Highlights

Computing the base-b representation of quadratic irrationals using
automata

Aaron Barnoff, Curtis Bright, Jeffrey Shallit

e We construct finite automata that compute the base-b digits of the
golden ratio and other quadratic irrationals.

e SAT solving proves some constructed automata are minimal and unique.

e We give a heuristic argument that some of our constructed automata are
not minimal, answering a question we left open in our original paper.

Computing the base-b representation of quadratic
irrationals using automata

Aaron Barnoff?, Curtis Bright®!* Jeffrey Shallit?

@ University of Windsor, 401 Sunset Ave, Windsor, N9B 3P/, ON, Canada
b University of Waterloo, 200 University Ave W, Waterloo, N2L 3G1, ON, Canada

Abstract

We show that the nth digit of the base-b representation of any quadratic
irrational « is a finite-state function of the Ostrowski a-representation of b",
and hence can be computed by a finite automaton. We use a satisfiability
(SAT) solver to prove, for some quadratic irrationals, that the automata
we construct are both minimal and unique. For other quadratic irrationals,
the SAT solver is able to find smaller automata computing the digits of
the irrational up to a high precision. We conjecture in these cases that the
automata found do indeed compute all digits of the irrational correctly. We
give a heuristic argument for this conjecture, though we leave this as an open
question.

Keywords: finite automata, golden ratio, Zeckendorf representation,
Ostrowski numeration, SAT solving, minimal DFA

1. Introduction

The base-b digits of famous irrational numbers, where b > 2 is an integer,
have been of interest for hundreds of years. For example, William Shanks
computed 707 decimal digits of 7w in 1873, although only the first 528 were
correct [1|. As a high school student, the third author used a computer in

*Corresponding author
Email addresses: barnoffa@uwindsor.ca (Aaron Barnoff), cbright@uwindsor.ca
(Curtis Bright), shallit@uwaterloo.ca (Jeffrey Shallit)
LORCID: 0000-0002-0462-625X
20RCID: 0000-0003-1197-3820

1976 to determine the first 10,000 digits of the decimal representation of
¢ = (v/5 + 1)/2, the golden ratio, using the computer language APL [2].

The celebrated results of Bailey, Borwein, and Plouffe [3] demonstrated
that one can compute the nth bit of certain famous constants, such as m,
in O(nlognM(logn)) time and O(logn) space, where M(j) is the cost of
multiplying j-bit numbers.?

Can finite automata generate the base-b digits of irrational algebraic num-
bers, such as p? This fundamental question was raised by Cobham in the
late 1960’s (a re-interpretation of a related question due to Hartmanis and
Stearns [4]). Though Cobham believed for a time that he had proved they
cannot be so generated [5], his proof was flawed, and it was not until 2007
that Adamczewski and Bugeaud [6] succeeded in proving that there is no
deterministic finite automaton with output that, on input n expressed in
base b, returns the nth base-b digit of an irrational real algebraic number «.

Even so, in this paper we show that, using finite automata, one can
compute the nth digit in the base-b representation of the golden ratio ¢!
At first glance this might seem to contradict the Adamczewski—Bugeaud
result. But it does not, since for our theorem the input is not n expressed
in base b, but rather b" in an entirely different numeration system, the
Zeckendorf representation. As we will see below, analogous results exist for
any quadratic irrational «, except with the Zeckendorf representation replaced
by the Ostrowski numeration system associated with a.

Our result does not give a particularly efficient way to compute the base-b
digits of quadratic irrationals, but it is nevertheless somewhat surprising.
Using a SAT solver, in some cases (such as for the binary digits of ¢) we can
prove that the automaton we construct are minimal and unique. Interestingly,
in other cases, the SAT solver discovered several distinct automata, sometimes
with fewer states, computing the same quadratic irrational up to a high
precision. We were not able to rigorously prove that these candidate automata
compute the same quadratic irrational to arbitrary high precision, but we
give a probabilistic heuristic argument that they do. Since the automata that
we construct are in some cases larger than the candidates found by the SAT
solver, we suspect that in general our construction does not produce minimal

3Sometimes this result is described as “computing the nth digit without having to
compute the previous n — 1 digits”. But this is not really a meaningful assertion, since the
phrase “computing x without computing y” is not so well-defined.

automata.

This paper is an extended version of our previous work |7] appearing in
the 2024 International Conference on Implementation and Application of
Automata. In our original paper, we left open the question of if the automata
we constructed were minimal. In this updated version, we answer this question
under a plausible assumption about the distribution of digits in the input
strings provided to the automata.

Additionally, we correct an oversight in the SAT encoding we used in our
previous work, which forbid states with self-loops (except for self-loops on
the start state to consume leading zeros). After updating our encoding, this
changed our previous results in a single case, namely, when computing the
binary digits of (v/3 —1)/2. Our construction produces a 12-state automaton
computing these digits. This automaton was unique and minimal under our
previous restriction on self-loops, but removing this restriction permits the
SAT solver to find an automaton with only 11 states computing the digits
of (v/3 —1)/2 to a high precision. We study this automaton in Section 6.3,
and we provide an argument that it in fact very likely computes the digits of
(v/3 — 1)/2 to arbitrarily high precision.

In this updated version, we also provide candidate automata for four
other quadratic irrationals that have fewer states than the automata from our
construction, but which likely still compute the same digits to arbitrarily high
precision (see Section 6.4). In addition, we provide a more convenient way of
constructing the shift DFAs for these quadratic irrationals (see Section 4.3)
and point out an alternate way in which automata could be considered to
compute the digits of quadratic irrationals (see Section 5).

2. Number representations and automata

A DFAO (deterministic finite automaton with output) A consists of a
finite number of states along with labelled transitions connecting them. The
automaton processes an input string x by starting in the distinguished start
state qp, and then following the transitions from state to state, according
to each successive symbol of x. Each state ¢ has an output 7(¢q) associated
with it, and the function f4 computed by the DFAO maps the input x to the
output associated with the last state reached. For an example of a DFAO,
see Figure 2.

A DFA (deterministic finite automaton) is quite similar to a DFAO. The
only difference is that there are exactly two possible outputs associated with

each state, either 0 or 1. States with an output of 1 are called “accepting”

or “final”. If an input results in an output of 1, it is said to be accepted by
the DFA. A synchronized DFA [8] is a particular type of DFA that takes
two inputs in parallel; this is accomplished by making the input alphabet
a set of pairs of alphabet symbols. A synchronized automaton computes a
synchronized sequence (f(n))n>o; it does this by accepting exactly the inputs
where the first components spell out a representation of n, and the second
components spell out a representation for f(n), where leading zeros may be
required to make the inputs the same length. Thus, n and f(n) are read in
parallel. For more about synchronized sequences, see [9]. An example of a
synchronized DFA appears in Figure 1. Throughout the paper, integer inputs
are processed starting with the most significant digit.

Let z be a non-negative real number, let b > 2 be an integer, and write
the base-b representation of x in the form

T = E a;b' = agaz_1 -+ ag.a_1a_9- -,
—oo<i<t

where a; € {0,1,...,b—1}. For n > 0, we call a_,_; the nth digit to the
right of the radix point. This choice of associating n with a_,,_; is perhaps a
little unusual, but it seems to decrease the size of the automata produced.

