
MATHCHECK2: COMBINING LEARNING-BASED
SEARCH (SAT) WITH

SYMBOLIC COMPUTATION (CAS)

Vijay Ganesh, Curtis Bright,
Albert Heinle, Ilias Kotsireas, Krzysztof Czarnecki

University of Waterloo, Canada
Sept 24, 2016

SC^2 Workshop, Timisoara, Romania

HOW TO SOLVE A SET OF MATHEMATICAL CONSTRAINTS

• The symbolic method

• Formula manipulation: set of sound and hopefully complete rules

• Completeness: desirable but not always achievable

• Efficiency: the method may not be efficient for many interesting fragments of mathematics

• Examples: Computer algebra systems, decision procedures for arithmetic, word equations,…

2

HOW TO SOLVE A SET OF MATHEMATICAL CONSTRAINTS

• The search method

• Search: systematically enumerate all models until termination condition is met

• Gained relevance thanks to ultra-fast modern computers

• Complete only for finite search spaces

• Surprisingly efficient provided it is combined with learning, e.g., CDCL Boolean SAT solvers

3

• A literal p is a Boolean variable x or its negation ¬x. A clause C is a disjunction of literals: x2∨ ¬x41∨ x15

• A CNF is a conjunction of clauses: (x2 ∨ ¬x1 ∨ x5) ∧ (x6 ∨ ¬x2) ∧ (x3 ∨ ¬x4 ∨ ¬x6)

• An assignment is a mapping from variables to Boolean values (True, False). A unit clause C is a clause

with a single unbound literal

• The Boolean SAT problem is

• Find an assignment such that each input clause has a true literal (aka input formula is SAT) OR establish

that input formula has no solution (aka input formula is UNSAT)

• SAT solvers are required to output a solution if input is SAT (many solvers also produce a proof if input

is UNSAT)

• Boolean formulas are typically represented in DIMACS Format

THE BOOLEAN SATISFIABILITY PROBLEM
SOME STANDARD DEFINITIONS

6

DPLL SAT SOLVER ARCHITECTURE
THE BASIC SOLVER

DPLL(Θcnf, assign) {

Propagate unit clauses;

if ”conflict”: return FALSE;

if ”complete assign”: return TRUE;

”pick decision variable x”;

Return
DPLL(Θcnf⎮x=0, assign[x=0])
||
DPLL(Θcnf⎮x=1, assign[x=1]);

}

Key Steps in a DPLL SAT Solver

Propagate (Boolean Constant Propagation)
• Propagate inferences due to unit clauses
• Most of solving “effort” goes into this step

Detect Conflict
• Conflict: partial assignment is not satisfying

Decide (Branch)
• Choose a variable & assign some value

Backtracking
• Implicitly done via recursive calls in DPLL

7

MODERN CDCL SAT SOLVER ARCHITECTURE
KEY STEPS AND DATA-STRUCTURES

Propagate()
(BCP)

Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT Decide() TopLevel

Conflict?

Return
UNSAT

BackJump()
Add Clause

Input SAT Instance Key steps

• Decide()
• Propagate() (Boolean constant propagation)
• Conflict analysis and learning() (CDCL)
• Backjump()
• Forget()
• Restart()

CDCL: Conflict-Driven Clause-Learning

• Conflict analysis is a key step
• Results in learning a learnt clause
• Prunes the search space

Key data-structures (Solver state)

• Stack or trail of partial assignments (AT)
• Input clause database
• Conflict clause database
• Conflict graph
• Decision level (DL) of a variable

8

MODERN CDCL(T)
PROGRAMMATIC SAT, CDCL(CAS)

Propagate()
(BCP)

Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return
SAT Decide() TopLevel

Conflict?

Return
UNSAT

BackJump()
Add Lemma

Input SAT Instance

Theory
Solver

The MathCheck2 System

Generator

CAS

SAT Solver

CAS

Problem
Formula φB

SAT solver result
(Solution / UNSAT core)

SAT UNSAT

Domain-spec
ific constrai

nts

Conjectures studied by MathCheck

I Ruskey–Savage conjecture (1993): Any matching of a
hypercube can be extended to a Hamiltonian cycle.

Our result: Conjecture holds for hypercubes of dimension d 6 5.

I Norine conjecture (2008): There always exists a
monochromatic path between two antipodal vertices in an
edge-antipodal coloring of a hypercube.

Our result: Conjecture holds for hypercubes of dimension d 6 6.

I Hadamard conjecture (1893): Hadamard matrices exist for
all orders divisible by 4.

Our result: Williamson-generated Hadamard matrices exist for all
orders 4n with n < 35 but not for n = 35.

I Complex Golay conjecture (2002): Complex Golay
sequences do not exist for order 23.

Our result: Confirmation of the conjecture (computations in progress).

Hadamard matrices

I square matrix with ±1 entries
I any two distinct rows are orthogonal

Example

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


Conjecture
An n × n Hadamard matrix exists for any n a multiple of 4.

Hadamard matrices

I square matrix with ±1 entries
I any two distinct rows are orthogonal

Example

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


Conjecture
An n × n Hadamard matrix exists for any n a multiple of 4.

Williamson Matrices

I n × n matrices A, B , C , D
I entries ±1
I symmetric, circulant
I A2 + B2 + C 2 + D2 = 4nIn

Symmetric and Circulant Matrices

Such matrices are defined by their first
⌈n+1

2

⌉
entries so we may

refer to them as if they were sequences.

