

CARLETON UNIVERSITY

SCHOOL OF

MATHEMATICS AND STATISTICS

HONOURS PROJECT

 TITLE: Integer and Constraint Programming
 Revisted for Mutually Orthogonal Latin
 Squares.

 AUTHOR: Noah D. Rubin

 SUPERVISORS: Dr. Brett Stevens and Dr.
Curtis Bright

 DATE: Monday January 10, 2022

1

Many thanks to my supervisors Brett Stevens, Curtis Bright and Kevin Cheung for their
support and guidance throughout this project.

Abstract

 In this project we use the mathematical programming paradigms of integer and
constraint programming to solve the Mutually Orthogonal Latin Squares problems for sets
of two and three squares. We implement two of the solution methods used by Appa et al.
in their paper “Searching for mutually orthogonal Latin squares via integer and constraint
programming” and further improve upon both their models introduced and techniques of
reducing symmetries in the solution spaces. Using our new models and symmetry breaking
methods we significantly decrease the amount of time taken for our chosen solvers to find
solutions to the aforementioned problems or prove their nonexistence. We also attempt to
extrapolate the time it would take to find a solution for a higher order instance of the
problem – the existence of which is currently an open question in design theory.

1. Introduction

 A Latin square 𝑋 of order 𝑛 ∈ ℕ is an 𝑛 × 𝑛 array of symbols, where the element
in the 𝑖th row and 𝑗th column is denoted 𝑋քօ ∈ {0,1,… , 𝑛 − 1}. Latin squares have the
restriction that each symbol {0,1,… , 𝑛 − 1} must appear exactly once in every row and
column of 𝑋, like a sudoku puzzle. This restriction is referred to as the Latin property of
𝑋. We wish to study sets of Latin squares with an additional property. Two Latin squares
𝑋,𝑌 are orthogonal if the system of equations 𝑋քօ = 𝑎, 𝑌քօ = 𝑏 has exactly 𝑛ϵ unique
solutions. In other words, 𝑋 and 𝑌 are orthogonal if for every 𝑖, 𝑗 the pair ि𝑋քօ, 𝑌քօी is
unique. We call a set {𝑋φ,… , 𝑋ֆ} 𝑘 Mutually Orthogonal Latin Squares of Order 𝑛 or
𝑘 MOLS(𝑛) if 𝑋ք is orthogonal to 𝑋օ for 𝑖 ≠ 𝑗.

Fig 1 – A silver amulet from Damascus depicting a Latin square of order 5

2

 Latin Squares have been found inscribed on Arabic amulets dating to as early as
the 10th century [1]. As with much of early mathematics, the highly structured form of
these squares gave them a mystical quality. Methods to construct Latin Squares were
known for centuries, and Arabic mathematicians used them in their studies, often relating
to the construction of Magic Squares. In 1700 the Korean Mathematician Choi Soek-jeong
presented 2MOLS(9) in relation to magic squares, but he was unable to find a pair for
order 10 [1]. The first major advancement in the study of Latin Squares and their
properties was made by Euler in the late 18th century, in his attempt to answer the 36
officers problem1 – which is equivalent to a set of 2MOLS(6). In his paper, Euler uses the
first 6 symbols of the Latin alphabet as the possible values of the first square, giving the
name “Latin Squares” to the objects. Trying to answer the 36 officers problem led Euler
to the concept of orthogonality of Latin Squares and prompted the question of which
Latin Squares have orthogonal mates. Euler conjectured that no such pair of squares
existed for even orders not divisible by 4 i.e. 𝑛 ≡ 2 mod 4 (including 2 and 6). The first
proof of the nonexistence of 2MOLS(6) was published by Gaston Tarry in 1901, using
exhaustive methods to disprove Euler’s claim. Tarry’s proof came well over a century
after Euler’s time, and there are historical records that claim a proof of nonexistence from
almost 50 years prior. In a letter to Gauss in August 1842, Heinrich Schumacher stated
that Thomas Clausen had divided all Latin Squares of order 6 into 17 families and
exhaustively showed that none of them had orthogonal mates. Clausen’s division of the
square into 17 families is an example of the concept of “symmetry breaking” – recognizing
the equivalence between different sets of Latin Squares to reduce the number of such
squares we need to consider. Clausen’s proof has been lost to time, but it is believed that
his work was genuine given his sound method and academic talent for combinatorics.
Euler’s conjecture regarding the order of squares which could not be part of a set of
MOLS was disproven almost 150 years after its proposal, when R.C. Bose and S.S.
Shrikhande constructed two mutually orthogonal Latin squares of order 22 [2]. Bose and
Shrikhande along with E.T. Parker later proved that 𝑛 = 2,6 are the only orders of 𝑛 for
which a pair of 2MOLS(𝑛) do not exist [3].

