
SAT and Lattice Reduction for Integer Factorization
Yameen Ajani

ajaniy@uwindsor.ca

University of Windsor

Windsor, Ontario, Canada

Curtis Bright

cbright@uwindsor.ca

University of Windsor

Windsor, Ontario, Canada

ABSTRACT
The difficulty of factoring large integers into primes is the basis for

cryptosystems such as RSA. Due to the widespread popularity of

RSA, there have been many proposed attacks on the factorization

problem such as side-channel attacks where some bits of the prime

factors are available. When enough bits of the prime factors are

known, two methods that are effective at solving the factorization

problem are satisfiability (SAT) solvers and Coppersmith’s method.

The SAT approach reduces the factorization problem to a Boolean

satisfiability problem, while Coppersmith’s approach uses lattice

basis reduction. Both methods have their advantages, but they also

have their limitations: Coppersmith’s method does not apply when

the known bit positions are randomized, while SAT-based methods

can take advantage of known bits in arbitrary locations, but have no

knowledge of the algebraic structure exploited by Coppersmith’s

method. In this paper we describe a new hybrid SAT and computer

algebra approach to efficiently solve random leaked-bit factoriza-

tion problems. Specifically, Coppersmith’s method is invoked by a

SAT solver to determine whether a partial bit assignment can be

extended to a complete assignment. Our hybrid implementation

solves random leaked-bit factorization problems significantly faster

than either a pure SAT or pure computer algebra approach.

CCS CONCEPTS
• Security and privacy→ Cryptanalysis and other attacks.

KEYWORDS
Factoring, SAT, Lattice Basis Reduction, Cryptography, RSA, Cop-

persmith’s Method

ACM Reference Format:
Yameen Ajani and Curtis Bright. 2024. SAT and Lattice Reduction for In-

teger Factorization. In International Symposium on Symbolic and Algebraic
Computation (ISSAC ’24), July 16–19, 2024, Raleigh, NC, USA. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3666000.3669712

1 INTRODUCTION
Integer factorization is a well-studied and important problem in

the mathematics and computer science community, both because

of its theoretical elegance but also because its difficulty forms the

theoretical basis of popular cryptosystems such as RSA. Given an

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0696-7/24/07

https://doi.org/10.1145/3666000.3669712

integer 𝑁 , the factorization problem is to decompose 𝑁 as a product

𝑁 = 𝑝1 · · · 𝑝𝑘 where the 𝑝𝑖 are prime numbers. Up to ordering of

the prime factors 𝑝𝑖 (some of which may appear multiple times)

the factorization is unique—a fact that was essentially shown by

Euclid around 300 BC, though not stated in full completeness until

1801 by Gauss [12].

It is unknown if there exists an algorithm that can factor integers

in polynomial time in the bitlength of 𝑁 , at least on a classical com-

puter. The fastest general algorithm discovered to date is the number

field sieve [35] which heuristically runs in sub-exponential time.

In addition, Shor’s algorithm [51] is a quantum-based method that

can factor composites in polynomial time subject to the availability

of a fault-tolerant quantum computer. The difficulty of factoring

integers—especially semiprimes (numbers with exactly two prime

factors)—forms the basis many cryptosystems currently in wide

usage such as RSA.

The most successful methods proposed to solve the factorization

problem exploit the algebraic structure inherent in the problem. A

separate approach reduces factoring 𝑁 to a Boolean satisfiability

(SAT) problem that when solved reveals a nontrivial factor of 𝑁 .

In recent years, SAT solvers have achieved great success on many

varied kinds of search problems—there are numerous practical and

theoretical problems for which SAT solvers are the most effective

known way of solving the problem [6]. Some difficult mathemati-

cal problems—such as the resolution of the Boolean Pythagorean

triples problem [31] or the computation of the fifth Schur num-

ber [29]—have only been solved using SAT solvers. Unfortunately,

for the factoring problem specifically, the SAT approach is dra-

matically outperformed by algebraic algorithms [43]. This is not

surprising, since although SAT solvers are great general-purpose

search tools, they struggle with problems having a mathematical

structure unknown to the solver [11].

Recently, there have been SAT solvers augmented with a pro-

grammatic interface supporting the injection of logical facts as the

solver is running [10, 19, 22]. Such an approach has successfully

resolved mathematical problems that were beyond the reach of

SAT solvers or algebraic methods alone [9]. For example, progress

has been made on certain mathematical conjectures by extracting

mathematical facts from a computer algebra system (CAS) and

programmatically passing them to a SAT solver as the solver is run-

ning [58]. Augmenting a SAT solver in this way can dramatically

improve its effectiveness—intuitively, it is no longer restricted to

reasoning on the level of Boolean logic. On the other hand, such

a solver can also outperform pure algebraic methods, especially

on problems that benefit from efficient search routines. Intuitively,

this is because traditionally CASs have not exploited the effective

search-with-learning algorithms developed for SAT solvers [1].

https://orcid.org/0000-0002-0462-625X
https://doi.org/10.1145/3666000.3669712
https://doi.org/10.1145/3666000.3669712

ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Y. Ajani and C. Bright

In the past decade, the line between SAT solving and computer

algebra is starting to blur with the development of numerous hy-

brid methods exploiting SAT solvers in conjunction with computer

algebra [15]. For example, the “SC-square” project combines SAT

and computer algebra and has been applied to fields as diverse as

economics, dynamic geometry, and knot theory [17].

1.1 Our contributions
In this paper, we introduce a new programmatic SAT method that

dramatically improves the performance of SAT solvers on integer

factorization problems by exploiting algebraic structure of the prob-

lem that would otherwise be hidden from the solver. More precisely,

we employ Coppersmith’s method [14] for finding small roots of

polynomials modulo a number 𝑁 using lattice basis reduction.

Coppersmith’s method can factorize a semiprime 𝑁 in polyno-

mial time when either the top half or the bottom half of the bits

of one of its prime factors is known [16]. We exploit the algebraic

structure revealed by Coppersmith’s method in the programmatic

SAT solver MapleSAT [38] by querying a computer algebra sys-

tem supporting the necessary lattice basis reduction routines. The

information provided by Coppersmith’s method is translated into

logical facts that the solver uses to backtrack much earlier than it

otherwise would, dramatically improving the performance of the

solver.

It should be stressed that our approach is not directly competi-

tive with the best algebraic methods for the integer factorization

problem. However, due to the practical importance of the factoring

problem it has long been of interest to study weakenings of the fac-

torization problem where some information about the prime factors

are assumed to be known in advance. In practice, such information

may be leaked through side-channel attacks (see Section 2.2). In our

work, we consider random leaked-bit factorization problems—i.e.,

where random bits of the prime factors of the number to factor are

known, but the attacker has no control over which bits are leaked.
Although Coppersmith’s method requires only half of the bits of

the prime factors to be known (see Section 2.7), the method requires

the known bits to be consecutive—ideally either the high bits or

low bits of one of the prime factors. Coppersmith’s method can

be adapted to work with multiple chunks of unknown bits, but

it is exponential in the number of chunks [28]. Thus, in general

Coppersmith’s method does not directly apply when the known bit

positions are distributed uniformly at random.

