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SAT:
Boolean satisfiability problem

SAT solvers: Glorified brute force
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CAS:
Computer algebra system

Mathematical expression manipulators
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SAT + CAS

Brute force + Knowledge
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The research areas of SMT [SAT Modulo Theories]
solving and symbolic computation are quite disconnected.
[. . . ] More common projects would allow to join forces
and commonly develop improvements on both sides.

Erika Ábrahám.
Building bridges between symbolic

computation and satisfiability checking.
ISSAC invited talk, 2015.
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Hadamard matrices
I 125 years ago Jacques Hadamard defined what are now known

as Hadamard matrices.
I Square matrices with ±1 entries and pairwise orthogonal rows.

Jacques Hadamard. Résolution d’une question relative aux déterminants.
Bulletin des sciences mathématiques, 1893.
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The Hadamard conjecture

I The Hadamard conjecture says that Hadamard matrices exist
in order 4n for all positive integers n.

I Strongly expected to hold but still open after 125 years.
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The skew Hadamard conjecture

I A matrix is skew if its diagonal entries are 1 and its entry at
(i , j) is the negative of its entry at (j , i).

I The skew Hadamard conjecture says that skew Hadamard
matrices exist in order 4n for all positive integers n.
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Good matrices

In 1970, Jennifer Seberry Wallis discovered a way to construct
skew Hadamard matrices of order 4n using four “good” matrices
A, B, C , D of order n with ±1 entries.

Properties

I A is skew and B, C , D are symmetric.
I Every row is a shift of the previous row.
I AAT + B2 + C 2 + D2 is the identity matrix scaled by 4n.
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A skew Hadamard matrix of order 4 · 57 = 228

Constructed using the good matrices A, B , C , D.
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The good matrix conjecture

. . . it is conceivable that [good matrices] exist for all
n = 2m+ 1, m ≥ 1 and it is worth testing this hypothesis
at least for those orders which are accessible to present
day computers. . .

George Szekeres.
A note on skew type orthogonal ±1 matrices.

Combinatorics, Colloquia Mathematica
Societatis János Bolyai, 1988.
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Known good matrices

In 1970, Seberry found good matrices in the orders 3, 5, 7, 9,
11, 13, 15, and 19.

1970
| |

2019
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Known good matrices

In 1971, Seberry found a set of good matrices in order 23.

1970
1971

| | |

2019
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Known good matrices

In 1972, Hunt found new good matrices in the orders 7, 11, 13,
15, 17, 19, 21 (via a complete search) and order 25.

1970
1972
| | | |

2019
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Known good matrices

In 1988, Szekeres found new good matrices in the orders 23,
25, 27, 29, and 31 (via a complete search).

1970
1988

| | | | |

2019
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Known good matrices

In 1993, Ðoković found new good matrices in the orders 33, 35,
and 127.

1970
1993

| | | | | |

2019
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Known good matrices

In 2002, Georgiou, Koukouvinos, and Stylianou found new good
matrices in the orders 33, 35, 37, and 39 (via a complete search)
showing that the good matrix conjecture holds for n < 40.

1970
2002

| | | | | | |

2019

12/24



Known good matrices

In 2018, Ðoković and Kotsireas found new good matrices in the
orders 43 and 45 (via a complete search) and found that 41,
47, and 49 are counterexamples to the good matrix conjecture.

1970
2018

| | | | | | | |

2019
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Known good matrices

In our paper we find new good matrices in the orders 27 and
57 (via a complete search) and found that 51, 63, and 69 are
counterexamples to the good matrix conjecture.

1970 2019
| | | | | | | ||
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System overview

Good matrix
conjecture
in order n

Preprocessing SAT solver

Good matrix Counterexample

SAT instance

UNSATSAT
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Good matrix
conjecture
in order n

Preprocessing SAT solver

Good matrix Counterexample

SAT instance

UNSATSAT

This setup is simple but only works for small n.
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System overview

Good matrix
conjecture
in order n

Preprocessing SAT solver

Good matrices Counterexample

SAT instances

UNSATSAT

Split up the search space during preprocessing:
Solvers perform better on smaller search spaces and the subspaces

are independent so can be solved in parallel.
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Splitting

The simplest thing would be to fix the first entries of A, but this
does not perform well.

