
Orthogonal Latin Squares of Order Ten with Two
Relations: A SAT Investigation

Curtis Bright1,2,3[0000−0002−0462−625X], Amadou Keita2[0009−0001−5861−4617],
and Brett Stevens3[0000−0003−4336−1773]

1 School of Computer Science, University of Waterloo, Canada
2 Department of Mathematics and Statistics, University of Windsor, Canada

3 School of Mathematics and Statistics, Carleton University, Canada
cbright@uwaterloo.ca, keitaa@uwindsor.ca, brett@math.carleton.ca

Abstract. A k-net(n) is a combinatorial design equivalent to k − 2
mutually orthogonal Latin squares of order n. A relation in a net is a linear
dependency over F2 in the incidence matrix of the net. A computational
enumeration of all orthogonal pairs of Latin squares of order 10 whose
corresponding nets have at least two nontrivial relations was achieved by
Delisle in 2010 and verified by an independent search of Myrvold. In this
paper, we confirm the correctness of their exhaustive enumerations with
a satisfiability (SAT) solver approach instead of using custom-written
backtracking code. Performing the enumeration using a SAT solver has
at least three advantages. First, it reduces the amount of trust necessary,
as SAT solvers produce independently-verifiable certificates that their
enumerations are complete. These certificates can be checked by formal
proof verifiers that are relatively simple pieces of software, and therefore
easier to trust. Second, it is typically more straightforward and less error-
prone to use a SAT solver over writing search code. Third, it can be
more efficient to use a SAT-based approach, as SAT solvers are highly
optimized pieces of software incorporating backtracking-with-learning for
improving the efficiency of the backtracking search. For example, the
SAT solver completely enumerates all orthogonal pairs of Latin squares
of order ten with two nontrivial relations in under 2 hours on a desktop
machine, while Delisle’s 2010 search used 11,700 CPU hours. Although
computer hardware was slower in 2010, this alone cannot explain the
improvement in the efficiency of our SAT-based search.

Keywords: Latin square · orthogonal Latin square · net · satisfiability
solving.

1 Introduction

A k-net(n) is a set of n2 points and kn lines with the following properties:

1. Every line contains n points and every point lies on k lines.
2. There are k parallel classes of lines, with each parallel class containing n lines

that do not intersect each other.



2 C. Bright et al.

3. Every pair of lines from different parallel classes intersect exactly once.

An incidence matrix of a k-net(n) is an n2 × kn matrix over F2 = {0, 1} whose
(i, j)th entry is 1 exactly when the ith point lies on the jth line. In this paper
without loss of generality we assume that the lines in a net are always ordered
by parallel class, i.e., the first parallel class consists of the first n lines in the
net, the second parallel class consists of the next n lines in the net, etc. Under
this ordering, the axioms of a net imply that if A is the incidence matrix of a
k-net(n), then

ATA =


nI J · · · J
J nI · · · J
...

...
. . .

...
J J · · · nI


where here A and AT are considered as matrices over Z, I is the identity matrix
of order n, and J is the all-ones matrix of order n. This follows because the
(i, j)th entry of ATA counts the number of points occurring on both the ith and
jth line, and this count is 1 when the lines are in different parallel classes, 0
when the lines are distinct and in the same parallel class, and n when the lines
are identical (i.e., i = j).

It is well-known that a k-net(n) is equivalent to k − 2 mutually orthogonal
Latin squares of order n, denoted (k − 2)MOLS(n), and it is straightforward to
convert a k-net to a collection of k − 2 Latin squares and vice versa. Roughly
speaking, the net’s first parallel class corresponds to Latin square rows, the net’s
second parallel class corresponds to Latin square columns, and for ℓ > 2 the net’s
ℓth parallel class corresponds to symbols of the (ℓ − 2)th Latin square. When
(i, j)th entry of the (ℓ− 2)th Latin square contains symbol s, its corresponding
net will contain a point that lies on the ith line of the first parallel class, the jth
line of the second parallel class, and the sth line of the ℓth parallel class.

A relation in a k-net(n) is a linear dependency in the columns of A over F2.
The rank of k-net(n) is the rank of its incidence matrix. The rank of a k-net(n)
is at most kn − k + 1 (c.f. [13]) since there are k − 1 trivial relations formed
by the lines in the first parallel class and the ith parallel class for 2 ≤ i ≤ k.
Howard [14] considered nets of order n ≡ 2 (mod 4) of which the case n = 10 is
of particular interest. She showed that a 6-net(10) has rank ≤ 53 and therefore
contains at least two nontrivial relations, and also that a 4-net(10) has rank ≥ 33
and therefore contains at most four nontrivial relations.

Delisle, under the supervision of Myrvold, computationally enumerated all
4-nets(10) with at least two nontrivial relations [10]. They found that there
exist no 4-nets(10) with four nontrivial relations, up to isomorphism there are
six 4-nets(10) with exactly three nontrivial relations, and up to isomorphism
there are 85 4-nets(10) with exactly two nontrivial relations. More recently, Gill
and Wanless [12] computationally enumerated all 4-nets(10) with at least one
nontrivial relation and found that up to isomorphism there are exactly 18,526,229
4-nets(10) with exactly one nontrivial relation.



Orthogonal Latin Squares of Order Ten with Two Relations 3

A 4-net(10) is equivalent to an orthogonal pair of Latin squares of order 10.
Latin squares of order 10 are of particular interest because 10 is the first order for
which the largest collection of mutually orthogonal Latin squares is unknown. It is
known that 9 mutually orthogonal Latin squares of order 10 would be equivalent
to a projective plane of order ten, but this was ruled out by exhaustive computer
search [17]. Combined with a result of Bruck [9], this implies that 7MOLS(10)
do not exist. Thus, the maximum number of mutually orthogonal Latin squares
of order 10 is between 2 and 6. As a consequence of the searches of Delisle [10]
and Gill and Wanless [12], all 2MOLS(10) with nontrivial relations are known
and none of them are part of a 3MOLS(10).

In this paper, we verify the searches of Delisle [10] by exhaustively enumerating
all 2MOLS(10) with two nontrivial relations. Our approach differs from Delisle’s
original search and the independent verification of Gill and Wanless [12] because
our search uses a Boolean satisfiability (SAT) solver. We reduce the existence
of a 2MOLS(10) with two relations into a problem of Boolean logic and then
use a SAT solver to find all solutions of the logic problem (and correspondingly
all 2MOLS(10) with two relations). SAT solvers can be surprisingly effective
at solving various problems in mathematics [6] and recently they have been
used with increasing frequency to solve problems in combinatorics and design
theory [23]. For example, in 2021 they were used to verify Lam et al.’s result
that order ten projective planes do not exist [4].

Traditionally, backtracking algorithms are used to computationally search
for combinatorial designs [15]. SAT solvers offer an alternative approach to the
backtracking paradigm. Although SAT solvers also perform a form of back-
tracking, they also use a powerful learning process known as conflict-driven
clause-learning [19]. This technique along with many other optimizations and
heuristics that have been fine-tuned over decades enables SAT solvers to outper-
form traditional backtracking search in many problems of interest.