Conversely, our method takes advantage of known bits from

arbitrary positions but also takes advantage of the algebraic rela-

tionships revealed by Coppersmith’s method. Our results, discussed

in Section 5, show that our augmented SAT solver can solve some

leaked-bit factorization problems exponentially faster than an off-

the-shelf SAT solver. It also outperforms a brute-force approach of

trial division by all factors consistent with the known bits, even if

Coppersmith’s method is used to speed up the brute-force guessing,

and can outperform the “branch and prune” [27] approach (see

Section 5.3). With enough known bits our method even outper-

forms the fastest general-purpose factoring algorithms such as the

number field sieve, though we admit this is not really a fair compar-

ison since the number field sieve seems unable to exploit known

bits and hence is at a disadvantage for the leaked-bit factorization

problem we consider in this paper. In summary, our method out-

performs algebraic methods, pure SAT methods, and a brute-force

+ Coppersmith method.

2 PRELIMINARIES
In this section we outline the preliminaries needed to understand

our approach for solving random leaked-bit factorization problems.

2.1 RSA cryptosystem
RSA is a public-key cryptography system used for signing and

encrypting messages invented by Rivest, Shamir and Adleman [47].

As a public-key cryptosystem, RSA uses a public key and private

key for message encryption and decryption, respectively. An RSA

user creates a set of two keys, public and private, which are specific

to that particular user. The public key is publicly available and can

be used by anyone who wants to send an encrypted message to

the user. The private key is secret (available only to the recipient)

and is used to decrypt the encrypted messages received by the user.

RSA public keys typically contain a number 𝑁 that is the product

of two large primes and the security of the RSA scheme relies on

the practical difficulty of factoring 𝑁 .

Some common terms used with respect to RSA are the primes

𝑝 and 𝑞, the RSA modulus 𝑁 = 𝑝 · 𝑞, the public exponent 𝑒 , and
the private exponent 𝑑 . The public exponent 𝑒 is often a fixed

size; commonly 𝑒 = 3 or 𝑒 = 65,537. The exponent 𝑒 must be

chosen to share no common factors with both 𝑝 − 1 and 𝑞 − 1. The

key parameters are chosen so that the functions 𝑥 ↦→ 𝑥𝑒 mod 𝑁

and 𝑥 ↦→ 𝑥𝑑 mod 𝑁 are inverses of each other. If an attacker can

factor 𝑁 , then they can easily compute the private exponent 𝑑 =

𝑒−1
mod (𝑝 − 1) (𝑞 − 1) via the extended Euclidean algorithm, and

in fact computing 𝑑 from (𝑒, 𝑁) is polynomial time equivalent to

factoring 𝑁 [41].

2.2 Side channel attacks
Side-channel attacks aim to exploit information unintentionally

leaked by a computer system or a device. For example, cold boot

attacks are a type of side-channel attack exploiting information

remaining in the dynamic random-access memory (DRAM) of a

computer system after an attacker cuts the power. Halderman et al.

demonstrate that this remanence effect makes it possible to recover

the contents of a computer’s memory with high accuracy after

power has been removed, especially when the DRAM is subjected

to low temperature [24]. Additionally, it was found that bits in

DRAM modules tend to decay to a predictable ground state. For

example, the bits holding a private key may be known to decay

to 0, not 1. In this case, after performing a cold-boot attack, any bits

that are still 1 are known to have originally been 1, while bits that

are 0 are unknown. In this way, the known bits of the private key

learned by the attacker may be randomly distributed throughout

the key. Incredibly, experiments show that disconnecting DRAM

and storing it in liquid nitrogen for an hour resulted in a decay of

only 0.13% of the bits [24].

There are many other avenues from which bits of the private

keys may be leaked, including cache timing attacks on modular ex-

ponentiation, and security vulnerabilities like Heartbleed, Spectre,

SAT and Lattice Reduction for Integer Factorization ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

and Meltdown [16]. Such vulnerabilities typically enable reading ar-

bitrary memory contents (rather than leaking random bits), though

in some cases the attacks may leak only incomplete information.

2.3 Boolean satisfiability
The Boolean satisfiability (SAT) problem is to determine whether a

formula in Boolean logic has an assignment to its variables un-

der which the statement becomes true. If such an assignment

exists, the problem is said to be satisfiable. Although SAT is an

NP-complete problem and thought to be impractical to solve in

the worst case, in practice there are “SAT solvers” that can find

satisfying assignments—or prove the nonexistence of satisfying

assignments—for many statements of practical interest.

Most SAT solvers require the input statement to bewritten in con-

junctive normal form (CNF), i.e., a conjunction of clauses—clauses
being formulae of the form 𝑙1 ∨ · · · ∨ 𝑙𝑘 where each 𝑙𝑖 is a Boolean

variable or negated Boolean variable. One of the most effective solv-

ing paradigms is conflict-driven clause learning [40] in which the

solver learns new clauses as it searches for a satisfying assignment.

2.4 SAT & computer algebra
Combining SAT with computer algebra systems (CASs) was pro-

posed in 2015 by [1] and [59]. Soon afterwards, the SC-Square
project [2] started with the aim of facilitating connections between

the communities of satisfiability checking and symbolic computa-

tion. Until that point, the two communities were largely separated,

with “satisfiability checking” largely focused on search algorithms

and “symbolic computation” largely focused on mathematical algo-

rithms.

Many successful applications have arisen as a result of connect-

ing the two fields [11, 17]. For example, proving the correctness of

multiplier circuits [33], finding new algorithms for matrix multi-

plication [30], making progress on conjectures in geometric group

theory [49], debugging of digital circuits [39], generating com-

binatorial objects up to isomorphism [34, 37], and searching for

collisions in hash functions such as step-reduced SHA-256 [4].

2.5 Lattices and the LLL algorithm
A lattice is a discrete and periodic set of points in Euclidean space. It

can be visualized as an infinite grid-like structure where each point

is an integer linear combination of a set of linearly independent

basis vectors (see Figure 1). Lattices have applications in many

fields of mathematics and computer science—number theory and

cryptography in particular. In particular, lattices are an essential

component of Coppersmith’s method that we rely on in our hybrid

SAT and computer algebra factorization approach.

The LLL algorithm is a lattice basis reduction technique used

to find short and nearly orthogonal basis vectors for a lattice [36].

Given a lattice defined by an 𝑛 × 𝑛 basis matrix, the LLL algorithm

runs in polynomial time in 𝑛 and finds another basis of the given

lattice where the first vector in the basis has length at most 2
(𝑛−1)/2

times that of the shortest nonzero vector of the lattice.

2.6 Coppersmith’s method
Coppersmith’s method finds small integer roots of a polynomial

modulo a given integer 𝑁 [14]. Coppersmith’s algorithm runs in

Figure 1: A two dimensional lattice generated by two vectors.

polynomial time—even when the factorization of 𝑁 is unknown—

and it is this property that makes it a useful subroutine in certain

relaxations of the factorization problem.

