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Abstract 

 In this project we use the mathematical programming paradigms of integer and 
constraint programming to solve the Mutually Orthogonal Latin Squares problems for sets 
of two and three squares. We implement two of the solution methods used by Appa et al. 
in their paper “Searching for mutually orthogonal Latin squares via integer and constraint 
programming” and further improve upon both their models introduced and techniques of 
reducing symmetries in the solution spaces. Using our new models and symmetry breaking 
methods we significantly decrease the amount of time taken for our chosen solvers to find 
solutions to the aforementioned problems or prove their nonexistence. We also attempt to 
extrapolate the time it would take to find a solution for a higher order instance of the 
problem – the existence of which is currently an open question in design theory. 

1. Introduction 

 A Latin square 𝑋 of order 𝑛 ∈ ℕ is an 𝑛 × 𝑛 array of symbols, where the element 
in the 𝑖th row and 𝑗th column is denoted 𝑋քօ ∈ {0,1,… , 𝑛 − 1}. Latin squares have the 
restriction that each symbol {0,1,… , 𝑛 − 1} must appear exactly once in every row and 
column of 𝑋, like a sudoku puzzle. This restriction is referred to as the Latin property of 
𝑋. We wish to study sets of Latin squares with an additional property. Two Latin squares 
𝑋,𝑌  are orthogonal if the system of equations 𝑋քօ = 𝑎, 𝑌քօ = 𝑏 has exactly 𝑛ϵ unique 
solutions. In other words, 𝑋 and 𝑌  are orthogonal if for every 𝑖, 𝑗 the pair ि𝑋քօ, 𝑌քօी is 
unique. We call a set {𝑋φ,… , 𝑋ֆ} 𝑘 Mutually Orthogonal Latin Squares of Order 𝑛 or 
𝑘 MOLS(𝑛) if 𝑋ք is orthogonal to 𝑋օ for 𝑖 ≠ 𝑗.  

 

Fig 1 – A silver amulet from Damascus depicting a Latin square of order 5 
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 Latin Squares have been found inscribed on Arabic amulets dating to as early as 
the 10th century [1]. As with much of early mathematics, the highly structured form of 
these squares gave them a mystical quality. Methods to construct Latin Squares were 
known for centuries, and Arabic mathematicians used them in their studies, often relating 
to the construction of Magic Squares. In 1700 the Korean Mathematician Choi Soek-jeong 
presented 2MOLS(9) in relation to magic squares, but he was unable to find a pair for 
order 10 [1]. The first major advancement in the study of Latin Squares and their 
properties was made by Euler in the late 18th century, in his attempt to answer the 36 
officers problem1 – which is equivalent to a set of 2MOLS(6). In his paper, Euler uses the 
first 6 symbols of the Latin alphabet as the possible values of the first square, giving the 
name “Latin Squares” to the objects. Trying to answer the 36 officers problem led Euler 
to the concept of orthogonality of Latin Squares and prompted the question of which 
Latin Squares have orthogonal mates. Euler conjectured that no such pair of squares 
existed for even orders not divisible by 4 i.e. 𝑛 ≡ 2 mod 4 (including 2 and 6). The first 
proof of the nonexistence of 2MOLS(6) was published by Gaston Tarry in 1901, using 
exhaustive methods to disprove Euler’s claim. Tarry’s proof came well over a century 
after Euler’s time, and there are historical records that claim a proof of nonexistence from 
almost 50 years prior. In a letter to Gauss in August 1842, Heinrich Schumacher stated 
that Thomas Clausen had divided all Latin Squares of order 6 into 17 families and 
exhaustively showed that none of them had orthogonal mates. Clausen’s division of the 
square into 17 families is an example of the concept of “symmetry breaking” – recognizing 
the equivalence between different sets of Latin Squares to reduce the number of such 
squares we need to consider. Clausen’s proof has been lost to time, but it is believed that 
his work was genuine given his sound method and academic talent for combinatorics. 
Euler’s conjecture regarding the order of squares which could not be part of a set of 
MOLS was disproven almost 150 years after its proposal, when R.C. Bose and S.S. 
Shrikhande constructed two mutually orthogonal Latin squares of order 22 [2]. Bose and 
Shrikhande along with E.T. Parker later proved that 𝑛 = 2,6 are the only orders of 𝑛 for 
which a pair of 2MOLS(𝑛) do not exist [3]. 