Moreover, even if SAT solvers were not as efficient as custom backtracking
approaches, they have the advantage of making the search process less error-prone
because using a SAT solver does not require writing any code for performing
a search. Unfortunately, it is a reality of software development that almost all
computer programs have bugs, and writing efficient search code is an inherently
error-prone process [16]. This is a particularly important consideration when a
computer program purports to perform an exhaustive classification of a mathe-
matical object. How can we trust that a bug in the program did not cause some
objects to be missed in the search? It is typically impossible for even professional
programmers to guarantee their code has no bugs due to the inherent difficulties
in writing computer code. One way of decreasing the chance that a bug results in
a missed object is to perform the same search with two implementations written
independently. While this does reduce the chance of something being missed,
it still relies on trusting code that cannot be certified to be correct. Indeed, it
has happened that mathematical designs have been missed by a search with an
independent verification, for example, in Lam’s problem [8] and the enumeration
of good matrices of order 27 [5].



4 C. Bright et al.

Using a SAT solver sidesteps the need for writing search code. Instead, one
generates a “SAT encoding” specifying the properties that the object in question
must satisfy, and then the SAT solver searches for the object. Moreover, the SAT
solver does not need to be trusted itself, because during the search it produces
a certificate that can be checked for correctness by a proof verifier—a simpler
piece of software that can be written independently from the SAT solver. This
approach does rely on the SAT encoding being correct, but this typically requires
less trust than would be required of a search procedure. We describe the SAT
encoding we use in Section 3, a crucial component of which is a SAT encoding of
the symmetry breaking used in Delisle’s original search (described in detail along
with other background in Section 2).

Although SAT solvers do not always perform well on mathematical problems,
they performed remarkably well in the enumeration of orthogonal pairs of Latin
squares of order ten with two relations, and this only required minor modifications
to the SAT solver and proof verifier (as described in Section 4). We enumerated
all 91 pairs of Latin squares of order ten with two relations in less than 1.75 hours
on a desktop computer (see Section 5). Conversely, Delisle’s original backtracking
search, written in the programming language C and optimized for speed, used
around 488 CPU days in 2010. While some of the improvements in speed of our
SAT-based search is undoubtedly from the improvements in computer hardware,
this alone cannot account for an over 6000× speedup in CPU time, demonstrating
the computational efficiency of SAT solvers on problems of this type.

2 Background

The type of a relation is a list of the number of lines each parallel class contributes
to the relation. For example, a relation in a 4-net(n) that has 4 lines from the
first two parallel classes and 6 lines from the last two parallel classes has type
[4, 4, 6, 6]. Because the union of two parallel classes form a trivial relation, without
loss of generality any relation can be “complemented” and written in a form where
at most one entry in the type is larger than n/2. In her PhD thesis, Howard [14]
studies relations in nets of order n ≡ 2 (mod 4). In particular, she proved the
following proposition.

Proposition 1 ([14, Prop. 5.4]). Every nonempty relation in a 4-net of order
n ≡ 2 (mod 4) with at most n/2 lines in three classes must be of the type
[k, k, k, k] where k is an even integer with n/3 ≤ k < n/2.

For example, Proposition 1 implies that every nontrivial relation in a 4-net(10)
is complementable to one of type [4, 4, 4, 4], because every nontrivial relation in
a 4-net(10) is complementable to a nonempty relation with at most 5 lines in
three classes. Now consider the case of a 4-net(10) with two linearly independent
nontrivial relations. Note that the sum of two nontrivial relations will produce a
third relation. Although this relation will not be linearly independent, it will be
nontrivial, and therefore by Proposition 1 complementable to a relation of the
type [4, 4, 4, 4]. The following proposition constrains the manner in which two
linearly independent relations R1 and R2 will intersect.



Orthogonal Latin Squares of Order Ten with Two Relations 5

Proposition 2 (cf. [10]). Suppose R1 and R2 are two linearly independent
relations of type [4, 4, 4, 4] in a 4-net(10). Then each parallel class contains
exactly one or two lines from both R1 and R2.

Proof. Suppose x is the number of lines in the first parallel class and both R1

and R2. Since the sum of R1 and R2 is a third relation that is complementable
to one of type [4, 4, 4, 4], we have that (4− x) + (4− x), the number of lines in
the third relation and the first parallel class, is either 4 or 10 − 4 = 6. In the
former case x = 2 and in the latter case x = 1. The same argument applies to
every parallel class. ⊓⊔

Following Delisle, we will suppose the lines appearing in both R1 and R2 are
ordered to appear first in each parallel class, followed by the lines in R1 and not R2,
and then the lines in R2 and not R1. The remaining lines, those not in either R1

and R2, appear last. Say that there are xi lines in parallel class i and R1∩R2, there
are yi lines in parallel class i and R1 \R2, and there are zi lines in parallel class i
and R2 \ R1. We use the notation [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3], [x4, y4, z4]]
to denote the form of R1 and R2. By Proposition 2, without loss of generality
the possible forms can be taken to be one of the five cases

[[1, 3, 3], [1, 3, 3], [1, 3, 3], [1, 3, 3]],

[[1, 3, 3], [1, 3, 3], [1, 3, 3], [2, 2, 2]],

[[1, 3, 3], [1, 3, 3], [2, 2, 2], [2, 2, 2]],

[[1, 3, 3], [2, 2, 2], [2, 2, 2], [2, 2, 2]],

[[2, 2, 2], [2, 2, 2], [2, 2, 2], [2, 2, 2]].

Furthermore, Delisle used a counting argument to rule out cases 2 and 4 [10,
pg. 17]. Thus, Delisle’s search focused on cases 1, 3, and 5. Interestingly, using our
approach a SAT solver rules out cases 2, 3, and 4 in a few seconds each. Given
case 3 was ruled out by Delisle using 23 days of compute time, the SAT solver
shows its strength at uncovering contradictions by ruling out case 3 relatively
quickly. At the end of Section 5 we present a less computational argument ruling
out case 3 that was found independently from the SAT computation.

2.1 Delisle’s symmetry breaking

In order to perform an exhaustive enumeration up to isomorphism it is advan-
tageous to restrict the search space as much as possible without losing any
solutions up to isomorphism—this process is known as symmetry breaking. In
this section we recount the symmetry breaking used in Delisle’s thesis [10] for
4-nets(10) with two relations (stated in terms of 2MOLS(10)). Say (A,B) is a
2MOLS(10) whose corresponding net has 2 nontrivial relations. Delisle’s method
for adding symmetry breaking constraints on (A,B) is based on adding additional
constraints on the entries in the first column and row of A and B.

Suppose (A,B) is a pair of orthogonal Latin squares with two relations of the
form

[[x1, y1, z1], [x2, y2, z2], [x3, y3, z3], [x4, y4, z4]].