The method exploits a connection between short vectors and

polynomials with small coefficients. Given a modulus 𝑁 and a poly-

nomial 𝑓 with a small root 𝑥0 modulo 𝑁 , Coppersmith’s algorithm

constructs a lattice for which every vector in the lattice corresponds

to a polynomial with 𝑥0 as a root modulo 𝑁 .

If a lattice vector is short enough, it will correspond to a poly-

nomial 𝑔 for which |𝑔(𝑥0) | < 𝑁 . Because 𝑔(𝑥0) ≡ 0 (mod 𝑁) by
construction, this implies 𝑔(𝑥0) = 0 and thus 𝑥0 is a root of 𝑔 over
the integers—not just mod𝑁 . Since the integer roots of a polynomial

can be computed in polynomial time [56], this reduces the problem

of finding the root 𝑥0 (mod 𝑁) to the problem of finding a short

vector in Coppersmith’s lattice.

2.7 Factoring with Coppersmith’s method
We summarize Coppersmith’s method as used in the factorization

context. For more details, see [32, 42].

We assume that 𝑁 = 𝑝 · 𝑞 is a semiprime; for example, take

𝑁 = 16803551 = 2837 · 5923. Coppersmith’s method can factorize 𝑁

when either the top or bottom half of the bits of 𝑝 are known, i.e.,

at least 50% of 𝑝’s bits are known and these are either 𝑝’s most

significant bits (MSBs) or least significant bits (LSBs). In the former

case, 𝑝 can be written as 𝑝 = 𝑝 + 𝑝 where 𝑝 is an integer encoding

the known high bits as 𝑝 , and 𝑝 is an integer encoding the unknown

low bits of 𝑝 . As an example (using decimal digits instead of binary

digits for simplicity), if 𝑝 = 2837 and 𝑝 = 2830, then 𝑝 = 7.

As described in Section 2.6, Coppersmith’s method finds small

roots 𝑥0 of a polynomial 𝑓 (𝑥) modulo some integer. In the factoring

application, the modulus used is 𝑝 . Note that 𝑝 is unknown, but we

do know 𝑁 (a multiple of 𝑝) which is enough—in this case Copper-

smith’s method returns the small integer 𝑥0 for which 𝑓 (𝑥0) ≡ 0

(mod 𝑝), and therefore 𝑓 (𝑥0) mod 𝑁 is divisible by 𝑝 , so 𝑝 can

be extracted by taking a greatest common divisor between 𝑓 (𝑥0)
and 𝑁 . We take 𝑓 (𝑥) = 𝑝 + 𝑥 which has the small root 𝑝 modulo 𝑝

since 𝑓 (𝑝) = 𝑝 + 𝑝 ≡ 0 (mod 𝑝).
Now consider the polynomials 𝑓 (𝑥), 𝑥 𝑓 (𝑥), 𝑥2 𝑓 (𝑥), and the

constant polynomial 𝑁 (note that indeed 𝑝 is a root of each of these

polynomials modulo 𝑝). Lattice basis reduction will be applied to

the lattice basis generated by {𝑁, 𝑓 (𝑥), 𝑥 𝑓 (𝑥), 𝑥2 𝑓 (𝑥)} where a

polynomial 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3
is represented by the lattice

vector (𝑎0, 10𝑎1, 100𝑎2, 1000𝑎3) or in general (𝑎0, 𝑋𝑎1, 𝑋
2𝑎2, 𝑋

3𝑎3)
where 𝑋 is a bound on the size of 𝑝 . Once a short vector of the

ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Y. Ajani and C. Bright

LLL Reduction

Convert first row to
polynomial

Solve

Figure 2: Example to demonstrate the working of Copper-
smith’s method in the case where 𝑁 = 16803551 and 𝑓 (𝑥) =
2830+𝑥 . After applying lattice basis reduction, the short poly-
nomial 𝑥3+8𝑥2−120𝑥 +105 is discovered which has the integer
root 𝑥0 = 7. Finally, 𝑓 (𝑥0) = 2837 is a factor of 𝑁 .

lattice is uncovered, integer root detection can reveal the small root

𝑥0 = 𝑝 < 10 from which 𝑝 = 𝑝 + 𝑥0 is uncovered. It is possible that

the polynomial associated with the short vector has other integer

roots, and in that case to reveal 𝑝 one should check for each root 𝑥0

if 𝑝 + 𝑥0 divides 𝑁 . See Figure 2 for a diagrammatic working of

Coppersmith’s method.

2.7.1 Factoring with LSBs. Coppersmith’s method also works if

the lower half of the bits of one of the primes is known. If 𝑝 is the

integer corresponding to the𝑚 least significant bits of 𝑝 , then we

want to find a small root 𝑝 (mod 𝑝) of 2
𝑚 · 𝑥 + 𝑝 . In contrast with

the previous example, the factor 2
𝑚

has been “removed” from the

high bits in order to reduce the size of 𝑝 . Supposing that 𝑁 has 2𝑘

bits and 𝑝 has 𝑘 bits, then 𝑝 will be an integer at most 2
𝑘−𝑚

.

Coppersmith’s method requires the polynomial 𝑓 to be monic

(have a leading coefficient of 1), so to enforce this we multiply the

polynomial by 2
−𝑚

mod 𝑁 (which exists as 𝑁 can be assumed to

be odd). Thus, we set

𝑓 (𝑥) = 𝑥 + (2−𝑚𝑝 mod 𝑁) (1)

and can apply Coppersmith’s method on this 𝑓 to find the small

root 𝑝 of 𝑓 (𝑥) modulo 𝑝 . Similar to above, Coppersmith uses lattice

reduction to find a polynomial with 𝑝 as an integer root; if this
polynomial has multiple integer roots, then for each root 𝑥0 one

should check if gcd(𝑓 (𝑥0), 𝑁) reveals 𝑝 (or more simply, if 2
𝑚𝑥0 +𝑝

divides 𝑁).

3 PREVIOUS WORK
The integer factorization problem has long been proposed as a

way of generating hard SAT instances; see for example Cook and

Mitchell [13]. As noted by Hamadi and Wintersteiger [25], the

factoring problem gives particularly intriguing instances for SAT,

as the factoring problem is not expected to be NP-hard (the deci-

sion version of the problem being in both NP and co-NP [45]) and

is therefore a candidate for an “NP-intermediate” problem lying

between P and NP-hard—a class about which little is known.

Even though factoring is unlikely to be NP-hard, the SAT in-

stances produced—at least using straightforward multiplication

circuits—seem difficult, a fact confirmed by a number of indepen-

dent computational experiments [5, 18, 20, 50]. In 2022, Mosca and

Verschoor [43] reported on the state-of-the-art for integer factoriza-

tion via SAT solving and concluded that even a quantum SAT solver

would likely be slower than the best classical algebraic methods.

