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Brute-brute force has no hope. But clever, inspired
brute force is the future.

Dr. Doron Zeilberger, Rutgers University, 2015

2/38



Roadmap

Motivation

SAT+CAS

Williamson Matrices

Programmatic SAT

Further Techniques

Conclusion

Motivation 3/38



Motivation

I Many conjectures in combinatorics concern the existence or
nonexistence of combinatorial objects which are only
feasibly constructed through a search.

I To find large instances of these objects, it is necessary to use
a computer with a clever search procedure.
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Three examples, with our new results

1. Williamson matrices
I Proof that Williamson matrices of order 35 do not exist.
I Enumeration of all Williamson matrices in orders up to 45,

including even orders (open since first defined in 1944).

2. Complex Golay sequences
I Enumeration of all complex Golay sequences up to order 25.
I Proof that complex Golay sequences of order 23 do not exist

(conjectured in 2002, shown in 2013).

3. Minimal primes
I Enumeration of all minimal primes in bases up to 16 and

several other bases (open since 2000).
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What did we do and what is new?

I Used a reduction to the Boolean satisfiability problem
(SAT).

I Used a SAT solver coupled with functionality from a
computer algebra system (CAS) to solve the SAT instances.
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The SAT+CAS paradigm

Originated independently in two works in 2015:

1. A paper at the Conference on Automated Deduction
(CADE) by Edward Zulkoski, Vijay Ganesh, and Krzysztof
Czarnecki entitled “MathCheck: A Math Assistant via a
Combination of Computer Algebra Systems and SAT
Solvers”.

2. An invited talk at the International Symposium on
Symbolic and Algebraic Computation (ISSAC) by Erika
Ábrahám entitled “Building Bridges between Symbolic
Computation and Satisfiability Checking”.
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Motivational quote

The research areas of SMT [SAT Modulo Theories]
solving and symbolic computation are quite
disconnected. On the one hand, SMT solving has its
strength in efficient techniques for exploring
Boolean structures, learning, combining solving
techniques, and developing dedicated heuristics, but
its current focus lies on easier theories and it makes
use of symbolic computation results only in a rather
naive way.

Dr. Erika Ábrahám, RWTH Aachen University, 2015
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The MathCheck2 system

Uses the SAT+CAS paradigm to finitely verify or
counterexample conjectures in mathematics, in particular the
Williamson conjecture.

Problem Generator MapleSAT1

CAS CAS

SAT UNSAT

Partial assignment Conflict clause

SAT instance

SAT solver result
(Solution / UNSAT core)

Domain-specific
information

1J. Liang et al., Exponential Recency Weighted Average Branching
Heuristic for SAT Solvers, AAAI 2016
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The Williamson conjecture

It has been conjectured that an Hadamard matrix of
this [Williamson] type might exist of every order 4t,
at least for t odd.

Dr. Richard Turyn, Raytheon Company, 1972
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Disproof of the Williamson conjecture

I Dragomir Ðoković showed in 1993 that t = 35 was a
counterexample to the Williamson conjecture, i.e.,
Williamson matrices of order 35 do not exist.

I His algorithm assumed the Williamson order was odd.
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Williamson matrices

I n × n matrices A, B , C , D with ±1 entries
I symmetric and circulant
I A2 +B2 +C 2 +D2 = 4nIn
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Symmetric and circulant matrices

Examples (n = 5 and 6)


a0 a1 a2 a2 a1
a1 a0 a1 a2 a2
a2 a1 a0 a1 a2
a2 a2 a1 a0 a1
a1 a2 a2 a1 a0





a0 a1 a2 a3 a2 a1
a1 a0 a1 a2 a3 a2
a2 a1 a0 a1 a2 a3
a3 a2 a1 a0 a1 a2
a2 a3 a2 a1 a0 a1
a1 a2 a3 a2 a1 a0


symmetric conditions circulant conditions

Such matrices are defined by their first
⌈n+1

2

⌉
entries so we may

refer to them as if they were sequences.
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Williamson sequences

I sequences A, B , C , D of length n with ±1 entries
I symmetric
I PAFA(s) + PAFB (s) + PAFC (s) + PAFD(s) = 0 for

s = 1, . . . ,n − 1.

The PAF (periodic autocorrelation function) of sequence
X = [x0, . . . , xn−1] is defined

PAFX (s) :=
n−1∑
k=0

xkx(k+s) mod n .
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Power spectral density

The power spectral density of a sequence A is

PSDA(s) := |DFTA(s)|
2

where DFTA is the discrete Fourier transform of A.
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PSD test

A theorem of Wiener and Khinchin (and a special case of a
theorem of Ðoković and Kotsireas) implies that Williamson
sequences satisfy

PSDA(s) + PSDB (s) + PSDC (s) + PSDD(s) = 4n

for all s ∈ Z.