6 C. Bright et al.

The form of the relations define equivalence classes on the rows (from parallel
class 1), columns (from parallel class 2), symbols of A (from parallel class 3), and
symbols of B (from parallel class 4). For example, the row equivalence classes are
determined by the values of x1, y1, and z1: explicitly, the equivalence classes of
rows will be defined by the index sets [0, x1), [x1, x1 + y1), [x1 + y1, x1 + y1 + z1),
and [x1 + y1 + z1, 10). Note that the following six equivalence operations on pairs
of Latin squares (A,B) preserve the orthogonality of the squares and the form of
the relations.

1. Permutation of rows of A and B preserving the row equivalence classes.
2. Permutation of columns of A and B preserving the column equivalence classes.
3. Permutation of the symbols of A preserving the A-symbol equivalence classes.
4. Permutation of the symbols of B preserving the B-symbol equivalence classes.
5. Taking the transpose of A and B (when the row and column equivalence

classes match, i.e., cases 1–3 and 5).
6. Swapping A and B (when the A-symbol and B-symbol equivalence classes

match, i.e., cases 1 and 3–5).

Fix an ordering of the entries of a Latin square in the following way: the
entries of the first column (from top to bottom) are first, and then the entries
of the first row (from left to right) are next. The remaining entries can be
ordered arbitrarily. In this way, if A and A′ are two distinct Latin squares we
say A < A′ if on the first entry in which A and A′ differ, say at index (i, j), we
have Aij < A′

ij . Similarly, pairs of Latin squares can be ordered after providing
an ordering on pairs of symbols. For this, a lexicographic ordering is used: say
that (a, b) < (a′, b′) when either a < a′ or a = a′ and b < b′. Then, if (A,B) and
(A′, B′) are two distinct pairs of Latin squares, we say (A,B) < (A′, B′) if on
the first entry in which (A,B) and (A′, B′) differ, say at index (i, j), we have
(Aij , Bij) < (A′

ij , B
′
ij).

A pair of orthogonal Latin squares (A,B) is said to be a minimal pair if
(A,B) cannot be decreased under the ordering described above by using the
equivalence operations described above. Delisle’s symmetry breaking method is
based on the following six propositions. In each, (A,B) is a pair of orthogonal
Latin squares and each proposition gives a necessary condition for (A,B) to be a
minimal pair.

Proposition 3. If (A,B) is a minimal pair then (A1,0, B1,0) < (A0,1, B0,1)
(except possibly in case 4).

Proof. Suppose (A,B) is a minimal pair with (A1,0, B1,0) ≥ (A0,1, B0,1). Since
A and B are orthogonal, (A1,0, B1,0) and (A0,1, B0,1) are distinct, and thus
(A1,0, B1,0) > (A0,1, B0,1). Applying the transpose operation to A and B does
not affect A0,0 and B0,0, but replaces (A1,0, B1,0) with (A0,1, B0,1), so (AT , BT ) <
(A,B) in contradiction to the fact that (A,B) is minimal. (This argument does
not work in case 4, as the transpose operation is not an equivalence operation in
case 4.) ⊓⊔



Orthogonal Latin Squares of Order Ten with Two Relations 7

Proposition 4. If (A,B) is a minimal pair then A < B (except possibly in
case 2).

Proof. Suppose (A,B) is a minimal pair with A ≥ B. Since A and B are
orthogonal, A ̸= B, and thus A > B and there is some entry on which A and B
do not match. After swapping A and B the first entry on which the mismatch
occurs will still be in the same place, so (B,A) < (A,B) in contradiction to
(A,B) being minimal. (This argument does not work in case 2, as swapping A
and B is not an equivalence operation in case 2.) ⊓⊔

Proposition 5. If (A,B) is a minimal pair then the symbols in the first column
of A appear in sorted order within the rows of each row equivalence class.

Proof. Suppose (A,B) is a minimal pair with the symbols in the first column of
A not in sorted order within the rows of each row equivalence class. Using row
permutations, permute the rows of (A,B) to form (A′, B′) such that the rows of
the first column of A′ are now sorted within the rows of each row equivalence
class. Consider the first entry A′

i,0 of A′ that has changed after applying these
permutations. (This will also be the first entry of B′ that has changed, since
the same permutations are applied to A and B.) Because A′

i,0 < Ai,0 and
(A′

j,0, B
′
j,0) = (Aj,0, Bj,0) for all j < i we have (A′, B′) < (A,B) in contradiction

to (A,B) being minimal. ⊓⊔

Proposition 6. If (A,B) is a minimal pair then the symbols in the first row of
A appear in sorted order within the columns of each column equivalence class
(except possibly in case 4; in that case A0,0 and A0,1 may appear out of order).

Proof. Suppose (A,B) is a minimal pair with the symbols in the first row of A
not in sorted order within the columns of each column equivalence class. First
consider cases 1–3, in which case the first column equivalence class consists
of only the first column. In this case, the proposition is vacuous for the first
column equivalence class, as the list [A0,0] has length 1 and is vacuously sorted.
Using column permutations, permute the columns of (A,B) to form (A′, B′)
such that the columns of the first row of A′ are now sorted within the columns
of the remaining three column equivalence classes. Note that the first column
of (A′, B′) matches the first column of (A,B) since the first column was not
permuted. Consider the first entry A′

0,i that has changed after applying these
permutations. Because A′

0,i < A0,i and (0, i) is the first entry in which (A′, B′)
differs from (A,B), it follows that (A′, B′) < (A,B), in contradiction to (A,B)
being minimal.

In cases 4 and 5, the above argument works to sort the entries in the first row
of A in each of the last three column equivalence classes, but not the first, so
A0,0 and A0,1 may be out of order. However, in case 5, since (A,B) is a minimal
pair whose first two rows are in the same row equivalence class, by Proposition 5
we have A0,0 < A1,0. By Proposition 3, we also have A1,0 ≤ A0,1. Thus in case 5
the entries of A0,0 and A0,1 will also appear in sorted order. ⊓⊔



8 C. Bright et al.

Proposition 7. If (A,B) is a minimal pair then for each A-symbol equivalence
class, the symbols of that equivalence class in the first column of A appear in
sorted order.

Proof. Suppose (A,B) is a minimal pair where the symbols in the same A-symbol
equivalence class in the first column of A do not appear in sorted order. Permute
the symbols of A to form A′ so that for each A-symbol equivalence class the
symbols in that equivalence class in the first column of A′ appear in sorted
order. Consider the first entry A′

i,0 that differs from Ai,0. Since A′
i,0 < Ai,0 and

A′
j,0 = Aj,0 for all j < i, we have (A′, B) < (A,B) in contradiction to (A,B)

being minimal. ⊓⊔

Proposition 8. If (A,B) is a minimal pair then for each B-symbol equivalence
class, the symbols of that equivalence class in the first column of B appear in
sorted order.