Heninger and Shacham [27] investigate reconstructing RSA pri-

vate keys with small public exponent from partial knowledge of

the random bits of the private key. They give a “branch and prune”

algorithm that with high probability efficiently breaks an RSA key

given a random 27% of bits of its private key. Here the private key

consists of both prime factors 𝑝 and 𝑞, the decryption exponent 𝑑 ,

as well as the two integers 𝑑 mod (𝑝 − 1) and 𝑑 mod (𝑞 − 1). The
analysis is heuristic, but they provide experimental evidence that

their approach is effective in practice. Their approach makes signif-

icant use of the bits of 𝑑 , 𝑑 mod (𝑝 − 1), and 𝑑 mod (𝑞 − 1) in order

to limit the amount of branching. If this extra information is not

available, the approach still succeeds with high probability if 57%

of the bits of 𝑝 and 𝑞 are known, or if 42% of the bits of 𝑝 , 𝑞, and 𝑑

are known.

In 2013, Patsakis [44] utilized SAT solvers and the encoder Tough-

Sat [57] to reconstruct RSA private keys with some partial key

exposure and having a fixed public exponent of 𝑒 = 3. He assumes

the exposure was either on the bits of 𝑝 and 𝑞 alone, or on the bits

of 𝑝 , 𝑞, and 𝑑 . With this information, he created SAT instances that

when solved would determine the factors 𝑝 and 𝑞.

4 SAT + COPPERSMITH APPROACH
In this section we describe our hybrid SAT + computer algebra

system (CAS) approach, first beginning with a basic SAT encoding

in Section 4.1, a description of the programmatic interface with

Coppersmith’s method in Section 4.2, and finally in Section 4.3 we

describe an encoding for factoring low exponent RSA moduli that

can exploit leaked bits of the decryption exponent 𝑑 .

4.1 SAT encoding
Converting an instance of the factorization problem to a SAT in-

stance is straightforward, asmultiplication circuits can be converted

to SAT formulae by operating directly on the bit-representation

of the integers. For example, say we are forming the instance of

encoding 𝑁 = 𝑝 · 𝑞 where 𝑝 and 𝑞 are known to be two integers of

bitlength 𝑘 . We represent 𝑝 and 𝑞 as bitvectors [𝑝0, . . . , 𝑝𝑘−1
] and

[𝑞0, . . . , 𝑞𝑘−1
] and generate a multiplier circuit MULT computing

the bits of the the product of 𝑝 and 𝑞 from 𝑝0, . . . , 𝑝𝑘−1
and 𝑞0, . . . ,

𝑞𝑘−1
. The MULT circuit is constructed from chaining together full

and half adder circuits, and then the entire circuit is converted into

CNF by using the Tseytin transformation [54] which introduces

new Boolean variables representing the output of each gate in the

MULT circuit. For example, suppose 𝑥 and 𝑦 are the inputs to a half

adder. The Tseytin transformation introduces a new variable 𝑠 (de-

noting the F2-sum of 𝑥 and 𝑦) via 𝑠 ↔ (𝑥 ⊕𝑦), and a new variable 𝑐

(denoting the carry of 𝑥 and 𝑦) via 𝑐 ↔ (𝑥 ∧ 𝑦). The output bits of
the MULT circuit are set to match the 2𝑘 bits of 𝑁 using 2𝑘 unit

clauses (or in some cases 𝑁 has 2𝑘 − 1 bits). Similarly, any known

bits of 𝑝 and 𝑞 are also added to the SAT instance as unit clauses

(clauses of length 1). The solver uses these unit clauses to simplify

the SAT instance and improve the efficiency of the solving process.

Some simple optimizations are also encoded. For example, 𝑝

and 𝑞 must be odd or the problem is trivial, so we fix the low bits

SAT and Lattice Reduction for Integer Factorization ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

𝑝0 and 𝑞0 to true with unit clauses. Similarly, since both 𝑝 and 𝑞

are assumed to be of bitlength 𝑘 , we fix also both high bits 𝑝𝑘−1

and 𝑞𝑘−1
to true. Our instances were generated using the encoder

of Purdom and Sabry [46], which represents 𝑝 and 𝑞 using 2𝑘 − 1

and 𝑘 variables respectively. However, we assign the high 𝑘 − 1 bits

of 𝑝 to false since we only encoded factorization problems with 𝑝

and 𝑞 of equal bitlength.

4.2 Coppersmith’s method in programmatic
SAT

A “programmatic” SAT solver calls a custom piece of code whenever

the solver has a partial assignment that cannot be simplified any

further by unit propagation [22]. In our case, the intuition behind

calling Coppersmith’s method is that we can use it to test when

a partial assignment can be extended to a complete assignment

without requiring the SAT solver to actually search for the extension

itself. In our experiments, the most effective strategy was to call

Coppersmith’s method from within the SAT solver whenever the

solver’s current partial assignment has assigned values to enough

of the low bits of one of the prime factors (see Section 5.3 for why

using the low bits is advantageous). Coppersmith’s method can be

used when the lowest 50%+𝜖 bits of 𝑝 are known, but as 𝜖 decreases

the required lattice dimension increases, and this slows down lattice

reduction. In practice, we use Coppersmith’s method when at least

60% of the lowest bits of 𝑝 are known in order to limit the overhead

from the lattice reduction. This compromise worked well for the

size of 𝑁 that we used in our experiments, though it is likely for all

𝜖 > 0 there would be some sufficiently large 𝑁 for which it would

be worth it to call Coppersmith’s method using 50% + 𝜖 bits of 𝑝 .

Following [16, 42], a lattice of dimension 5 is sufficient to re-

cover the unknown bits when more than ≈60% of the lowest bits

are known of one of the factors. The polynomials used to form the

lattice are 𝑁 2
, 𝑁 𝑓 (𝑥), 𝑓 (𝑥)2

, 𝑥 𝑓 (𝑥)2
, and 𝑥2 𝑓 (𝑥)2

, where 𝑓 is de-

fined as in (1) and taking𝑋 B 𝑁 1/5/4. The number of unknown bits

cannot exceed log
2
𝑋 , so if 𝑝 and 𝑞 have 𝑘 bits then one needs𝑚, the

number of known bits, to be larger than𝑘−log
2
𝑋 ≈ 𝑘−2𝑘/5 = 3𝑘/5

or about 60% of the bitlength of 𝑝 . Note that if 𝑝 denotes the ⌊log
2
𝑋 ⌋

high bits of 𝑝 , then 𝑝 < 𝑋 and by construction of 𝑓 we have 𝑓 (𝑝) ≡ 0

(mod 𝑝). Once the lattice is formed, we perform LLL lattice reduc-

tion and finally find the integer roots (if any) of the polynomial 𝑓
red

associated to the first row of the reduced basis. If the𝑚 low bits

of 𝑝 used to construct 𝑓 in (1) were correct, then the integer roots

of 𝑓
red

include the mod-𝑝 roots of 𝑓 of absolute value at most 𝑋

(see [21, ch. 19] for details). In other words, 𝑝 is among the integer

roots of 𝑓
red

if 𝑝 was set correctly in 𝑓 .