Latin Squares, sets of Mutually Orthogonal Latin Squares and Magic Squares have 
many applications in a diverse set of fields, from experimental design to recreational math 
[1]. The high dimensionality and number of possible squares makes the 𝑘MOLS(𝑛) 
problem one which is effectively solved in a systematic way, usually by a computer 

 
1 For more info see https://mathworld.wolfram.com/36OfficerProblem.html  
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program – indeed much more progress has been made studying these objects in higher 
orders since the beginning of the era of modern computers, including a computer-aided 
proof of the nonexistence of 9MOLS(10) [4] [5]. Currently the question of whether there 
exists a solution to 3MOLS(10) is an open problem in design theory, and one which we 
seek to illuminate. Our project began as an attempt to replicate the work of Appa et al. in 
their paper Searching for Mutually Orthogonal Latin Squares via integer and constraint 
programming. Appa et al. show promising results solving the 𝑘MOLS(𝑛) problem by 
combining the paradigms of integer and constraint programs into hybrid algorithms [6]. 
The efficacy of such algorithms was of interest to us. However, we realized that the scope 
of the research project was too small to attempt to replicate Appa et al.’s work fully. We 
attempted to replicate and then improve upon Appa et al.’s methods for the pure integer 
and constraint programs. We were able to make improvements through two methods and 
are hopeful that the results we observed can be extended to higher order squares for a 
potential solution to the 3MOLS(10) problem.  

2. Integer and Constraint Programming 

 Integer Programming is a special case of the mathematical programming paradigm 
Linear Programming in which all variables of the problem are subject to taking on integer 
values. In general, a linear program is a problem in which we are asked to optimize a 
linear “objective” function 𝑓 over a set of variables 𝑥φ, 𝑥ϵ,… , 𝑥։ subject to a set of linear 
constraints which impose that the domain of 𝑓 is bounded by a set of hyperplanes. We 
express a linear program as 

maximize(𝑐Јφ𝑥φ + 𝑐Јϵ𝑥ϵ + ⋯+ 𝑐Ј։𝑥։)  

subject to  

𝑐φφ𝑥φ + 𝑐φϵ𝑥ϵ + ⋯ + 𝑐φ։𝑥։ ≤ 𝑎φ  

𝑐ϵφ𝑥φ + 𝑐ϵϵ𝑥ϵ + ⋯ + 𝑐ϵ։𝑥։ ≤ 𝑎ϵ  

⋮  

𝑐ֆφ𝑥φ + 𝑐ֆϵ𝑥ϵ + ⋯+ 𝑐ֆ։𝑥։ ≤ 𝑎ֆ  

𝑥φ, 𝑥ϵ,… , 𝑥։ ≥ 0  

An integer program also enforces the constraint 𝑥φ, 𝑥ϵ,… , 𝑥։ ∈ ℤ or equivalently 
𝑥φ, 𝑥ϵ,… , 𝑥։ are integer.  
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 The above information constitutes what is known as a model. Linear programs are 
solved with algebraic methods such as the simplex algorithm, which attempts to jump 
across extreme points in the convex hull generated by the constraints of the program until 
a solution is found. When the variables of a linear program are constrained to be integral 
the problem becomes NP-hard and requires a more brute-force method of solution. A 
common approach is the branch and cut method, in which the solver forms an 
enumeration tree and uses a myriad of algebraic methods, preprocessing2 and simple linear 
programming to prune large portions of the tree. The tree itself constitutes many sub-
problems called nodes which are generated by fixing a variable to a particular value and 
appending the resulting sub-problem’s enumeration tree3. The relaxations of these sub-
problems are found by ignoring the integral constraints on the variables. These relaxed 
sub-problems are then solved and used to generate new inequalities which eliminate 
possible values the variables can take (called cutting planes). When no cutting planes can 
be generated the solver will choose another variable to branch on by some heuristic. The 
heuristics used to branch will ultimately define the shape of the enumeration tree, and so 
effectively choosing the variables is extremely important. Popular commercial grade 
optimizers such as Gurobi (our chosen solver) and ILOG-CPLEX employ many heuristics 
to increase the speed at which solutions are found.  

 Complementing the algebraic approach of Integer Programming is the 
mathematical programming paradigm of Constraint Programming (CP). CP problems are 
defined by a set of variables {𝑥φ, 𝑥ϵ,… , 𝑥։}, their domains {𝐷φ,𝐷ϵ,… , 𝐷։} and 
constraints {𝐶φ, 𝐶ϵ,… ,𝐶ֆ}. The CP Model is then defined as 

Determine a value of 𝑥ք   ∀1 ≤ 𝑖 ≤ 𝑛  

subject to  

𝑥ք ∈ 𝐷ք     ∀1 ≤ 𝑖 ≤ 𝑛  

𝑥φ, 𝑥ϵ,… , 𝑥։ satisfy 𝐶օ   ∀1 ≤ 𝑗 ≤ 𝑘  

CP allows for much more flexibility in both the definition of variables and the 
constraints which define feasible solutions. Of particular importance is the 
all_different(𝑥φ, 𝑥ϵ,… , 𝑥ֆ) constraint, which enforces that 𝑥ք ≠ 𝑥օ. CP solvers are purely 
search-based, unlike IP solvers which are also numerical. CP solvers benefit from their 

 
2 Preprocessing allows the solver to reduce the problem size before the solve begins. 
3 This is referred to as branching in a search tree. 
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simplicity, in that most of the work performed while solving the problem is done in the 
propagation of variable values through the tree4.  