2.1. Zeckendorf representation

The Fibonacci numbers are defined, as usual, by Fy = 0, F; = 1, and
F, = F,_1 + F, 5 for n > 2. The Zeckendorf representation [10, 11| of
a natural number n is the unique way of writing n as a sum of Fibonacci
numbers Fj, 1 > 2, subject to the condition that no two consecutive Fibonacci
numbers are used. We may write the Zeckendorf representation as a binary
string (n)p = ay---a;, where n = 22:1 a;Fy1o—;. For example, (43)p =
344+ 8+ 1 = Fy + Fys + I3 has representation 10010001. The substring 11
cannot occur due to the rule that two consecutive Fibonacci numbers cannot
be used. In what follows, leading zeros in strings are typically ignored without
comment. We also denote the inverse of () by [|p; i.e., [10010001]r = 43.

3. Automata and the base-b representation of ¢

Our main result is Theorem 1 below.

Figure 1: Synchronized automaton A; for |gy]. The inputs are the Zeckendorf representa-
tion of ¢ and z, in parallel; it accepts if and only if x = |g¢|.

Theorem 1. For all integers b > 2, there exists a DFAO Ay that, on input
the Zeckendorf representation of b™, computes the nth digit to the right of the
point in the base-b representation of .

Proof. Tt is known that there exists a 7-state synchronized DFA A; accepting,
in parallel, the Zeckendorf representations of ¢ and |gp] for all ¢ > 0 [12,
Thm. 10.11.1 (a)]. Its transition diagram is depicted in Figure 1, where
accepting states are denoted by double circles, and the initial state is 0,
labelled by a headless arrow entering.

The DFA A, is constructed using the fact that |qp| = [(¢ — 1)r0]r + 1,
where (¢—1) 0 is the left shift of the string (¢—1)r. For example, [11¢p] = 17,
and we find (11 — 1) = (10)p = 10010, left-shift that to get 100100 = (16)F,
and add 1 to get [100100]r+1 = 17. To understand how to use this automaton,
observe that (11)p = 10100 and (|11¢|)r = (17)p = 100101. Since these
two numbers have representations of different lengths, we need to pad the
former with a leading 0. Then if z = [0, 1][1, 0][0, 0][1, 1][0, 0][0, 1], the first
components concatenated spell out 010100, and the second components spell
out 100101. When we input this, starting at state 0 we visit, successively,
states 1,3,5,2,4,2, and so we accept.

Let x be a positive real number, with base-b representation y.agaias - - -,
where the period (or radix point) is the analogue of the decimal point for
base b, and y is an arbitrary finite block of digits. Now ™"z has base-b
representation yagay - - - G, 10y-Ayeq - - - and | 0"z] has base-b representation
Yyaopay - - - ap_1a,. Similarly, b|b"x | has base-b representation yagpa; - - - a,—10.
Hence [b""'z| — b|b"z| = a,. In the particular case where x = ¢, we get a
formula for the nth digit to the right of the radix point of ¢, namely

Dy(n) = [0""] —blb"p].

From the DFA A; computing |ge], it is possible to create another DFA A,
accepting, in parallel, the Zeckendorf representations of ¢ and |bgp| — b|qp].

5

This is based on the fact that there is an algorithm to compile a first-order
logic statement involving the usual logical operations (AND, OR, NOT, etc.),
the integer operations of addition, subtraction, multiplication by constants,
and the universal and existential quantifiers, into an automaton that accepts
the Zeckendorf representation of those integers making the statement true [13].

From the DFA A,, we can compute b individual DFAs A;; accepting
the Zeckendorf representation of those ¢ for which |bgy| — b|qp| = i, for
0 < ¢ < b. Finally, we combine all the A;; together into a single DFAO
Az (using a product construction for automata) computing the difference
Lbap] — blap].

By substituting ¢ = 0", we see that this automaton As is the desired one,
computing Dy(n) on input the Zeckendorf representation of b™.]

We now use Walnut, which is free software for compiling first-order log-
ical expressions into automata, to explicitly compute the automata for the
representation of ¢ in base 2 and base 3. For base 2, we need the following
Walnut commands (further explanation follows below):

reg shift {0,1} {0,1} "([0,0]1[0,11[1,11%[1,0])*":

def phin "?msd_fib (s=0 & q=0) | Ex $shift(gq-1,x) & s=x+1":
def phid2 "?msd_fib Ex,y $phin(2*q,x) & $phin(q,y) & x=2xy+1":
combine FD2 phid2:

These produce the DFAO in Figure 2.

Figure 2: Automaton As for the nth bit (base 2 digit) to the right of the binary point
of ¢. States are labelled in the form a/c, where a is the state number and c¢ is the output.

The input is the Zeckendorf representation of 2", and the output is ¢ when the last state
reached is labelled a/c.

For example, in base 2, we have ¢ = 1.1001111000110111 - - -. To compute
the 4th digit to the right of the binary point we write 2% = 16 in Zeckendorf
representation, namely 100100, and feed it into the automaton, starting at

state 0 and reaching states 1,2, 3,6, 5,7 successively, with output 1 at the
end.

We now explain the Walnut commands above that generate the DFAO
in Figure 2. The first line creates a DFA called shift, using a regular
expression; it takes two base-2 inputs and accepts only if the second is the
left shift of the first. Next is the DFA phin, which is shown in Figure 1
and uses shift to check that its two inputs have the relationship (n)r and
[(n — 1)p0]p + 1, which computes the function n — |ny] in a synchronized
fashion. Next, the DFA phid2, when given the representation of ¢ as input,
accepts if [2qp| —2|qp| = 1, and rejects otherwise. Lastly, combine converts
phid2 into the DFAO of Figure 2 by replacing the accepting and rejecting
states of phid2 with output values 1 and 0, respectively.

The automaton for base 3 (see Figure 3) can be constructed similarly with
the following Walnut commands:

reg shift {0,1} {0,1} "([0,0]1[0,1][1,11*[1,0])*":

def phin "?msd_fib (s=0 & n=0) | Ex $shift(n-1,x) & s=x+1":
def phid31 "?msd_fib Ex,y $phin(3*n,x) & $phin(n,y) & x=3*xy+1":
def phid32 "?msd_fib Ex,y $phin(3*n,x) & $phin(n,y) & x=3*xy+2":
combine FD3 phid31=1 phid32=2:

Figure 3: Automaton for the nth digit to the right of the point of ¢ in base 3, with inputs
as in Figure 2.

In base 3, ¢ = 1.1212001122021210 - - - . To compute the 3rd digit to the
right of the point we write 3% = 27 in Zeckendorf representation as 1001001
and pass it to the automaton in Figure 3, which, starting at state 0, traverses
states 1, 2,3, 6,2, 3,6 successively, giving an output of 2.

There is no conceptual barrier to carrying out similar computations for any
base b > 2. For base 10, for example, Walnut computes a finite automaton
with 97 states that, on input (10™)g, returns the nth digit to the right of the
decimal point in the decimal expansion of .

4. Other quadratic irrationals

There is nothing special about ¢, and the same ideas can be used for any
quadratic irrational. What makes quadratic irrationals special in this context
is Lagrange’s theorem: these numbers, and only these, have a continued
fraction expansion that is ultimately periodic. This is crucial, because if this
property does not hold, then the sequence of continued fraction convergents
cannot satisfy a linear recurrence [14]. But a linear recurrence is needed in
order to construct a numeration system with good decidability properties.

