d1)x+ (−2 + 2d1)x
2 = 4 · 3

from which it follows that −2 + 2d1 = 0 and d1 = 1.

6 Implementation and results

We implemented the divide and conquer phases described in Section 5 in
our SAT+CAS system MathCheck. Our code is available from our website
uwaterloo.ca/mathcheck along with more details for the case studies de-
scribed in Section 4. A high-level flowchart of our method is shown in Figure 2.

In the divide phase we wrote some custom C++ code to generate all possible
compressions of best matrices. This code takes advantage of the well-known
fact (see [34]) that the rowsums of the first rows of A, B, C must be 1 and
the squared rowsum of the first row of D must be 4n− 3. It follows that the
rowsum of the first row of D is ±(2r + 1) where n = r2 + r + 1. In fact, the
sign of sum(D) is positive when r ≡ 0, 1 (mod 4) and negative otherwise (see
appendix for details). Thus, for r = 7 we have that sum(D) = −15.

https://uwaterloo.ca/mathcheck

The SAT+CAS Method for Combinatorial Search 17

We now employ a brute-force method to find all possibilities for the first
rows of best matrices of order n. Taking into account the matrices are skew
or symmetric there are 2(n−1)/2 possibilities for each of A, B, C, and D. The
majority of possibilities have a PSD value larger than 4n and can therefore
be ignored. To further cut down on possibilities we also discard possibilities
that will lead to equivalent best matrices using the equivalence operations of
Section 5.2. In particular, we apply operation 2 to the possibilities for B and C
and operation 3 to the possibilities for A.

We then 3-compress the possibilities for n = 57, finding 2748 possibilities
for Ā, 24,674 possibilities for B̄ and C̄, and 7999 possibilities for D̄. These
possibilities now need to be joined into quadruples. First, using brute-force we
make a list of the possible pairs (Ā, B̄) and (C̄, D̄); we find about 12 million
possibilities for the former and 40 million possibilities for the latter. Then
using the string sorting and matching algorithm described in [52] we find all
quadruples whose PSD values sum to 4n. After this step has completed we find
91,190 possible quadruples (Ā, B̄, C̄, D̄) of which 15,178 are inequivalent using
the equivalence operations of Section 5.2. Each of these quadruples will form
one independent subproblem (using the SAT encoding described in Section 5.3)
to be solved in the conquer phase.

For efficiency the PSD values were computed using the C library FFTW [30]
that can very efficiently compute discrete Fourier transforms. Since FFTW uses
floating-point arithmetic we would only discard possibilities whose PSD values
could be shown to be larger than 4n+ ϵ where ϵ is larger than the precision of
the fast Fourier transform that was used.

In the conquer phase we solved our SAT instances using a programmatic
version of the SAT solver MapleSAT [57]. The programmatic “callback” func-
tion was implemented as described in Section 5.4 with a conflict clause being
learnt whenever enough of a partial assignment is known so that the PSD
criterion can be shown to be violated. Again for efficiency we used the C library
FFTW for computing the PSD values.

As previously mentioned the orders of best matrices must be of the form
r2 + r + 1 for r ≥ 0. The case r = 7 is currently the smallest open case and
MathCheck is successfully able to solve this case. For completeness, we apply
our method to smaller orders. Orders of the form r2 + r + 1 are prime for
r ∈ {1, 2, 3, 5, 6, 8} and therefore do not have a nontrivial compression factor.
Despite this, the cases r = 1, 2, 3, 4 can be be solved in under a second using
the method described in Section 5 with no compression (i.e., compression by 1).
Furthermore, the case r = 5 can be solved in about 5 seconds and the case
r = 6 can be solved in about 50 minutes.

We ran the case r = 7 on a cluster of 64-bit Opteron 2.2GHz and Xeon
2.6GHz processors running CentOS 6 using compression by a factor of 3. In this
case MathCheck requires about 20 minutes to perform the dividing phase
and about 162 hours to perform the conquer phase. These times measure the
total amount of CPU time, though the conquer phase took under an hour of
real time when parallelized across 200 cores.