 Appa et al.’s first hybrid algorithm used an IP solver to resolve sub-problems 
within the CP enumeration tree. At any node of the tree some subset of the variables are 
set to values within their domains, and each additional setting decreases the size of the 
problem. After a certain number of variables are set to values the hybrid algorithm passes 
all information to the IP solver which solves the relaxation of the current node. More 
variables being set makes it easier to solve the problem but means that the depth of the 
node is increased significantly. The effectiveness of this method comes from the fact that 
the IP solver has the potential to determine that a sub-problem is infeasible at the root 
node. The CP enumeration tree may thus be pruned significantly at these specific nodes, 
and the overall number of branches to check is cut down. The second hybrid algorithm 
uses the CP preprocessor to propagate variable fixings throughout the IP search tree. This 
algorithm allows the IP solver to benefit from a reduction in the size of the sub-problems 
it encounters within the search tree. 

3. Modelling 𝒌MOLS(𝒏) 

Our work is primarily focused on the case of 2MOLS(𝑛). However the models we use 
are easily extended to higher orders at the cost of massively increasing the number of 
variables and constraints. We thus propose different methods of computing 3MOLS(𝑛) 
which are discussed in Section 1. Let 𝑋 and 𝑌  be two Latin Squares of order 𝑛.  

3.1 IP Model 

 The IP model for expressing the 𝑘MOLS(𝑛) problem is a binary linear program in 
𝑛ֆ+ϵ variables. In the case of 𝑘 = 2 we define 

𝑥քօևֈ ≔ ছ
1, 𝑋քօ = 𝑙, 𝑌քօ = 𝑚

0, otherwise
 

 The following sets of constraints define the structure of 𝑋,𝑌  and their 
orthogonality: 

∑ 𝑥քօևֈЈ≤ևӴֈ<։
= 1  ∀𝑖, 𝑗 each cell contains 1 value   (1)  

 
4 In the subtree generated by setting a variable to a specific value, the value of that variable replaces the 
variable itself in all subsequent nodes, and consequently the domains of all variables are updated. This is 
called propagation. 
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∑ 𝑥քօևֈЈ≤օӴֈ<։
= 1  ∀𝑖, 𝑙 Latin property in rows of 𝑋  (2) 

∑ 𝑥քօևֈЈ≤օӴև<։
= 1  ∀𝑖,𝑚 Latin property in rows of 𝑌   (3) 

∑ 𝑥քօևֈЈ≤քӴֈ<։
= 1  ∀𝑗, 𝑙 Latin property in columns of 𝑋  (4) 

∑ 𝑥քօևֈЈ≤քӴև<։
= 1  ∀𝑗, 𝑚 Latin property in columns of 𝑌   (5) 

∑ 𝑥քօևֈЈ≤քӴօ<։
= 1  ∀𝑙,𝑚 orthogonality of 𝑋 and 𝑌    (6) 

This model is extended to 𝑘 = 3 and squares 𝑋, 𝑌 ,𝑍 by using  

𝑥քօևֈ֊ ≔ ছ
1, 𝑋քօ = 𝑙, 𝑌քօ = 𝑚,𝑍քօ = 𝑜

0, otherwise
 

and subsequent values of 𝑘 require even more subscripts. We impose the additional 
constraints of the Latin property in 𝑍 and the pairwise orthogonality between all squares. 

This method extends to any 𝑘 squares, but in general takes ঁ2 + 𝑘
2

ং 𝑛ϵ constraints, which 

for all but 𝑘 = 2 quickly exceed our ability to solve. For the 𝑘 = 3 case we may encode 
the orthogonality based on the assumption that 𝑍 is already known. This allows for some 
flexibility and uses far fewer variables. To extend the 2MOLS(𝑛) model to account for 𝑍 
we use two additional sets of constraints. These sets of constraints allow for us to model 
3MOLS(𝑛) without adding any additional variables to the problem: 

                       ం 𝑥քօևֈ
ջՎՏ=֕

Ј≤ֈ<։

= 1   ∀𝑙, 𝑧    orthogonality of 𝑋 and 𝑍          (7) 

                        ం 𝑥քօևֈ
ջՎՏ=֕

Ј≤և<։

= 1   ∀𝑚, 𝑧   orthogonality of 𝑌  and 𝑍          (8)              

We may then conduct the search by first fixing 𝑍 and then attempting to solve the 
2MOLS(𝑛) model with (7) and (8) imposed.  

