MATHCHECK2: COMBINING LEARNING-BASED SEARCH (SAT) WITH SYMBOLIC COMPUTATION (CAS)

Vijay Ganesh, Curtis Bright, Albert Heinle, Ilias Kotsireas, Krzysztof Czarnecki University of Waterloo, Canada

> Sept 24, 2016 SC^2 Workshop, Timisoara, Romania

HOW TO SOLVE A SET OF MATHEMATICAL CONSTRAINTS

- The symbolic method
 - Formula manipulation: set of sound and hopefully complete rules
 - Completeness: desirable but not always achievable
 - Efficiency: the method may not be efficient for many interesting fragments of mathematics
 - Examples: Computer algebra systems, decision procedures for arithmetic, word equations,...

HOW TO SOLVE A SET OF MATHEMATICAL CONSTRAINTS

- The search method
 - Search: systematically enumerate all models until termination condition is met
 - Gained relevance thanks to ultra-fast modern computers
 - Complete only for finite search spaces
 - Surprisingly efficient provided it is combined with learning, e.g., CDCL Boolean SAT solvers

What is a SAT/SMT Solver? Automation of Mathematical Logic

- Rich logics (Modular arithmetic, arrays, strings, non-linear arithmetic, theories with quantifiers, ...)
- From proof procedures to validity to satisfiability
- SAT problem is NP-complete, PSPACE-complete,...
- Practical, scalable, usable, automatic
- Enable novel software reliability approaches

Vijay Ganesh 3

THE BOOLEAN SATISFIABILITY PROBLEM SOME STANDARD DEFINITIONS

- A **literal** p is a Boolean variable x or its negation $\neg x$. A clause C is a disjunction of literals: $x_2 \lor \neg x_{41} \lor x_{15}$
- A CNF is a conjunction of clauses: $(x_2 \vee \neg x_1 \vee x_5) \wedge (x_6 \vee \neg x_2) \wedge (x_3 \vee \neg x_4 \vee \neg x_6)$
- An assignment is a mapping from variables to Boolean values (True, False). A unit clause C is a clause with a single unbound literal
- The Boolean SAT problem is
 - Find an assignment such that each input clause has a true literal (aka input formula is SAT) OR establish that input formula has no solution (aka input formula is UNSAT)
 - SAT solvers are required to output a solution if input is SAT (many solvers also produce a proof if input is UNSAT)
- Boolean formulas are typically represented in DIMACS Format

DPLL SAT SOLVER ARCHITECTURE THE BASIC SOLVER

```
DPLL(Θ<sub>cnf</sub>, assign) {
Propagate unit clauses;
if "conflict": return FALSE;
if "complete assign": return TRUE;
"pick decision variable x";
Return
     DPLL(\Theta_{cnf} | x=0, assign[x=0])
    DPLL(\Theta_{cnf} \mid_{x=1, assign[x=1]});
```

Key Steps in a DPLL SAT Solver

Propagate (Boolean Constant Propagation)

- Propagate inferences due to unit clauses
- Most of solving "effort" goes into this step

Detect Conflict

• Conflict: partial assignment is not satisfying

Decide (Branch)

Choose a variable & assign some value

Backtracking

Implicitly done via recursive calls in DPLL

MODERN CDCL SAT SOLVER ARCHITECTURE KEY STEPS AND DATA-STRUCTURES

Key steps

- Decide()
- Propagate() (Boolean constant propagation)
- Conflict analysis and learning() (CDCL)
- Backjump()
- Forget()
- Restart()

CDCL: Conflict-Driven Clause-Learning

- Conflict analysis is a key step
- Results in learning a learnt clause
- Prunes the search space

Key data-structures (Solver state)

- Stack or trail of partial assignments (AT)
- Input clause database
- Conflict clause database
- Conflict graph
- Decision level (DL) of a variable

MODERN CDCL(T) PROGRAMMATIC SAT, CDCL(CAS)

The MATHCHECK2 System

Conjectures studied by MATHCHECK

▶ Ruskey-Savage conjecture (1993): Any matching of a hypercube can be extended to a Hamiltonian cycle.

Our result: Conjecture holds for hypercubes of dimension $d \leq 5$.

▶ Norine conjecture (2008): There always exists a monochromatic path between two antipodal vertices in an edge-antipodal coloring of a hypercube.

Our result: Conjecture holds for hypercubes of dimension $d \leq 6$.

▶ Hadamard conjecture (1893): Hadamard matrices exist for all orders divisible by 4.

Our result: Williamson-generated Hadamard matrices exist for all orders 4n with n < 35 but not for n = 35.

► Complex Golay conjecture (2002): Complex Golay sequences do not exist for order 23.

Our result: Confirmation of the conjecture (computations in progress).

Hadamard matrices

- ▶ square matrix with ± 1 entries
- any two distinct rows are orthogonal

Hadamard matrices

- square matrix with ± 1 entries
- any two distinct rows are orthogonal

Example

Conjecture

An $n \times n$ Hadamard matrix exists for any n a multiple of 4.

Williamson Matrices

- \triangleright $n \times n$ matrices A, B, C, D
- \triangleright entries ± 1
- ▶ symmetric, circulant
- $A^2 + B^2 + C^2 + D^2 = 4nI_n$

Symmetric and Circulant Matrices

Such matrices are defined by their first $\lceil \frac{n+1}{2} \rceil$ entries so we may refer to them as if they were sequences.