Latin Squares, sets of Mutually Orthogonal Latin Squares and Magic Squares have
many applications in a diverse set of fields, from experimental design to recreational math
[1]. The high dimensionality and number of possible squares makes the 𝑘MOLS(𝑛)
problem one which is effectively solved in a systematic way, usually by a computer

1 For more info see https://mathworld.wolfram.com/36OfficerProblem.html

3

program – indeed much more progress has been made studying these objects in higher
orders since the beginning of the era of modern computers, including a computer-aided
proof of the nonexistence of 9MOLS(10) [4] [5]. Currently the question of whether there
exists a solution to 3MOLS(10) is an open problem in design theory, and one which we
seek to illuminate. Our project began as an attempt to replicate the work of Appa et al. in
their paper Searching for Mutually Orthogonal Latin Squares via integer and constraint
programming. Appa et al. show promising results solving the 𝑘MOLS(𝑛) problem by
combining the paradigms of integer and constraint programs into hybrid algorithms [6].
The efficacy of such algorithms was of interest to us. However, we realized that the scope
of the research project was too small to attempt to replicate Appa et al.’s work fully. We
attempted to replicate and then improve upon Appa et al.’s methods for the pure integer
and constraint programs. We were able to make improvements through two methods and
are hopeful that the results we observed can be extended to higher order squares for a
potential solution to the 3MOLS(10) problem.

2. Integer and Constraint Programming

 Integer Programming is a special case of the mathematical programming paradigm
Linear Programming in which all variables of the problem are subject to taking on integer
values. In general, a linear program is a problem in which we are asked to optimize a
linear “objective” function 𝑓 over a set of variables 𝑥φ, 𝑥ϵ,… , 𝑥։ subject to a set of linear
constraints which impose that the domain of 𝑓 is bounded by a set of hyperplanes. We
express a linear program as

maximize(𝑐Јφ𝑥φ + 𝑐Јϵ𝑥ϵ + ⋯+ 𝑐Ј։𝑥։)

subject to

𝑐φφ𝑥φ + 𝑐φϵ𝑥ϵ + ⋯ + 𝑐φ։𝑥։ ≤ 𝑎φ

𝑐ϵφ𝑥φ + 𝑐ϵϵ𝑥ϵ + ⋯ + 𝑐ϵ։𝑥։ ≤ 𝑎ϵ

⋮

𝑐ֆφ𝑥φ + 𝑐ֆϵ𝑥ϵ + ⋯+ 𝑐ֆ։𝑥։ ≤ 𝑎ֆ

𝑥φ, 𝑥ϵ,… , 𝑥։ ≥ 0

An integer program also enforces the constraint 𝑥φ, 𝑥ϵ,… , 𝑥։ ∈ ℤ or equivalently
𝑥φ, 𝑥ϵ,… , 𝑥։ are integer.

4

 The above information constitutes what is known as a model. Linear programs are
solved with algebraic methods such as the simplex algorithm, which attempts to jump
across extreme points in the convex hull generated by the constraints of the program until
a solution is found. When the variables of a linear program are constrained to be integral
the problem becomes NP-hard and requires a more brute-force method of solution. A
common approach is the branch and cut method, in which the solver forms an
enumeration tree and uses a myriad of algebraic methods, preprocessing2 and simple linear
programming to prune large portions of the tree. The tree itself constitutes many sub-
problems called nodes which are generated by fixing a variable to a particular value and
appending the resulting sub-problem’s enumeration tree3. The relaxations of these sub-
problems are found by ignoring the integral constraints on the variables. These relaxed
sub-problems are then solved and used to generate new inequalities which eliminate
possible values the variables can take (called cutting planes). When no cutting planes can
be generated the solver will choose another variable to branch on by some heuristic. The
heuristics used to branch will ultimately define the shape of the enumeration tree, and so
effectively choosing the variables is extremely important. Popular commercial grade
optimizers such as Gurobi (our chosen solver) and ILOG-CPLEX employ many heuristics
to increase the speed at which solutions are found.

 Complementing the algebraic approach of Integer Programming is the
mathematical programming paradigm of Constraint Programming (CP). CP problems are
defined by a set of variables {𝑥φ, 𝑥ϵ,… , 𝑥։}, their domains {𝐷φ,𝐷ϵ,… , 𝐷։} and
constraints {𝐶φ, 𝐶ϵ,… ,𝐶ֆ}. The CP Model is then defined as

Determine a value of 𝑥ք ∀1 ≤ 𝑖 ≤ 𝑛

subject to

𝑥ք ∈ 𝐷ք ∀1 ≤ 𝑖 ≤ 𝑛

𝑥φ, 𝑥ϵ,… , 𝑥։ satisfy 𝐶օ ∀1 ≤ 𝑗 ≤ 𝑘

CP allows for much more flexibility in both the definition of variables and the
constraints which define feasible solutions. Of particular importance is the
all_different(𝑥φ, 𝑥ϵ,… , 𝑥ֆ) constraint, which enforces that 𝑥ք ≠ 𝑥օ. CP solvers are purely
search-based, unlike IP solvers which are also numerical. CP solvers benefit from their

2 Preprocessing allows the solver to reduce the problem size before the solve begins.
3 This is referred to as branching in a search tree.