For each small integer root 𝑥0 of 𝑓
red

returned by Coppersmith’s

method, a validation step is executed. If gcd(𝑓 (𝑥0), 𝑁) is nontrivial,
then the procedure concludes successfully with a factorization of 𝑁 .

However, in cases where no roots provide a factor of 𝑁 , a “blocking

clause” is added to the SAT solver’s learned clause database. The

blocking clause encodes that the combination of the low bits passed

to Coppersmith’s method was erroneous by stating that at least one

of the bits must change from its current assigned value. For example,

suppose Coppersmith’s method is applied to an 8-bit prime with

the assignment 𝑝 = ???10011 and fails. Then the conflict clause will
be ¬𝑝4 ∨𝑝3 ∨𝑝2 ∨¬𝑝1 ∨¬𝑝0 where the bits of 𝑝 (from low to high)

are represented by the variables 𝑝0, . . . , 𝑝7. The solver incorporates

this knowledge as a learnt clause and immediately backtracks to

explore alternative bit combinations. Figure 3 visually depicts how

the technique works.

4.3 Low public exponent RSA encoding
We also considered a special case of the factorization problem,

namely, the problem of factoring an RSA modulus 𝑁 with a public

exponent of 𝑒 = 3 (implying that both 𝑝 − 1 and 𝑞 − 1 are not

divisible by 3). In such a case it is possible to derive [7] the equation

3𝑑 + 2(𝑝 + 𝑞) = 2𝑁 + 3 (2)

where 𝑑 is the decryption exponent. Moreover, we can approximate

𝑑 by
˜𝑑 = ⌊(2𝑁 +3)/3⌋ because 2(𝑝 +𝑞) is relatively small compared

to 𝑁 . Indeed, if 𝑝 ≥ 𝑞 and both factors have 𝑘 bits then 𝑞 ≤
√
𝑁

and 𝑝 < 2

√
𝑁 , so 𝑝 + 𝑞 < 3

√
𝑁 . As pointed out by Boneh et al. [8],

one can derive

0 ≤ ˜𝑑 − 𝑑 < 3

√
𝑁, (3)

and they remark

“It follows that ˜𝑑 matches 𝑑 on the 𝑛/2 most significant bits of 𝑑 .”

Similarly, Heninger and Shacham [27] remark that
˜𝑑 “agrees with 𝑑

on their ⌊𝑛/2⌋−2most significant bits”.1 Surprisingly, both claims are

false as adding even a small difference
˜𝑑−𝑑 < 3

√
𝑁 to 𝑑 can in some

cases cause a cascade of carries changing bits well into in the upper-

half of 𝑑 . For example, when 𝑁 = 827 · 953, one has 𝑑 = 2
19 −53 and

˜𝑑 = 2
19 + 1133 which share no high bits (as bitstrings of length 20).

We noticed this oversight when we attempted to set the high bits

of 𝑑 to match the high bits of
˜𝑑 (computed from ⌊2𝑁 /3 + 1⌋) and in

some cases the resulting instances were shown to be unsatisfiable

by the SAT solver. We resolved this by using the following lemma,

which also gives a slightly stronger version of (3), replacing the

constant 3 with

√
2.

Lemma 4.1. Let 𝑁 = 𝑝𝑞 be an 𝑛-bit RSA modulus where 𝑝 and 𝑞

have the same bitlength, suppose 𝑑 is the decryption exponent for
encryption exponent 𝑒 = 3, and set ˜𝑑 = ⌊2𝑁 /3 + 1⌋. Then

(a) 0 ≤ ˜𝑑 − 𝑑 <
√

2𝑁 .
(b) Write ˜𝑑 and ˜𝑑 − ⌊

√
2𝑁 ⌋ as bitstrings of length 𝑛, and suppose

the upper 𝑙 bits of the bitstrings match. Then the upper 𝑙 bits
of 𝑑’s bitstring of length 𝑛 match those of ˜𝑑 .

Proof. Without loss of generality suppose 𝑞 ≤ 𝑝 < 2𝑞, so that

𝑝𝑞 < 2𝑞2
(i.e., 𝑞 >

√︁
𝑁 /2) and 𝑞2 ≤ 𝑝𝑞 (i.e., 𝑞 ≤

√
𝑁). Then

𝑝 + 𝑞 = 𝑁 /𝑞 + 𝑞 and 𝐹 (𝑞) B 𝑁 /𝑞 + 𝑞 is monotonically decreasing

over 𝑞 ∈
(√︁

𝑁 /2,
√
𝑁
]
, so 𝑝 + 𝑞 < 𝐹

(√︁
𝑁 /2

)
= 3

√
2𝑁 /2. Using (2)

we have

0 ≤ ˜𝑑 − 𝑑 ≤ 2(𝑝 + 𝑞)/3 < 2𝐹
(√︁

𝑁 /2

)
/3 =

√
2𝑁

which is the inequality in (a).

The inequality in (a) is equivalent to 𝑑 ∈
(

˜𝑑 −
√

2𝑁, ˜𝑑
]
. By as-

sumption, the bitstrings of the lowest and highest integers in this

range have 𝑛 bits and share the same 𝑙 high bits. The only way this

can happen is if all bitstrings of integers in this range all share the

same 𝑙 high bits, including 𝑑 . Otherwise, if we want the high bit (i.e.,

the bit of index 𝑛 − 1) to match in the lowest and highest integers

1
In both of these quotes 𝑛 denotes the bitlength of 𝑁 .

ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Y. Ajani and C. Bright

SAT Solver Coppersmith

1?1?0?1100010111 Lattice formation

Lattice reduction

Get polynomial from the first
row of the reduced lattice

Find integer root(s)

p̌ = 0000001100010111

Learn a blocking clause encoding that p̌ is
incorrect

Recover the high bits of p (thereby also
revealing q = N/p) and terminate the solver

Coppersmith failure

Coppersmith success

Resume solving

Figure 3: A diagram outlining our SAT+CASmethod for the factorization problem. By default, Coppersmith’s method is invoked
whenever the lowest ≈60% of the bits of 𝑝 are assigned. If the low bits of 𝑝 were set correctly, then Coppersmith’s method reveals
the high bits of 𝑝 and the solver terminates. If the low bits were set incorrectly, then Coppersmith’s method fails and proves
that this configuration of low bits cannot be extended to a solution. In this case, a “blocking clause” is learned telling the solver
to backtrack and try a new bit assignment.

but not with some integer in the range we would need the range to

contain at least 2
𝑛
integers which it does not. □

Equation (2) can be encoded in SAT using a binary adder on the

terms of the left-hand side, reusing the variables for the bits of 𝑝

and 𝑞 and introducing new variables for the bits of 𝑑 . The output

bits of the binary adder are then set to the binary representation of

2𝑁 + 3. The upper bits of 𝑑 are fixed to those of
˜𝑑 using unit clauses

(with the number of bits fixed determined by Lemma 4.1). Any bits

of 𝑑 that are leaked can also be added as unit clauses.