Examples (n = 5 and 6)

$$\begin{bmatrix} a_0 & a_1 & a_2 & a_2 & a_1 \\ a_1' & a_0 & a_1 & a_2 & a_2 \\ a_2' & a_1 & a_0 & a_1 & a_2 \\ a_2' & a_2 & a_1 & a_0 & a_1 \\ a_1' & a_2 & a_2 & a_1 & a_0 \end{bmatrix}$$

symmetric conditions

_					_
a_0	a_1	a_2	a_3	<u>a2</u>	a_1
a_1	a_0	a_1	a_2	a_3	a_2
a_2	a_1	a_0	a_1	a_2	a_3
a_3	a_2	a_1	a_0	a_1	a_2
a_2	a_3	a_2	a_1	a_0	a_1
$\lfloor a_1$	a_2	a_3	a_2	a_1	a_0

circulant conditions

Symmetric and Circulant Matrices

Such matrices are defined by their first $\lceil \frac{n+1}{2} \rceil$ entries so we may refer to them as if they were sequences.

Examples (n = 5 and 6)

symmetric conditions

circulant conditions

Williamson Matrices Sequences

- ▶ sequences A, B, C, D of length $\lceil \frac{n+1}{2} \rceil$
- \triangleright entries ± 1
- ▶ $PAF_A(s) + PAF_B(s) + PAF_C(s) + PAF_D(s) = 0$ for $s = 1, ..., \lceil \frac{n-1}{2} \rceil$.

The PAF¹ here is defined

$$\mathsf{PAF}_A(s) \coloneqq \sum_{k=1}^{n-1} a_k a_{(k+s) \bmod n}.$$

¹Periodic Autocorrelation Function

Results

MATHCHECK2 was able to show that...

- Williamson matrices of order 35 do not exist.
 - ► First shown by Đoković², who requested an independent verification.
- ▶ Williamson matrices exist for all orders n < 35.
 - ▶ Even orders were mostly previously unstudied.
- ► Found over 160 Hadamard matrices which were not previously in the library of the CAS MAGMA.
 - ▶ Orders up to 168×168 .

²Williamson matrices of order 4n for n=33, 35, 39. Discrete Mathematics.

Example: Williamson Sequences of Order 3

▶ Objective: Find ± 1 values for the variables a_0 , a_1 , b_0 , b_1 , c_0 , c_1 , d_0 , d_1 which satisfy the constraint

$$a_0 a_1 + b_0 b_1 + c_0 c_1 + d_0 d_1 + 2 = 0.$$

Linearize the Problem

- ▶ Let $p_0 := a_0 a_1$, $p_1 := b_0 b_1$, $p_2 := c_0 c_1$, and $p_3 := d_0 d_1$.
- ▶ The constraint now becomes

$$p_0 + p_1 + p_2 + p_3 + 2 = 0.$$

Rewrite as a Cardinality Constraint

Since $p_0 + p_1 + p_2 + p_3 + 2 = 0$ and each $p_i \in \{\pm 1\}$, we can determine that

$$\#\{\ i:p_i=1\ \}=1 \qquad \text{and} \qquad \#\{\ i:p_i=-1\ \}=3.$$

Determining a Conflict Clause

- Say the SAT solver finds a partial assignment with $\{p_0 = 1, p_1 = -1, p_2 = 1\}$.
- ▶ Since $\#\{i: p_i = 1\} > 1$, we know that this assignment can never result in an actual solution to the problem.
- ▶ We tell the SAT solver to learn the constraint

$$\neg (\{p_0=1\} \land \{p_2=1\}).$$

Example: Using Filtering Theorems

- Consider now the larger problem with the 36 variables a_0 , a_1 , a_2 , a_3 , a_4 , a_5 , b_0 , ..., d_5 .
- ▶ Given an assignment to all of the a_i variables, we can form the symmetric sequence

$$[a_0, a_1, a_2, a_3, a_4, a_5, a_5, a_4, a_3, a_2, a_1]$$

and possibly filter (i.e., discard) the assignment using its power spectral density.

Sample PSD Calculation

- Say we have the assignment with $\{a_0 = a_1 = a_2 = 1, a_3 = a_4 = a_5 = -1\}.$
- ▶ The power spectral density of

$$A := [1, 1, 1, -1, -1, -1, -1, -1, 1, 1]$$

can be computed to be approximately

[1, 49.37, 1.09, 5.79, 1.41, 2.33, 2.33, 1.41, 5.79, 1.09, 49.37].

Đoković-Kotsireas Filtering Theorem

- ▶ A theorem of Đoković-Kotsireas says that a sequence cannot be Williamson if it has a PSD value larger than 4 times the length of the sequence.
- ▶ One PSD value of A was 49.37 > 44 and therefore we can tell the SAT solver to learn the filtering constraint

$$\neg(\{a_0=a_1=a_2=1\} \land \{a_3=a_4=a_5=-1\}).$$

Average Timings (in Seconds)

Order	CAS Droprocoggor	CAS Preprocessor +	
	CAS Preprocessor	CDCL(CAS)	
24	0.01	0.01	
26	0.09	0.08	
28	0.06	0.05	
30	0.48	0.28	
32	0.04	0.05	
34	2.69	1.51	
36	0.83	0.75	
38	10.62	6.08	
40	1.02	1.08	
42	112.51	42.21	

Conclusions

- ► We have demonstrated the power of the SAT+CAS combination by
 - performing a requested verification of a nonexistence result
 - establishing the existence of Williamson matrices of even orders up to 42
 - generating new matrices for Magma's Hadamard database.
- ▶ We are working on extending the system to search for other types of combinatorial objects.
- Our system is free software and available at sites.google.com/site/uwmathcheck