Proof. Suppose (A,B) is a minimal pair where the symbols in the same B-symbol
equivalence class in the first column of B do not appear in sorted order. Permute
the symbols of B to form B′ so that for each B-symbol equivalence class the
symbols in that equivalence class in the first column of B′ appear in sorted
order. Consider the first entry B′

i,0 that differs from Bi,0. Since B′
i,0 < Bi,0 and

B′
j,0 = Bj,0 for all j < i, we have (A,B′) < (A,B) in contradiction to (A,B)

being minimal. ⊓⊔

Finally, we prove another property of minimal pairs that we exploit in our
encoding.

Proposition 9. If (A,B) is a minimal pair then A0,0 = B0,0 (except possibly in
case 2).

Proof. By Proposition 7 if (A,B) is a minimal pair then A0,0 must be in {0, 1, 4, 7}
in case 1 and in {0, 2, 4, 6} in cases 3–5. Similarly, by Proposition 8 if (A,B) is
a minimal pair then B0,0 must be in {0, 1, 4, 7} in case 1 and in {0, 2, 4, 6} in
cases 3–5. Delisle [10, pg. 18] gives the possibilities for the values of (A0,0, B0,0)
in case 1, and the only ones which are in {0, 1, 4, 7} × {0, 1, 4, 7} are (0, 0), (1, 1),
(4, 4), and (7, 7). Similarly, [10, pg. 20] gives the possibilities for the values of
(A0,0, B0,0) in case 3 (and these are identical in cases 4 and 5), and the only ones
which are in {0, 2, 4, 6} × {0, 2, 4, 6} are (0, 0), (2, 2), (4, 4), and (6, 6). ⊓⊔

3 SAT Encoding

In this section we describe our SAT encoding for the problem of enumerating
2MOLS(10) with two nontrivial relations. In order to encode a pair of orthogonal
Latin squares (A,B) of order n we use the 2n3 Boolean variables Aijk and Bijk

for 0 ≤ i < n. The variable Aijk will be true exactly when the (i, j)th entry of
square A contains the symbol k, and similarly for the variables Bijk and the
entries of the square B.



Orthogonal Latin Squares of Order Ten with Two Relations 9

Modern SAT solvers require the input formulae to be in a format known as
conjunctive normal form. An expression in Boolean logic is in conjunctive normal
form when it is a conjunction of clauses, a clause being a disjunction of variables or
negated variables. For example, ¬x∨y∨z is a clause. We may use the implication
operator to express clauses with the meaning that (x1∧ · · ·∧xn)→ (y1∨ · · ·∨ym)
is shorthand for the clause ¬x1 ∨ · · · ∨ ¬xn ∨ y1 ∨ · · · ∨ ym.

Our SAT encoding contains four kinds of constraints: constraints asserting
that A and B are Latin squares (see Section 3.1), constraints asserting that A
and B are orthogonal (see Section 3.2), constraints asserting that A and B have
two nontrivial relations and are in one of the forms specified by cases 1–5 (see
Section 3.3), and finally symmetry breaking constraints asserting that A and B
satisfy Propositions 3 to 8 (see Section 3.4).

3.1 Latin square encoding

Considering the Boolean variables Aijk as integers (0 for false and 1 for true), in
order to specify that they encode a Latin square of order 10 we need to enforce
the following three constraints.

1.
∑9

k=0 Aijk = 1 for all 0 ≤ i, j ≤ 9 (every cell has exactly one symbol).
2.

∑9
j=0 Aijk = 1 for all 0 ≤ i, k ≤ 9 (every row contains every symbol exactly

once).
3.

∑9
i=0 Aijk = 1 for all 0 ≤ j, k ≤ 9 (every column contains every symbol

exactly once).

The most straightforward way of representing the constraint
∑n

i=1 xi = 1 in
Boolean logic is to encode

∑n
i=1 xi ≤ 1 via

∧
i<j(¬xi ∨ ¬xj) and

∑n
i=1 xi ≥ 1

via
∨n

i=1 xi. This encoding performed well in our experiments, but we observed
slightly better performance using Sinz’s sequential counter encoding [20].

To encode
∑n

i=1 xi ≤ 1 in the sequential counter encoding, first the new
variables s1, . . . , sn are introduced (si representing that at least one of x1, . . . ,
xi are true) using the 2n− 1 clauses

xi → si and si−1 → si

for 1 ≤ i ≤ n (when i = 1 the clause s0 → s1 is skipped). Once the si variables
have been introduced,

∑n
i=1 xi ≤ 1 is encoded using the n− 1 additional clauses

¬xi ∨ ¬si−1 for 2 ≤ i ≤ n, the idea being that xi and si−1 can never both be
true, because that would imply at least two variables in x1, . . . , xn are true.
Moreover,

∑n
i=1 xi ≥ 1 can be encoded by setting sn to true and adding the

clauses si→ (si−1∨xi) for 1 ≤ i ≤ n (when i = 1 the literal s0 is left out). Setting
sn to true causes two clauses to be trivially satisfied, so they can be removed.
Altogether, we encode

∑n
i=1 xi = 1 using 4n− 4 clauses.



10 C. Bright et al.

3.2 Orthogonality encoding

The orthogonality of two Latin squares A and B of order n can be specified by
the logical constraints

(Aij = k ∧Ai′j′ = k ∧Bij = l ∧Bi′j′ = l)→ (i = i′)

for 0 ≤ i, j, i′, j′, k, l < n (cf. Zhang [22, Lemma 1]). Taking the contrapositive
and writing this using the variables Aijk and Bijk, this is equivalent to the clauses
¬Aijk ∨ ¬Ai′j′k ∨ ¬Bijl ∨ ¬Bi′j′l where 0 ≤ i, j, i′, j′, k, l < n with i ≠ i′. This
encoding of orthogonality uses O(n6) clauses of length 4. An alternative encoding
of orthogonality that performs better in practice [22, Lemma 2] uses O(n4)
clauses of length 3 and n3 new auxiliary variables. To describe this orthogonality
encoding, we follow the derivation of Bright, Keita, and Stevens [7] based on a
composition square.

Consider the rows of a Latin square X of order n as a collection of n permu-
tations of the symbols {0, . . . , n− 1}. The row inverse square X−1 is defined to
be the Latin square whose rows are formed by the inverses of the rows of X, and
the composition square XY is defined to be the square whose ith row is the ith
row of X composed with the ith row of Y (in a right-to-left way). Note that the
square XY is not a Latin square in general. We now provide a theorem that the
orthogonality encoding we use relies on.

Theorem 1 (Mann [18]). Two Latin squares A and B are orthogonal if and
only if AB−1 is a Latin square.

Let Z denote the composition square AB−1, and let the Boolean variables
Zijk be true exactly when the (i, j) entry of Z contains the symbol k (where
0 ≤ i, j, k < n). The square Z can be specified to be a Latin square using the
encoding from Section 3.1. In order to encode Z = AB−1, we need to enforce
that the (i, Bij)th entry of Z contains the symbol Aij . This is done using the
clauses

(Aijk ∧Bijl)→ Zilk

for 0 ≤ i, j, k, l < n. In fact, from A = ZB we also derive the similar clause
(Zilk ∧Bijl)→Aijk, and from B = Z−1A we derive (Zilk ∧Aijk)→Bijl. These
last two types of clauses are technically logically redundant, but in practice they
improve the performance of the SAT solver as they allow the solver to make
additional useful propagations.