3.2 CP Model 

 Constraint programming allows us to formulate 𝑘MOLS(𝑛) much more naturally 
than the IP version. For 𝑘 = 2 we use 2𝑛ϵ variables defined as 

𝑋քօ ≔ value of cell (𝑖, 𝑗) in 𝑋 

𝑌քօ ≔ value of cell (𝑖, 𝑗) in 𝑌  
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𝑖, 𝑗,𝑋քօ, 𝑌քօ ∈ {0,1,… , 𝑛 − 1} 

The Latin properties of 𝑋 and 𝑌  are enforced by all_different constraints on the rows and 
columns of the squares: 

all_differentि𝑋քօ ∀𝑗ी ∀𝑖 Latin property in rows of 𝑋 

all_differentि𝑌քօ ∀𝑗ी ∀𝑖  Latin property in rows of 𝑌  

all_differentि𝑋քօ ∀𝑖ी ∀𝑗  Latin property in columns of 𝑋 

all_differentि𝑌քօ ∀𝑖ी ∀𝑗 Latin property in columns of 𝑌  

Appa et al. encode the orthogonality between 𝑋 and 𝑌  by using linear constraints. Define 
the additional variables 

𝑍քօ ≔ 𝑋քօ + 𝑛𝑌քօ 

𝑍քօ ∈ {0,1,… , 𝑛ϵ − 1} 

Since each ordered pair of values (𝑋քօ, 𝑌քօ) yields a unique value of 𝑍քօ, if all 𝑍քօ are 
distinct then 𝑋 and 𝑌  are orthogonal. Hence, we use 

all_different(𝑍քօ ∀𝑖, 𝑗) 

to encode orthogonality. We call this model “CP-linear”. Appa et al. built their own 
constraint programming solver from the ground up, allowing them to have a much greater 
level of control over how their solver found solutions. Given the scope of this research 
project we were unable to construct such a solver, nor were we able to obtain a copy of 
Appa et al.’s source code. We thus opted to use a “black box” solver which seemed to 
handle linear constraints poorly. Because of this we use a different method of encoding 
orthogonality between two squares, leveraging what is known as “indexing” constraints. 
These allow us to impose constraints on array indices based on the values of other 
variables, i.e., 𝐴[𝑏] = 𝑐 encodes the condition that the 𝑏th element of the array 𝐴 is equal 
to 𝑐, for an array of values 𝐴 and singular values 𝑏 and 𝑐. 

Definition The composition of two Latin Squares 𝑋, 𝑌 , denoted 𝑋𝑌 , is the square whose 
𝑖th row is the composition as permutations5 of the 𝑖th row of 𝑋 with that of 𝑌 . This means 
(𝑋𝑌 )քօ = 𝑌քॕ𝑋ք(𝑗)ॖ. 

 
5 This composition is left to right i.e. 𝑓𝑔(𝑥) = 𝑔ॕ𝑓(𝑥)ॖ. 
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Definition The inverse of a Latin Square 𝑋 is denoted 𝑋−φ, where the 𝑖th row of  𝑋−φ is 
the inverse permutation of the 𝑖th row of 𝑋. This means (𝑋−φ)քօ = 𝑋ք

−φ(𝑗). 

Theorem6 Two Latin Squares 𝑋,𝑌  are orthogonal if and only if there exists a Latin 
Square 𝑊  such that 𝑋𝑊 = 𝑌 . 

Corollary Two Latin Squares 𝑋,𝑌  are orthogonal if and only if there exists a Latin 
Square 𝑊  such that 𝑊 = 𝑋−φ𝑌 .  

Using this corollary, we define 

𝑊քօ ≔ value of cell (𝑖, 𝑗) in 𝑊 = 𝑋−φ𝑌  

𝑊քօ ∈ {0,1,… , 𝑛 − 1} 

The condition 𝑋𝑊 = 𝑌  is encoded as 𝑌քօ = 𝑊քӴչՎՏ
. Expressed as an indexing constraint 

this is 𝑊քॅ𝑋քօॆ = 𝑌քօ, where 𝑊ք is the 𝑖th row of 𝑊 . We thus only need to impose the 
Latin property on 𝑊  to force 𝑋 and 𝑌  to be orthogonal. We call this model “CP-index”. 
Either of the two CP models presented may be extended to higher orders by defining 
𝑍քօ

չՆչՇ or 𝑊քօ
չՆչՇ to be the variables encoding orthogonality between 𝑋ռ and 𝑋ս in a 

system of 𝑘MOLS(𝑛). We thus use ঁ𝑘
2
ং such sets of variables to represent the mutual 

orthogonality between all 𝑘 squares. 