18 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

Fig. 3: A new skew Hadamard matrix of order 4 · 57 = 228 constructed using the Goethals–
Seidel construction and best matrices of order 57. The coloured entries represent 1, the grey
entries represent −1, and each best matrix is coloured differently to more clearly show the
structure of the matrix. (The matrices B, C, and D appear reflected in the Goethals–Seidel
construction.)

Three inequivalent sets of best matrices of order 57 were found in the
r = 7 case. We used the Goethals–Seidel construction [35] to construct new
skew Hadamard matrices of order 4 · 57 using these best matrices and give
one example in Figure 3. (Skew Hadamard matrices of order 4 · 57 have long
been known [66] but these are the first ones constructed using best matrices.)
Explicit representations of all the best matrices that we constructed can be
found on our website uwaterloo.ca/mathcheck, and explicit representations
of the new best matrices are available in the appendix.

Let Br denote the number of inequivalent sets of best matrices of order
r2 + r + 1. Our results determine the value of Br for r ≤ 7:

B0 = 1, B1 = 1, B2 = 2, B3 = 2, B4 = 7, B5 = 2, B6 = 5, B7 = 3.

The value of B7 is new, the value of B6 was found in [25], and the other values
were given in [34]. Our counts differ from those of [34] only because that work
did not use equivalence operation 2. For example, for r = 4 they find twenty-one
sets of best matrices but each of them is equivalent to one of the seven sets that
we found. The counts up to r = 5 also appear in [23,53] but these works did
not verify the counts. To our knowledge we have performed the first published
verification.

https://uwaterloo.ca/mathcheck

The SAT+CAS Method for Combinatorial Search 19

7 Conclusions and future work

We have described a “SAT+CAS” paradigm, building on DPLL(T), that is able
to solve hard combinatorial problems that require both clever search routines
(à la SAT) and efficient procedures for complex mathematics outside the scope
of traditional SMT theory solvers (e.g., Fourier transforms in CAS). As a
demonstration of the power and flexibility of the method we have outlined how
it was used to improve the state-of-the-art on three separate class of problems
from graph theory, number theory, and design theory, as well as its application
to construct new skew Hadamard matrices of order 4 · 57. The naive search
space for such an object is 257·56/2 ≈ 10480 which is totally impractical to
search using brute-force. Instead, we use a number of mathematical properties
of best matrices to greatly constrain the search space. However, it would still
be too difficult to execute the search using either SAT solvers or computer
algebra systems in isolation: by themselves SAT solvers would not be able to
exploit the complex mathematical properties that are known and computer
algebra systems would not be able to exploit the efficient search routines of
SAT solvers.

We additionally find inspiration from the cube-and-conquer paradigm of
Heule et al. [43]. Since open problems (like finding best matrices of order 57)
typically have extremely large search spaces they are usually not easy to solve
using a sequential SAT solver. To deal with this we developed a method of
dividing instances into multiple independent subproblems. In particular, we
divide the search for best matrices of order 57 into 15,178 subproblems such
that each subproblem can be solved in about a minute using a SAT solver
augmented with a domain-specific method of generating conflicts.

Heule, Kullmann, and Marek [42] point out that there are essentially three
kinds of solvers that are currently used for solving large combinatorial problems:
special-purpose solvers, constraint satisfaction solvers, and SAT solvers. We
believe that SAT+CAS solvers have now proven themselves as an effective way
of introducing the reasoning of special-purpose solvers and computer algebra
systems into SAT solving for hard problems from many areas of mathematics.
Going forward, we expect that SAT+CAS solvers will become essential for
solving the largest combinatorial problems that incorporate sophisticated
mathematical properties. For example, [42] points out that searching for finite
projective planes (a special kind of combinatorial design) has currently only
been done using special-purpose solvers. These kinds of problems are ripe for
attack using the SAT+CAS paradigm.

Acknowledgments

We thank the reviewers for their detailed comments that improved the clarity
of this article.