5 RESULTS
To create our SAT instances, we employ the CNF Generator for Fac-
toring Problems by Purdom and Sabry [46] using the “𝑁 -bit” adder

type and the “Karatsuba”multiplier type, as we found those to be the

most effective. These instances undergo subsequent enhancements

through the integration of supplementary clauses, as detailed in Sec-

tion 4.1. Our SAT solver that calls Coppersmith and the scripts we

used to perform our experiments are available on a public GitHub

repository at https://github.com/yameenajani/SAT-Factoring.

5.1 Solving method
The instances were solved using a programmatic version of Maple-

SAT [38] available as a part of the MathCheck project [10]. The

version of Coppersmith’s algorithm used is a custom implementa-

tion in C++. The GMP library [23] was used to form the lattice and

it was reduced using the fplll library [52]. The formation of the poly-

nomial from the reduced basis and its factorization is done using

FLINT [26]. All experimentation took place on Compute Canada’s

Cedar cluster with each instance solved on a single Intel E5-2683

Broadwell CPU core running at 2.1 GHz and allocated 4 GiB of

memory.

Each experimental iteration commences with the generation of

an appropriately sized modulus𝑁 using a SageMath [53] script. The

modulus is then passed as input to the CNFGenerator, which in turn

generates the requisite CNF and delivers it in the DIMACS SAT file

format. To this file, we append the unit clauses that specify known

bits (selected uniformly at random) of 𝑝 and 𝑞. The percentage of

known bits is fixed and given as an argument to the script. There

is also an option to encode the high bits of 𝑑 assuming 𝑁 is a low

public exponent modulus (i.e., its prime factors are not congruent

to 1 mod 3) using the encoding described in Section 4.3.

5.2 Summary of results
We tested our method on random semiprime factorization problems

where both 𝑝 and 𝑞 are not congruent to 1 mod 3, both with and

without the “low public exponent” encoding described in Section 4.3.

In each problem, we leaked a selection of the bits of 𝑝 and 𝑞 chosen

uniformly at random. For the low public exponent RSA problems,

we leaked a selection of the bits of 𝑑 chosen uniformly at random in

addition to the high bits of𝑑 that could be analytically derived using

Lemma 4.1. We generated 15 random keys for varying bitsizes of 𝑁

ranging from 16 bits to 1728 bits, and for each key we randomly

leaked a percentage of the bits of the private keys ranging from

90% to 25% (in increments of 5%). We ran the solver on the SAT

factorization problem produced from each key and plotted the

resulting median times across several different types of problems

in Figure 4.

The first set of experiments fixes the number of known bits of 𝑝

and 𝑞, and increases the bitlength of 𝑁 until the instances become

too hard to solve. As indicated in Figure 4(a), a 768-bit 𝑁 with 50%

leaked bits takes a pure SAT approach a median of 90,521 seconds

to factor, while the SAT+CAS approach factors it in a median of 789

seconds. In these instances each call to Coppersmith took about

0.005 seconds and Coppersmith was called a median of 490 times

and used a median of 0.5% of the total running time. The instances

containing leaked bits of 𝑑 were significantly easier to solve, so we

repeated the same experiments but only leaked 25% of the bits of

𝑝 , 𝑞, and 𝑑 . The results are indicated in Figure 4(b). For example,

a 192-bit 𝑁 with 25% leaked bits takes a pure SAT approach a me-

dian of 239,992 seconds to factor 𝑁 , while the SAT+CAS approach

https://github.com/yameenajani/SAT-Factoring

SAT and Lattice Reduction for Integer Factorization ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

128 256 384 512 640 768 896 1024 1152 1280 1408 1536
Bitlength of N

21

24

27

210

213

216

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying Bitlength of N
50% Known Bits of p and q

SAT+CAS
SAT

(a)

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Bitlength of N

2 5

2 1

23

27

211

215

219

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - Varying Bitlength of N
25% Known Bits of p, q, and d

SAT+CAS
SAT

(b)

90 85 80 75 70 65 60 55 50 45 40
% Known Bits of p and q

2 1

21

23

25

27

29

211

M
ed

ia
n

Ti
m

e
(S

ec
on

ds
) -

 L
og

 sc
al

e

SAT+CAS vs SAT - 256-bit N
Varying % Known Bits of p and q

SAT+CAS
SAT

(c)

90 85 80 75 70 65 60 55 50 45 40 35 30
% Known Bits of p, q, and d

2 2

20

22

24

26

28

210

212
M

ed
ia

n
Ti

m
e

(S
ec

on
ds

) -
 L

og
 sc

al
e

SAT+CAS vs SAT - 256-bit N
Varying % Known Bits of p, q, and d

SAT+CAS
SAT

(d)

Figure 4: The upper plots compare the median running time across different sizes of 𝑁 . The left plots summarizes instances
with random bits of 𝑝 and 𝑞 leaked, while the right plots also leak bits of the decryption exponent 𝑑 . The lower plots compare
the median running time for a 256-bit 𝑁 across a varying percentage of known bits. All instances were run with a timeout of 3
days, so the lack of a point on the graph indicates the median time was over 3 days. All plots are given on a logarithmic scale.

factors 𝑁 in a median of 130 seconds. In these instances each call

to Coppersmith took about 0.002 seconds and Coppersmith was

called a median of 6466 times and used a median of 13.5% of the

total running time.

The results shown in Figure 4(c) fix the size of 𝑁 to 256 bits

and vary the percentage of known bits of 𝑝 and 𝑞. When a large

number of bits are known (at least 50%) both the SAT and SAT+CAS

approaches perform relatively well. In fact, when the percentage of

known bits is higher than 60%, the simpler pure SAT approach can

even outperform the more involved SAT+CAS approach. However,

the SAT+CAS approach clearly scales better. For example, with

45% leaked bits, the pure SAT solver factors 𝑁 in a median of

1452 seconds, while the SAT+CAS solver factors 𝑁 in a median of

40 seconds. With 40% leaked bits, the SAT+CAS solver factors 𝑁

in a median of 2042 seconds, while the median time of the pure

SAT approach does not complete after 259,200 seconds (the solver

timeout was set to 3 days). The experiments shown in Figure 4(d)

are similar, but random bits of 𝑑 are also provided to solver. In

this case, for all percentages down to 30% the median instance was

solved within the timeout for both the SAT and SAT+CAS solvers.

However, with 30% known bits the median SAT time was 5778

seconds, while the median SAT+CAS time was 167 seconds. For

256-bit𝑁 , each call to Coppersmith took about 0.002 seconds.When

45% of the bits of 𝑝 and 𝑞 were known, Coppersmith was called a

median of 793 times, and when 30% of the bits of 𝑝 , 𝑞, and 𝑑 were

known, Coppersmith was called a median of 1165 times.

ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Y. Ajani and C. Bright

5.3 Comparison with other approaches
Our results show that the SAT+CAS method outperforms not only

a SAT-only approach, but also a brute-force approach, even if it

uses Coppersmith’s method. For example, with 50% leaked bits of

𝑝 and 𝑞, a 512-bit 𝑁 can be factored by the SAT+CAS solver in a

median of 237 seconds, but a Coppersmith + brute-force approach

would need to determine values for around 64 unknown bits in

the lower half of 𝑝 before Coppersmith could be applied—much

more expensive given the speed of Coppersmith. Additionally, the

SAT+CAS solver will also be much more efficient than the number

field sieve on the specific problem of factoring a 512-bit 𝑁 with 50%

leaked bits, given that factoring a 512-bit 𝑁 with the number field

sieve takes around 2770 CPU hours on Amazon’s Elastic Compute

Cloud (EC2) service [55].

We also tried comparing our implementation with the “branch

and prune” implementation of Heninger and Shacham [27]. Their

approach starts from the low bits of the private key and moves

towards the high bits incrementally, enumerating all possibilities

for the lowest 𝑖 bits by branching on (and pruning branches when

possible) all possibilities for the lowest 𝑖 − 1 bits. Their approach

is very effective when the number of branches does not grow too

large, which in practice happens if enough random bits are known

of the private key. For example, with 45% randomly leaked bits

of 𝑝 and 𝑞 for a 256-bit 𝑁 , their implementation required at most

640,000 branches across 15 random trials and in each case 𝑁 was

factored in under 5 seconds.

When the percentage of known bits dropped too low, their imple-

mentation suffered from an exponential blowup in the number of

branches resulting in excessive memory usage. For example, with

25% leaked bits of 𝑝 , 𝑞, and 𝑑 and a 192-bit 𝑁 , across 31 random tri-

als their implementation required a median of 137 million branches

and 46.2 GiB of memory, taking a median of 491 seconds to factor 𝑁

on an Intel i7 CPU running at 2.8 GHz. A SAT+CAS solver run-

ning on the same machine and solving 31 instances with the same

proportion of leaked bits used a median of 69 seconds and 87 MiB

of memory. On such instances, the median number of branches

for the lowest 60 bits of 𝑝 , 𝑞, and 𝑑 was 213,161 using Heninger

and Shacham’s code—indicating that the SAT solver, which called

Coppersmith after the lowest 60 bits of 𝑝 are set and used a median

of 15,976 Coppersmith calls, reduces the number of possibilities for

the lowest 60 bits over a pure “branch and prune” approach.

An examination of the low bits of 𝑝 and 𝑞 in the partial as-

signments explored by the SAT solver show that the solver only

explores partial assignments satisfying Heninger and Shacham’s

pruning constraints. In other words, the solver does not waste time

exploring branches that Heninger and Shacham prune—essentially,

the SAT solver incorporates the pruning conditions without being

explicitly told them. This is likely why calling Coppersmith using

the low bits is much more effective than using the high bits, as

the solver avoids exploring many possibilities for the low bits. Al-

though there has also been work done on pruning constraints using

the high bits [48], these constraints are more involved and require

mathematical context that the solver likely cannot derive from the

SAT encoding alone. However, in the future a programmatic SAT

solver could potentially incorporate pruning on the high bits.

6 CONCLUSION
In this work we demonstrate the performance of SAT solvers on

integer factorization problems can be dramatically improved by

calling a computer algebra system (CAS) during solving in order

to reveal algebraic structure unknown to the solver. Specifically,

our programmatic SAT+CAS solver calls Coppersmith’s method

when a significant portion of the bits of the prime factors have

been assigned. Coppersmith’s method is then able to efficiently

(a) uncover the remaining unknown bits; or (b) tell the solver that

the current bit assignment is incorrect and have the solver back-

track immediately. The latter is the typical case and our results

demonstrate that even with the overhead of querying a CAS the

ability to backtrack early causes the solver to factor integers sig-

nificantly more efficiently, with a speedup factor that in practice is

exponential in the bitlength of 𝑁—see Figures 4(a) and 4(b).

Although there has been much recent work on adding algebraic

reasoning into a SAT solver, to our knowledge the algebraic infor-

mation used in our work has previously only been exploited by

computer algebra systems and not SAT solvers.

Author note. A preliminary version of this work appeared as

an extended abstract in the 2023 SC-Square workshop [3]. Regret-

tably, the initial timings reported in the extended abstract are not

trustworthy and should be disregarded. We regret the error.

ACKNOWLEDGMENTS
We thank the anonymous reviewers whose detailed comments

improved this paper.

REFERENCES
[1] Erika Ábrahám. 2015. Building Bridges between Symbolic Computation and Sat-

isfiability Checking. In Proceedings of the 2015 ACM on International Symposium
on Symbolic and Algebraic Computation, ISSAC 2015, Bath, United Kingdom, July
6–9, 2015, Kazuhiro Yokoyama, Steve Linton, and Daniel Robertz (Eds.). ACM,

1–6. https://doi.org/10.1145/2755996.2756636

[2] E. Ábrahám, J. Abbott, B. Becker, A. M. Bigatti, M. Brain, B. Buchberger, A.

Cimatti, J. H. Davenport, M. England, P. Fontaine, S. Forrest, A. Griggio, D.

Kroening, W. M. Seiler, and T. Sturm. 2017. Satisfiability checking and symbolic

computation. ACM Communications in Computer Algebra 50, 4 (Feb. 2017), 145–
147. https://doi.org/10.1145/3055282.3055285

[3] Yameen Ajani and Curtis Bright. 2023. A Hybrid SAT and Lattice Reduction

Approach for Integer Factorization. In Proceedings of the 8th SC-Square Workshop
co-located with the 48th International Symposium on Symbolic and Algebraic Com-
putation, SC-Square@ISSAC 2023, Tromsø, Norway, July 28, 2023 (CEUR Workshop
Proceedings, Vol. 3455), Erika Ábrahám and Thomas Sturm (Eds.). CEUR-WS.org,

39–43. https://ceur-ws.org/Vol-3455/short1.pdf

[4] Nahiyan Alamgir, Saeed Nejati, and Curtis Bright. 2024. SHA-256 Collision Attack

with Programmatic SAT. In Proceedings of the 9th SC-Square Workshop, Daniela
Kaufmann and Chris Brown (Eds.). To appear.

[5] Jonatan Asketorp. 2014. Attacking RSA moduli with SAT solvers. Bachelors’s

Thesis, KTH Royal Institute of Technology.

[6] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). 2021.

Handbook of Satisfiability. IOS Press. https://doi.org/10.3233/faia336

[7] Dan Boneh. 1999. Twenty years of attacks on the RSA cryptosystem. Notices of
the AMS 46, 2 (1999), 203–213.