4. Symmetry Breaking 

 The search space for the 𝑘MOLS(𝑛) problem is filled with many solutions which 
are functionally identical, or isomorphic. These sets of isomorphic solutions constitute 
what are called symmetries of the problem, and elimination of such symmetries reduces 
the size of the search space7. In a system of 𝑘MOLS(𝑛) with squares (𝑋φ,𝑋ϵ,… ,𝑋ֆ) we 
may perform any of the following operations while maintaining the solution 

i) Permute 𝑋φ,𝑋ϵ,… ,𝑋ֆ 
ii) Permute the rows of 𝑋φ,𝑋ϵ,… ,𝑋ֆ simultaneously  
iii) Permute the columns of 𝑋φ,𝑋ϵ,… ,𝑋ֆ simultaneously  
iv) Permute the symbols {0,1,… , 𝑛 − 1} independently in each square 

 
6 Numerous proofs of this theorem seem to exist, see https://www.jstor.org/stable/2235844 for a proof 
published in 1942, the earliest we were able to find. 
7 The search space is the set of all possible ways of fixing the variables. 
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This set of symmetries constitutes up to 𝑘! (𝑛!)ֆ+ϵ isomorphic solutions for any single 
solution to 𝑘MOLS(𝑛). There are more symmetries which exist [7] however for the scope 
of our project we only actively eliminate some of those mentioned above. We will focus on 
only three mutually orthogonal Latin Squares 𝑋,𝑌 , 𝑍. Appa et al. fix the first row of 
each square in the system is fixed to be in lexicographic order or (0,1,… , 𝑛 − 1) – this 
prevents permutations of the columns and symbols. They also fix the first column of 𝑋 to 
be in lexicographic order which prevents permutations of the rows. With these fixed 
entries, we see 𝑌քЈ ≠ 𝑖. Appa et al. further reduce the symmetries of the system by 
constraining the domains of the first column of 𝑌  significantly. This is accomplished by 
showing that a set of 𝑘MOLS(𝑛) is isomorphic to one where 𝑌φЈ = 2, 𝑌քЈ ≠ 𝑖 and 𝑌քЈ ≤

𝑖 + 1. Imposing the above method of symmetry breaking reduces the number of ways of 
fixing the first column of 𝑌  to the (𝑛 − 2)th Fibonacci number [8]. 

 We improve upon Appa et al.’s method of symmetry breaking by further reducing 
the number of such first columns of 𝑌  to sequence value 𝑛 − 1 of entry A002865 in the 
Online Encyclopedia of Integer Sequences (OEIS). Let 𝑋 and 𝑌  be two mutually 
orthogonal Latin squares where the first rows of 𝑋 and 𝑌  and the first column of 𝑋 are 
fixed in lexicographic order.  

Definition Let 𝑀 = (𝑋φ,𝑋ϵ,… , 𝑋ֆ) be 𝑘 MOLS of order 𝑛. 𝑀  is said to be in standard 
form if the first row of 𝑋ք and the first column of 𝑋φ is in lexicographic order for 𝑖 =

1,… , 𝑘. 

Definition The first column permutation of a Latin Square 𝑌  is the permutation on the 
symbols {0,1,… , 𝑛 − 1} defined by 𝜌(𝑖) = 𝑌քЈ. The ordered cycle of a Latin Square 𝑌  is 
the representation of the first column permutation of 𝑌  as a product of disjoint cycles: 

ॕ𝑎ЈӴЈ,… , 𝑎ЈӴևɱ−φॖि𝑎φӴЈ,… , 𝑎φӴևȯ−φी… ि𝑎վӴЈ,… , 𝑎վӴևՈ−φी 

 where each cycle is the lexicographic least cyclic shift8, and the cycles are in 
lexicographic order. The ordered cycle type of 𝑌  is (𝑙Ј, 𝑙φ,… , 𝑙վ) 

Theorem Let 𝑋 and 𝑌  be a pair of orthogonal Latin squares of order 𝑛 in standard 
form. Then 𝑋 and 𝑌  are isomorphic to a pair of orthogonal Latin squares 𝑋′ and 𝑌  in 
standard form, where the ordered cycle type of 𝑌  is non-decreasing.  

 
8 The lexicographic least cyclic shift of a cycle is the equivalent representation of that cycle with minimal 
ordering i.e., for cycle (3,4,2) the least cyclic shift would be (2,3,4). 



10 
 

Proof Denote by 𝜌 the first column permutation of 𝑌  and suppose  

𝜌 = (0)ॕ𝑎ЈӴЈ,… , 𝑎ЈӴևɱ−φॖि𝑎φӴЈ,… , 𝑎φӴևȯ−φी… ि𝑎վӴЈ,… , 𝑎վӴևՈ−φी, 

where 𝑙Ј, 𝑙φ,… , 𝑙վ are in non-decreasing order. Let 𝑟 be the permutation whose values 
𝑟(0), 𝑟(1),… , 𝑟(𝑛 − 1) are given by 

0, 𝑎ЈӴЈ, 𝑎ЈӴφ,… , 𝑎ЈӴևɱ−φ, 𝑎φӴЈ, 𝑎φӴφ,… , 𝑎φӴևȯ−φ,… , 𝑎վӴЈ, 𝑎վӴφ,… , 𝑎վӴևՈ−φ. 