20 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

References

1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking.
In: S. Linton (ed.) Proceedings of the 2015 ACM on International Symposium on
Symbolic and Algebraic Computation, pp. 1–6. ACM (2015)

2. Ábrahám, E., Abbott, J., Becker, B., Bigatti, A.M., Brain, M., Buchberger, B., Cimatti,
A., Davenport, J.H., England, M., Fontaine, P., Forrest, S., Griggio, A., Kroening,
D., Seiler, W.M., Sturm, T.: SC2: Satisfiability checking meets symbolic computation.
Intelligent Computer Mathematics: Proceedings CICM pp. 28–43 (2016)

3. Ahmed, T., Kullmann, O., Snevily, H.: On the van der Waerden numbers w(2; 3, t).
Discrete Applied Mathematics 174, 27–51 (2014)

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
A. Biere, M. Heule, H. van Maaren, T. Walsh (eds.) Handbook of Satisfiability, chap. 26,
pp. 825–885. IOS Press (2009)

5. Bernardin, L., Chin, P., DeMarco, P., Geddes, K.O., Hare, D.E.G., Heal, K.M., Labahn,
G., May, J.P., McCarron, J., Monagan, M.B., Ohashi, D., Vorkoetter, S.M.: Maple
programming guide (2018)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

7. Borwein, P.: Barker polynomials and Golay pairs. In: Computational Excursions in
Analysis and Number Theory, CMS Books in Mathematics, pp. 109–119. Springer-Verlag
New York (2002)

8. Botinčan, M., Parkinson, M., Schulte, W.: Separation logic verification of C programs
with an SMT solver. Electronic Notes in Theoretical Computer Science 254, 5–23 (2009)

9. Bright, C., Ðoković, D.Ž., Kotsireas, I., Ganesh, V.: A SAT+CAS approach to finding
good matrices: New examples and counterexamples. In: P.V. Hentenryck, Z.H. Zhou
(eds.) Thirty-Third AAAI Conference on Artificial Intelligence. AAAI Press (2019)

10. Bright, C., Ganesh, V., Heinle, A., Kotsireas, I., Nejati, S., Czarnecki, K.: MathCheck2:
A SAT+CAS verifier for combinatorial conjectures. In: V.P. Gerdt, W. Koepf, W.M.
Seiler, E.V. Vorozhtsov (eds.) International Workshop on Computer Algebra in Scientific
Computing, pp. 117–133. Springer (2016)

11. Bright, C., Kotsireas, I., Ganesh, V.: A SAT+CAS method for enumerating Williamson
matrices of even order. In: S.A. McIlraith, K.Q. Weinberger (eds.) Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 6573–6580. AAAI Press (2018)

12. Bright, C., Kotsireas, I., Ganesh, V.: The SAT+CAS paradigm and the Williamson
conjecture. ACM Communications in Computer Algebra 52(3), 82–84 (2018)

13. Bright, C., Kotsireas, I., Ganesh, V.: Applying computer algebra systems with SAT
solvers to the Williamson conjecture. Journal of Symbolic Computation (2019)

14. Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Enumeration of complex Golay pairs via
programmatic SAT. In: C. Arreche (ed.) Proceedings of the 2018 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2018, New York, NY, USA,
July 16–19, 2018, pp. 111–118 (2018)

15. Bright, C., Kotsireas, I., Heinle, A., Ganesh, V.: Complex Golay pairs up to length 28: A
search via computer algebra and programmatic SAT. Journal of Symbolic Computation
(2019)

16. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automatically
generating inputs of death. ACM Transactions on Information and System Security
(TISSEC) 12(2), 1–38 (2008)

17. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization for
satisfiability and verification modulo nonlinear arithmetic and transcendental functions.
ACM Transactions on Computational Logic (TOCL) 19(3), 19:1–19:52 (2018)

18. Cimatti, A., Sebastiani, R.: Building efficient decision procedures on top of SAT solvers.
In: M. Bernardo, A. Cimatti (eds.) International School on Formal Methods for the
Design of Computer, Communication and Software Systems, pp. 144–175. Springer
(2006)

19. Craigen, R., Holzmann, W., Kharaghani, H.: Complex Golay sequences: structure and
applications. Discrete mathematics 252(1-3), 73–89 (2002)

The SAT+CAS Method for Combinatorial Search 21

20. Craigen, R., Kharaghani, H.: Hadamard matrices and Hadamard designs. In: C.J.
Colbourn, J.H. Dinitz (eds.) Handbook of Combinatorial Designs, pp. 273–280. Chapman
and Hall, CRC (2007)