5

simplicity, in that most of the work performed while solving the problem is done in the
propagation of variable values through the tree4.

 Appa et al.’s first hybrid algorithm used an IP solver to resolve sub-problems
within the CP enumeration tree. At any node of the tree some subset of the variables are
set to values within their domains, and each additional setting decreases the size of the
problem. After a certain number of variables are set to values the hybrid algorithm passes
all information to the IP solver which solves the relaxation of the current node. More
variables being set makes it easier to solve the problem but means that the depth of the
node is increased significantly. The effectiveness of this method comes from the fact that
the IP solver has the potential to determine that a sub-problem is infeasible at the root
node. The CP enumeration tree may thus be pruned significantly at these specific nodes,
and the overall number of branches to check is cut down. The second hybrid algorithm
uses the CP preprocessor to propagate variable fixings throughout the IP search tree. This
algorithm allows the IP solver to benefit from a reduction in the size of the sub-problems
it encounters within the search tree.

3. Modelling 𝒌MOLS(𝒏)

Our work is primarily focused on the case of 2MOLS(𝑛). However the models we use
are easily extended to higher orders at the cost of massively increasing the number of
variables and constraints. We thus propose different methods of computing 3MOLS(𝑛)
which are discussed in Section 1. Let 𝑋 and 𝑌 be two Latin Squares of order 𝑛.

3.1 IP Model

 The IP model for expressing the 𝑘MOLS(𝑛) problem is a binary linear program in
𝑛ֆ+ϵ variables. In the case of 𝑘 = 2 we define

𝑥քօևֈ ≔ ছ
1, 𝑋քօ = 𝑙, 𝑌քօ = 𝑚

0, otherwise

 The following sets of constraints define the structure of 𝑋,𝑌 and their
orthogonality:

∑ 𝑥քօևֈЈ≤ևӴֈ<։
= 1 ∀𝑖, 𝑗 each cell contains 1 value (1)

4 In the subtree generated by setting a variable to a specific value, the value of that variable replaces the
variable itself in all subsequent nodes, and consequently the domains of all variables are updated. This is
called propagation.

6

∑ 𝑥քօևֈЈ≤օӴֈ<։
= 1 ∀𝑖, 𝑙 Latin property in rows of 𝑋 (2)

∑ 𝑥քօևֈЈ≤օӴև<։
= 1 ∀𝑖,𝑚 Latin property in rows of 𝑌 (3)

∑ 𝑥քօևֈЈ≤քӴֈ<։
= 1 ∀𝑗, 𝑙 Latin property in columns of 𝑋 (4)

∑ 𝑥քօևֈЈ≤քӴև<։
= 1 ∀𝑗, 𝑚 Latin property in columns of 𝑌 (5)

∑ 𝑥քօևֈЈ≤քӴօ<։
= 1 ∀𝑙,𝑚 orthogonality of 𝑋 and 𝑌 (6)

This model is extended to 𝑘 = 3 and squares 𝑋, 𝑌 ,𝑍 by using

𝑥քօևֈ֊ ≔ ছ
1, 𝑋քօ = 𝑙, 𝑌քօ = 𝑚,𝑍քօ = 𝑜

0, otherwise

and subsequent values of 𝑘 require even more subscripts. We impose the additional
constraints of the Latin property in 𝑍 and the pairwise orthogonality between all squares.

This method extends to any 𝑘 squares, but in general takes ঁ2 + 𝑘
2

ং 𝑛ϵ constraints, which

for all but 𝑘 = 2 quickly exceed our ability to solve. For the 𝑘 = 3 case we may encode
the orthogonality based on the assumption that 𝑍 is already known. This allows for some
flexibility and uses far fewer variables. To extend the 2MOLS(𝑛) model to account for 𝑍
we use two additional sets of constraints. These sets of constraints allow for us to model
3MOLS(𝑛) without adding any additional variables to the problem:

 ం 𝑥քօևֈ
ջՎՏ=֕

Ј≤ֈ<։

= 1 ∀𝑙, 𝑧 orthogonality of 𝑋 and 𝑍 (7)

 ం 𝑥քօևֈ
ջՎՏ=֕

Ј≤և<։

= 1 ∀𝑚, 𝑧 orthogonality of 𝑌 and 𝑍 (8)

We may then conduct the search by first fixing 𝑍 and then attempting to solve the
2MOLS(𝑛) model with (7) and (8) imposed.

