
Using finite automata to compute the base-b
representation of the golden ratio and other

quadratic irrationals

Aaron Barnoff1, Curtis Bright1[0000−0002−0462−625X], and Jeffrey
Shallit2[0000−0003−1197−3820]

1 School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada,
{barnoffa,cbright}@uwindsor.ca

2 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,
Canada, shallit@uwaterloo.ca

Abstract. We show that the nth digit of the base-b representation of the
golden ratio is a finite-state function of the Zeckendorf representation of
bn, and hence can be computed by a finite automaton. Similar results can
be proven for any quadratic irrational. We use a satisfiability (SAT) solver
to prove, in some cases, that the automata we construct are minimal.

1 Introduction

The base-b digits of famous irrational numbers, where b ≥ 2 is an integer, have
been of interest for hundreds of years. For example, William Shanks computed
707 decimal digits of π in 1873 (but only the first 528 were correct) [19]. As a
high school student, the third author used a computer in 1976 to determine the
first 10,000 digits of the decimal representation of φ = (

√
5 + 1)/2, the golden

ratio, using the computer language APL [18].
The celebrated results of Bailey, Borwein, and Plouffe [2] demonstrated that

one can compute the nth bit of certain famous constants, such as π, in O(n) time
and o(n) space.3

Can finite automata generate the base-b digits of irrational algebraic numbers,
such as φ? This fundamental question was raised by Cobham in the late 1960’s (a
re-interpretation of a related question due to Hartmanis and Stearns [9]). Though
Cobham believed for a time that he had proved they cannot be so generated [7],
his proof was flawed, and it was not until 2007 that Adamczewski and Bugeaud [1]
succeeded in proving that there is no deterministic finite automaton with output
that, on input n expressed in base b, returns the nth base-b digit of an irrational
real algebraic number α.

Even so, in this paper we show that, using finite automata, one can compute
the nth digit in the base-b representation of the golden ratio φ! At first glance
3 Sometimes this result is described as “computing the nth digit without having to

compute the previous n − 1 digits”. But this is not really a meaningful assertion,
since the phrase “computing x without computing y” is not so well-defined.

2 A. Barnoff, C. Bright, J. Shallit

this might seem to contradict the Adamczewski–Bugeaud result. But it does not,
since for our theorem the input is not n expressed in base b, but rather bn in an
entirely different numeration system, the Zeckendorf representation. As we will
see below, analogous results exist for any quadratic irrational.

Our result does not give a particularly efficient way to compute the base-b
digits of quadratic irrationals, but it is nevertheless somewhat surprising. Using
a SAT solver, in some cases (such as for the binary digits of φ) we can prove that
the automaton we construct is minimal and unique. Interestingly, in other cases
(such as for the ternary digits of φ) we were able to prove the minimality of our
automaton, but we discovered several distinct automata with the same number
of states computing the same quadratic irrational, at least up to a high precision.
It is conceivable that the automata produced by our method are indeed always
minimal and unique, but we leave this as an open question.

2 Number representations and automata

A DFAO (deterministic finite automaton with output) A consists of a finite
number of states along with labeled transitions connecting them. The automaton
processes an input string x by starting in the distinguished start state q0, and
then following the transitions from state to state, according to each successive
symbol of x. Each state q has an output τ(q) associated with it, and the function
fA computed by the DFAO maps the input x to the output associated with the
last state reached. For an example of a DFAO, see Figure 2.

A DFA (deterministic finite automaton) is quite similar to a DFAO. The only
difference is that there are exactly two possible outputs associated with each
state, either 0 or 1. States with an output of 1 are called “accepting” or “final”.
If an input results in an output of 1, it is said to be accepted by the DFA. A
synchronized DFA [6] is a particular type of DFA that takes two inputs in parallel;
this is accomplished by making the input alphabet a set of pairs of alphabet
symbols. A synchronized automaton computes a synchronized sequence (f(n))n≥0;
it does this by accepting exactly the inputs where the first components spell out
a representation of n, and the second components spell out a representation for
f(n), where leading zeros may be required to make the inputs the same length;
thus n and f(n) are read in parallel. For more about synchronized sequences, see
[16]. An example of a synchronized DFA appears in Figure 1. Throughout the
paper, integer inputs are processed starting with the most significant digit.

Let x be a non-negative real number, let b ≥ 2 be an integer, and write the base-
b representation of x in the form x =

∑
−∞<i≤t aib

i = atat−1 · · · a0.a−1a−2 · · · ,
where ai ∈ {0, 1, . . . , b− 1}. For n ≥ 0, we call a−n−1 the nth digit to the right
of the radix point. This choice of associating n with a−n−1 is perhaps a little
unusual, but it seems to decrease the size of the automata produced.