4.1. Handling V2

Another representation for the natural numbers is based on the Pell
numbers, defined by Py =0, P, =1, and P, = 2P, _1+ P, 5 forn > 2. We can
then write every natural number n = Zﬁzl a;Piy1-; where a; € {0,1,2}. To
get uniqueness of the representation, we have to impose two conditions. First,
we must have that a; # 2. Second, if a; = 2, then a;;1 = 0; see [15] for more
details. We denote the unique Pell representation of n by (n)p € {0,1,2}*.

The Pell numeration system in Walnut can be used to construct automata
computing the base-b digits of v/2, just as we did for ¢. This results in a
6-state DFAO for base 2 (see Figure 4), and a 14-state DFAO for base 3. The
Walnut commands for base 2 are as follows:

reg pshift {0,1,2} {0,1,2}
"([0,0]1(C[0,1][1,1]=([1,0]1[1,2][2,0]1))1[0,2][2,0])*":
def sqrt2n "?msd_pell (s=0 & n=0) | Ex $pshift(n-1,x) & s=x+2":
def sqrt2d2 "?msd_pell Ex,y $sqrt2n(2*n,x) & $sqrt2n(n,y)
& x=2*xy+1":
combine SD2 sqrt2d2:

The alert reader will observe that no output is associated with state 2. This
is because inputs that lead to this state, such as 12, are not valid Pell
representations. However, the state cannot be removed, because 120 is a
valid Pell representation.

Figure 4: Automaton for the nth bit to the right of the binary point of /2. Its input is 2"
in the Pell representation, i.e., (2")p.

4.2. Ostrowsk: representation

Of course, what makes our results work is that the numeration systems
are “tuned” to the particular quadratic irrational we want to compute. For ¢,
the numeration system is based on the Fibonacci numbers; for v/2, the Pell
numbers. We need to find an appropriate numeration system that is similarly
“tuned” to any quadratic irrational. In general, the proper system is the
Ostrowski numeration system [16, 17].

Every irrational real number « can be expressed uniquely as an infinite
simple continued fraction a = [dg, dy, ds, . . .|. Furthermore, g, is called the nth
denominator of a convergent for aif ¢_ o =1, ¢ 1 =0, and ¢, = d,Gr_1+ ¢n_2
for n > 0. For example, the continued fraction for 7 is [3,7,15,1,...],
corresponding to the sequence (¢,)n>0 = 1,7,106,113,... (OEIS A002486).

The Ostrowski a-numeration system uses the sequence (g,)n>o of the
denominators of the convergents for o to construct a unique representation
for a non-negative integer N expressed as

N = [ap1Gp-2 - agla = Z @iqi,

0<i<n

where the a; have to obey the Ostrowski rules

ap € {0,1,...,dy — 1}; (1)
a; €{0,1,...,d;41} for i > 1; and (2)
if a; = di+1 then a;—1 = 0. (3)

The Ostrowski a-representation for N = [a,,_1a,_2 - - - agl, is then deter-
mined with a greedy algorithm, starting at the most significant term and

https://oeis.org/A002486

choosing the largest multiple a,_; for ¢,_; that is less than NV, and then
applying the same algorithm recursively to N — a,,_1¢,_1. For example, for
a=vV3+1= 2,1, 2], the denominators of the continued fraction convergents
form the sequence (¢,)n>0 = 1,1,3,4,11,15,... (OEIS A002530). Rule 1
for the construction forces ag = 0 because d; = 1, while rule 2 requires
that a; < dy = 2, ap < d3 = 1, and so on. Rule 3 ensures uniqueness by
enforcing the constraint that if a; = dy = 2, then ag = 0, and if ay = d3 = 1,
then a; = 0, and so on. Then, for example, the a-representation of 37 is
2154443 =2g5+ g3 + g2 = [20110],.

In order to construct a DFAO A, that, given the input of the Ostrowski
a-representation of b”, computes the nth digit to the right of the point
in the base-b representation of «, we require an Ostrowski a-synchronized
function n — |na|. Consider a quadratic irrational 0 < g < 1 with a
purely periodic continued fraction [0, d;, ds, . .., d,,]; here the straight bar or
vinculum denotes the periodic part. Then Schaeffer et al. [18] showed that
the sequence (|nf]),>1 is Ostrowski S-synchronized via the relation

[(n—1)50"]5 = gm(n — 1) + @m-1 - [nB], (4)

where g; is the denominator of the ith convergent to /3, and (n — 1)30™ is the
[-representation of n — 1, left-shifted m times.

Furthermore, Schaeffer et al. showed that if « > 0 belongs to Q(f3), then
([na])n>1 is synchronized in terms of the Ostrowski S-representation through
the relation o = (a + df)/c, where d, ¢ > 1, and

ldn] + an J | %)

C

na = |

This is notable because when constructing an Ostrowski a-representation
with Walnut, it is assumed that 0 < a < %, which corresponds to a continued
fraction with terms dp = 0 and d; > 1. If o > %, then we can set dy = 0
and rotate the period until d; > 1, giving a quadratic irrational 0 < § < %
corresponding to the periodic part of a. Then an Ostrowski representation
for B can be constructed, and Eq. (4) is used to find an automaton for [nf|,
followed by Eq. (5) to find an automaton for |na|. Therefore, (|na|),>1 is
synchronized in terms of the Ostrowski S-representation.

For example, for o = v/3 + 1 = [2,1,2], we have o > % Since we only
care about the digits after the radix point, we set dy = 0 and then rotate
the period to get 3 = [0,2,1] = (v/3 — 1)/2 < 1/2. This gives the sequence

10

https://oeis.org/A002530

Figure 5: Synchronized automaton for |na| for a = v/3 + 1.

of denominator convergents 1,2,3,8,11,30,... where m = 2, ¢,, = 3, and
¢m—1 = 2, and so Eq. (4) gives [(n — 1)300]3 = 3(n — 1) + 2[nB3]. This results
in a DFA for [nf] that has 23 states. Then, we find o = (2 4 23)/1, with
a=2,b=2 and ¢ =1, and Eq. (5) gives a DFA with 20 states, shown in
Figure 5.

Then for example (5)g = 110 and (|5a])s = (13)s = 10010. When we
input [0, 1][0, 0][1, 0][1, 1][0, 0] into the automaton, we visit states 1,3, 8,6, 14
in succession, and so we accept. From here, the same general process that is
outlined in Theorem 1 can be used to construct a DFA accepting in parallel
the Ostrowski a-representations of ¢ and |bga | — b|qar|, and ultimately the
DFAO A, as desired.

Finally, there are practical limitations on the types of quadratic irrationals
to which we can apply this method. The key issue is that one of the inter-
mediate automata—mnamely, the one responsible for shifting by the length
of the period—grows exponentially. In particular, if we shift by k positions
over an alphabet of size ¢, then this automaton will have at least t* states.
Consequently, in practice, we are restricted to quadratic irrationals with
relatively small partial quotients and relatively short periods. We do not
know how to prove a lower bound on the sizes of the final automata that will
result from our construction.

4.3. Walnut implementation

Constructing the DFAOs for other quadratic irrationals with Walnut
requires the ost command to create custom Ostrowski representations. As
explained above, Walnut requires that 0 < § < % to create the corresponding
Ostrowski representation, and it is possible to create a DFAO for a > % by
synchronizing it in terms of the Ostrowski representation for 3. Presented

11

below are the general steps for constructing a DFAO for the digits of the
base-2 representation of a quadratic irrational o with Walnut, using the
process explained above with Equations (4) and (5).