3.2 CP Model

 Constraint programming allows us to formulate 𝑘MOLS(𝑛) much more naturally
than the IP version. For 𝑘 = 2 we use 2𝑛ϵ variables defined as

𝑋քօ ≔ value of cell (𝑖, 𝑗) in 𝑋

𝑌քօ ≔ value of cell (𝑖, 𝑗) in 𝑌

7

𝑖, 𝑗,𝑋քօ, 𝑌քօ ∈ {0,1,… , 𝑛 − 1}

The Latin properties of 𝑋 and 𝑌 are enforced by all_different constraints on the rows and
columns of the squares:

all_differentि𝑋քօ ∀𝑗ी ∀𝑖 Latin property in rows of 𝑋

all_differentि𝑌քօ ∀𝑗ी ∀𝑖 Latin property in rows of 𝑌

all_differentि𝑋քօ ∀𝑖ी ∀𝑗 Latin property in columns of 𝑋

all_differentि𝑌քօ ∀𝑖ी ∀𝑗 Latin property in columns of 𝑌

Appa et al. encode the orthogonality between 𝑋 and 𝑌 by using linear constraints. Define
the additional variables

𝑍քօ ≔ 𝑋քօ + 𝑛𝑌քօ

𝑍քօ ∈ {0,1,… , 𝑛ϵ − 1}

Since each ordered pair of values (𝑋քօ, 𝑌քօ) yields a unique value of 𝑍քօ, if all 𝑍քօ are
distinct then 𝑋 and 𝑌 are orthogonal. Hence, we use

all_different(𝑍քօ ∀𝑖, 𝑗)

to encode orthogonality. We call this model “CP-linear”. Appa et al. built their own
constraint programming solver from the ground up, allowing them to have a much greater
level of control over how their solver found solutions. Given the scope of this research
project we were unable to construct such a solver, nor were we able to obtain a copy of
Appa et al.’s source code. We thus opted to use a “black box” solver which seemed to
handle linear constraints poorly. Because of this we use a different method of encoding
orthogonality between two squares, leveraging what is known as “indexing” constraints.
These allow us to impose constraints on array indices based on the values of other
variables, i.e., 𝐴[𝑏] = 𝑐 encodes the condition that the 𝑏th element of the array 𝐴 is equal
to 𝑐, for an array of values 𝐴 and singular values 𝑏 and 𝑐.

Definition The composition of two Latin Squares 𝑋, 𝑌 , denoted 𝑋𝑌 , is the square whose
𝑖th row is the composition as permutations5 of the 𝑖th row of 𝑋 with that of 𝑌 . This means
(𝑋𝑌)քօ = 𝑌քॕ𝑋ք(𝑗)ॖ.

5 This composition is left to right i.e. 𝑓𝑔(𝑥) = 𝑔ॕ𝑓(𝑥)ॖ.

8

Definition The inverse of a Latin Square 𝑋 is denoted 𝑋−φ, where the 𝑖th row of 𝑋−φ is
the inverse permutation of the 𝑖th row of 𝑋. This means (𝑋−φ)քօ = 𝑋ք

−φ(𝑗).

Theorem6 Two Latin Squares 𝑋,𝑌 are orthogonal if and only if there exists a Latin
Square 𝑊 such that 𝑋𝑊 = 𝑌 .

Corollary Two Latin Squares 𝑋,𝑌 are orthogonal if and only if there exists a Latin
Square 𝑊 such that 𝑊 = 𝑋−φ𝑌 .

Using this corollary, we define

𝑊քօ ≔ value of cell (𝑖, 𝑗) in 𝑊 = 𝑋−φ𝑌

𝑊քօ ∈ {0,1,… , 𝑛 − 1}

The condition 𝑋𝑊 = 𝑌 is encoded as 𝑌քօ = 𝑊քӴչՎՏ
. Expressed as an indexing constraint

this is 𝑊քॅ𝑋քօॆ = 𝑌քօ, where 𝑊ք is the 𝑖th row of 𝑊 . We thus only need to impose the
Latin property on 𝑊 to force 𝑋 and 𝑌 to be orthogonal. We call this model “CP-index”.
Either of the two CP models presented may be extended to higher orders by defining
𝑍քօ

չՆչՇ or 𝑊քօ
չՆչՇ to be the variables encoding orthogonality between 𝑋ռ and 𝑋ս in a

system of 𝑘MOLS(𝑛). We thus use ঁ𝑘
2
ং such sets of variables to represent the mutual

orthogonality between all 𝑘 squares.

4. Symmetry Breaking

 The search space for the 𝑘MOLS(𝑛) problem is filled with many solutions which
are functionally identical, or isomorphic. These sets of isomorphic solutions constitute
what are called symmetries of the problem, and elimination of such symmetries reduces
the size of the search space7. In a system of 𝑘MOLS(𝑛) with squares (𝑋φ,𝑋ϵ,… ,𝑋ֆ) we
may perform any of the following operations while maintaining the solution

i) Permute 𝑋φ,𝑋ϵ,… ,𝑋ֆ
ii) Permute the rows of 𝑋φ,𝑋ϵ,… ,𝑋ֆ simultaneously
iii) Permute the columns of 𝑋φ,𝑋ϵ,… ,𝑋ֆ simultaneously
iv) Permute the symbols {0,1,… , 𝑛 − 1} independently in each square

6 Numerous proofs of this theorem seem to exist, see https://www.jstor.org/stable/2235844 for a proof
published in 1942, the earliest we were able to find.
7 The search space is the set of all possible ways of fixing the variables.