21. de Moura, L., Bjørner, N.: The Z3 theorem prover. https://github.com/Z3Prover
(2008)

22. Ðoković, D.Ž.: Skew-Hadamard matrices of orders 188 and 388 exist. International
Mathematical Forum 3(22), 1063–1068 (2008)

23. Ðoković, D.Ž.: Supplementary difference sets with symmetry for Hadamard matrices.
Operators and Matrices 3(4), 557–569 (2009)

24. Ðoković, D.Ž., Kotsireas, I.S.: Compression of periodic complementary sequences and
applications. Designs, Codes and Cryptography 74(2), 365–377 (2015)

25. Ðoković, D.Ž., Kotsireas, I.S.: Goethals–Seidel difference families with symmetric or
skew base blocks. Mathematics in Computer Science 12(4), 373–388 (2018)

26. Dransfield, M.R., Marek, V.W., Truszczyński, M.: Satisfiability and computing van der
Waerden numbers. In: E. Giunchiglia, A. Tacchella (eds.) Theory and Applications of
Satisfiability Testing. SAT 2003, pp. 1–13. Springer, Berlin, Heidelberg (2003)

27. Dutertre, B., de Moura, L.: The Yices SMT solver. http://yices.csl.sri.com/ (2006)
28. Fiedler, F.: Small Golay sequences. Advances in Mathematics of Communications 7(4)

(2013)
29. Fink, J.: Perfect matchings extend to Hamilton cycles in hypercubes. Journal of

Combinatorial Theory, Series B 97(6), 1074–1076 (2007)
30. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of

the IEEE 93(2), 216–231 (2005)
31. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: W. Damm,

H. Hermanns (eds.) Computer Aided Verification, 19th International Conference, CAV
2007, Berlin, Germany, July 3-7, 2007, Proceedings, pp. 519–531 (2007)

32. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama,
A.: Lynx: A programmatic SAT solver for the RNA-folding problem. In: A. Cimatti,
R. Sebastiani (eds.) Theory and Applications of Satisfiability Testing – SAT 2012, pp.
143–156. Springer, Berlin, Heidelberg (2012)

33. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
decision procedures. In: R. Alur, D.A. Peled (eds.) International Conference on Computer
Aided Verification, pp. 175–188. Springer (2004)

34. Georgiou, S., Koukouvinos, C., Seberry, J.: On circulant best matrices and their applica-
tions. Linear and Multilinear Algebra 48(3), 263–274 (2001)

35. Goethals, J.M., Seidel, J.J.: A skew Hadamard matrix of order 36. Journal of the
Australian Mathematical Society 11(3), 343–344 (1970)

36. Golay, M.J.E.: Multi-slit spectrometry. JOSA 39(6), 437–444 (1949)
37. Golomb, S.W., Baumert, L.D.: The search for Hadamard matrices. The American

Mathematical Monthly 70(1), 12–17 (1963)
38. Hedayat, A., Wallis, W.D., et al.: Hadamard matrices and their applications. The Annals

of Statistics 6(6), 1184–1238 (1978)
39. Heule, M.J.H.: Schur number five. In: S.A. McIlraith, K.Q. Weinberger (eds.) Thirty-

Second AAAI Conference on Artificial Intelligence, pp. 6598–6606. AAAI Press (2018)
40. Heule, M.J.H., Kullmann, O.: The science of brute force. Communications of the ACM

60(8), 70–79 (2017)
41. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean

Pythagorean triples problem via cube-and-conquer. In: N. Creignou, D. Le Berre (eds.)
Theory and Applications of Satisfiability Testing – SAT 2016, pp. 228–245. Springer
International Publishing, Cham (2016)

42. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving very hard problems: Cube-and-
conquer, a hybrid SAT solving method. In: C. Sierra (ed.) Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 4864–4868 (2017)

43. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding CDCL
SAT solvers by lookaheads. In: K. Eder, J. Lourenço, O. Shehory (eds.) Haifa Verification
Conference, pp. 50–65. Springer (2011)