2.1 Zeckendorf representation

The Fibonacci numbers are defined, as usual, by F0 = 0, F1 = 1, and Fn =
Fn−1 + Fn−2 for n ≥ 2. The Zeckendorf representation [11,21] of a natural

Using finite automata to compute digits of quadratic irrationals 3

number n is the unique way of writing n as a sum of Fibonacci numbers Fi, i ≥ 2,
subject to the condition that no two consecutive Fibonacci numbers are used.
We may write the Zeckendorf representation as a binary string (n)F = a1 · · · at,
where n =

∑
1≤i≤t aiFt+2−i. For example, (43)F = 34+8+1 = F9 +F6 +F2 has

representation 10010001. The substring 11 cannot occur due to the rule that two
consecutive Fibonacci numbers cannot be used. In what follows, leading zeros
in strings are typically ignored without comment. We also denote the inverse of
(·)F by [·]F ; i.e., [10010001]F = 43.

3 Automata and the base-b representation of φ

Our main result is Theorem 1 below.

Theorem 1. For all integers b ≥ 2, there exists a DFAO Ab that, on input the
Zeckendorf representation of bn, computes the nth digit to the right of the point
in the base-b representation of φ.

Proof. It is known that there exists a 7-state synchronized DFA A1 accepting,
in parallel, the Zeckendorf representations of q and ⌊qφ⌋ for all q ≥ 0 [17,
Thm. 10.11.1 (a)]. Its transition diagram is depicted in Figure 1, where accepting
states are denoted by double circles, and the initial state is 0, labeled by a
headless arrow entering.

The DFA A1 is constructed using the fact that ⌊qφ⌋ = [(q−1)F 0]F +1, where
(q− 1)F 0 is the left shift of the string (q− 1)F . For example, ⌊11φ⌋ = 17, and we
find (10)F = 10010, left-shift that to get 100100 = (16)F , and add 1 to get 17.

0

[0,0]

1
[0,1] 2

[1,1]

3
[1,0]

4[0,0]

[0,1]
5

[0,0]

[0,1]

[0,1]
[1,1]

6

[0,0]

[0,1] [1,1][0,0]

Fig. 1. Synchronized automaton for ⌊qφ⌋. The inputs are the Zeckendorf representation
of q and x, in parallel; it accepts iff x = ⌊qφ⌋.

To understand how to use this automaton, observe that (11)F = 10100 and
(⌊11φ⌋)F = (17)F = 100101. Since these two numbers have representations of
different lengths, we need to pad the former with a leading 0. Then if x =
[0, 1][1, 0][0, 0][1, 1][0, 0][0, 1], the first components concatenated spell out 010100
and the second components spell out 100101. When we input this, starting at
state 0 we visit, successively, states 1, 3, 5, 2, 4, 2, and so we accept.

Let x be a positive real number, with base-b representation y.a0a1a2 · · · ,
where the period (or radix point) is the analogue of the decimal point for
base b, and y is an arbitrary finite block of digits. Now bn+1x has base-b
representation ya0a1 · · · an−1an.an+1 · · · and ⌊bn+1x⌋ has base-b representation

4 A. Barnoff, C. Bright, J. Shallit

ya0a1 · · · an−2an−1an. Similarly, b⌊bnx⌋ has base-b representation ya0a1 · · · an−10.
Hence ⌊bn+1x⌋ − b⌊bnx⌋ = an. In the particular case where x = φ, we get a
formula for the nth digit to the right of the radix point of φ, namely

Db(n) := ⌊bn+1φ⌋ − b⌊bnφ⌋.

From the DFA A1 computing ⌊qφ⌋, it is possible to create another DFA A2

accepting, in parallel, the Zeckendorf representations of q and ⌊bqφ⌋ − b⌊qφ⌋.
This is based on the fact that there is an algorithm to compile a first-order
logic statement involving the usual logical operations (AND, OR, NOT, etc.),
the integer operations of addition, subtraction, multiplication by constants, and
the universal and existential quantifiers, into an automaton that accepts the
Zeckendorf representation of those integers making the statement true [13].

From the DFA A2, we can compute b individual DFAs Ab,i accepting the
Zeckendorf representation of those q for which ⌊bqφ⌋ − b⌊qφ⌋ = i, for 0 ≤ i < b.
Finally, we combine all the Ab,i together into a single DFAO A3 (using a product
construction for automata) computing the difference ⌊bqφ⌋ − b⌊qφ⌋.

By substituting q = bn, we see that this automaton A3 is the desired one,
computing Db(n) on input the Zeckendorf representation of bn. ⊓⊔

We now use Walnut, which is free software for compiling first-order logical
expressions into automata, to explicitly compute the automata for the repre-
sentation of φ in base 2 and base 3. For base 2, we need the following Walnut
commands (further explanation follows below):
reg shift {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":
def phin "?msd_fib (s=0 & q=0) | Ex $shift(q-1,x) & s=x+1":
def phid2 "?msd_fib Ex,y $phin(2*q,x) & $phin(q,y) & x=2*y+1":
combine FD2 phid2:

These produce the DFAO in Figure 2.

0/0

0

1/1
1

2/0

0

3/1

0

4/0
1

5/0

0

6/1

1

0

1
7/1

0

0

1

0

Fig. 2. Automaton A2 for the nth bit (base 2 digit) to the right of the binary point of
φ. States are labeled in the form a/c, where a is the state number and c is the output.
The input is the Zeckendorf representation of 2n, and the output is c when the last
state reached is labeled a/c.