9

This set of symmetries constitutes up to 𝑘! (𝑛!)ֆ+ϵ isomorphic solutions for any single
solution to 𝑘MOLS(𝑛). There are more symmetries which exist [7] however for the scope
of our project we only actively eliminate some of those mentioned above. We will focus on
only three mutually orthogonal Latin Squares 𝑋,𝑌 , 𝑍. Appa et al. fix the first row of
each square in the system is fixed to be in lexicographic order or (0,1,… , 𝑛 − 1) – this
prevents permutations of the columns and symbols. They also fix the first column of 𝑋 to
be in lexicographic order which prevents permutations of the rows. With these fixed
entries, we see 𝑌քЈ ≠ 𝑖. Appa et al. further reduce the symmetries of the system by
constraining the domains of the first column of 𝑌 significantly. This is accomplished by
showing that a set of 𝑘MOLS(𝑛) is isomorphic to one where 𝑌φЈ = 2, 𝑌քЈ ≠ 𝑖 and 𝑌քЈ ≤

𝑖 + 1. Imposing the above method of symmetry breaking reduces the number of ways of
fixing the first column of 𝑌 to the (𝑛 − 2)th Fibonacci number [8].

 We improve upon Appa et al.’s method of symmetry breaking by further reducing
the number of such first columns of 𝑌 to sequence value 𝑛 − 1 of entry A002865 in the
Online Encyclopedia of Integer Sequences (OEIS). Let 𝑋 and 𝑌 be two mutually
orthogonal Latin squares where the first rows of 𝑋 and 𝑌 and the first column of 𝑋 are
fixed in lexicographic order.

Definition Let 𝑀 = (𝑋φ,𝑋ϵ,… , 𝑋ֆ) be 𝑘 MOLS of order 𝑛. 𝑀 is said to be in standard
form if the first row of 𝑋ք and the first column of 𝑋φ is in lexicographic order for 𝑖 =

1,… , 𝑘.

Definition The first column permutation of a Latin Square 𝑌 is the permutation on the
symbols {0,1,… , 𝑛 − 1} defined by 𝜌(𝑖) = 𝑌քЈ. The ordered cycle of a Latin Square 𝑌 is
the representation of the first column permutation of 𝑌 as a product of disjoint cycles:

ॕ𝑎ЈӴЈ,… , 𝑎ЈӴևɱ−φॖि𝑎φӴЈ,… , 𝑎φӴևȯ−φी… ि𝑎վӴЈ,… , 𝑎վӴևՈ−φी

 where each cycle is the lexicographic least cyclic shift8, and the cycles are in
lexicographic order. The ordered cycle type of 𝑌 is (𝑙Ј, 𝑙φ,… , 𝑙վ)

Theorem Let 𝑋 and 𝑌 be a pair of orthogonal Latin squares of order 𝑛 in standard
form. Then 𝑋 and 𝑌 are isomorphic to a pair of orthogonal Latin squares 𝑋′ and 𝑌 in
standard form, where the ordered cycle type of 𝑌 is non-decreasing.

8 The lexicographic least cyclic shift of a cycle is the equivalent representation of that cycle with minimal
ordering i.e., for cycle (3,4,2) the least cyclic shift would be (2,3,4).

10

Proof Denote by 𝜌 the first column permutation of 𝑌 and suppose

𝜌 = (0)ॕ𝑎ЈӴЈ,… , 𝑎ЈӴևɱ−φॖि𝑎φӴЈ,… , 𝑎φӴևȯ−φी… ि𝑎վӴЈ,… , 𝑎վӴևՈ−φी,

where 𝑙Ј, 𝑙φ,… , 𝑙վ are in non-decreasing order. Let 𝑟 be the permutation whose values
𝑟(0), 𝑟(1),… , 𝑟(𝑛 − 1) are given by

0, 𝑎ЈӴЈ, 𝑎ЈӴφ,… , 𝑎ЈӴևɱ−φ, 𝑎φӴЈ, 𝑎φӴφ,… , 𝑎φӴևȯ−φ,… , 𝑎վӴЈ, 𝑎վӴφ,… , 𝑎վӴևՈ−φ.

We apply 𝑟 to the symbols of 𝑋 and 𝑌 and denote by 𝑋, 𝑌 the resulting squares. This
gives 𝑋քЈ

 = 𝑟(𝑖) and 𝑌քЈ
 = 𝑟(𝑌քЈ). We then permute the columns of 𝑋 and 𝑌 so that the

first rows of each square are in lexicographic order. Applying 𝑟−φ to the rows of 𝑋 and
𝑌 gives 𝑋քЈ

 = 𝑟५𝑟−φ(𝑖)६ = 𝑖 and 𝑌քЈ
 = 𝑟ि𝑌֍−ȯ(ք)Јी = 𝑟𝜌𝑟−φ(𝑖) which is the conjugate

permutation of 𝜌 by 𝑟. 𝑋, 𝑌 are now in standard form. Conjugation preserves the cycle
structure of a permutation and replaces each element 𝑥 ∈ 𝜌 with 𝑟(𝑥). Thus 𝑟𝜌𝑟−φ =