3.3 Relation encoding

Let R1 and denote the indices of the lines in the first relation, and let R2 denote
the indices of the lines in the second relation. Delisle [10] defines an equivalence
class on (row, column) Latin square index pairs using a labelling function called
RC_CLASS that we describe below. In the following, i represents a Latin square
row index, and j represents a Latin square column index, so 0 ≤ i, j ≤ 9. Recall
that we order the lines of a 4-net(10) so that lines 0 to 9 correspond to row



Orthogonal Latin Squares of Order Ten with Two Relations 11

indices of Latin squares while lines 10 to 19 correspond to column indices of
Latin squares. Under such an ordering, note that line j + 10 corresponds to the
jth column of the Latin squares. In what follows the notation x↔ y denotes x
and y have the same truth value (i.e., x and y are both true or both false), while
x ↮ y denotes x and y take opposite truth values. Delisle’s RC_CLASS labelling
function is now defined by

RC_CLASS(i, j) =


0 if (i ∈ R1 ↔ j + 10 ∈ R1) and (i ∈ R2 ↔ j + 10 ∈ R2),
1 if (i ∈ R1 ↔ j + 10 ∈ R1) and (i ∈ R2 ↮ j + 10 ∈ R2),
2 if (i ∈ R1 ↮ j + 10 ∈ R1) and (i ∈ R2 ↔ j + 10 ∈ R2),
3 if (i ∈ R1 ↮ j + 10 ∈ R1) and (i ∈ R2 ↮ j + 10 ∈ R2).

Similarly, Delisle defines an equivalence class on symbol pairs (s, t) where s
is a symbol of the first Latin square A and t is a symbol of the second Latin
square B using a labelling function ST_CLASS. Representing s and t as integers
in {0, . . . , 9}, note that line s+ 20 of the net corresponds to symbol s in the first
Latin square, and line t+ 30 of the net corresponds to symbol t in the second
Latin square. Concretely, ST_CLASS(s, t) is defined to be

0 if (s+ 20 ∈ R1 ↔ t+ 30 ∈ R1) and (s+ 20 ∈ R2 ↔ t+ 30 ∈ R2),
1 if (s+ 20 ∈ R1 ↔ t+ 30 ∈ R1) and (s+ 20 ∈ R2 ↮ t+ 30 ∈ R2),
2 if (s+ 20 ∈ R1 ↮ t+ 30 ∈ R1) and (s+ 20 ∈ R2 ↔ t+ 30 ∈ R2),
3 if (s+ 20 ∈ R1 ↮ t+ 30 ∈ R1) and (s+ 20 ∈ R2 ↮ t+ 30 ∈ R2).

Delisle then notes that the condition that relations R1 and R2 exist in the 4-
net(10) corresponding to the orthogonal Latin pair (A,B) is equivalent to the
condition

RC_CLASS(i, j) = ST_CLASS(Aij , Bij) for all 0 ≤ i, j ≤ 9.

That is, if (Aij , Bij) = (s, t) then RC_CLASS(i, j) = ST_CLASS(s, t). We
encode this condition directly into our SAT encoding. As we encode each case 1–5
separately, we can assume the forms of R1 and R2 are known, and therefore the
values of RC_CLASS(i, j) and ST_CLASS(s, t) are known in advance for all
0 ≤ i, j, s, t ≤ 9. We encode the relation constraint in contrapositive form: for all
i, j, s, t with ST_CLASS(s, t) ̸= RC_CLASS(i, j) we enforce that (Aij , Bij) ̸=
(s, t), i.e., Aij ̸= s or Bij ̸= t. In Boolean logic, this becomes the clauses

¬Aijs∨¬Bijt for all 0 ≤ i, j, s, t ≤ 9 with RC_CLASS(i, j) ̸= ST_CLASS(s, t).

3.4 Symmetry breaking

In this section we describe how we encode Delisle’s symmetry breaking proposi-
tions into conjunctive normal form. In particular, we encode properties of minimal
pairs of orthogonal Latin squares with two relations described in Section 2.1, as



12 C. Bright et al.

such constraints do not remove any solutions up to isomorphism. Thus, in this
section we assume that (A,B) is a minimal pair of orthogonal Latin squares.

First, consider Proposition 3, which applies in all cases except case 4. It
says that (A1,0, B1,0) < (A0,1, B0,1). First, we encode the weaker constraint that
A1,0 ≤ A0,1 in conjunctive normal form via∧

0≤k,l≤9
k>l

(A1,0,k →¬A0,1,l).

Next, we encode that when A1,0 = A0,1 we have B1,0 < B0,1. This is done via∧
0≤k,l,m≤9

k≥l

(
(A1,0,m ∧A0,1,m ∧B1,0,k)→¬B0,1,l

)
.

Now consider Proposition 5, which says that the symbols in the first column
of A appear in sorted order within the rows in the same row equivalence class.
Let R denote a row equivalence class, and let R′ := R \ {max(R)}. For example,
in cases 1–4, the possible nonempty values for R′ are {1, 2}, {4, 5}, and {7, 8}.
In case 5, the possible values for R′ are {0}, {2}, {4}, and {6, 7, 8}. In order to
ensure that the symbols in the first column of A whose rows are in R we use the
constraints ∧

i∈R′

0≤l<k≤9

(Ai,0,k →¬Ai+1,0,l).

Proposition 6 says that the symbols in the first row of A appear in sorted order
within the columns in the same column equivalence class and can be handled
similarly. Let C denote a column equivalence class and let C ′ := C \ {max(C)}.
We ensure the symbols in the first row of A whose columns are in C using the
constraints ∧

j∈C′

0≤l<k≤9

(A0,j,k →¬A0,j+1,l).

(In case 4, we skip the clauses from this constraint with C ′ = {0}, since Proposi-
tion 6 does not apply to column 0 in case 4.)

Proposition 7 says that the symbols in the same A-symbol equivalence class
are sorted in the first column of A. Let S denote an A-symbol equivalence class
and let S′ := S \ {max(S)}. We ensure the symbols of S appear in sorted order
in the first column of A using the constraints∧

s∈S′

0≤i′<i≤9

(Ai,0,s →¬Ai′,0,s+1).

Proposition 8 is handled in the same way. Letting T denote a B-symbol equivalence
class and T ′ := T \ {max(T )}, we use the constraints∧

t∈T ′

0≤i′<i≤9

(Bi,0,t →¬Bi′,0,t+1).