Corollary
If PSDX (s) > 4n for some s then X is not a member of a
Williamson sequence.
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Problem: How to use the PSD test?

I The Williamson PAF condition is straightforward to encode
in a SAT instance.

I Encoding the PSD test is not easy.
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Solution: Programmatic SAT

I A programmatic SAT solver2 contains a special callback
function which periodically examines the current partial
assignment while the SAT solver is running.

I If it can determine that the partial assignment cannot be
extended into a satisfying assignment then a conflict clause
is generated encoding that fact.

Problem Generator MapleSAT

CAS CAS

SAT UNSAT

Partial assignment Conflict clause

SAT instance

SAT solver result
(Solution / UNSAT core)

Domain-specific
information

2V. Ganesh et al., Lynx: A programmatic SAT solver for the
RNA-folding problem, SAT 2012
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Programmatic PSD test

I We compute PSDX (s) for X ∈ {A,B ,C ,D} whose entries
are all currently set.

I If any PSD value is larger than 4n then we generate a clause
which forbids the variables in X from being set the way
they currently are.
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Results
n Normal

MapleSAT
Programmatic

MapleSAT Result

12 0.14 0.13 SAT
13 0.03 0.04 SAT
14 0.12 0.05 SAT
15 0.21 0.07 SAT
16 24.56 0.26 SAT
17 0.30 0.19 SAT
18 1.50 0.06 SAT
19 1.06 1.39 SAT
20 3.09 0.06 SAT
21 390.55 6.60 SAT
22 34.90 0.70 SAT
23 545.71 7.19 SAT
24 3116.93 13.72 SAT
25 591.78 42.62 SAT
26 6238.15 46.98 SAT
27 2485.84 719.32 SAT
28 6234.42 118.14 SAT
29 7053.56 25850.39 SAT
30 29881.94 441.49 SAT
31 20313.47 68538.98 SAT
32 TO 3309.02 SAT
33 TO 8549.17 SAT
34 TO 2986.61 SAT
35 TO TO TO
36 TO 639.58 SAT
37 TO TO TO
38 TO TO TO
39 TO TO TO
40 TO 15835.62 SAT

Timings in seconds, with a timeout (TO) of 24 hours
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A Diophantine equation

The PSD test for s = 0 becomes

rowsum(A)2 + rowsum(B)2 + rowsum(C )2 + rowsum(D)2 = 4n .

In other words, every Williamson sequence provides a
decomposition of 4n into a sum of four squares.

I There are usually only a few such decompositions.
I A CAS has functions designed to compute the

decompositions.
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Sum-of-squares results I
n Decomposition Normal

MapleSAT
Programmatic

MapleSAT Result

21 12 + 12 + 12 + 92 95.13 0.22 SAT
21 12 + 32 + 52 + 72 73.27 1.46 SAT
21 32 + 52 + 52 + 52 15.69 0.83 SAT
22 02 + 42 + 62 + 62 162.70 1.02 SAT
22 22 + 22 + 42 + 82 44.39 0.22 SAT
23 12 + 12 + 32 + 92 12595.27 102.03 UNSAT
23 32 + 32 + 52 + 72 481.19 30.41 SAT
24 02 + 42 + 42 + 82 1690.09 6.36 SAT
25 12 + 12 + 72 + 72 57.29 13.29 SAT
25 12 + 32 + 32 + 92 8051.75 42.68 SAT
25 12 + 52 + 52 + 72 421.95 17.04 SAT
25 52 + 52 + 52 + 52 68.14 28.39 SAT
26 02 + 02 + 22 + 102 1685.26 19.12 SAT
26 02 + 22 + 62 + 82 2078.38 6.74 SAT
26 42 + 42 + 62 + 62 60284.93 8.86 SAT
27 12 + 12 + 52 + 92 12997.81 44.92 SAT
27 12 + 32 + 72 + 72 32998.14 201.38 SAT
27 32 + 32 + 32 + 92 TO 2103.05 UNSAT
27 32 + 52 + 52 + 72 4543.09 147.52 SAT
28 22 + 22 + 22 + 102 35768.54 48.03 SAT
28 22 + 62 + 62 + 62 1030.11 12.38 SAT
28 42 + 42 + 42 + 82 TO TO TO
29 12 + 32 + 52 + 92 TO 1189.22 SAT
29 32 + 32 + 72 + 72 TO 12144.50 UNSAT
30 02 + 22 + 42 + 102 85258.48 127.09 SAT
30 22 + 42 + 62 + 82 10269.38 73.21 SAT