(1,2,… , 𝑙Ј − 1)(𝑙Ј,… , 𝑙φ − 1)… (𝑙վ−φ,… , 𝑙վ − 1) and the ordered cycle type (𝑙Ј, 𝑙φ,… , 𝑙վ) is
non-decreasing. This method extends equally well to any set of 𝑘MOLS(𝑛). ■

The implication of this theorem is that we may fix the first column of 𝑌 to be one
of several “canonical representatives”. We choose these representatives so that their
ordered cycle types are non-decreasing, only ensuring that each has a different cycle type
and that they obey Appa et al.’s domain reduction method. This allows us to conduct our
search for solutions in two possible ways. The first way is by fixing the first column of 𝑌
to be each of the canonical representatives and running each column fixing in parallel,
allowing us to fix all values of the first column of 𝑌 rather than imposing constraints on
its domain. Both the IP and CP solvers we used seem to heavily benefit from the fixing of
variables, but only the CP solver responded well to Appa et al.’s domain reduction
method. This is because the IP model does not permit individual values to be set, we may
only specify the tuple ि𝑋քօ, 𝑌քօी = (𝑎, 𝑏). We thus impose domain reduction by telling the
IP solver which tuples are not allowed, which does not reduce the number of constraints
in the problem. The running time for solving any model using this method of
parallelization is thus the time it takes for the first solution to be found across any of the
instances. The second way to conduct the search is to implement so called “blocking
constraints”, which enforce that the first column of 𝑌 be canonical. In this method we
choose 𝑎։ tuples – each having a different cycle type – and use constraints to enforce that
the first column of 𝑌 be fixed to one of these tuples. This way we let the solver decide
how to fix the first column, having the number of possibilities severely reduced. Let 𝑎(𝑛)
be the (𝑛 − 2)th Fibonacci number and 𝑏(𝑛) be the (𝑛 − 1)th value of A002865 in the

11

OEIS. The following table shows the growth rate of 𝑎(𝑛) compared to that of 𝑏(𝑛), and
demonstrates how many fewer column possibilities we consider using the cycle type
method.

𝑛 3 4 5 6 7 8 9 10 11 12
𝑎(𝑛) 1 1 2 3 5 8 13 21 34 55
𝑏(𝑛) 1 1 2 2 4 4 7 8 12 14
Table 1 – Growth rate of 𝑎(𝑛) vs. 𝑏(𝑛)

5. Implementation

 The programs to solve systems of 2MOLS(𝑛) and 3MOLS(𝑛) were written in
Microsoft Visual C++ and ran on an Intel Core i9 processor with 32GB of RAM. Each
process was allotted 1 core (approx. 10% of the CPU power at any given point) to ensure
comparability of results based on raw processing power. To solve the IP model, we used
Gurobi version 9 [9], which is a popular commercial linear optimizer with free academic
licenses. For the CP models we use Google OR-Tools version 7 [10], which is an open-
source constraint satisfaction solver. Both solvers are extremely efficient. However they
provide little to no information on their internal mechanics. For solving the 3MOLS(𝑛)
problem we are unable to use either the IP model or the CP model directly9 (without
additional information or symmetry breaking) for all but the smallest values of 𝑛. We
instead perform the search for 3MOLS(𝑛) by generating a candidate square for 𝑍 and
attempting to find 𝑋 and 𝑌 such that 𝑋, 𝑌 ,𝑍 are mutually orthogonal using one of our
models. The candidate square is found using the CP solver, and for all orders we tested
took negligible time to find. We first generate constraint sets (7) and (8) from the
particular 𝑍 and attempt to solve the model. If no solution exists or is found within our
timeout of 60,000 seconds, we choose a new 𝑍, remove the previous constraints and
repeat. Using the CP model extended to 3MOLS(𝑛) we simply set the values of 𝑍 and
run the model normally. The source code for all our programs as well as the logs from
various time trials are available online at https://github.com/noahrubin333/CP-IP.

6. Results

6.1 2MOLS Timings

In every instance we ran, the solver either timed out after 60,000s, found a solution, or
reported that no such solution exists. Our control timings were those which use no

9 For 𝑛 ≤ 5 the pure models did return solutions.

12

symmetry breaking and let the solvers run in their default states. We also ensure that the
flag in Gurobi used to control symmetry breaking is set to its “off” state. This makes
Gurobi not perform its own internal symmetry breaking, which would have significantly
skewed the observed results. Out of the three models tested, the CP-index model
performed the best in the control state. It is important to see how the solvers perform
without any assistance, as this allows us to understand how much of an impact our
symmetry breaking has.

Model 5 6 7 8 9 10
IP 0.1 Timeout 3.2 6.4 344.5 3,046.4

CP-linear 0.0 Timeout 8.0 1,967.1 58,637.8 Timeout
CP-index 0.0 Timeout 7.8 36.3 378.7 214.8

Table 2 – Time in seconds for each model to solve 2MOLS(𝑛) with no symmetry
breaking.