Orthogonal Latin Squares of Order Ten with Two Relations 13

Finally, we discuss Proposition 4, which applies in all cases except case 2 and
says that A < B. Since we are not in case 2, we have A0,0 = B0,0 by Proposition 9.
As a result, we start by considering the (1, 0)th entries of A and B, noting that
A < B implies that A1,0 ≤ B1,0. We encode A1,0 ≤ B1,0 into Boolean logic with
the constraints ∧

0≤k,l≤9
k>l

(A1,0,k →¬B1,0,l).

Next, we consider the case when A1,0 = B1,0. In this case, A < B implies that
A2,0 ≤ B2,0, and we encode A1,0 = B1,0 → A2,0 ≤ B2,0 into Boolean logic with
the constraints ∧

0≤k,l,m≤9
k>l

(
(A1,0,m ∧B1,0,m ∧A2,0,k)→¬B2,0,l

)
.

We could continue in this fashion and also encode constraints corresponding
to (A1,0 = B1,0 ∧ A2,0 = B2,0)→ A3,0 ≤ B3,0, etc. However, in practice it was
sufficient to only consider the entries to the (2, 0)th entry. In other words, we
did not encode the full constraint A < B in our SAT instances but the strictly
weaker constraint [A0,0, A1,0, A2,0] ≤ [B0,0, B1,0, B2,0].

4 Exhaustive Enumeration and Proof Generation

This section explains the process by which we use a SAT solver to find all solutions
of a SAT instance (see Section 4.1) and the process by which we generate and
check proof certificates that the enumeration was performed correctly, with no
missing solutions (see Section 4.2).

4.1 Exhaustive enumeration

Typical modern SAT solvers stop as soon as a satisfying assignment is found and
do not support exhaustively enumerating all solutions of a SAT instance. However,
the IPASIR-UP interface [11], as supported by the SAT solver CaDiCaL [1],
enables us to find all solutions. IPASIR-UP is an interface that can be used to
inject custom code into a SAT solver in order to change its behaviour. One function
supported by IPASIR-UP is cb_check_found_model, a function that is called
when the SAT solver has found a new solution. Inside cb_check_found_model
users are able to add code that modifies a SAT instance whenever a solution is
found.

In our case, we add a “blocking clause” into the SAT instance every time
a solution is found that prevents the solution from occurring again. Once the
blocking clause has been added, the solver continues looking for a new solution.
Eventually, once all solutions have been found, the solver reports that the updated
instance (i.e., the instance augmented with all blocking clauses) is unsatisfiable—it
has no solutions.



14 C. Bright et al.

The blocking clause that we inject into the SAT instance must only block
the single solution that was found and no others. Suppose (S, T ) is the pair of
orthogonal Latin squares that the solver found. We want to add the constraint

¬
( ∧
0≤i,j≤9

(Ai,j,Si,j
∧Bi,j,Ti,j

)
)
,

which is logically equivalent to
∨

0≤i,j≤9(¬Ai,j,Si,j
∨ ¬Bi,j,Ti,j

). Note that this
clause contains 2 ·102 = 200 literals. An observation that allows us to shorten this
clause is to note that it is sufficient to block only the upper-left 9× 9 entries in
(S, T ), because once those entries have been fixed the remaining entries are forced
by the Latin square constraints. This allows us to replace the bound 0 ≤ i, j ≤ 9
in the blocking clause with the bound 0 ≤ i, j ≤ 8, thereby shrinking the clause
to 2 · 92 = 162 literals.

4.2 Proof generation and verification

All our calls to a SAT solver will eventually finish with an unsatisfiable result
(i.e., no solutions) as a result of the blocking clauses that we inject into the SAT
instance in order to perform an exhaustive search. Modern SAT solvers such
as CaDiCaL support generating a “proof certificate” of unsatisfiability. The
proof certificate contains a log of the deductions that the solver made in order to
determine that the SAT instance has no solutions. The certificate can then be
checked by a proof verifier, a separate program that verifies each deduction in
the proof logically follows from the previous deductions.

The certificates we generate are based on the DRAT proof format [21]. A
DRAT certificate consists of the list of clauses deduced by the solver in the order
in which they were deduced. The final clause in an unsatisfiability certificate
will be the empty clause. The empty clause being a logical consequence of the
original SAT instance proves that the original instance was unsatisfiable, since
no truth assignments satisfy the empty clause.

Every step in a DRAT proof is classified as either an addition—a clause that
can be deduced from previously deduced clauses or clauses in the original SAT
instance—or a deletion, a clause that was previously added but is no longer
needed and should be removed. Our work uses a simple extension of the DRAT
format first proposed by Bright et al. [3]. In this extension a third kind of step is
supported, a trusted addition—a clause that will be added into the list of clauses
in the proof even though it cannot necessarily be deduced from the previous
clauses in the proof.

We require trusted clauses in our proofs because the blocking clauses we used
to perform exhaustive enumeration were added through the IPASIR-UP interface,
not deduced by the solver, and therefore cannot be derived through the typical
logical deduction process. Thus, in our DRAT proofs when a blocking clause is
generated a trusted addition is written into the DRAT proof.

A proof verifier takes as input the SAT instance and a DRAT proof of
unsatisfiability and verifies every addition step in the proof logically follows from



Orthogonal Latin Squares of Order Ten with Two Relations 15

the current set of derived clauses in conjunction with the clauses in the original
SAT instance. Deletion steps remove clauses in the current set of derived clauses
when they are no longer needed in order to improve the efficiency of the proof
verifier. Trusted addition steps add a clause into the current set of derived clauses
without verifying its deducibility.

5 Results

We now discuss our computational results enumerating all 4-nets(10) with at
least two nontrivial relations. Our results were run on an Intel i7 CPU running
at 2.8 GHz and using the SAT solver CaDiCaL 1.9.4 using up to 250 MiB of
memory. Our scripts are freely available at https://github.com/curtisbright/
Delisle-MOLS.

We use a Python script to generate SAT instances in each of the five possible
forms (cases 1–5) following the encoding described in Section 3. In order to
mitigate the effect of randomness in the search, each case was independently
solved 45 times, each time with a different random seed. The differing random
seeds ensure that each instance of CaDiCaL will make different choices during
the solving process. A tabular summary of the results of these trials is provided
in Table 1, and a box plot of the running times is provided in Figure 1.

The SAT solver determined that cases 2, 3, and 4 all had no solutions and
these cases were always solvable in a few seconds. It is interesting to note that
Delisle [10] ruled out cases 2 and 4 theoretically using a counting argument, but
despite the fact we did not explicitly use this fact in the SAT encoding, the SAT
solver quickly proved unsatisfiability on its own. The fact that the solver also
quickly ruled out case 3 suggested to us that case 3 was also resolvable using a
counting argument, and we were successful in finding one (included at the end
of this section). Unfortunately, the proofs produced by the SAT solver, while
logically correct, are not intended to be human-readable and the contents of the
proofs did not provide us with any mathematical insight.