First, we construct the continued fraction of § < % from « by setting
dy = 0 and rotating the period until d; > 1, if necessary. Next, we determine
the denominators j = ¢, and k = ¢,,_1 of the continued fraction convergent
to 3, where m is the number of elements in the period. Lastly, we find a, b,
and ¢ from the relation o = (a 4 bf3)/c, where b, ¢ > 1. With these, we can
use the following Walnut commands:

Construct Ostrowski representation for Beta

ost ostBeta [0] [dl d2 ... dm];

Create a DFA of z = floor(n*Beta) using j and k

def betan "?msd_ostBeta Eu,v n=u+l & $shift(u,v) & v=k*z+j*u":

Create a DFA of z = floor(n*Alpha) synchronized

def alphan "7msd_ostBeta Eu $betan(b*n,u) & z=(uta*n)/c":

Create a DFAQO for Alpha in base 2

def alphan_d2 "7msd_ostBeta Ex,y $alphan(2+#n,x) & $alphan(n,y)
& x!V'=2x%y":

combine AD2 alphan_d2:

The shift DFA can be constructed from a regular expression as done
above for ¢, and is based on the specific representation and continued fraction
sequence. If multiple left-shifts are required, it may be simpler to create a
shift DFA that left-shifts only one position at a time, and chain its use
together multiple times. For example, three left-shifts could be achieved using
a 1-shift DFA by:

def betan "?msd_ostBeta Eu,v,w,x n=u+l & $shift(u,v)
& $shift(v,w) & $shift(w,x) & x=k*z+j*u":

One further simplification for the DFAOs constructed in this paper is to
use the shift DFA for the generalized golden mean corresponding to the
largest term in the quadratic irrational’s continued fraction. Because the
regular expression for the shift DFA grows unwieldy for larger golden means,
it is easier to encode the states and transitions directly using Walnut’s DFA
format. Below is a template for constructing the shift DFA for the golden

mean [k, kl:

12

{0, 1, ..., k} {0, 1, ..., k}

01

0 j ->3j // insert transitions for j=0 to k
m 0 // insert states for m=1 to k-1
mj ->j // insert transitions for j=0 to k
kO

kKO ->0

Using the processes outlined above, we created the DFAOs for other
quadratic irrationals, including the “bronze ratio” (v/13 + 3)/2 = [3, 3] and
several Pisot numbers. The Walnut code is given in Appendix A.

5. An alternative construction

In Section 3, we combined multiple instances of automaton A; to build a
more complex automaton simulating the computation of the nth digit in a
given base b. In this section, we describe a different way in which the digits
of ¢ can be computed by an automaton, also based on the automaton A,
that in parallel takes ¢ and x in Zeckendorf representation and accepts if and
only if x = |gp] (see Figure 1).

We can compute the first £ 4 1 digits of ¢ in a base b using only a single
instance of A;. This is done by intersecting A; with another automaton whose
first component spells out b* in Zeckendorf representation and whose second
component is arbitrary. The resulting product automaton accepts exactly
one string that encodes the Zeckendorf representation of the first £ + 1 digits
concatenated together.

For example, to compute the first 6 digits of ¢ = 1.100111100011 - - - in
base 2, we construct a product automaton from A; and the automaton whose
first component spells out (2°)r. With Walnut, we use the commands:

reg shift {0,1} {0,1} "([0,0]1[0,1][1,1]*[1,0])*":
def phin "?msd_fib (s=0 & g=0) | Ex $shift(q-1,x) & s=x+1":
def x5 "?msd_fib $phin(x,y) & x=32":

This produces the automaton shown in Figure 6, where the second component
spells out [10100101]r = 51 which, when 51 is represented in binary, gives
110011, the first six base-2 digits of .

This approach requires additional intersections and computations to iden-
tify the unique accepting path, unlike the method in Section 3, which provides

13

[0,0]

[y
OO0 0RO OO O O,

Figure 6: Automaton encoding the first 6 digits of ¢ in base 2. The first component spells
out (2°)F = 1010100, and the second spells out (51) = 10100101.

it directly. Moreover, the resulting DFA has a size proportional to the length
of the Zeckendorf representation of the concatenation of the first k£ + 1 digits
in the specified base, which can grow arbitrarily large.

6. Are the automata minimal?

The automata that Walnut constructs for computing |bgp| — blge] on
input ¢ > 0 are guaranteed to be minimal. However, in this paper, with
our application to computing the base-b digits of ¢, we are only interested
in running these automata in the special case when ¢ = b”, the powers of b.
Could it be that there are even smaller automata that answer correctly on
inputs of the form ™ (but might give a different answer for other inputs)?
After all, for each t, we are only concerned with behaviour of the automaton
on linearly many inputs of length ¢, as opposed to the exponentially large set
of valid length-t Zeckendorf representations. Thus, the automaton is not very
constrained.

In general, we do not know the answer to this question, but in Section 6.3
we give a heuristic argument that some of the automata constructed by Walnut
are not minimal. The question is likely difficult; in terms of computational
complexity, it is a special case of a problem known to be NP-hard, namely, the
problem of inferring a minimal DFAO from incomplete data [19]. However,
this problem can sometimes be solved in practice using satisfiability (SAT)
solving [20].

We are able to show that some of Walnut’s automata are indeed minimal,
among all automata giving the correct answers on inputs of the form ¢ = b,
and satisfying two conventions: first, that leading zeroes in the input cannot
affect the result, and second, that the automata obey the Ostrowski rules (1)-
(3) for the particular numeration system. Our method of proving minimality,
and in some cases uniqueness, uses satisfiability (SAT) solving. SAT solvers are
automated reasoning tools that take as input a logical formula in conjunctive
normal form and output a truth assignment under which the formula is

14

true, if one exists. If no such truth assignment exists, the formula is said to
be unsatisfiable and the solver returns UNSAT. Even though there are no
provably efficient algorithms to solve the SAT problem, in practice certain
kinds of problems can be effectively solved using SAT solvers [21].

We use a modified version of a MinDFA solver called DFA-Inductor [20]
to generate SAT encodings for minimal automata, which are then passed to
the CaDiCaL SAT solver [22] to determine whether they have a satisfying
solution. DFA-Inductor uses the compact encoding method given by Heule
and Verwer [23], which defines eight constraints—four mandatory and four
redundant—to translate DFA identification into a graph colouring problem,
and then encodes those constraints into a SAT instance.

DFA-Inductor only natively supports DFAs without output (i.e., only
accepting or rejecting states), however, we added output status labels for
bases larger than 2. DFA-Inductor does not explicitly encode a “dead state”
rejecting invalid strings, but a transition to a dead state can be implied by a
lack of an outgoing transition on a given state. Since one of the redundant
constraints of the compact encoding method forces each state to have an
outgoing transition on every symbol, this constraint must be amended to
exclude whichever symbols must transition to the implied dead state.

Our automata follow the convention that the start state consumes leading
zeros in the input string. In terms of the compact encoding variables, vy, 4
indicates that state p has a transition to state ¢ on label ¢. This constraint is
then implemented by enforcing state 0 to have a self-loop on the symbol 0
using the unit clause yg 0, and the dictionary given to DFA-Inductor states
that the string 0 produces output 0.