For example, in base 2, we have φ = 1.1001111000110111 · · · . To compute
the 4th digit to the right of the binary point we write 24 = 16 in Zeckendorf

Using finite automata to compute digits of quadratic irrationals 5

representation, namely 100100, and feed it into the automaton, starting at state 0
and reaching states 1, 2, 3, 6, 5, 7 successively, with output 1 at the end.

We now explain the Walnut commands above that generate the DFAO in
Figure 2. The first line creates a DFA called shift, using a regular expression;
it takes two base-2 inputs and accepts only if the second is the left shift of
the first. Next is the DFA phin, which is shown in Figure 1 and uses shift
to check that its two inputs have the relationship (n)F and [(n − 1)F 0]F + 1,
which computes the function n → ⌊nφ⌋ in a synchronized fashion. Next, the DFA
phid2, when given the representation of q as input, accepts if ⌊2qφ⌋− 2⌊qφ⌋ = 1,
and rejects otherwise. Lastly, combine converts phid2 into the DFAO of Figure 2
by replacing the accepting and rejecting states of phid2 with output values 1
and 0, respectively.

The automaton for base 3 (see Figure 3) can be constructed similarly with
the following Walnut commands:

reg shift {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":
def phin "?msd_fib (s=0 & n=0) | Ex $shift(n-1,x) & s=x+1":
def phid31 "?msd_fib Ex,y $phin(3*n,x) & $phin(n,y) & x=3*y+1":
def phid32 "?msd_fib Ex,y $phin(3*n,x) & $phin(n,y) & x=3*y+2":
combine FD3 phid31=1 phid32=2:

0/0

0

1/11

2/0

0 3/2

0
4/1

1

5/0

0

6/2

1

7/00

1

8/2

0

0

0 9/11

1 10/0

0

11/1
0

1

0

1

12/20

0
1

Fig. 3. Automaton for the nth digit to the right of the point of φ in base 3, with inputs
as in Figure 2.

In base 3, φ = 1.1212001122021210 · · · . To compute the 3rd digit to the
right of the point we write 33 = 27 in Zeckendorf representation as 1001001 and
pass it to the automaton in Figure 3, which, starting at state 0, traverses states
1, 2, 3, 6, 2, 3, 6 successively, giving an output of 2.

There is no conceptual barrier to carrying out similar computations for any
base b ≥ 2. For base 10, for example, Walnut computes a finite automaton with
97 states that, on input (10n)F , returns the nth digit to the right of the decimal
point in the decimal expansion of φ.

6 A. Barnoff, C. Bright, J. Shallit

4 Other quadratic irrationals

There is nothing special about φ, and the same ideas can be used for any quadratic
irrational. What makes quadratic irrationals special in this context is Lagrange’s
theorem: these numbers, and only these, have a continued fraction expansion that
is ultimately periodic. This is crucial, because if this property does not hold, then
the sequence of continued fraction convergents cannot satisfy a linear recurrence
[12]. But a linear recurrence is needed in order to construct a numeration system
with good decidability properties.

4.1 Handling
√
2

Another representation for the natural numbers is based on the Pell numbers,
defined by P0 = 0, P1 = 1, and Pn = 2Pn−1 + Pn−2 for n ≥ 2. We can then
write every natural number n =

∑
1≤i≤t aiPt+1−i where ai ∈ {0, 1, 2}. To get

uniqueness of the representation, we have to impose two conditions. First, we
must have that at ̸= 2. Second, if ai = 2, then ai+1 = 0. See [4] for more details.
The unique representation, over the alphabet {0, 1, 2}, is denoted (n)P .

The Pell numeration system in Walnut can be used to construct automata
computing the base-b digits of

√
2, just as we did for φ. This results in a 6-state

DFAO for base 2 (see Figure 4), and a 14-state DFAO for base 3. The Walnut
commands for base 2 are:
reg pshift {0,1,2} {0,1,2}

"([0,0]|([0,1][1,1]*([1,0]|[1,2][2,0]))|[0,2][2,0])*":
def sqrt2n "?msd_pell (s=0 & n=0) | Ex $pshift(n-1,x) & s=x+2":
def sqrt2d2 "?msd_pell Ex,y $sqrt2n(2*n,x) & $sqrt2n(n,y)

& x=2*y+1":
combine SD2 sqrt2d2:

0/0

0

1/0

1

2/—

2

1

2

3/1
0

4/1

0

0, 1
2

0 2

5/1

1

1

2
0

Fig. 4. Automaton for the nth bit to the right of the binary point of
√
2. Input is 2n in

Pell representation.

The alert reader will observe that no output is associated with state 2. This is
because inputs that lead to this state, such as 12, are not valid Pell representations.
However, the state cannot be removed, because 120 is a valid Pell representation.

Using finite automata to compute digits of quadratic irrationals 7

4.2 Ostrowski representation

Of course, what makes our results work is that the numeration systems are
“tuned” to the particular quadratic irrational we want to compute. For φ, the
numeration system is based on the Fibonacci numbers; for

√
2, the Pell numbers.

We need to find an appropriate numeration system that is similarly “tuned” to
any quadratic irrational. It turns out that the proper system is the Ostrowski
numeration system [3,14].