In case 1 the SAT solver found 3,904 solutions, and in case 5 the SAT solver
found 22,320 solutions. The latter count agrees with the count reported by Delisle,
but the former count is exactly half of Delisle’s count. We contacted Delisle and
Myrvold (who ran independent searches for 4-nets(10) with two relations) and

Table 1. A summary of the running times (in seconds) of the 45 instances run in each
of the five cases. The minimum DRAT proof size is also provided as well as the number
of solutions found in each case.

case mean median minimum maximum proof size solutions
1 5971.2 6116.8 4467.2 7307.3 3.6 GiB 3904
2 0.9 0.9 0.7 1.4 2.1 MiB 0
3 2.1 2.1 1.7 2.6 4.1 MiB 0
4 2.7 2.5 2.0 4.9 5.3 MiB 0
5 1981.2 1965.4 1775.2 2267.8 1.6 GiB 22320

https://github.com/curtisbright/Delisle-MOLS
https://github.com/curtisbright/Delisle-MOLS


16 C. Bright et al.

Case 1 Case 5

2000

3000

4000

5000

6000

7000
Ti

m
e 

in
 S

ec
on

ds

Box Plot of Running Times for Cases 1 and 5

Case 2 Case 3 Case 4

1

2

3

4

5

Ti
m

e 
in

 S
ec

on
ds

Box Plot of Running Times for Cases 2, 3, and 4

Fig. 1. A box plot visualization of the running times of the 45 instances solved in each
case. The left plot shows the results for cases 1 and 5. The right plot shows the results
for cases 2, 3, and 4.

their complete enumeration in cases 1 and 5 matched ours exactly, so the count
reported by Delisle in case 1 was simply a misprint. We also verified that up
to main class equivalence there are exactly 91 solutions (7 in case 1 and 84 in
case 5) and that 6 of these (all in case 5) are of rank 34 while the other 85 are of
rank 35.

As mentioned in Section 4.2, CaDiCaL was configured to generate DRAT
proofs and each time a blocking clause was generated a “trusted addition” clause
was added to the proof. Since our proofs in cases 1 and 5 use trusted additions
for the blocking clauses, they cannot be verified using a standard DRAT proof
checker like DRAT-trim [21]. However, DRAT-trim-t (a fork of DRAT-trim)
supports trusted additions, so we verified all our proofs using DRAT-trim-t [2].
The proof size of the shortest proof produced in each case is given in Table 1.
The proofs for cases 2–4 were all verified in under a second, while the proof in
case 1 was verified in 3.2 hours and the proof in case 5 was verified in 0.9 hours.

The fact that the SAT solver was able to quickly rule out case 3 inspired us
to look for a counting argument that could rule out this case. We were successful
using an approach similar to the arguments used by Gill and Wanless to count
the number of points of certain type in a net [12, Thm. 3.1].

Theorem 2. There exist no 4-nets(10) with two relations in cases 2–4.

Proof. Say R1 and R2 are two relations in a 4-net(10). In what follows we use the
relational code ‘0’ to denote R1 ∩R2, ‘1’ to denote R1 \R2, ‘2’ to denote R2 \R1,
and ‘3’ to denote R1 ∩R2. The type of a point is a 4-character {0, 1, 2, 3}-string
denoting the point’s relational codes from each parallel class. For example, a
point of type 1122 is in R1 but not R2 in the first two classes, and is in R2 but
not R1 in the last two classes. Let tijkl denote the number of points in the net of
type ijkl. Note that for R2 to be a relation it must be the case that tijkl = 0
when i+ j + k + l ̸≡ 0 (mod 2), and similarly for R1 to be a relation it must be
the case that tijkl = 0 when ⌊i/2⌋+ ⌊j/2⌋+ ⌊k/2⌋+ ⌊l/2⌋ ̸≡ 0 (mod 2), so there
are 44/4 = 64 nonzero tijkl variables.



Orthogonal Latin Squares of Order Ten with Two Relations 17

Let [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3], [x4, y4, z4]] denote the form of R1 and R2

as defined in Section 2. Now count the number of points of type 00∗∗ where the
symbols ‘∗’ are arbitrary. Note there are exactly x1x2 points which lie on both a
line with index in [0, x1) and a line with index in [10, 10 + x2), so∑

0≤k,l≤3

t00kl = x1x2.

Similar equations can be derived by counting points of other types. For example,
there are exactly x1x3 points of type 0∗0∗, exactly y1y4 points of type 1∗∗1, and
exactly z1x2 points of type 20∗∗, resulting in the equations∑

0≤j,l≤3

t0j0l = x1x3,
∑

0≤j,k≤3

t1jk1 = y1y4,
∑

0≤k,l≤3

t20kl = z1x2.

In case 3, the linear system corresponding to the 32
(
4
2

)
= 54 ways of fixing

two entries in the point type to values in {0, 1, 2} when converted into reduced
row echelon form has a row corresponding to t0123 − t3210 = −1/2 which has no
integer solutions.

In cases 2 and 4, the linear systems corresponding to the 42
(
4
2

)
= 96 ways of

fixing two entries in the point type to values in {0, 1, 2, 3} are both inconsistent
over the reals. ⊓⊔

The counting argument in the proof of Theorem 2 provides some theoretical
conditions that were speculated on by Delisle in their original work:

Interestingly, no pairs of MOLS are completable for case 3. Some theo-
retical conditions possibly exist to explain this, but are not known at this
time. [10]

6 Conclusion

In this paper we recreated Delisle’s 2010 enumeration of all 4-nets(10) with
two nontrivial relations. In contrast to Delisle’s original search that used a
custom-written backtracking program, we use a SAT solver and found that
the SAT solver could complete the search over 6000 times faster (when run on
modern hardware) than the original backtracking code. This is in part due to
improvements in processing power, but it is also due to the powerful search-with-
learning algorithms used in modern SAT solvers that can be effective at solving
problems in design theory. For example, the author of the SAT solver SATO,
H. Zhang, observed SAT solvers are particularly effective at solving Latin square
problems:

In the earlier stage of our study of Latin square problems, the author wrote
two special-purpose programs. After observing that these two programs
could not do better than SATO, the author has not written any special-
purpose search programs since then. [23]



18 C. Bright et al.

Moreover, our results are more trustworthy in the sense that they do not require
trusting the implementation of a search algorithm. Instead, we generate certificates
that our search was exhaustive, and our results only require trusting the reduction
of the problem into Boolean logic (as described in Section 3) and the proof verifier
that we use (as described in Section 4.2).

For future work, it would be interesting to use a SAT solver to investigate
the results of Gill and Wanless [12] who enumerated all 4-nets(10) with a single
nontrivial relation and ruled out the existence of a relation of type [2, 2, 2, 4, 6] in
a 5-net(10).