In order for the SAT solver to construct automata obeying the rules of
a given Ostrowski representation, we encode the Ostrowski rules (2) and
(3) as a set of constraints. Rule (1) is satisfied simply by only including
strings in the dictionary that are valid in the given representation. Without
these constraints, the solver may find a smaller DFAO by allowing rule-
breaking transitions—such as allowing consecutive 1s for ¢ in the Zeckendorf
representation.

6.1. Ostrowski encoding for purely periodic quadratic irrationals

Each Ostrowski a-representation is a language made up from the set
of valid strings that can be constructed using the Ostrowski rules (1)—(3).
This language is recognized by a canonical DFA, and serves as the base that
informs the valid structure of the final DFAO. Constructing a DFAO using

15

Figure 7: Relationship between the Ostrowski base states and DFAO states for a =

(V3-1)/2.

only the states in the Ostrowski base DFA guarantees that rules (2) and (3)
of the Ostrowski construction are never violated. Conveniently, Walnut
automatically generates a DFA of the Ostrowski base during the process of
constructing the representation.

Since each state in the Ostrowski base DFA has a unique transition set,
we refer to the ith state in the base DFA as the ith base state. For example,
Figure 7 shows for a = (v/3 —1)/2 = [0,2,1] how each base state in the
Ostrowski base DFA (bottom), labelled BO to B5, correspond exactly to a
state in the Walnut DFAO for returning the ith digit of « in base 2 (top).

The Ostrowski rules (2) and (3) are encoded through the states in the
Ostrowski base DFA by constraining each state in the DFAO to match a
certain base state. Therefore, to encode the base states, we create a new
variable b, ,, which says state p in the DFAO is related to base state ¢ in the
Ostrowski base DFA. We then relate the b variable to the transition variable
Yep.q, Which constrains the set of valid transitions between p and ¢ according
to which base states they are associated with. The encoding is presented in
Table 1.

The last constraint in the table is the only one that needs to be manually
determined for each quadratic irrational, since it is derived directly from the
transition function of the base DFA.

For example, for a = (v/3 — 1)/2 in Figure 7, base state B4 is encoded as
follows, where @ denotes the set of states in the DFAO and B denotes the

16

Constraints Range Meaning

boo The start state is related to base state
’ 0.
Each state in the DFAO must be
related to at most one base type.
Each state in the DFAO must be
related to at least one base type.
Suppose DFAO state i is related to
base state s, and DFAO state j is
(Bis Absy) = —ss i,] € Q; s,t € B; related to base state t. If s does not
e Tt Yhii e ¥ 0(s, k) #t transition to ¢ on label k in the base
DFA, then i cannot transition to j on
label k in the DFAO.
@) = set of states in DFAO; B = set of states in Ostrowski base DFA;

J is the transition function of the DFAQO; ¥ = alphabet; ¢ = max(X)

bis — iy 1€Q;s,t€B;s#t

bi71Vbi’QV"'Vbi7|B‘ ZGQ

Table 1: SAT encoding of Ostrowski constraints for purely periodic quadratic irrationals.

set of states in the Ostrowski base DFA:

/\ ((bia Abjz = =woi5) A (bia Abja = =wrij) A (bia Abjs = —2.5))

i,j€EQ
1#£]
/\ /\ /\ (bia A bjk — —Yeij)
i,jEQ keB\{2,5} £€{0,1,2}
i£]
6.2. Results

The results were determined on a desktop computer with an Intel Core
i5 10600k CPU and 32 GiB RAM.* Table 2 and Table 3 give our results of
DFA minimization by SAT on a few quadratic irrationals. Table 2 shows
the quadratic irrationals proven to have a minimal Walnut solution. The
digit set size is the smallest dictionary required for the SAT solver to find
the n-state Walnut solution. Table 2 also includes the time required for the
solver to find the n-state Walnut automaton, the time required to determine
that no automaton exists using n — 1 states, the time required to exhaustively
find all candidate automata with n states, and the number of candidate

40ur code is publicly available at https://github.com/aaronbarnoff/tcs_digits.

17

https://github.com/aaronbarnoff/tcs_digits

Quadratic irrational ¢ © V2 V343 V1343 V17-3

_ _ 2 2 2 4
Continued fraction [1,1] [1,1] [1,2] [3,3] [3,3] [0,3,1,1]

Base 2 3 2 2 3 2
Walnut DFAO size 8 13 6 7 8 16
Digit set size 54 197 29 64 64 57

SAT time (sec) 0.25 22169.0 0.033 30.41 2786.29 75.25

UNSAT time (sec) 0.12 3217.74 0.01 0.19 7.07 2.41

Exhaustive time (sec) 0.37 38999.16 0.05 74.55 5750.86 890.04
Number of candidates 1 3 1 3 7 9

Table 2: Quadratic irrationals whose Walnut DFAQOs were determined to be minimal. The
SAT time is the amount of time it took the SAT solver to find the Walnut solution. The
UNSAT time is the amount of time it took the SAT solver to show there are no smaller
solutions. The exhaustive time is the amount of time it took the SAT solver to find all
candidate automata of minimal size.

automata found. Note that candidate automata are only guaranteed to
correctly compute the digits of the specific quadratic irrational up to a
precision of p = 100,000 digits. Minimality is proven by determining that
there are no candidate automata with a fewer number of states than in the
Walnut-produced automaton. We used CaDiCaL to determine the UNSAT
time and a version of CaDiCaL that was modified to find all solutions of a
SAT instance to determine the SAT time and the exhaustive time.

The process of determining the minimality of the Walnut DFAO begins by
creating a dictionary that contains the Ostrowski representation of the first
i digits of the quadratic irrational (where ¢ > 1 will increase as the solving
continues), along with each digit’s output value. A SAT encoding is created
from that dictionary set, and the solver attempts find a satisfying solution
for a given number of states. The dictionary set size ¢ is increased every time
a satisfying assignment is found, and continues until UNSAT is returned,
indicating no DFAO exists that correctly computes the first ¢ digits with the
current number of states. The state count is increased every time the solver
returns UNSAT, and this process continues until the state count given by the
Walnut-produced solution is reached.

To determine uniqueness of the Walnut automata, we run the solver ex-
haustively at the Walnut DFAQ’s state-count to find all satisfying assignments
of the SAT formula and therefore all candidates for the minimal automata

18

computing the quadratic irrational. Fach solution is validated against a dic-
tionary set consisting of the Ostrowski representations of the first p = 100,000
digits. Any solution whose output does not match the correct initial p digits
of «v is discarded, and we suspect the candidate automata remaining after this
process do in fact compute the digits of « to arbitrarily high precision (though
we cannot prove this). Each candidate solution is confirmed to be a unique
automaton (up to isomorphism) using nauty, a software for computing graph
isomorphism [24].

For example, in Table 2, we see that for ¢ in base 2, the minimum
dictionary size for an 8-state solution is 54, and although the SAT solver
found many 8-state DFAOs correctly computing the first 54 digits, only the
Walnut DFAO was correct for computing the first p digits. However, for ¢ in
base 3, out of the many DFAOs that correctly compute the first 197 digits,
the solver found two other candidate solutions correctly computing the first p
digits.