Every irrational real number α can be expressed uniquely as an infinite
simple continued fraction α = [d0, d1, d2, . . .]. Furthermore, qn is called the nth
denominator of a convergent for α if q−2 = 1, q−1 = 0, and qn = dnqn−1+qn−2 for
n ≥ 0. For example, the continued fraction for π is [3, 7, 15, 1, . . .], corresponding
to the sequence (qn)n≥0 = 1, 7, 106, 113, . . . (OEIS A002486).

The Ostrowski α-numeration system uses the sequence (qn)n≥0 of the de-
nominators of the convergents for α to construct a unique representation for a
non-negative integer N expressed as

N = [an−1an−2 · · · a0]α =
∑

0≤i<n

aiqi,

where the ai have to obey the Ostrowski rules

0 ≤ a0 < d1; (1)
0 ≤ ai ≤ di+1 for i ≥ 1; and (2)
for i ≥ 1, if ai = di+1 then ai−1 = 0. (3)

The Ostrowski α-representation for N = [an−1an−2 · · · a0]α is then determined
with a greedy algorithm, starting at the most significant term and choosing the
largest multiple an−1 for qn−1 that is less than N , and then applying the same
algorithm recursively to N−an−1qn−1. For example, for α =

√
3+1 = [2, 1, 2], the

denominators of the continued fraction convergents form the sequence (qn)n≥0 =
1, 1, 3, 4, 11, 15, . . . (OEIS A002530). Rule 1 for the construction forces a0 = 0
because d1 = 1, while rule 2 requires that a1 ≤ d2 = 2, a2 ≤ d3 = 1, and so
on. Rule 3 ensures uniqueness by enforcing the constraint that if a1 = d2 = 2,
then a2 = 0, and if a2 = d3 = 1, then a3 = 0, and so on. Then, for example, the
α-representation of 37 is 2 · 15 + 4 + 3 = 2q5 + q3 + q2 = [20110]α.

In order to construct a DFAO Ab that, given the input of the Ostrowski
α-representation of bn, computes the nth digit to the right of the point in the
base-b representation of α, we require an Ostrowski α-synchronized function
n → ⌊nα⌋. Consider a quadratic irrational 0 < β < 1 with a purely periodic
continued fraction [0, d1, d2, . . . , dm]; here the straight bar or vinculum denotes
the periodic part. Then Schaeffer et al. [15] showed that the sequence (⌊nβ⌋)n≥1

is Ostrowski β-synchronized, via the relation

[(n− 1)β0
m]β = qm(n− 1) + qm−1 · ⌊nβ⌋, (4)

where qi is the denominator of the ith convergent to β, and (n− 1)β0
m is the

β-representation of n− 1, left-shifted m times.

https://oeis.org/A002486
https://oeis.org/A002530

8 A. Barnoff, C. Bright, J. Shallit

Furthermore, it was shown that if α > 0 belongs to Q(β), then (⌊nα⌋)n≥1 is
synchronized in terms of the Ostrowski β-representation through the relation
α = (a+ dβ)/c, where d, c ≥ 1, and

⌊nα⌋ =
⌊
⌊dnβ⌋+ an

c

⌋
. (5)

This is notable because when constructing an Ostrowski α-representation with
Walnut, it is assumed that 0 < α < 1

2 , which corresponds to a continued fraction
with terms d0 = 0 and d1 > 1. If α ≥ 1

2 , then we can set d0 = 0 and rotate the
period until d1 > 1, giving a quadratic irrational 0 < β < 1

2 corresponding to the
periodic part of α. Then an Ostrowski representation for β can be constructed,
and Eq. (4) is used to find an automaton for ⌊nβ⌋, followed by Eq. (5) to find
an automaton for ⌊nα⌋. Therefore, (⌊nα⌋)n≥1 is synchronized in terms of the
Ostrowski β-representation.

For example, for α =
√
3 + 1 = [2, 1, 2], we have α ≥ 1

2 . Since we only care
about the digits after the radix point, we set d0 = 0 and then rotate the period
to get β = [0, 2, 1] = (

√
3− 1)/2 < 1/2. This gives the sequence of denominator

convergents 1, 2, 3, 8, 11, 30, . . . , where m = 2, qm = 3, and qm−1 = 2, and so
Eq. (4) gives [(n− 1)β00]β = 3(n− 1) + 2⌊nβ⌋. This results in a DFA for ⌊nβ⌋
that has 23 states. Then, we find α = (2 + 2β)/1, with a = 2, b = 2, and c = 1,
and Eq. (5) gives a DFA with 20 states, shown in Figure 5.

Fig. 5. Synchronized automaton for ⌊nα⌋ for α =
√
3 + 1.

Then, for example (5)β = 110 and (⌊5α⌋)β = (13)β = 10010. When we
input [0, 1][0, 0][1, 0][1, 1][0, 0] into the automaton, we visit states 1, 3, 8, 6, 14 in
succession, and so we accept. From here, the same general process that is outlined
in Theorem 1 can be used to construct a DFA accepting in parallel the Ostrowski
α-representations of q and ⌊bqα⌋−b⌊qα⌋, and ultimately the DFAO Ab as desired.