Timings in seconds, with a timeout (TO) of 24 hours
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Sum-of-squares results II

n Decomposition Normal
MapleSAT

Programmatic
MapleSAT Result

31 12 + 52 + 72 + 72 TO 10491.08 SAT
31 52 + 52 + 52 + 72 TO 1971.16 SAT
32 02 + 02 + 82 + 82 TO 100.66 SAT
33 12 + 12 + 32 + 112 TO 21332.12 SAT
33 12 + 52 + 52 + 92 TO 7474.67 SAT
33 32 + 52 + 72 + 72 TO 47245.16 SAT
34 02 + 02 + 62 + 102 TO 550.86 SAT
34 02 + 62 + 62 + 82 TO 373.74 SAT
34 22 + 22 + 82 + 82 TO 402.70 SAT
34 22 + 42 + 42 + 102 TO 3345.30 SAT
36 22 + 22 + 62 + 102 TO 687.05 SAT
36 62 + 62 + 62 + 62 TO 555.97 SAT
38 02 + 22 + 22 + 122 TO 30178.19 SAT
38 02 + 42 + 62 + 102 TO 12810.39 SAT
38 42 + 62 + 62 + 82 TO 23925.97 SAT
40 02 + 02 + 42 + 122 TO 22969.16 SAT
40 42 + 42 + 82 + 82 TO 1864.23 SAT
42 02 + 22 + 82 + 102 TO 11233.80 SAT

Timings in seconds, with a timeout (TO) of 24 hours
Cases with no results are not shown
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Compression

5-compression

A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9]

A(2) =
[
a0 + a2 + a4 + a6 + a8, a1 + a3 + a5 + a7 + a9

]
.

2-compression

A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9]

A(5) =
[
a0 + a5, a1 + a6, a2 + a7, a3 + a8, a4 + a9

]
.
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Ðoković–Kotsireas theorem

Any compression A ′, B ′, C ′, D ′ of a Williamson sequence
satisfies

PSDA ′(s) + PSDB ′(s) + PSDC ′(s) + PSDD ′(s) = 4n

for all s ∈ Z.
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Using compressions

I For a given composite order n there are a lot fewer possible
compressions of Williamson sequences than there are
possible Williamson sequences.

I We can use a CAS to generate all possible compressions and
generate a SAT instance for each possible compression.
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Compression results I
n Decomposition Normal

MapleSAT
Programmatic

MapleSAT Result

25 12 + 12 + 72 + 72 0.37 0.10 SAT
25 12 + 32 + 32 + 92 2.69 0.04 SAT
25 12 + 52 + 52 + 72 0.61 0.12 SAT
25 52 + 52 + 52 + 52 3.34 0.04 SAT
26 02 + 02 + 22 + 102 0.02 0.02 SAT
26 02 + 22 + 62 + 82 0.02 0.02 SAT
26 42 + 42 + 62 + 62 0.03 0.03 SAT
27 12 + 12 + 52 + 92 0.03 0.05 SAT
27 12 + 32 + 72 + 72 0.19 0.03 SAT
27 32 + 32 + 32 + 92 7.29 0.35 UNSAT
27 32 + 52 + 52 + 72 0.12 0.03 SAT
28 22 + 22 + 22 + 102 0.10 0.07 SAT
28 22 + 62 + 62 + 62 0.11 0.05 SAT
28 42 + 42 + 42 + 82 0.22 0.22 UNSAT
30 02 + 22 + 42 + 102 0.07 0.02 SAT
30 22 + 42 + 62 + 82 0.03 0.02 SAT
32 02 + 02 + 82 + 82 4.31 4.18 SAT
33 12 + 12 + 32 + 112 1.17 0.38 SAT
33 12 + 12 + 72 + 92 0.59 0.26 SAT
33 12 + 52 + 52 + 92 1.23 0.43 SAT
33 32 + 52 + 72 + 72 0.48 0.22 SAT
34 02 + 02 + 62 + 102 1.25 0.31 SAT
34 02 + 62 + 62 + 82 0.05 0.03 SAT
34 22 + 22 + 82 + 82 0.04 0.02 SAT
34 22 + 42 + 42 + 102 0.13 0.09 SAT

Timings in seconds, using 50 processors in parallel
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Compression results II
n Decomposition Normal