References

1. Biere, A., Faller, T., Fazekas, K., Fleury, M., Froleyks, N., Pollitt, F.: CaDiCaL
2.0, p. 133–152. Springer Nature Switzerland (2024). https://doi.org/10.1007/
978-3-031-65627-9_7

2. Bright, C.: The DRAT-trim-t extension of the DRAT-trim checker. https://github.
com/curtisbright/drat-trim-t (2025)

3. Bright, C., Cheung, K.K.H., Stevens, B., Kotsireas, I., Ganesh, V.: Nonexistence
Certificates for Ovals in a Projective Plane of Order Ten, p. 97–111. Springer
International Publishing (2020). https://doi.org/10.1007/978-3-030-48966-3_
8

4. Bright, C., Cheung, K.K.H., Stevens, B., Kotsireas, I., Ganesh, V.: A SAT-based
resolution of Lam’s problem. Proceedings of the AAAI Conference on Artificial
Intelligence 35(5), 3669–3676 (May 2021). https://doi.org/10.1609/aaai.v35i5.
16483

5. Bright, C., Ðoković, D.Ž., Kotsireas, I., Ganesh, V.: A SAT+CAS approach to
finding good matrices: New examples and counterexamples. Proceedings of the
AAAI Conference on Artificial Intelligence 33(01), 1435–1442 (Jul 2019). https:
//doi.org/10.1609/aaai.v33i01.33011435

6. Bright, C., Gerhard, J., Kotsireas, I., Ganesh, V.: Effective Problem Solving Using
SAT Solvers, p. 205–219. Springer International Publishing (2020). https://doi.
org/10.1007/978-3-030-41258-6_15

7. Bright, C., Keita, A., Stevens, B.: Myrvold’s results on orthogonal triples of 10× 10
Latin squares: A SAT investigation (2025). https://doi.org/10.48550/ARXIV.
2503.10504, arXiv:2503.10504

8. Bright, C., Kotsireas, I., Ganesh, V.: When satisfiability solving meets symbolic
computation. Communications of the ACM 65(7), 64–72 (Jun 2022). https://doi.
org/10.1145/3500921

9. Bruck, R.H.: Finite nets. II. Uniqueness and imbedding. Pacific Journal of Mathe-
matics 13(2), 421–457 (Jun 1963). https://doi.org/10.2140/pjm.1963.13.421

10. Delisle, E.: The Search for a Triple of Mutually Orthogonal Latin Squares of Order
Ten: Looking Through Pairs of Dimension Thirty-Five and Less. Master’s thesis,
University of Victoria (2010), http://hdl.handle.net/1828/2964

11. Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., Biere, A.:
Satisfiability modulo user propagators. Journal of Artificial Intelligence Research
81, 989–1017 (Dec 2024). https://doi.org/10.1613/jair.1.16163

12. Gill, M.J., Wanless, I.M.: Pairs of MOLS of order ten satisfying non-trivial relations.
Designs, Codes and Cryptography 91(4), 1293–1313 (Apr 2023). https://doi.org/
10.1007/s10623-022-01149-6

https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/978-3-031-65627-9_7
https://github.com/curtisbright/drat-trim-t
https://github.com/curtisbright/drat-trim-t
https://doi.org/10.1007/978-3-030-48966-3_8
https://doi.org/10.1007/978-3-030-48966-3_8
https://doi.org/10.1007/978-3-030-48966-3_8
https://doi.org/10.1007/978-3-030-48966-3_8
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1609/aaai.v33i01.33011435
https://doi.org/10.1609/aaai.v33i01.33011435
https://doi.org/10.1609/aaai.v33i01.33011435
https://doi.org/10.1609/aaai.v33i01.33011435
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.48550/ARXIV.2503.10504
https://doi.org/10.48550/ARXIV.2503.10504
https://doi.org/10.48550/ARXIV.2503.10504
https://doi.org/10.48550/ARXIV.2503.10504
https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921
https://doi.org/10.2140/pjm.1963.13.421
https://doi.org/10.2140/pjm.1963.13.421
http://hdl.handle.net/1828/2964
https://doi.org/10.1613/jair.1.16163
https://doi.org/10.1613/jair.1.16163
https://doi.org/10.1007/s10623-022-01149-6
https://doi.org/10.1007/s10623-022-01149-6
https://doi.org/10.1007/s10623-022-01149-6
https://doi.org/10.1007/s10623-022-01149-6


Orthogonal Latin Squares of Order Ten with Two Relations 19

13. Howard, L., Myrvold, W.: A counterexample to Moorhouse’s conjecture on the
rank of nets. Bull. Inst. Combin. Appl 60, 101–105 (2010)

14. Howard, L.: Nets of Order 4m+ 2: Linear Dependence and Dimensions of Codes.
Ph.D. thesis, University of Victoria (2009), http://hdl.handle.net/1828/1566

15. Kaski, P., Östergård, P.R.: Classification Algorithms for Codes and Designs.
Springer-Verlag (2006). https://doi.org/10.1007/3-540-28991-7

16. Lam, C.W.H.: Opinion: How reliable is a computer-based proof? The Mathematical
Intelligencer 12(1), 8–12 (Dec 1990). https://doi.org/10.1007/bf03023977

17. Lam, C.W.H., Thiel, L., Swiercz, S.: The non-existence of finite projective planes of
order 10. Canadian Journal of Mathematics 41(6), 1117–1123 (Dec 1989). https:
//doi.org/10.4153/cjm-1989-049-4

18. Mann, H.B.: The construction of orthogonal Latin squares. The Annals of Mathemat-
ical Statistics 13(4), 418–423 (1942). https://doi.org/10.1214/aoms/1177731539

19. Marques Silva, J., Sakallah, K.: GRASP—A new search algorithm for satisfiability.
In: Proceedings of International Conference on Computer Aided Design. p. 220–227.
ICCAD-96, IEEE Comput. Soc. Press (1996). https://doi.org/10.1109/iccad.
1996.569607

20. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints, p.
827–831. Springer Berlin Heidelberg (2005). https://doi.org/10.1007/11564751_
73

21. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient Checking and
Trimming Using Expressive Clausal Proofs, p. 422–429. Springer International
Publishing (2014). https://doi.org/10.1007/978-3-319-09284-3_31

22. Zhang, H.: Specifying Latin square problems in propositional logic, pp. 115–146.
MIT Press, Cambridge, Massachusetts (1997), https://dl.acm.org/doi/10.5555/
271101.271124

23. Zhang, H.: Combinatorial designs by SAT solvers. In: Handbook of Satisfiability.
pp. 819–858. IOS Press (Feb 2021). https://doi.org/10.3233/faia201005

http://hdl.handle.net/1828/1566
https://doi.org/10.1007/3-540-28991-7
https://doi.org/10.1007/3-540-28991-7
https://doi.org/10.1007/bf03023977
https://doi.org/10.1007/bf03023977
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.1214/aoms/1177731539
https://doi.org/10.1214/aoms/1177731539
https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://dl.acm.org/doi/10.5555/271101.271124
https://dl.acm.org/doi/10.5555/271101.271124
https://doi.org/10.3233/faia201005
https://doi.org/10.3233/faia201005

	Orthogonal Latin Squares of Order Ten with Two Relations: A SAT Investigation