Examples (n = 5 and 6)


a0 a1 a2 a2 a1

a1 a0 a1 a2 a2

a2 a1 a0 a1 a2

a2 a2 a1 a0 a1

a1 a2 a2 a1 a0





a0 a1 a2 a3 a2 a1

a1 a0 a1 a2 a3 a2

a2 a1 a0 a1 a2 a3

a3 a2 a1 a0 a1 a2

a2 a3 a2 a1 a0 a1

a1 a2 a3 a2 a1 a0


symmetric conditions circulant conditions

Symmetric and Circulant Matrices

Such matrices are defined by their first
⌈n+1

2

⌉
entries so we may

refer to them as if they were sequences.

Examples (n = 5 and 6)


a0 a1 a2 a2 a1

a1 a0 a1 a2 a2

a2 a1 a0 a1 a2

a2 a2 a1 a0 a1

a1 a2 a2 a1 a0





a0 a1 a2 a3 a2 a1

a1 a0 a1 a2 a3 a2

a2 a1 a0 a1 a2 a3

a3 a2 a1 a0 a1 a2

a2 a3 a2 a1 a0 a1

a1 a2 a3 a2 a1 a0


symmetric conditions circulant conditions

Williamson Matrices Sequences

I sequences A, B , C , D of length
⌈n+1

2

⌉
I entries ±1
I PAFA(s) + PAFB (s) + PAFC (s) + PAFD(s) = 0 for

s = 1, . . . , dn−1
2 e.

The PAF1 here is defined

PAFA(s) :=
n−1∑
k=0

aka(k+s) mod n .

1Periodic Autocorrelation Function

Results

MathCheck2 was able to show that. . .

I Williamson matrices of order 35 do not exist.
I First shown by Ðoković2, who requested an independent

verification.
I Williamson matrices exist for all orders n < 35.

I Even orders were mostly previously unstudied.
I Found over 160 Hadamard matrices which were not

previously in the library of the CAS Magma.
I Orders up to 168× 168.

2Williamson matrices of order 4n for n = 33, 35, 39. Discrete
Mathematics.

Example: Williamson Sequences of Order 3

I Objective: Find ±1 values for the variables a0, a1, b0, b1,
c0, c1, d0, d1 which satisfy the constraint

a0a1 + b0b1 + c0c1 + d0d1 + 2 = 0.

Linearize the Problem

I Let p0 := a0a1, p1 := b0b1, p2 := c0c1, and p3 := d0d1.
I The constraint now becomes

p0 + p1 + p2 + p3 + 2 = 0.

Rewrite as a Cardinality Constraint

I Since p0 + p1 + p2 + p3 + 2 = 0 and each pi ∈ {±1}, we can
determine that

#
{
i : pi = 1

}
= 1 and #

{
i : pi = −1

}
= 3.

Determining a Conflict Clause

I Say the SAT solver finds a partial assignment with
{p0 = 1, p1 = −1, p2 = 1}.

I Since #
{
i : pi = 1

}
> 1, we know that this assignment can

never result in an actual solution to the problem.
I We tell the SAT solver to learn the constraint

¬
(
{p0 = 1} ∧ {p2 = 1}

)
.

Example: Using Filtering Theorems

I Consider now the larger problem with the 36 variables a0,
a1, a2, a3, a4, a5, b0, . . . , d5.

I Given an assignment to all of the ai variables, we can form
the symmetric sequence

[a0, a1, a2, a3, a4, a5, a5, a4, a3, a2, a1]

and possibly filter (i.e., discard) the assignment using its
power spectral density.

Sample PSD Calculation

I Say we have the assignment with
{a0 = a1 = a2 = 1, a3 = a4 = a5 = −1}.

I The power spectral density of

A := [1, 1, 1,−1,−1,−1,−1,−1,−1, 1, 1]

can be computed to be approximately

[1, 49.37, 1.09, 5.79, 1.41, 2.33, 2.33, 1.41, 5.79, 1.09, 49.37].

Ðoković–Kotsireas Filtering Theorem

I A theorem of Ðoković–Kotsireas says that a sequence
cannot be Williamson if it has a PSD value larger than 4
times the length of the sequence.

I One PSD value of A was 49.37 > 44 and therefore we can
tell the SAT solver to learn the filtering constraint

¬
(
{a0 = a1 = a2 = 1} ∧ {a3 = a4 = a5 = −1}

)
.

Average Timings (in Seconds)

Order CAS Preprocessor
CAS Preprocessor +

CDCL(CAS)
24 0.01 0.01
26 0.09 0.08
28 0.06 0.05
30 0.48 0.28
32 0.04 0.05
34 2.69 1.51
36 0.83 0.75
38 10.62 6.08
40 1.02 1.08
42 112.51 42.21

Conclusions

I We have demonstrated the power of the SAT+CAS
combination by

I performing a requested verification of a nonexistence result
I establishing the existence of Williamson matrices of even

orders up to 42
I generating new matrices for Magma’s Hadamard database.

I We are working on extending the system to search for
other types of combinatorial objects.

I Our system is free software and available at

sites.google.com/site/uwmathcheck

sites.google.com/site/uwmathcheck