4.3 Walnut implementation

Constructing the DFAOs for other quadratic irrationals with Walnut requires
the ost command to create custom Ostrowski representations. As explained

Using finite automata to compute digits of quadratic irrationals 9

above, Walnut requires that 0 < β < 1
2 to create the corresponding Ostrowski

representation, and it is possible to create a DFAO for α ≥ 1
2 by synchronizing it

in terms of the Ostrowski representation for β. Presented below are the general
steps for constructing a DFAO for the digits of the base-2 representation of
a quadratic irrational α with Walnut, using the process explained above with
Equations (4) and (5).

First, we construct the continued fraction of β < 1
2 from α by setting d0 = 0

and rotating the period until d1 > 1, if necessary. Next, we determine the
denominators j = qm and k = qm−1 of the continued fraction convergent to β,
where m is the number of elements in the period. Lastly, we find a, b, and c from
the relation α = (a+ bβ)/c, where b, c ≥ 1. With these, we can use the following
Walnut commands:
Construct Ostrowski representation for Beta
ost ostBeta [0] [d1 d2 ... dm];
Create a DFA of z = floor(n*Beta) using j and k
def betan "?msd_ostBeta Eu,v n=u+1 & $shift(u,v) & v=k*z+j*u":
Create a DFA of z = floor(n*Alpha) synchronized
def alphan "?msd_ostBeta Eu $betan(b*n,u) & z=(u+a*n)/c":
Create a DFAO for Alpha in base 2
def alphan_d2 "?msd_ostBeta Ex,y $alphan(2*n,x) & $alphan(n,y) & x!=2*y":
combine AD2 alphan_d2:

The shift DFA can be constructed from a regular expression as done above
for φ, and is based on the specific representation and continued fraction sequence.
If multiple left-shifts are required, it may be simpler to create a shift DFA that
left-shifts only one position at a time, and chain its use together multiple times.
For example, three left-shifts could be achieved using a 1-shift DFA by:
def betan "?msd_ostBeta Eu,v,w,x n=u+1 & $shift(u,v) & $shift(v,w)

& $shift(w,x) & x=k*z+j*u":

Using this process, we created the DFAOs for other quadratic irrationals
including the “bronze ratio” (

√
13 + 3)/2 = [3, 3] and several Pisot numbers. We

give the Walnut code below.

The bronze ratio (
√
13 + 3)/2 in bases 2 and 3:

In this case m = 1, q_m = 3, and q_(m-1) = 1.
ost bt [0] [3];
reg bts {0,1,2,3} {0,1,2,3}

"([0,0]|[0,2][2,2]*[2,0]|([0,2][2,2]*[2,3]|[0,3])
[3,0]|([0,1]|[0,2][2,2]*[2,1])([1,1]|[1,2][2,2]*[2,1])*
(([1,2][2,2]*[2,3]|[1,3])[3,0]|[1,2][2,2]*[2,0]|[1,0]))*":

def btbn "?msd_bt Eu,v n=u+1 & $bts(u,v) & v=1*z+3*u":
def btan "?msd_bt Eu $btbn(1*n,u) & z=(u+3*n)/1":

DFAO for the bronze ratio in base 2 (7 states):
def btn_d2 "?msd_bt Ex,y $btan(2*n,x) & $btan(n,y) & x!=2*y":
combine BTND2 btn_d2:

DFAO for the bronze ratio in base 3 (8 states):

10 A. Barnoff, C. Bright, J. Shallit

def btn_d31 "?msd_bt Ex,y $btan(3*n,x) & $btan(n,y) & x=3*y+1":
def btn_d32 "?msd_bt Ex,y $btan(3*n,x) & $btan(n,y) & x=3*y+2":
combine BTND3 btn_d31 btn_d32:

Pisot number
√
3 + 1 and (

√
3− 1)/2 in base 2:

In this case m = 2, q_m = 3, and q_(m-1) = 2.
ost pv1 [0] [2 1];
reg pv1s {0,1,2} {0,1,2} "([0,0]|([0,1][1,1][1,0]|[0,1][1,0])|

[0,2][2,0])*":
def pv1bn "?msd_pv1 Et,u,v n=t+1 & $pv1s(t,u) & $pv1s(u,v)

& v=2*z+3*t":

DFAO for (
√
3− 1)/2 = [0, 2, 1] in base 2 (see Figure 7):

def pv1bn_d2 "?msd_pv1 Ex,y $pv1bn(2*n,x) & $pv1bn(n,y) & x!=2*y":
combine PV1B2 pv1bn_d2:

DFAO for
√
3 + 1 = [2, 1, 2] in base 2 (27 states):

def pv1an "?msd_pv1 Eu $pv1bn(2*n,u) & z=(u+2*n)/1":
def pv1n_d2 "?msd_pv1 Ex,y $pv1an(2*n,x) & $pv1an(n,y) & x!=2*y":
combine PV12 pv1n_d2:

Pisot number (
√
17 + 3)/2 and (

√
17− 3)/4 in base 2:

In this case m = 3, q_m = 7, and q_(m-1) = 4.
ost pv2 [0] [3 1 1];
reg pv2s {0,1,2,3} {0,1,2,3}

"([0,0]|[0,1][1,0]|[0,1][1,1][1,0]|[0,2][2,0]|
[0,2][2,1][1,0]|[0,3][3,0])*":

def pv2bn "?msd_pv2 Es,t,u,v n=s+1 & $pv2s(s,t)
& $pv2s(t,u) & $pv2s(u,v) & v=4*z+7*s":

DFAO for (
√
17− 3)/4 = [0, 3, 1, 1] in base 2 (see Figure 6):

def pv2bn_d2 "?msd_pv2 Ex,y $pv2bn(2*n,x) & $pv2bn(n,y) & x!=2*y":
combine PV2B2 pv2bn_d2:

DFAO for (
√
17 + 3)/2 = [3, 1, 1, 3] in base 2 (27 states):

def pv2an "?msd_pv2 Eu $pv2bn(2*n,u) & z=(u+3*n)/1":
def pv2n_d2 "?msd_pv2 Ex,y $pv2an(2*n,x) & $pv2an(n,y) & x!=2*y":
combine PV22 pv2n_d2:

5 Are the automata minimal?

The automata that Walnut constructs for computing ⌊bqφ⌋ − b⌊qφ⌋ on input
q ≥ 0 are guaranteed to be minimal. However, in this paper, with our application
to computing the base-b digits of φ, we are only interested in running these
automata in the special case when q = bn, the powers of b. Could it be that
there are even smaller automata that answer correctly on inputs of the form bn

(but might give a different answer for other inputs)? After all, for each t, we
are only concerned with behavior of the automaton on linearly many inputs of

Using finite automata to compute digits of quadratic irrationals 11

0/0

0

1/0

1

2/1

2

3/0
3

4/10
5/0

1

1

6/0

0

0

1

2

3

7/0

0

8/0

0

9/0

0
10/0

1

1

2

3

0

2

3

11/0

0, 1

3

1, 2

12/1
0

0

1

13/001

14/0
0

1

15/0

0

0

1

2

3

1

0

Fig. 6. Automaton for the nth bit to the right of the binary point of (
√
17− 3)/4 in

base 2. Input is n in the Ostrowski representation corresponding to the real number
[0, 3, 1, 1, 3, 1, 1, 3, 1, 1, . . .].

length t, as opposed to the exponentially large set of valid length-t Zeckendorf
representations. Thus, the automaton is not very constrained.

We do not know the answer to this question, in general. The question is likely
difficult; in terms of computational complexity, it is a special case of a problem
known to be NP-hard, namely, the problem of inferring a minimal DFAO from
incomplete data [8]. However, this problem can sometimes be solved in practice
using satisfiability (SAT) solving [20].

We are able to show that some of our automata are indeed minimal, among
all automata giving the correct answers on inputs of the form q = bn, and
satisfying two conventions: first, that leading zeroes in the input cannot affect
the result, and second, that the automata obey the Ostrowski rules (1)–(3) for
the particular numeration system. Our method of proving minimality, and in
some cases uniqueness, uses SAT solving.

We use a modified version of a MinDFA solver called DFA-Inductor [20] to
generate SAT encodings for minimal automata, which are then passed to the
CaDiCaL SAT solver [5] to determine whether they have a satisfying solution.
DFA-Inductor uses the compact encoding method given by Heule and Verwer [10],
which defines eight constraints—four mandatory and four redundant—to trans-
late DFA identification into a graph coloring problem, and then encodes those
constraints into a SAT instance.

DFA-Inductor only supports DFAs (and hence only accepting or rejecting
states), however, and additional output status labels were added for bases larger
than 2. DFA-Inductor does not explicitly encode a “dead state” rejecting invalid
strings, but a transition to a dead state can be implied by a lack of an outgoing
transition on a given state. Another redundant constraint of the compact encoding
method forces each state to have an outgoing transition on every symbol, which

12 A. Barnoff, C. Bright, J. Shallit

must be amended to exclude whichever symbols must transition to the implied
dead state.

Our automata follow the convention that the start state consumes leading 0s in
the input string. In terms of the compact encoding variables, yℓ,p,q indicates that
state p has a transition to state q on label ℓ. This constraint is then implemented
by enforcing state 0 to have a self-loop on the symbol 0 using the unit clause
y0,0,0, and the dictionary given to DFA-Inductor states that the string 0 produces
output 0.

In order for the SAT solver to construct automata that obey the rules of a
given Ostrowski representation, we encode the Ostrowski rules (2)–(3) as a set of
constraints. Rule 1 is satisfied simply by only including strings in the dictionary
that are valid in the given representation. Without these constraints, the solver
may find a smaller DFAO by allowing rule-breaking transitions—such as allowing
consecutive 1s for φ in the Zeckendorf representation.

5.1 Ostrowski encoding for purely periodic quadratic irrationals

Each Ostrowski α-representation is a language made up from the set of valid
strings that can be constructed using the Ostrowski rules (1)–(3). This language
is recognized by a canonical DFA, and serves as the base that informs the valid
structure of the final DFAO. Constructing a DFAO using only the states in the
Ostrowski base DFA guarantees that rules 2 and 3 of the Ostrowski construction
are never violated. Conveniently, Walnut automatically generates a DFA of the
Ostrowski base during the process of constructing the representation.