44. Heule, M.J.H., van Maaren, H.: Look-ahead based SAT solvers. In: A. Biere, M. Heule,
H. van Maaren, T. Walsh (eds.) Handbook of satisfiability, chap. 5, pp. 155–184. IOS
Press (2009)

https://github.com/Z3Prover
http://yices.csl.sri.com/

22 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

45. Holzmann, W.H., Kharaghani, H., Tayfeh-Rezaie, B.: Williamson matrices up to order
59. Designs, Codes and Cryptography 46(3), 343–352 (2008)

46. Horadam, K.J.: Hadamard matrices and their applications. Princeton university press
(2012)

47. Kharaghani, H., Tayfeh-Rezaie, B.: A Hadamard matrix of order 428. Journal of
Combinatorial Designs 13(6), 435–440 (2005)

48. Kim, J., Solé, P.: Skew Hadamard designs and their codes. Designs, Codes and Cryptog-
raphy 49(1-3), 135–145 (2008)

49. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: C. Sinz,
U. Egly (eds.) Theory and Applications of Satisfiability Testing – SAT 2014, pp. 219–226.
Springer, Cham (2014)

50. Kotsireas, I.S., Koukouvinos, C.: Constructions for Hadamard matrices of Williamson
type. Journal of Combinatorial Mathematics and Combinatorial Computing 59, 17–32
(2006)

51. Kotsireas, I.S., Koukouvinos, C.: Hadamard matrices of Williamson type: A challenge
for computer algebra. Journal of Symbolic Computation 44(3), 271–279 (2009)

52. Kotsireas, I.S., Koukouvinos, C., Seberry, J.: Weighing matrices and string sorting.
Annals of Combinatorics 13(3), 305–313 (2009)

53. Koukouvinos, C., Stylianou, S.: On skew-Hadamard matrices. Discrete Mathematics
308(13), 2723–2731 (2008)

54. Kouril, M., Franco, J.: Resolution tunnels for improved SAT solver performance. In:
F. Bacchus, T. Walsh (eds.) Theory and Applications of Satisfiability Testing. SAT 2005,
pp. 143–157. Springer, Berlin, Heidelberg (2005)

55. Kouril, M., Paul, J.L.: The van der Waerden number W (2, 6) is 1132. Experimental
Mathematics 17(1), 53–61 (2008)

56. Kullmann, O.: Green-Tao numbers and SAT. In: O. Strichman, S. Szeider (eds.) Theory
and Applications of Satisfiability Testing – SAT 2010, pp. 352–362. Springer, Berlin,
Heidelberg (2010)

57. Liang, J.H., Govind V.K., H., Poupart, P., Czarnecki, K., Ganesh, V.: An empirical
study of branching heuristics through the lens of global learning rate. In: S. Gaspers,
T. Walsh (eds.) Theory and Applications of Satisfiability Testing – SAT 2017, pp.
119–135. Springer, Cham (2017)

58. Lynce, I., Ouaknine, J.: Sudoku as a SAT problem. In: 9th International Symposium on
Artificial Intelligence and Mathematics (2006)

59. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16. Elsevier
(1977)

60. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
A. Biere, M. Heule, H. van Maaren, T. Walsh (eds.) Handbook of satisfiability, chap. 4,
pp. 131–153. IOS Press (2009)

61. McCune, W.: A Davis–Putnam program and its application to finite first-order model
search: Quasigroup existence problems. Tech. rep., Argonne National Laboratory (1994)

62. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

63. Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding. Proceedings
of the IEEE 57(1), 58–68 (1969)

64. Rao, J.N.K., Shao, J.: On balanced half-sample variance estimation in stratified random
sampling. Journal of the American Statistical Association 91(433), 343–348 (1996)

65. Ruskey, F., Savage, C.: Hamilton cycles that extend transposition matchings in Cayley
graphs of Sn. SIAM Journal on Discrete Mathematics 6(1), 152–166 (1993)

66. Seberry, J.: On skew Hadamard matrices. Ars Combinatoria 6, 255–275 (1978)
67. Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. Contempo-

rary design theory: a collection of surveys pp. 431–560 (1992)
68. Stickel, M.E., Zhang, H.: First results of studying quasigroup identities by rewriting

techniques. In: Proceedings of Workshop on Automated Theorem Proving in conjunction
with FGCS, pp. 16–23 (1994)

69. Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous signsuccessions,
and tessellated pavements in two or more colours, with applications to Newton’s rule,
ornamental tile-work, and the theory of numbers. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 34(232), 461–475 (1867)

The SAT+CAS Method for Combinatorial Search 23

70. Taghavi, M., Zahraei, M.: On the autocorrelations of ±1 polynomials. Journal of
Mathematical Extension 1(2), 139–147 (2007)

71. The Sage Development Team: Sage tutorial, release 8.6 (2019)
72. van der Waerden, B.L.: Beweis einer Baudetschen vermutung. Nieuw Archief voor

Wiskunde 15, 212–216 (1927)
73. Vardi, M.Y.: Symbolic techniques in propositional satisfiability solving. In: O. Kullmann

(ed.) Theory and Applications of Satisfiability Testing - SAT 2009, pp. 2–3. Springer,
Berlin, Heidelberg (2009)

74. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications
in model checking. Proceedings of the IEEE 103(11), 2021–2035 (2015)

75. Williamson, J.: Hadamard’s determinant theorem and the sum of four squares. Duke
Mathematical Journal 11(1), 65–81 (1944)

76. Wolfram, S.: The Mathematica book, fifth edition (2003)
77. Zhang, H.: Specifying Latin square problems in propositional logic. In: R. Veroff (ed.)

Automated Reasoning and Its Applications: Essays in Honor of Larry Wos, pp. 115–146.
MIT Press (1997)

78. Zhang, H.: Combinatorial designs by SAT solvers. In: A. Biere, M. Heule, H. van Maaren,
T. Walsh (eds.) Handbook of Satisfiability, chap. 17, pp. 533–568. IOS Press (2009)

79. Zulkoski, E., Bright, C., Heinle, A., Kotsireas, I., Czarnecki, K., Ganesh, V.: Combining
SAT solvers with computer algebra systems to verify combinatorial conjectures. Journal
of Automated Reasoning 58(3), 313–339 (2017)

80. Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: A math assistant via a combination
of computer algebra systems and SAT solvers. In: A.P. Felty, A. Middeldorp (eds.)
International Conference on Automated Deduction, pp. 607–622. Springer, Cham (2015)

Appendix

Let A, B, C, D be a set of circulant best matrices of order n = r2 + r + 1
(note that all numbers of this form are odd). As described in Section 6 the
rowsums of the first rows of A, B, C are 1 and the rowsum of the first row
of D is ±(2r + 1) where the sign of sum(D) is positive when r ≡ 0, 1 (mod 4)
and negative otherwise.

Proof Since the matrix A is skew we have ai + an−i = 0 for i ̸= 0. Thus

sum(A) = a0 +

(n−1)/2∑
i=1

(ai + an−i) = 1

and similarly for B and C. Taking the relationship AAT+BBT+CCT+DDT =
4nI and multiplying by the row vector of ones (on the left) and the column
vector of ones (on the right) we obtain

sum(A)2 + sum(B)2 + sum(C)2 + sum(D)2 = 4n

and therefore sum(D)2 = 4n− 3 = (2r + 1)2 and sum(D) = s(2r + 1) where
s = ±1.

Since D is symmetric and 2di ≡ 2 (mod 4)

sum(D) = 1 + 2

(n−1)/2∑
i=1

di ≡ n (mod 4).

24 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

Therefore r2 + r + 1 ≡ s(2r + 1) (mod 4). Since

r2 + r + 1 ≡ (−1)⌊(r+1)/2⌋ (mod 4) and 2r + 1 ≡ (−1)r (mod 4)

we have s = 1 when r ≡ 0, 1 (mod 4) and s = −1 otherwise. ⊓⊔

As described in Section 5.4 we have that the entries of these matrices satisfy
the relationship

akbkckdka2kb2kc2k = −1

for k ̸= 0 with indices reduced mod n.

Proof We can equivalently consider circulant best matrices to be polynomials
given by the generating function of the entries of their first rows. In this
formulation A, B, C, D are polynomials with ±1 coefficients and of degree
n− 1 that satisfy

A(x)A(x−1) +B(x)B(x−1) + C(x)C(x−1) +D(x)D(x−1) = 4n (1)

modulo the ideal generated by xn − 1 (all computations will take place modulo
this ideal).