In other cases, we found that the SAT solver stalled in attempting to
produce an UNSAT result for a state-count smaller than that of the Walnut
solution. When these plateaus were reached, we performed an exhaustive
search to identify all possible solutions at the given state-count to determine
whether any solutions compute the first p digits of the quadratic irrational
correctly. Table 3 contains results for quadratic irrationals with candidate
automata having fewer states than the Walnut DFAO. In this table, the
digit set size indicates the size of the smallest dictionary required by the
SAT solver to find a DFAO capable of correctly computing the first p digits.
As described below, the candidate DFAO for (v/21 — 6)/3 was constructed
manually, without the use of a SAT solver.

Minimization of the DFAOs in some other examples also presented a
challenge for the SAT solver, as both the size of the digit set required to
find a candidate solution and the length of the input string for each digit
position can become large. For ¢ in base 4, which has a Walnut DFAO with
22 states, it took over 40 hours for the 79th digit set to be declared UNSAT
at 14 states. For v/2 in base 3, which has a Walnut DFAO with 14 states, it
took over 30 hours for the 259th to 267th digit sets to be declared SAT at 11
states. However, the satisfying assignments found by the solver corresponded
to automata that could only correctly compute the ternary digits of v/2 up
to the 320th digit at best.

19

Quadratic irrational V3-1 v2-1 V15-3 V6-2 /21-3

Continued fraction [0, %, 1] [0, 421, 1] [o, g, 1] [0, é,_l] [0, g,_l]
Base 2 2 2 2 2
Walnut DFAO size 12 12 12 12 18
Candidate DFAO size 11 11 10 11 16
Digit set size 27 31 o7 588 —
Exhaustive search (sec) 0.42 62.86 159.79 1919.39 —
Number of candidates 1 10 12 > 435 >1

Table 3: Quadratic irrationals for which we found candidate automata smaller than the
Walnut DFAOs. The DFAO for (/21 — 3)/6 was constructed manually.

6.3. A heuristic argument that some Walnut automata are not minimal

We now give a heuristic argument suggesting that in general Walnut’s
automata are not minimal amongst DFAOs required only to produce the nth
digit of a specific quadratic irrational on input " in the relevant Ostrowski
representation. We focus on a = (v/3—1)/2 = [0,2,1] in base 2, as we expect
the 11-state automaton found by the SAT solver correctly computes all binary
digits of a, beating the 12-state automaton computed by Walnut.

First, when we run the Walnut DFAO for a (Figure 7) on a dictionary
containing the first p = 100,000 strings of the form (2¢),, we find that state
6/0 is never reached as a final state. This indicates that there is no power of
two up to 2P with an a-representation in {0, 1}* ending with the substring 00.
In fact, upon inspecting the a-representations of 2F for 0 < k < p, we find
that 2% is the last power of 2 whose a-representation lies entirely in {0, 1}*.
In other words, the computation of the 29th digit of « is the last digit we
could find that involves no transitions using the label 2.

Next, upon examining the 11-state candidate solution found by the SAT
solver (Figure 8), we see that state 6/0 in the Walnut DFAO has been removed,
and that state 3/1 has acquired a self-loop on 0. Since states 6/0 and 3/1 in
the Walnut DFAO only differ in their output values and transition to each
other on 0, it follows that adding a self-loop on 0 to state 3/1 preserves the
same transition structure for any strings that were previously non-final in
state 6/0. Therefore, if no input (2"), is ever final for state 6/0, we can
conclude that the 11-state candidate solution computes the digits of a to
arbitrarily large precision. Note that analyzing the transition structure of the

20

Figure 8: An 11-state SAT solution for a = (v/3 —1)/2 = [0,2, 1] which correctly computes
the digits of « for at least the first p = 100,000 digits.

Walnut automaton shows the only way the state 6/0 can be reached is if the
input string has no 2, i.e., is entirely in {0, 1}*.

We now provide a heuristic probabilistic argument for the correctness
of the candidate solution by noting that, under some plausible assumptions
about the digits of the a-representations of powers of two, it is likely that
there are only finitely many integers n for which (2"), contains no 2.

Conjecture 6.3.1. For a = (v/3 —1)/2 =[0,2,1], after (2*°), = 110001001
1000011010101000100001, every Ostrowsk: ac-representation of 2™ contains at
least one 2.

The digits in a given a-representation are governed by the Ostrowski
construction rules, which in turn depend on the period of the continued fraction
expansion of «. In particular, no representation can end in 2, representations
of even length cannot begin with 2, and every 2 must be followed by a 0. As
a result, these a-representations contain, on average, significantly fewer 2s
than would be expected under a random distribution of digits.

Let |(n),| denote the length of the a-representation of n. Since these
representations are defined recursively, we can derive closed-form formulas for
the total number of representations of a fixed length k as well as for those that
omit a particular digit. In particular, if we define £y = { (n)a : |(n)a] =k },
then one may show that

(2+\/§)(k/2) . . .

’£k| _ (W—‘, if k is even,
(2+\/§)(k+1)/2 . .

\-TJ’ if k’ 1S Odd

The closed-form formulas for the even and odd cases are derived from the
OEIS sequences A079935, and A001834, respectively, and come from the

21

https://oeis.org/A079935
https://oeis.org/A001834

sequence of the denominators of the continued fraction convergents for «
(OEIS A002530). In either case, we have |Li| > (2 + v/3)%/2/5.

Moreover, we define L£; C L, as the set of all a-representations of length &
that do not contain a 2. The Ostrowski construction implies that any valid
representation in £; must end either in 00, 01, or 10. This gives a recursive
formulation £} = Uxeﬁz_Q{xOO,xOl,xIO} for k > 3, and so |£}| = 3|L; |-
Since even-length a-representations cannot begin with 2, all strings in £, be-
gin with 1, so L3, = U,epy {12} for k> 1 and |£5,] = |£5,_,|. Combining

these observations gives |L£f| = 3W%/2) < 3%/2 so |L%]/|Lk| < 5(3/(2 4 V/3))F/2.

Per the Ostrowski construction, if |(2%),| = k, then g is the first de-
nominator in the sequence (q,),>o that is greater or equal to 2, where
Gk = drQr—1 + Qr—2. Since (g,)n>o is strictly monotonically increasing and
di € {1,2}, we have

qk :dk+qk—2§2+qk—2<3_

k-1 k-1 k-1
Since q,_1 < 2° < @i, we have

qk:q—k-qk_l <&'2i<3-2i<2i+2.
Qk—1 Qk—1

Thus, gx is not greater or equal to 272 so [(2/72),] > |(2%)4], and at most
two consecutive powers of 2 can have a-representations of the same length.

Finally, we have confirmed that all (2%),, for 30 <4 < 100,000 contain the
digit 2, and |(2190900) | = 105,265. Under the assumption that strings of the
form (2), of length & are in £} with probability |L}|/|Lk|, one would expect
the number of strings of the form (2°), without a 2 and with 7 > 100,000 to
be no more than approximately

> 9Lk > 3\ "2
Z | k| S Z 10 <2+\/§> <10—4989'

k=105265 L k=105265

Although we believe it is very unlikely there is a power of two larger
than 2% whose a-representation does not contain a 2, we have assumed that
a-representations of powers of two behave like “typical” a-representations
in their distribution of digits. Rigorously proving this remains challenging,
somewhat similar to another open question of whether every power of 16
beyond 16* = 65536 must contain at least one digit from {1,2,4,8} [25].