Since each state in the base DFA has a unique transition set, we can refer
to the ith state in the base DFA as the ith base state. For example, Figure 7
shows for α = (

√
3− 1)/2 = [0, 2, 1] how each base state in the Ostrowski base

DFA (bottom), labelled B0 to B5, correspond exactly to a state in the DFAO for
returning the ith digit of α in base 2 (top).

Fig. 7. Relationship between the Ostrowski base states and DFAO states for α =
(
√
3− 1)/2.

Using finite automata to compute digits of quadratic irrationals 13

The Ostrowski rules (2)–(3) are encoded through the states in the Ostrowski
base DFA by constraining each state in the DFAO to match a certain base state.
Therefore, to encode the base states, we create a new variable bp,t, which says
state p in the DFAO is related to base state t in the Ostrowski base DFA. We
then relate the b variable to the transition variable yℓ,p,q, which constrains the
set of valid transitions between p and q according to which base states they are
associated with. The encoding is presented in Table 1.

The last constraint in the table is the only one that needs to be manually
determined for each Ostrowski base DFA. For example, for α = (

√
3− 1)/2 in

Figure 7, base state B4 is encoded as follows, where Q denotes the set of states
in the DFAO and B denotes the set of states in the Ostrowski base DFA:∧

i,j∈Q
i ̸=j

(
(bi,4 ∧ bj,2 → ¬y0,i,j) ∧ (bi,4 ∧ bj,2 → ¬y1,i,j) ∧ (bi,4 ∧ bj,5 → ¬y2,i,j)

)
∧

i,j∈Q
i ̸=j

∧
k∈B\{2,5}

∧
ℓ∈{0,1,2}

(bi,4 ∧ bj,k → ¬yℓ,i,j)

Constraints Range Meaning

¬yk,0,0 1 ≤ k ≤ c The start state can only have a self-loop on 0.

¬yk,i,i i ∈ Q; i ̸= 0; 0 ≤ k ≤ c
No states other than the start state can have a
self-loop on any label.

b0,0 The start state is related to base state 0.

bi,s → ¬bi,t i ∈ Q; s, t ∈ B; s ̸= t
Each state in the DFAO must be related to at
most one base type.

bi,1 ∨ bi,2 ∨ · · · ∨ bi,|B| i ∈ Q
Each state in the DFAO must be related to at
least one base type.

(bi,s ∧ bj,t) → ¬yk,i,j
i, j ∈ Q; s, t ∈ B; k ∈ Σ;
δ(s, k) ̸= t

Suppose DFAO state i is related to base state s,
and state j is related to base state t. If state s in
the base DFA does not have a transition to state
t on label k, then i cannot have a transition to j
on label k in the DFAO.

Q = set of states in DFAO; B = set of states in Ostrowski base DFA;
δ is the transition function of the DFAO; Σ = alphabet; c = max(Σ)

Table 1. SAT encoding of Ostrowski constraints for purely periodic quadratic irrationals.

5.2 Results

Table 2 gives our results of DFA minimization by SAT on a few quadratic
irrationals. In each of the cases, the Walnut solution was confirmed to be minimal
by proving that there are no satisfying assignments of the SAT encoding with a
smaller number of states than in the Walnut-produced automaton.

The dictionary containing the Ostrowski representation of the first i digits
is referred to as the ith digit set. The solver is run on the SAT encoding of
each digit set for a given number of states. The state count was increased
every time the solver returned UNSAT, and the digit set was increased every
time a satisfying assignment was found. Once the state count given by the
Walnut-produced solution was reached, the solver was run exhaustively to find

14 A. Barnoff, C. Bright, J. Shallit

Quadratic
Irrational

φ
base 2
8 states

φ
base 3

13 states

√
2

base 2
6 states

√
13+3
2

base 2
7 states

√
13+3
2

base 3
8 states

√
3−1
2

base 2
12 states

√
17−3
4

base 2
16 states

Digit set size 54 197 29 64 64 27 57
SAT time (sec) 0.50 28,425.5 0.08 142.81 44.68 0.14 68.11

UNSAT time (sec) 0.18 12,123.0 0.02 0.52 24.76 0.08 2.59
Number of candidates 1 3 1 3 7 1 9
Table 2. Results for computing minimal automata for various quadratic irrationals.

all satisfying assignments of the SAT formula and therefore all candidates for the
minimal automata computing the quadratic irrational. However, most satisfying
assignments encoded automata that only computed the given digit set correctly
and did not correctly compute the digits of the quadratic irrational to a higher
precision than what was provided in the given digit set.

The digit set size given in Table 2 is the smallest dictionary required for
the SAT solver to find the n-state Walnut solution. The SAT time is the time
required by the solver to find the Walnut automaton. The UNSAT time is the
time required to determine that no automata exists using n − 1 states. Since
no candidate solutions are found at n− 1 states, we conclude that the n-state
Walnut solution is minimal.