We apply 𝑟 to the symbols of 𝑋 and 𝑌  and denote by 𝑋, 𝑌  the resulting squares. This 
gives 𝑋քЈ

 = 𝑟(𝑖) and 𝑌քЈ
 = 𝑟(𝑌քЈ). We then permute the columns of 𝑋 and 𝑌  so that the 

first rows of each square are in lexicographic order. Applying 𝑟−φ to the rows of 𝑋 and 
𝑌  gives 𝑋քЈ

 = 𝑟५𝑟−φ(𝑖)६ = 𝑖 and 𝑌քЈ
 = 𝑟ि𝑌֍−ȯ(ք)Јी = 𝑟𝜌𝑟−φ(𝑖) which is the conjugate 

permutation of 𝜌 by 𝑟. 𝑋, 𝑌  are now in standard form. Conjugation preserves the cycle 
structure of a permutation and replaces each element 𝑥 ∈ 𝜌 with 𝑟(𝑥). Thus 𝑟𝜌𝑟−φ =

(1,2,… , 𝑙Ј − 1)(𝑙Ј,… , 𝑙φ − 1)… (𝑙վ−φ,… , 𝑙վ − 1) and the ordered cycle type (𝑙Ј, 𝑙φ,… , 𝑙վ) is 
non-decreasing. This method extends equally well to any set of 𝑘MOLS(𝑛). ■ 

The implication of this theorem is that we may fix the first column of 𝑌  to be one 
of several “canonical representatives”. We choose these representatives so that their 
ordered cycle types are non-decreasing, only ensuring that each has a different cycle type 
and that they obey Appa et al.’s domain reduction method. This allows us to conduct our 
search for solutions in two possible ways. The first way is by fixing the first column of 𝑌  
to be each of the canonical representatives and running each column fixing in parallel, 
allowing us to fix all values of the first column of 𝑌  rather than imposing constraints on 
its domain. Both the IP and CP solvers we used seem to heavily benefit from the fixing of 
variables, but only the CP solver responded well to Appa et al.’s domain reduction 
method. This is because the IP model does not permit individual values to be set, we may 
only specify the tuple ि𝑋քօ, 𝑌քօी = (𝑎, 𝑏). We thus impose domain reduction by telling the 
IP solver which tuples are not allowed, which does not reduce the number of constraints 
in the problem. The running time for solving any model using this method of 
parallelization is thus the time it takes for the first solution to be found across any of the 
instances. The second way to conduct the search is to implement so called “blocking 
constraints”, which enforce that the first column of 𝑌  be canonical. In this method we 
choose 𝑎։ tuples – each having a different cycle type – and use constraints to enforce that 
the first column of 𝑌  be fixed to one of these tuples. This way we let the solver decide 
how to fix the first column, having the number of possibilities severely reduced. Let 𝑎(𝑛) 
be the (𝑛 − 2)th Fibonacci number and 𝑏(𝑛) be the (𝑛 − 1)th value of A002865 in the 
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OEIS. The following table shows the growth rate of 𝑎(𝑛) compared to that of 𝑏(𝑛), and 
demonstrates how many fewer column possibilities we consider using the cycle type 
method.  

𝑛 3  4 5 6 7 8 9 10 11 12 
𝑎(𝑛) 1 1 2 3 5 8 13 21 34 55 
𝑏(𝑛) 1 1 2 2 4 4 7 8 12 14 
Table 1 – Growth rate of 𝑎(𝑛) vs. 𝑏(𝑛) 

5. Implementation 

 The programs to solve systems of 2MOLS(𝑛) and 3MOLS(𝑛) were written in 
Microsoft Visual C++ and ran on an Intel Core i9 processor with 32GB of RAM. Each 
process was allotted 1 core (approx. 10% of the CPU power at any given point) to ensure 
comparability of results based on raw processing power. To solve the IP model, we used 
Gurobi version 9 [9], which is a popular commercial linear optimizer with free academic 
licenses. For the CP models we use Google OR-Tools version 7 [10], which is an open-
source constraint satisfaction solver. Both solvers are extremely efficient. However they 
provide little to no information on their internal mechanics. For solving the 3MOLS(𝑛) 
problem we are unable to use either the IP model or the CP model directly9 (without 
additional information or symmetry breaking) for all but the smallest values of 𝑛. We 
instead perform the search for 3MOLS(𝑛) by generating a candidate square for 𝑍 and 
attempting to find 𝑋 and 𝑌  such that 𝑋, 𝑌 ,𝑍 are mutually orthogonal using one of our 
models. The candidate square is found using the CP solver, and for all orders we tested 
took negligible time to find. We first generate constraint sets (7) and (8) from the 
particular 𝑍 and attempt to solve the model. If no solution exists or is found within our 
timeout of 60,000 seconds, we choose a new 𝑍, remove the previous constraints and 
repeat. Using the CP model extended to 3MOLS(𝑛) we simply set the values of 𝑍 and 
run the model normally. The source code for all our programs as well as the logs from 
various time trials are available online at https://github.com/noahrubin333/CP-IP. 