22

https://oeis.org/A002530

Figure 9: Automaton for the nth bit to the right of the binary point of [0,k, 1], for
k = {4,6,8}. Stacked transition labels correspond to k = 4 (top), k = 6 (middle), k = 8
(bottom). Input is n in the Ostrowski representation corresponding to the real number
0,k 1,k 1,k,1,...].

6.4. Candidates for computing continued fractions of the form [0, m, 1]

The similar minimality results for the other quadratic irrationals listed
in Table 3 are unsurprising given that the DFAOs computing quadratic
irrationals with continued fraction [0, m, 1], where m is even, have essentially
the same Ostrowski base DFA. For example, Figure 9 shows the Walnut
DFAOs for [0,4,1], [0,6,1], and [0,8,1] have the same general structure.

Consequently, the Walnut automata for these quadratic irrationals all
contain a pair of states (5/1 and 9/0 in Figure 9) structurally analogous to
states 3/1 and 6/0 in the Walnut automaton for o = (v/3 —1)/2 = [0,2,1].
Therefore, if no Ostrowski representation of an early power of 2 is final for
either of these two states, we expect the Walnut solution will not be minimal
for the same reasoning that we provided for «.

This expectation aligns with our observations: for example, the Walnut
DFAO for [0, 6, 1] was never final for states 5/1 and 9/0 while computing
the first p digits, prompting the SAT solver to identify 12 unique 10-state
candidate solutions with both states removed. Similarly, for [0,8,1], the
Walnut DFAO was never final for state 9/0 while computing the first p digits,

23

Figure 10: Automaton for the nth bit to the right of the binary point of (v/21 — 3)/6 =

[0,3,1]. Input is n in the Ostrowski representation corresponding to the real number
[0,3,1,3,1,3,1,...].

leading the SAT solver to find 52,488 unique 11-state DFAOs with state 9/0
removed. For computational reasons, only the first 435 DFAOs were tested
against the first p digits, and all passed successfully. The remaining DFAOs
were verified against the first 10,000 digits and found correct up to that point.
The fact that all 52,488 DFAOs correctly computed at least the first 10,000
digits—and that there are at least 435 valid candidate solutions—is somewhat
unusual. However, this could be explained in part by the significantly larger
size of the digit set used to construct these DFAOs compared to the other
cases.

Unfortunately, the Walnut automaton for o = (v/21 — 3)/6 = [0;3,1] has
18 states, of which only 13 were reached by the SAT solver before progress
plateaued. None of the candidate SAT solutions correctly computed the first p
digits. However, as shown in Figure 10, states 13/0 and 17/1 exhibit the same
structural properties as the two key states in [0,2, 1], and neither of these
states are final while computing the first p digits. Using this information, we
manually constructed a 16-state DFAO by removing states 13/0 and 17/1,
and modifying the transition structure so that 8/0 transitions back to 4/1
on 0. The resulting DFAO correctly computes the first p digits, but since the
SAT solver was not used, we cannot readily determine whether additional
candidate solutions exist or whether a configuration with fewer states is
possible.

24

7. Conclusion

We provide an explicit construction for finite automata computing the nth
base-b digit of a quadratic irrational (subject to the input n being given by
the digits of a particular Ostrowski representation of ™). This paper extends
our previous work [7] and answers (assuming Conjecture 6.3.1) a question
previously left open: are the automata we construct minimal among all
automata required to give the correct answer when provided input strings of
the form 6" in the relevant Ostrowski representation? Under conjecture 6.3.1,
we find the answer to this question is no—our constructed automaton for
computing the binary digits of (v/3 — 1)/2 contains 12 states (see Figure 7),
but an exhaustive search with a SAT solver found an 11 state automaton (see
Figure 8) that we conjecture also computes the binary digits of (v/3 — 1)/2.
We provide a heuristic argument for this conjecture, but we expect that
proving it rigorously will be difficult.

We also note several other quadratic irrationals and bases (such as for
the binary digits of (v/2 — 1)/2) where we expect our construction does not
produce minimal automata. On the other hand, in other cases—such as in
the cases of computing the binary and ternary digits of the golden ratio and
the binary digits of v/2—we are able to prove our constructed automata is
minimal using a SAT solver and a reasonable amount of computing resources.

Acknowledgements
We thank the referees of our CIAA 2024 submission for several useful
suggestions.

References

[1] W. Shanks, On the extension of the numerical value of 7, Proc. Roy. Soc.
London 21 (1873) 318-319.

[2] J. Shallit, Calculation of v/5 and ¢ (the golden ratio) to 10,000 decimal
places, reviewed in Math. Comp. 30 (1976), 377 (1976).

[3] D. Bailey, P. Borwein, S. Plouffe, On the rapid computation of various
polylogarithmic constants, Math. Comp. 66 (1997) 903-913.

[4] J. Hartmanis, R. E. Stearns, On the computational complexity of algo-
rithms, Trans. Amer. Math. Soc. 117 (1965) 285-306.

25

[5] A. Cobham, On the Hartmanis-Stearns problem for a class of tag ma-
chines, in: IEEE Conference Record of 1968 Ninth Annual Symposium
on Switching and Automata Theory, 1968, pp. 51-60, also appeared as
IBM Research Technical Report RC-2178, August 23 1968.

[6] B. Adamczewski, Y. Bugeaud, On the complexity of algebraic numbers I.
Expansions in integer bases, Ann. Math. 165 (2007) 547-565.

[7] A. Barnoff, C. Bright, J. Shallit, Using finite automata to compute the
base-b representation of the golden ratio and other quadratic irrationals,
in: S. Z. Fazekas (Ed.), Implementation and Application of Automata,
Springer Nature Switzerland, Cham, 2024, pp. 35-50.

[8] A. Carpi, C. Maggi, On synchronized sequences and their separators,
RAIRO Inform. Théor. App. 35 (2001) 513-524.

[9] J. Shallit, Synchronized sequences, in: T. Lecroq, S. Puzynina (Eds.),
WORDS 2021, Vol. 12847 of Lecture Notes in Computer Science, Springer-
Verlag, 2021, pp. 1-19.

[10] C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som
van getallen van Fibonacci, Simon Stevin 29 (1952) 190-195.

[11] E. Zeckendorf, Représentation des nombres naturels par une somme de
nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Liége 41
(1972) 179-182.

[12] J. Shallit, The Logical Approach To Automatic Sequences: Exploring
Combinatorics on Words with Walnut, Vol. 482 of London Math. Society
Lecture Note Series, Cambridge University Press, 2023.

[13] H. Mousavi, L. Schaeffer, J. Shallit, Decision algorithms for Fibonacci-
automatic words, I: basic results, RAIRO Inform. Théor. App. 50 (2016)
39-66.

[14] H. W. Lenstra, Jr., J. O. Shallit, Continued fractions and linear recur-
rences, Math. Comp. 61 (1993) 351-354.

[15] A.R. Baranwal, J. Shallit, Critical exponent of infinite balanced words via
the Pell number system, in: R. Mercag, D. Reidenbach (Eds.), WORDS
2019, Vol. 11682 of Lecture Notes in Computer Science, Springer-Verlag,
2019, pp. 80-92.

26

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

A. R. Baranwal, L. Schaeffer, J. Shallit, Ostrowski-automatic sequences:
Theory and applications, Theoret. Comput. Sci. 858 (2021) 122-142.

A. Ostrowski, Bemerkungen zur theorie der Diophantischen approxima-
tionen, Abh. Math. Sem. Hamburg 1 (1922) 77-98, 250-251, reprinted
in Collected Mathematical Papers, Vol. 3, pp. 57-80.