Compression

I Instead, we fix the entries of the compression of A.
I Compression of a row of order n is defined as follows:

A = [a0, a1, a2, a3, a4, a5, a6, a7, a8]

A′ =
[
a0 + a3 + a6, a1 + a4 + a7, a2 + a5 + a8

]
.
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Uncompression

Let the Boolean variables a0, . . . , an−1 represent the entries
of A with true representing 1 and false representing −1.
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Encoding in SAT

I Say the first entry in the 3-compression of A is 3, i.e.,

a0 + an/3 + a2n/3 = 3.

I We encode this in Boolean logic as the three unit clauses

a0, an/3, a2n/3.
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Encoding in SAT

I Say the first entry in the 3-compression of A is 1, i.e.,

a0 + an/3 + a2n/3 = 1.

I We encode this in Boolean logic as the four clauses

¬a0 ∨ ¬an/3 ∨ ¬a2n/3,

a0 ∨ an/3, a0 ∨ a2n/3, an/3 ∨ a2n/3.
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System overview

Good matrix
conjecture
in order n

Preprocessing SAT solver

Good matrices Counterexample

SAT instances

UNSATSAT

This works better but does not exploit theorems about good
matrices that cannot easily be encoded in Boolean logic.
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System overview

Good matrix
conjecture
in order n

Preprocessing SAT solver

CAS

Good matrices Counterexample

SAT instances

UNSATSAT

Assignment Clause

Encode some knowledge programmatically:
Allows encoding much more expressive constraints.
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Power spectral density

I The power spectral density PSDA(k) of A = [a0, . . . , an−1] is
the value ∣∣∣∣n−1∑

j=0

ajω
jk

∣∣∣∣2
where ω := exp(2πi/n).

I Can be computed very efficiently by CAS functions.
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I The power spectral density PSDA(k) of A = [a0, . . . , an−1] is
the value ∣∣∣∣n−1∑

j=0

ajω
jk

∣∣∣∣2
where ω := exp(2πi/n).

I Can be computed very efficiently by CAS functions (but not
SAT solvers)!
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PSD filtering

If a sequence has a PSD value larger than 4n then it cannot be a
row of a good matrix.
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Example

I Let n = 2m + 1.
I Say the SAT solver assigns the first m + 1 entries of A to 1

(true) and the last m entries of A to −1 (false).

I In this case we can compute that PSDA(1) ≈ 0.4n2 which is
larger than 4n for large n.

Consequence

A cannot be a row of a good matrix, so the SAT solver learns the
clause blocking A:

¬a0 ∨ · · · ∨ ¬am ∨ am+1 ∨ · · · ∨ an−1
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Filtering results

I A simple filtering approach would require knowing all values of
A, B, C , and D and blocking clauses would be of length 4n.

I The programmatic PSD filtering approach was hugely
successful, usually allowing the SAT solver to learn a blocking
clause just of size n.

I The programmatic approach was over 10 times faster in
order 33 and the speedup looked exponential in n.
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Enumeration results

I Two new sets of good matrices: One of order 27 (missed by
Szekeres’ search) and one of order 57.

I Three new counterexamples: No good matrices exist in the
orders 51, 63, and 69. (Independent verification requested!)

I Code available from the MathCheck website:
uwaterloo.ca/mathcheck
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Conclusion

I The SAT+CAS paradigm is very general and can be applied
to problems in many domains, especially “needle-in-haystack”
problems that require rich mathematics.

I Make use of the immense amount of engineering effort that
has gone into CAS and SAT solvers.

I Splitting up the problem in a way that takes advantage of this
requires domain knowledge.
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