6. Results 

6.1 2MOLS Timings 

In every instance we ran, the solver either timed out after 60,000s, found a solution, or 
reported that no such solution exists. Our control timings were those which use no 

 
9 For 𝑛 ≤ 5 the pure models did return solutions. 
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symmetry breaking and let the solvers run in their default states. We also ensure that the 
flag in Gurobi used to control symmetry breaking is set to its “off” state. This makes 
Gurobi not perform its own internal symmetry breaking, which would have significantly 
skewed the observed results. Out of the three models tested, the CP-index model 
performed the best in the control state. It is important to see how the solvers perform 
without any assistance, as this allows us to understand how much of an impact our 
symmetry breaking has. 

Model 5 6 7 8 9 10 
IP 0.1 Timeout 3.2 6.4 344.5 3,046.4 

CP-linear 0.0 Timeout 8.0 1,967.1 58,637.8 Timeout 
CP-index 0.0 Timeout 7.8 36.3 378.7 214.8 

Table 2 – Time in seconds for each model to solve 2MOLS(𝑛) with no symmetry 
breaking. 

We next present the timings observed when applying different forms of symmetry 
breaking to the IP and CP models. When applying symmetry breaking methods to the 
models, we indicate whether the strategy used was Appa et al.’s domain reduction10, or 
our cycle type method. In the latter case we report the median running time across three 
trials, each given a random first column fixing which has the specified cycle type. The 
column fixings are categorized by a Python script, which assigns an ordered cycle type to 
a valid tuple representing the first column of 𝑌 .  

𝑛 Sym. Breaking IP CP-linear CP-index 
5 Domain Red. 0 0 0 
5 (1,2,2) 0 0 0 
5 (1,4) 0 0 0 
6 Domain Red. 2 1 0 
6 (1,5) 0 0 0 
6 (1,2,3) 0 0 0 
7 Domain Red. 6 1 0 
7 (1,2,2,2) 0 1 0 
7 (1,6) 0 3 0 
7 (1,2,4) 0 4 0 
7 (1,3,3) 0 1 0 
8 Domain Red. 23,729 759 6 
8 (1,3,4) 2 1,282 5 
8 (1,2,2,3) 4 293 7 
8 (1,2,5) 4 164 13 
8 (1,7) 2 368 10 
9 Domain Red. Timeout Timeout 290 

 
10 The domain reduction method imposes 𝑌φЈ = 2, 𝑌քЈ ≠ 𝑖 and 𝑌քЈ ≤ 𝑖 + 1. 
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9 (1,3,5) 808 Timeout 485 
9 (1,2,2,4) 612 Timeout 212 
9 (1,8) 303 Timeout 1,200 
9 (1,2,6) 1,082 Timeout 61 
9 (1,2,2,2,2) 1,832 Timeout 784 
9 (1,4,4) 1,315 Timeout 917 
9 (1,2,3,3) 65 Timeout 223 

10 Domain Red. Timeout Timeout 1,379 
10 (1,4,5) 52,329 Timeout 3,892 
10 (1,2,2,5) 29,387 Timeout 4,383 
10 (1,2,2,2,3) 6,128 Timeout 1,326 
10 (1,2,3,4) 15,534 Timeout 835 
10 (1,3,6) 31,005 Timeout 3,244 
10 (1,2,7) Timeout Timeout 1,413 
10 (1,3,3,3) 36,959 Timeout 3,886 
10 (1,9) Timeout Timeout 1,319 
11 Domain Red. Timeout Timeout 29,925 
11 (1,3,7) Timeout Timeout 32,815 
11 (1,2,2,3,3) Timeout Timeout 41,665 
11 (1,3,3,4) Timeout Timeout Timeout 
11 (1,2,8) Timeout Timeout 11,524 
11 (1,2,2,6) Timeout Timeout 8,982 
11 (1,2,2,2,4) Timeout Timeout 8,299 
11 (1,2,2,2,2,2) Timeout Timeout 10,206 
11 (1,2,4,4) Timeout Timeout 19,571 
11 (1,10) Timeout Timeout 13,210 
11 (1,4,6) Timeout Timeout 40,077 
11 (1,2,3,5) Timeout Timeout Timeout 
11 (1,5,5) Timeout Timeout 7,359 

Table 3 – Median time in seconds (across 3 trials) for each model to solve 2MOLS(𝑛) 
with specified symmetry breaking. 
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Fig 2 – Plot of minimum running time in seconds across all models. 