We next present the timings observed when applying different forms of symmetry
breaking to the IP and CP models. When applying symmetry breaking methods to the
models, we indicate whether the strategy used was Appa et al.’s domain reduction10, or
our cycle type method. In the latter case we report the median running time across three
trials, each given a random first column fixing which has the specified cycle type. The
column fixings are categorized by a Python script, which assigns an ordered cycle type to
a valid tuple representing the first column of 𝑌 .

𝑛 Sym. Breaking IP CP-linear CP-index
5 Domain Red. 0 0 0
5 (1,2,2) 0 0 0
5 (1,4) 0 0 0
6 Domain Red. 2 1 0
6 (1,5) 0 0 0
6 (1,2,3) 0 0 0
7 Domain Red. 6 1 0
7 (1,2,2,2) 0 1 0
7 (1,6) 0 3 0
7 (1,2,4) 0 4 0
7 (1,3,3) 0 1 0
8 Domain Red. 23,729 759 6
8 (1,3,4) 2 1,282 5
8 (1,2,2,3) 4 293 7
8 (1,2,5) 4 164 13
8 (1,7) 2 368 10
9 Domain Red. Timeout Timeout 290

10 The domain reduction method imposes 𝑌φЈ = 2, 𝑌քЈ ≠ 𝑖 and 𝑌քЈ ≤ 𝑖 + 1.

13

9 (1,3,5) 808 Timeout 485
9 (1,2,2,4) 612 Timeout 212
9 (1,8) 303 Timeout 1,200
9 (1,2,6) 1,082 Timeout 61
9 (1,2,2,2,2) 1,832 Timeout 784
9 (1,4,4) 1,315 Timeout 917
9 (1,2,3,3) 65 Timeout 223

10 Domain Red. Timeout Timeout 1,379
10 (1,4,5) 52,329 Timeout 3,892
10 (1,2,2,5) 29,387 Timeout 4,383
10 (1,2,2,2,3) 6,128 Timeout 1,326
10 (1,2,3,4) 15,534 Timeout 835
10 (1,3,6) 31,005 Timeout 3,244
10 (1,2,7) Timeout Timeout 1,413
10 (1,3,3,3) 36,959 Timeout 3,886
10 (1,9) Timeout Timeout 1,319
11 Domain Red. Timeout Timeout 29,925
11 (1,3,7) Timeout Timeout 32,815
11 (1,2,2,3,3) Timeout Timeout 41,665
11 (1,3,3,4) Timeout Timeout Timeout
11 (1,2,8) Timeout Timeout 11,524
11 (1,2,2,6) Timeout Timeout 8,982
11 (1,2,2,2,4) Timeout Timeout 8,299
11 (1,2,2,2,2,2) Timeout Timeout 10,206
11 (1,2,4,4) Timeout Timeout 19,571
11 (1,10) Timeout Timeout 13,210
11 (1,4,6) Timeout Timeout 40,077
11 (1,2,3,5) Timeout Timeout Timeout
11 (1,5,5) Timeout Timeout 7,359

Table 3 – Median time in seconds (across 3 trials) for each model to solve 2MOLS(𝑛)
with specified symmetry breaking.

14

Fig 2 – Plot of minimum running time in seconds across all models.

 Analyzing the collected data, we see that the IP solver performs quite poorly when
we impose the Domain Reduction symmetry breaking. The IP solver also sees the most
benefit from imposing the Cycle Type symmetry breaking. The reason for the poor
performance of the domain reduction method is hypothesized to be due to the internal
mechanics of Gurobi. Unfortunately, due to the proprietary nature of Gurobi we cannot
know for sure how the solver is affected by our symmetry breaking.

Across all symmetry breaking methods we see that the CP solver always performs
much better when using indexing constraints instead of linear. Within each CP model we
see that using the Cycle Type method often resulted in better running times, but there
were some outlier cases in which the solver was slowed down by the choice of column
fixing. This behavior does not seem to be related to the cycle type of the column fixing,
but rather simply how the fixing itself is handled by the solver, and the level of
randomness present in the search11,12. Overall, we were very encouraged by the running
times we observed in the 2MOLS(𝑛) cases. In some instances, the Cycle Type method
allowed us to obtain a solution to the problem an order of magnitude faster. In the future

11 Likely due to the internal heuristics being employed by the solvers – unfortunately it is extremely difficult
to determine how different fixings will affect runtime before they are tried.
12 We pass a random seed to the solver each trial to introduce variability into the searches.

5 6 7 8 9 10 11
0.001

0.01

0.1

1

10

100

1000

10000

100000

Order

M
in

. t
im

e
(s

ec
on

ds
)

Running Time Comparison

IP (domain red.)

IP (cycle type)

CP-linear (domain red.)

CP-linear (cycle type)

CP-index (domain red.)