L. Schaeffer, J. Shallit, S. Zorcic, Beatty sequences for a quadratic
irrational: Decidability and applications, arXiv:2402.08331 [math.NT].
(2024).

M. E. Gold, Complexity of automaton identification from given data,
Inform. Control 37 (1978) 302-320.

I. Zakirzyanov, A. Shalyto, V. Ulyantsev, Finding all minimum-size DFA
consistent with given examples: SAT-based approach, in: A. Cerone,
M. Roveri (Eds.), Software Engineering and Formal Methods: SEFM
2017 Collocated Workshops, Vol. 10729 of Lecture Notes in Computer
Science, Springer-Verlag, 2018, pp. 117-131.

C. Bright, J. Gerhard, 1. Kotsireas, V. Ganesh, Effective problem solving
using SAT solvers, in: Maple in Mathematics Education and Research,
Springer International Publishing, 2020, p. 205-219.

A. Biere, K. Fazekas, M. Fleury, M. Heisinger, CaDiCal., Kissat, Para-
cooba, Plingeling and Treengeling entering the SAT Competition 2020,
in: Proc. of SAT Competition 2020 — Solver and Benchmark Descrip-
tions, Vol. B-2020-1 of Department of Computer Science Report Series
B, University of Helsinki, 2020, pp. 51-53.

M. Heule, S. Verwer, Exact DFA identification using SAT solvers, in:
J. M. Sempere, P. Garcia (Eds.), ICGI 2010, Vol. 6339 of Lecture Notes
in Artificial Intelligence, Springer-Verlag, 2010, pp. 66-79.

B. D. McKay, A. Piperno, Practical graph isomorphism, II, Journal of
Symbolic Computation 60 (2014) 94-112.

J. Shallit, Minimal primes, Journal of Recreational Mathematics 30 (2)
(2000) 113-117.

27

Appendix A. Walnut code for quadratic irrationals

Appendiz A.1. The bronze ratio (v/13 + 3)/2 = [3,3] in bases 2 and 3

#m=1, gq.m = 3, and q_(m-1) = 1.

ost bt [0] [3];

reg bts {0,1,2,3} {0,1,2,3}
"([0,0]1[0,2][2,2]=[2,0]1([0,2][2,2]*[2,3]1[0,3])
[3,0]11([0,1]]([0,2][2,2]=[2,1]) ([1,1]|[1,2][2,2]*[2,1])*
(([1,2]1[2,2]1*[2,3]1[1,3]1)[3,0]1[1,2]1[2,2]1*[2,0]1[1,0]))*":

def btbn "?msd_bt Eu,v n=u+l & $bts(u,v) & v=1*xz+3%u":

def btan "7msd_bt Eu $btbn(1l*n,u) & z=(u+3*n)/1":

DFAO for the bronze ratio in base 2 (7 states):

def btn_d2 "?msd_bt Ex,y $btan(2*n,x) & $btan(n,y) & x!=2*y":
combine BTND2 btn_d2:

DFAO for the bronze ratio in base 3 (8 states):

def btn_d31 "?msd_bt Ex,y $btan(3*n,x) & $btan(n,y) & x=3*xy+1":
def btn_d32 "?msd_bt Ex,y $btan(3*n,x) & $btan(n,y) & x=3*xy+2":
combine BTND3 btn_d31 btn_d32:

Appendiz A.2. Pisot number /3 + 1 =[2,1,2] and (v/3 —1)/2=0,2,1] in
base 2
#m=2, gqm =3, and q_(m-1) = 2.
ost pvl [0] [2 1];
reg pvis {0,1,2} {0,1,2} "([0,0]1([0,1]1[1,1]1[1,011[0,11[1,01)I
[0,2][2,0])*":
def pvibn "?msd_pvl Et,u,v n=t+1 & $pvis(t,u) & $pvis(u,v)
& v=2%z+3*xt":

DFAO for (v/3 — 1)/2 in base 2 (12 states, see Figure 7):

def pvibn_d2 "?msd_pvl Ex,y $pvibn(2+*n,x) & $pvibn(n,y)
& x!'=2xy":

combine PV1B2 pvlbn_d2:

DFAO for v/3 + 1 in base 2 (27 states):

def pvian "?msd_pvl Eu $pvibn(2*n,u) & z=(ut2*n)/1":
def pvin_d2 "?msd_pvl Ex,y $pvian(2*n,x) & $pvian(n,y)

& xV'=2xy":
combine PV12 pvin_d2:

28

Appendiz A.3. Pisot number (v/17 +3)/2 = [3,1,1,3] and (/17 — 3)/4 =
[0,3,1,1] in base 2

#m=3, gqm=7, and q_(m-1) = 4.

ost pv2 [0] [3 1 1];

reg pv2s {0,1,2,3} {0,1,2,3%}
"(fo,0]I[0,11[1,0]1[0,1]0[1,1][1,0]([0,2][2,0]I
[0,2]1[2,1]1[1,0]11[0,3]1[3,0])*":

def pv2bn "?msd_pv2 Es,t,u,v n=s+1 & $pv2s(s,t) & $pv2s(t,u)
& $pv2s(u,v) & v=4*xz+7*s":

DFAO for (v/17 — 3)/4 in base 2 (16 states)

def pv2bn_d2 "7?msd_pv2 Ex,y $pv2bn(2+*n,x) & $pv2bn(n,y)
& x!=2xy":
combine PV2B2 pv2bn_d2:

DFAO for (v/17 + 3)/2 in base 2 (27 states):

def pv2an "?msd_pv2 Eu $pv2bn(2*n,u) & z=(ut+3*n)/1":
def pv2n_d2 "?msd_pv2 Ex,y $pv2an(2*n,x) & $pv2an(n,y)

& x!=2xy":
combine PV22 pv2n_d2:

Appendiz A.4. Quadratic irrationals with continued fraction [0, k, 1] in base 2

DFAO has 12 states if k is even, and 18 if k is odd.
#m=2, gqm = k+1, and q_(m-1) = k.
shiftk is the shift DFA for the golden mean [k, k...]
ost tOkl [0] [k 1];
def tOkibn "?msd_tOkl Es,t,u n=s+1 & $shiftk(s,t) & $shiftk(t,u)
& u=k*xz+(k+1)*s":
def tOklbn_d2 "?msd_tOkl Ex,y $tOklbn(2+*n,x) & $tOkibn(n,y)
& x!=2xy":
combine TOk1B2 tOklbn_d2:

29

	Introduction
	Number representations and automata
	Zeckendorf representation

	Automata and the base-b representation of
	Other quadratic irrationals
	Handling 2
	Ostrowski representation
	Walnut implementation

	An alternative construction
	Are the automata minimal?
	Ostrowski encoding for purely periodic quadratic irrationals
	Results
	A heuristic argument that some Walnut automata are not minimal
	Candidates for computing continued fractions of the form [0,m,1]

	Conclusion
	Walnut code for quadratic irrationals
	The bronze ratio (13+3)/2=[3, 3] in bases 2 and 3
	Pisot number 3+1=[2, 1,2] and (3-1)/2 = [0, 2,1] in base 2
	Pisot number (17+3)/2=[3,1,1,3] and (17-3)/4=[0,3,1,1] in base 2
	Quadratic irrationals with continued fraction [0, k,1] in base 2