Let A+ denote the polynomial containing the terms of A with positive
coefficients and let |A+| denote the number of terms in A+. Then A = 2A+−T

where T (x) :=
∑n−1

i=0 xi. Since xiT = T we have A+T = |A+|T and T 2 = nT .
Since A is anti-symmetric (i.e., A(x) +A(x−1) = 2) we have A(1) = 1 and

|A+| = (T (1) +A(1))/2 = (n+ 1)/2. Furthermore,

A(x)A(x−1) = 2A−A2

= 2(2A+ − T)− (2A+ − T)2

= 4A+ − 4A2
+ − (2T − 4|A+|T + nT)

= 4A+ − 4A2
+ + nT (2)

and similarly for B and C.
Since D is symmetric (i.e., D(x) = D(x−1)) we have

D(x)D(x−1) = (2D+ − T)2 = 4D2
+ + (n− 4|D+|)T. (3)

By the symmetry of D we have D(x) = 1 +D′(x) +D′(x−1) where D′(x) :=∑(n−1)/2
i=1 dix

i. Then |D+| = 1 + 2|D′
+| and thus |D+| is odd.

Equating (1)–(3) and dividing by four we have

A+ −A2
+ +B+ −B2

+ + C+ − C2
+ +D2

+ + (n− |D+|)T = n. (4)

Since A+ =
∑

ai=1 x
i we have A2

+ ≡
∑

ai=1 x
2i (mod 2) and (4) reduces to∑

ai=1

(x2i + xi) +
∑
bi=1

(x2i + xi) +
∑
ci=1

(x2i + xi) +
∑
di=1

x2i ≡ 1 (mod 2)

since both n and |D+| are odd.

The SAT+CAS Method for Combinatorial Search 25

Since n is odd the congruence i ≡ 2y (mod n) has exactly one solution
0 ≤ y < n for each 0 ≤ i < n. Denoting this solution by i/2 we have∑
ai/2=1

xi+
∑
ai=1

xi+
∑

bi/2=1

xi+
∑
bi=1

xi+
∑

ci/2=1

xi+
∑
ci=1

xi+
∑
di=1

x2i ≡ 1 (mod 2).

In other words, we have that the number of entries in {ai/2, ai, bi/2, bi, ci/2, ci,
di/2} that are positive is 1 (mod 2) for i = 0 and 0 (mod 2) for i ̸= 0. Letting
k = i/2 for i ̸= 0 this means aka2kbkb2kckc2kdk = −1 as required. ⊓⊔

One new skew Hadamard matrix that we constructed was given in Figure 3
and the other two new skew Hadamard matrices are given in Figure 4. The
first rows of the best matrices used to construct these skew Hadamard matrices
are given here:

+--++------+-++++-+-+--+--++-+--++-++-+-+----+-++++++--++
+-+-++++-++--++-+--+---+-+-+-+-+-+-+++-++-+--++--+----+-+
++-++-+--+---++--+++----+---+-+++-++++---++--+++-++-+--+-
+---+------++-----+++----++++++++----+++-----++------+---

++-+-+---+-++-++-----+-------+++++++-+++++--+--+-+++-+-+-
+-++-+-+-----++-+++--+++--+--++-++---++---+--+++++-+-+--+
+---++---+-++++-+-++--+-+++-+-+---+-++--+-+----+-+++--+++
+---++------+----+++--+--+-++++-+--+--+++----+------++---

++----+------++--++-+--+---+-+-+++-++-+--++--++++++-++++-
+--+-+-+--+-++----++--++++++-+------++--++++--+-++-+-+-++
++-+--++++++---++-++----+-+-+-+-+-++++--+--+++------++-+-
+---++++--+-+---+--++------+--+------++--+---+-+--++++---

26 C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh

Fig. 4: Two new skew Hadamard matrices of order 4 · 57 constructed using best matrices.

	Introduction
	Previous work
	Mathematical preliminaries
	The SAT+CAS paradigm
	Best matrices
	Implementation and results
	Conclusions and future work