In some cases, we found multiple distinct candidates that correctly compute
at least 250,000 digits of the quadratic irrational (see the last row of Table 2).
For all except (

√
17 − 3)/4, these candidate solutions differ from the Walnut

solution only by their outgoing transitions on the start state. The candidates for
φ (base 3) and (

√
13 + 3)/2 (base 2) have differing transitions on label 1, while

the candidates for (
√
13+3)/2 (base 3) differ on label 2. All of the candidates for

(
√
17− 3)/4 have the same start state, but differ in their transitions on label 2.

Given how similar the candidate solutions are to the Walnut solution and that
they are correct up to a high precision, it is possible that the Walnut solution is
not unique, though we leave this as an open problem.

Minimization of the DFAOs in some other examples presented a challenge for
the SAT solver. For φ in base 4, it took over 25 hours for the 78th digit set to be
declared UNSAT at 13 states. For

√
2 in base 3, it took over 55 hours for the

258th digit set to be declared SAT at 11 states, but the satisfying assignment
found by the solver corresponded to an automaton that incorrectly computed
the ternary digits of

√
2 starting at the 321st digit.

Acknowledgments

We thank the referees for several useful suggestions.

References

1. Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers I. Expan-
sions in integer bases. Ann. Math. 165, 547–565 (2007)

Using finite automata to compute digits of quadratic irrationals 15

2. Bailey, D., Borwein, P., Plouffe, S.: On the rapid computation of various polyloga-
rithmic constants. Math. Comp. 66, 903–913 (1997)

3. Baranwal, A.R., Schaeffer, L., Shallit, J.: Ostrowski-automatic sequences: theory
and applications. Theoret. Comput. Sci. 858, 122–142 (2021)

4. Baranwal, A.R., Shallit, J.: Critical exponent of infinite balanced words via the
Pell number system. In: Mercaş, R., Reidenbach, D. (eds.) WORDS 2019, Lecture
Notes in Computer Science, vol. 11682, pp. 80–92. Springer-Verlag (2019)

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

6. Carpi, A., Maggi, C.: On synchronized sequences and their separators. RAIRO
Inform. Théor. App. 35, 513–524 (2001)

7. Cobham, A.: On the Hartmanis-Stearns problem for a class of tag machines. In:
IEEE Conference Record of 1968 Ninth Annual Symposium on Switching and
Automata Theory. pp. 51–60 (1968), also appeared as IBM Research Technical
Report RC-2178, August 23 1968

8. Gold, M.E.: Complexity of automaton identification from given data. Inform. Control
37, 302–320 (1978)

9. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans.
Amer. Math. Soc. 117, 285–306 (1965)

10. Heule, M., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere,
J.M., García, P. (eds.) ICGI 2010, Lecture Notes in Artificial Intelligence, vol. 6339,
pp. 66–79. Springer-Verlag (2010)

11. Lekkerkerker, C.G.: Voorstelling van natuurlijke getallen door een som van getallen
van Fibonacci. Simon Stevin 29, 190–195 (1952)

12. Lenstra, Jr., H.W., Shallit, J.O.: Continued fractions and linear recurrences. Math.
Comp. 61, 351–354 (1993)

13. Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for Fibonacci-automatic
words, I: Basic results. RAIRO Inform. Théor. App. 50, 39–66 (2016)

14. Ostrowski, A.: Bemerkungen zur Theorie der Diophantischen Approximationen. Abh.
Math. Sem. Hamburg 1, 77–98, 250–251 (1922), reprinted in Collected Mathematical
Papers, Vol. 3, pp. 57–80

15. Schaeffer, L., Shallit, J., Zorcic, S.: Beatty sequences for a quadratic irrational:
decidability and applications (2024), arxiv preprint arXiv:2402.08331 [math.NT].

16. Shallit, J.: Synchronized sequences. In: Lecroq, T., Puzynina, S. (eds.) WORDS
2021, Lecture Notes in Computer Science, vol. 12847, pp. 1–19. Springer-Verlag
(2021)

17. Shallit, J.: The Logical Approach To Automatic Sequences: Exploring Combina-
torics on Words with Walnut, London Math. Society Lecture Note Series, vol. 482.
Cambridge University Press (2023)

18. Shallit, J.: Calculation of
√
5 and ϕ (the golden ratio) to 10,000 decimal places

(1976), reviewed in Math. Comp. 30 (1976), 377
19. Shanks, W.: On the extension of the numerical value of π. Proc. Roy. Soc. London

21, 318–319 (1873)
20. Zakirzyanov, I., Shalyto, A., Ulyantsev, V.: Finding all minimum-size DFA consistent

with given examples: SAT-based approach. In: Cerone, A., Roveri, M. (eds.) Software
Engineering and Formal Methods: SEFM 2017 Collocated Workshops, Lecture Notes
in Computer Science, vol. 10729, pp. 117–131. Springer-Verlag (2018)

21. Zeckendorf, E.: Représentation des nombres naturels par une somme de nombres
de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41, 179–182 (1972)

	Using finite automata to compute the base-b representation of the golden ratio and other quadratic irrationals