CP-index (cycle type)

15

we would also like to test how the solvers respond to the alternative method of Cycle
Type symmetry breaking – where we impose that the first column of 𝑌 be one of the
canonical column fixings, but not a specific one. As an example of this, consider the
following set of canonical column fixings for 𝑛 = 8:

(0,2,1,4,5,6,7,3) with cycle type (1,2,5)

(0,2,3,4,5,6,7,1) with cycle type (1,7)

(0,2,3,1,5,6,7,4) with cycle type (1,3,4)

(0,2,1,4,3,6,7,5) with cycle type (1,2,2,3)

Our first strategy would use 4 parallel runs, where each run has the first column of 𝑌 set
to one of these canonical fixings. In this new strategy we instead impose a minimal set of
constraints which impose that of the possible ways to fix the first column of 𝑌 , only those
which are in the above set of canonical fixings may be used. This amounts to the
additional constraints 𝑌ΘЈ = 6 and 𝑌ΚЈ ≠ 1, which are added to the existing constraints
from Appa et al.’s domain reduction method.

6.2 𝟑MOLS Timings

As mentioned before, the models used for 3MOLS(𝑛) are extensions of those used
for 2MOLS(𝑛) where the third square, 𝑍, is predetermined. We use OR-Tools to
enumerate all Latin Squares of order 𝑛 sequentially, and then use Gurobi to construct 𝑋
and 𝑌 . Extending the symmetry breaking to 𝑍 we fix the first row of 𝑍 in lexicographic
order and ensure 𝑍քЈ ≠ 𝑖. This helps to avoid generating Latin Squares which would
trivially conflict with the already fixed values in 𝑋 and 𝑌 , thus reducing the overall
number of possible 𝑍 to search. The times reported are the average time taken by the IP
solver to report either a solution or the lack thereof. This is calculated as our timeout
(60,000s) divided by the number of squares the solver could process before this timeout.

𝑛 Time per 𝑍
7 0.02
8 3.58
9 397.35

10 4,615.38
11 Timeout

Table 4 – Time in seconds to solve an instance of 3MOLS(𝑛) with 𝑍 fixed using IP.

16

7. Conclusion

 In this project we use the mathematical programming paradigms of Integer and
Constraint programming to solve the 2MOLS(𝑛) and later 3MOLS(𝑛) problems. We
attempt to replicate the work of Appa et al. and improve upon their CP model and
symmetry breaking methods. Using these new methods, we reduce our observed running
times by a significant factor. The Cycle Type method of symmetry breaking has potential
for the parallelization of a search for higher orders of 𝑘 and 𝑛 – and an interesting
direction this project may eventually take would involve testing the efficacy of the Cycle
Type method on a large-scale computational cluster (such as Microsoft Azure or Compute
Canada supercomputers).

 Although the initial scope of this project was as a research training award with a
timeline of 16 weeks, I have found myself continuing the work over a year later. I am
extremely grateful for the opportunity afforded to me by my supervisors – and am thrilled
by the fact that our work has been published in the ICTAI 2021 conference proceedings
[11]. The time I have spent working in the realm of combinatorics and operations research
has forever changed the trajectory of my academic career, and I look forward to
continuing this research.

Bibliography

[1] C. J. Colbourn and J. H. Dinitz, Handbook of combinatorial designs, CRC press,
2006.

[2] R. C. Bose and S. S. Shrikhande, "On the falsity of Euler's conjecture about the non-
existence of two orthogonal Latin squares of order 4t+2," Proc. Nat. Acad. Sci.
U.S.A., vol. 45, p. 734–737, 1959.

[3] R. C. Bose, S. S. Shrikhande and E. T. Parker, "Further results on the construction
of mutually orthogonal Latin squares and the falsity of Euler's conjecture," Canadian
J. Math., vol. 12, p. 189–203, 1960.

[4] C. Bright, K. Cheung, B. Stevens, D. Roy, I. Kotsireas and V. Ganesh, "A
Nonexistence Certificate for Projective Planes of Order Ten with Weight 15

17

Codewords," Applicable Algebra in Engineering, Communication and Computing, vol.
31, p. 195–213, 2020.

[5] C. Bright, K. Cheung, B. Stevens, I. Kotsireas and V. Ganesh, "A SAT-based
Resolution of Lam's Problem," in Proceedings of the Thirty-Fifth AAAI Conference
on Artificial Intelligence, 2021.

[6] G. Appa, D. Magos and I. Mourtos, "Searching for mutually orthogonal Latin
squares via integer and constraint programming," European journal of operational
research, vol. 173, p. 519–530, 2006.

[7] B. D. McKay and I. M. Wanless, "On the number of Latin squares," Ann. Comb.,
vol. 9, p. 335–344, 2005.

[8] N. Rubin, C. Bright, K. K. H. Cheung and B. Stevens, "Integer and Constraint
Programming Revisited for Mutually Orthogonal Latin Squares," arXiv:2103.11018,
2021.

[9] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2020.

[10] L. Perron and V. Furnon, OR-Tools, 2019.

[11] N. Rubin, C. Bright, K. K. H. Cheung, B. Stevens, "Improving Integer and
Constraint Programming for Graeco-Latin Squares," in 2021 IEEE 33rd International
Conference on Tools with Artificial Intelligence (ICTAI), 2021.