MapleSAT
Programmatic

MapleSAT Result

35 12 + 32 + 32 + 112 410.79 11.07 UNSAT
35 12 + 32 + 72 + 92 671.05 20.44 UNSAT
35 32 + 52 + 52 + 92 311.26 9.15 UNSAT
36 02 + 02 + 02 + 122 6.00 6.42 UNSAT
36 02 + 42 + 82 + 82 3.45 3.89 UNSAT
36 22 + 22 + 62 + 102 0.48 0.14 SAT
36 62 + 62 + 62 + 62 0.45 0.06 SAT
38 02 + 22 + 22 + 122 0.36 0.08 SAT
38 02 + 42 + 62 + 102 0.19 0.03 SAT
38 42 + 62 + 62 + 82 0.36 0.07 SAT
39 12 + 32 + 52 + 112 301.85 17.48 UNSAT
39 12 + 52 + 72 + 92 259.43 16.72 UNSAT
39 32 + 72 + 72 + 72 126.16 4.86 UNSAT
39 52 + 52 + 52 + 92 30.11 1.89 SAT
40 02 + 02 + 42 + 122 5.15 5.14 SAT
40 42 + 42 + 82 + 82 6.11 4.46 SAT
42 02 + 22 + 82 + 102 4.21 0.16 SAT
42 22 + 22 + 42 + 122 3.04 0.16 SAT
42 22 + 62 + 82 + 82 9.79 0.20 SAT
42 42 + 42 + 62 + 102 11.16 0.15 SAT
44 02 + 42 + 42 + 122 3.83 3.42 UNSAT
44 22 + 62 + 62 + 102 2.95 0.20 SAT
45 12 + 12 + 32 + 132 TO 1544.99 UNSAT
45 12 + 32 + 72 + 112 TO 1996.79 UNSAT
45 12 + 72 + 72 + 92 TO 1448.48 UNSAT
45 32 + 32 + 92 + 92 TO 1554.98 UNSAT
45 32 + 52 + 52 + 112 TO 1379.05 UNSAT
45 52 + 52 + 72 + 92 TO 1093.79 SAT

Timings in seconds, using 50 processors in parallel, with a timeout (TO) of 1 hour
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In summary

I We have demonstrated the power of the SAT+CAS
paradigm by using the Williamson conjecture as a case
study.

I The tool MathCheck2 we have developed can successfully:
I Show that Williamson matrices of order 35 do not exist in

under a minute.
I Show that Williamson matrices of every even order 6 45

exist in around 30 minutes.

I The approach is applicable to other combinatorial
conjectures (Kotsireas lists 11 autocorrelation-type problems
alone3).

3Algorithms and Metaheuristics for Combinatorial Matrices. Handbook of
Combinatorial Optimization, 2013
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Enumeration of complex Golay sequences

Order Total Pairs Inequivalent Pairs
1 16 1
2 64 1
3 128 1
4 512 2
5 512 1
6 2048 3
7 0 0
8 6656 17
9 0 0
10 12,288 20
11 512 1
12 36,864 52
13 512 1
14 0 0
15 0 0
16 106,496 204
17 0 0
18 24,576 24
19 0 0
20 215,040 340
21 0 0
22 8192 12
23 0 0
24 786,432 1056
25 0 0
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Minimal primes in base 15

2, 3, 5, 7, B, D, 14, 18, 1E, 41, 94, 9E, A1, C1, E1, 111, 681, 698,
801, 988, 991, 9C8, A98, C98, 1091, 1691, 4498, 4898, 49A8,
6061, 6191, 6601, 6911, 8098, 8191, 8881, 8908, 8968, 8E98,
9011, 9611, 96A8, 9811, 9A08, 9AA8, E898, E9A8, EE98, 19001,
19601, 40968, 49668, 49998, 86661, 88898, 89998, 900A8,
91061, 96068, E0098, E0968, E9608, 190661, 490068, 490608,
666661, 9099A8, 90A668, 910001, 9909A8, 999068, E90008,
9000668, 9006008, 9090968, 9660008, 9900968, 9996008,
9999908, 9A66668, E999998, 90000008, 90099668, 90666668,
90909998, 90990998, 90996668, 99099098, 99900998, 99966608,
99966668, 99999668, 99999998, E9066668, 900666608,
909990098, 966666008, 9000099998, E9666666666666668,
966 · · · [100 missing 6s] · · · 6608
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Thank you!

1. Williamson matrices
I Proof that Williamson matrices of order 35 do not exist.
I Enumeration of all Williamson matrices in orders up to 45,

including even orders (open since first defined in 1944).

2. Complex Golay sequences
I Enumeration of all complex Golay sequences up to order 25.
I Proof that complex Golay sequences of order 23 do not exist

(conjectured in 2002, shown in 2013).

3. Minimal primes
I Enumeration of all minimal primes in bases up to 16 and

several other bases (open since 2000).

Questions?
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