 Analyzing the collected data, we see that the IP solver performs quite poorly when 
we impose the Domain Reduction symmetry breaking. The IP solver also sees the most 
benefit from imposing the Cycle Type symmetry breaking. The reason for the poor 
performance of the domain reduction method is hypothesized to be due to the internal 
mechanics of Gurobi. Unfortunately, due to the proprietary nature of Gurobi we cannot 
know for sure how the solver is affected by our symmetry breaking. 

Across all symmetry breaking methods we see that the CP solver always performs 
much better when using indexing constraints instead of linear. Within each CP model we 
see that using the Cycle Type method often resulted in better running times, but there 
were some outlier cases in which the solver was slowed down by the choice of column 
fixing. This behavior does not seem to be related to the cycle type of the column fixing, 
but rather simply how the fixing itself is handled by the solver, and the level of 
randomness present in the search11,12. Overall, we were very encouraged by the running 
times we observed in the 2MOLS(𝑛) cases. In some instances, the Cycle Type method 
allowed us to obtain a solution to the problem an order of magnitude faster. In the future 

 
11 Likely due to the internal heuristics being employed by the solvers – unfortunately it is extremely difficult 
to determine how different fixings will affect runtime before they are tried. 
12 We pass a random seed to the solver each trial to introduce variability into the searches. 
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we would also like to test how the solvers respond to the alternative method of Cycle 
Type symmetry breaking – where we impose that the first column of 𝑌  be one of the 
canonical column fixings, but not a specific one. As an example of this, consider the 
following set of canonical column fixings for 𝑛 = 8: 

(0,2,1,4,5,6,7,3) with cycle type (1,2,5)  

(0,2,3,4,5,6,7,1) with cycle type (1,7)    

(0,2,3,1,5,6,7,4) with cycle type (1,3,4)  

(0,2,1,4,3,6,7,5) with cycle type (1,2,2,3)  

Our first strategy would use 4 parallel runs, where each run has the first column of 𝑌  set 
to one of these canonical fixings. In this new strategy we instead impose a minimal set of 
constraints which impose that of the possible ways to fix the first column of 𝑌 , only those 
which are in the above set of canonical fixings may be used. This amounts to the 
additional constraints 𝑌ΘЈ = 6 and 𝑌ΚЈ ≠ 1, which are added to the existing constraints 
from Appa et al.’s domain reduction method.  

6.2 𝟑MOLS Timings 

As mentioned before, the models used for 3MOLS(𝑛) are extensions of those used 
for 2MOLS(𝑛) where the third square, 𝑍, is predetermined. We use OR-Tools to 
enumerate all Latin Squares of order 𝑛 sequentially, and then use Gurobi to construct 𝑋 
and 𝑌 . Extending the symmetry breaking to 𝑍 we fix the first row of 𝑍 in lexicographic 
order and ensure 𝑍քЈ ≠ 𝑖. This helps to avoid generating Latin Squares which would 
trivially conflict with the already fixed values in 𝑋 and 𝑌 , thus reducing the overall 
number of possible 𝑍 to search. The times reported are the average time taken by the IP 
solver to report either a solution or the lack thereof. This is calculated as our timeout 
(60,000s) divided by the number of squares the solver could process before this timeout.  

𝑛 Time per 𝑍 
7 0.02 
8 3.58 
9 397.35 

10 4,615.38 
11 Timeout 

Table 4 – Time in seconds to solve an instance of 3MOLS(𝑛) with 𝑍 fixed using IP. 
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7. Conclusion 

 In this project we use the mathematical programming paradigms of Integer and 
Constraint programming to solve the 2MOLS(𝑛) and later 3MOLS(𝑛) problems. We 
attempt to replicate the work of Appa et al. and improve upon their CP model and 
symmetry breaking methods. Using these new methods, we reduce our observed running 
times by a significant factor. The Cycle Type method of symmetry breaking has potential 
for the parallelization of a search for higher orders of 𝑘 and 𝑛 – and an interesting 
direction this project may eventually take would involve testing the efficacy of the Cycle 
Type method on a large-scale computational cluster (such as Microsoft Azure or Compute 
Canada supercomputers).  

 Although the initial scope of this project was as a research training award with a 
timeline of 16 weeks, I have found myself continuing the work over a year later. I am 
extremely grateful for the opportunity afforded to me by my supervisors – and am thrilled 
by the fact that our work has been published in the ICTAI 2021 conference proceedings 
[11]. The time I have spent working in the realm of combinatorics and operations research 
has forever changed the trajectory of my academic career, and I look forward to 
continuing this research.  
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