[8] Dan Boneh, Glenn Durfee, and Yair Frankel. 1998. An Attack on RSA Given a

Small Fraction of the Private Key Bits. InAdvances in Cryptology — ASIACRYPT’98.
Springer Berlin Heidelberg, 25–34. https://doi.org/10.1007/3-540-49649-1_3

[9] Curtis Bright, Dragomir Ž. Ðoković, Ilias Kotsireas, and Vijay Ganesh. 2019. A

SAT+CAS Approach to Finding Good Matrices: New Examples and Counterex-

amples. Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (July
2019), 1435–1442. https://doi.org/10.1609/aaai.v33i01.33011435

[10] Curtis Bright, Vijay Ganesh, Albert Heinle, Ilias Kotsireas, Saeed Nejati, and

Krzysztof Czarnecki. 2016. MathCheck2: A SAT+CAS Verifier for Combinatorial

Conjectures. In Computer Algebra in Scientific Computing. Springer International
Publishing, 117–133. https://doi.org/10.1007/978-3-319-45641-6_9

https://doi.org/10.1145/2755996.2756636
https://doi.org/10.1145/3055282.3055285
https://ceur-ws.org/Vol-3455/short1.pdf
https://doi.org/10.3233/faia336
https://doi.org/10.1007/3-540-49649-1_3
https://doi.org/10.1609/aaai.v33i01.33011435
https://doi.org/10.1007/978-3-319-45641-6_9

SAT and Lattice Reduction for Integer Factorization ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

[11] Curtis Bright, Ilias Kotsireas, and Vijay Ganesh. 2022. When satisfiability solving

meets symbolic computation. Commun. ACM 65, 7 (June 2022), 64–72. https:

//doi.org/10.1145/3500921

[12] Mary Joan Collison. 1980. The Unique Factorization Theorem: From Euclid to

Gauss. Mathematics Magazine 53, 2 (March 1980), 96–100. https://doi.org/10.

1080/0025570x.1980.11976835

[13] Stephen Cook andDavidMitchell. 1997. Finding hard instances of the satisfiability

problem: A survey. In DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, 1–17. https://doi.org/10.1090/

dimacs/035/01

[14] Don Coppersmith. 1997. Small Solutions to Polynomial Equations, and Low

Exponent RSA Vulnerabilities. J. Cryptology 10 (1997), 233–260. https://doi.org/

10.1007/s001459900030

[15] James H. Davenport, Matthew England, Alberto Griggio, Thomas Sturm, and

Cesare Tinelli. 2020. Symbolic computation and satisfiability checking. Journal
of Symbolic Computation 100 (Sept. 2020), 1–10. https://doi.org/10.1016/j.jsc.

2019.07.017

[16] Gabrielle DeMicheli andNadiaHeninger. 2024. Survey: Recovering cryptographic

keys from partial information, by example. IACR Communications in Cryptology
1, 1 (April 2024), 48 pages. https://doi.org/10.62056/ahjbksdja

[17] Matthew England. 2022. SC-Square: Overview to 2021. In Proceedings of the Sixth
International Workshop on Satisfiability Checking and Symbolic Computation,
Curtis Bright and James Davenport (Eds.). CEUR-WS.org, 1–6. https://ceur-

ws.org/Vol-3273/invited1.pdf

[18] Jan Eriksson and Jonas Höglund. 2014. A comparison of reductions from FACT

to CNF-SAT. Bachelors’s Thesis, KTH Royal Institute of Technology.

[19] Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan

Szeider, and Armin Biere. 2023. IPASIR-UP: User Propagators for CDCL. In

26th International Conference on Theory and Applications of Satisfiability Testing.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:13. https://doi.org/10.

4230/LIPICS.SAT.2023.8

[20] Erik Forsblom and Daniel Lundén. 2015. Factoring integers with parallel SAT

solvers. Bachelors’s Thesis, KTH Royal Institute of Technology.

[21] Steven D. Galbraith. 2012. Mathematics of Public Key Cryptography (1st ed.).

Cambridge University Press, USA. https://doi.org/10.1017/CBO9781139012843

[22] Vijay Ganesh, Charles W. O’Donnell, Mate Soos, Srinivas Devadas, Martin C.

Rinard, and Armando Solar-Lezama. 2012. Lynx: A Programmatic SAT Solver for

the RNA-Folding Problem. In Theory and Applications of Satisfiability Testing –
SAT 2012. Springer Berlin Heidelberg, 143–156. https://doi.org/10.1007/978-3-

642-31612-8_12

[23] Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU
Multiple Precision Arithmetic Library (5.0.5 ed.). http://gmplib.org/.

[24] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William

Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.

Felten. 2009. Lest We Remember: Cold-Boot Attacks on Encryption Keys. Com-
mun. ACM 52, 5 (may 2009), 91–98. https://doi.org/10.1145/1506409.1506429

[25] Youssef Hamadi and Christoph M. Wintersteiger. 2013. Seven Challenges in

Parallel SAT Solving. AI Magazine 34, 2 (June 2013), 99–106. https://doi.org/10.

1609/aimag.v34i2.2450

[26] W. Hart, F. Johansson, and S. Pancratz. 2013. FLINT: Fast Library for Number

Theory. Version 2.9.0, https://flintlib.org.

[27] Nadia Heninger and Hovav Shacham. 2009. Reconstructing RSA Private Keys

from Random Key Bits. In Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1–17. https://doi.org/10.1007/978-3-642-03356-8_1

[28] Mathias Herrmann and Alexander May. 2008. Solving Linear Equations Modulo

Divisors: On Factoring Given Any Bits. In Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 406–424. https://doi.org/10.1007/978-3-540-89255-

7_25

[29] Marijn Heule. 2018. Schur Number Five. Proceedings of the AAAI Conference on
Artificial Intelligence 32, 1 (April 2018), 6598–6606. https://doi.org/10.1609/aaai.

v32i1.12209

[30] Marijn J. H. Heule, Manuel Kauers, and Martina Seidl. 2021. New ways to

multiply 3 × 3-matrices. Journal of Symbolic Computation 104 (May 2021), 899–

916. https://doi.org/10.1016/j.jsc.2020.10.003

[31] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. 2016. Solving and

Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer. In

Theory and Applications of Satisfiability Testing – SAT 2016. Springer International
Publishing, 228–245. https://doi.org/10.1007/978-3-319-40970-2_15

[32] Nick Howgrave-Graham. 1997. Finding Small Roots of Univariate Modular

Equations Revisited. In IMA Conference on Cryptography and Coding. Springer,
131–142. https://doi.org/10.1007/BFb0024458

[33] Daniela Kaufmann and Armin Biere. 2023. Improving AMulet2 for verifying

multiplier circuits using SAT solving and computer algebra. International Journal
on Software Tools for Technology Transfer 25, 2 (Jan. 2023), 133–144. https:

//doi.org/10.1007/s10009-022-00688-6

[34] Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. 2023. SAT-Based

Generation of Planar Graphs. In 26th International Conference on Theory and
Applications of Satisfiability Testing. Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 14:1–14:18. https://doi.org/10.4230/LIPICS.SAT.2023.14

[35] Arjen K. Lenstra and HendrikW. Lenstra (Eds.). 1993. The development of the num-
ber field sieve. Springer Berlin Heidelberg. https://doi.org/10.1007/bfb0091534

[36] A. K. Lenstra, H. W. Lenstra, and L. Lovász. 1982. Factoring polynomials with

rational coefficients. Math. Ann. 261, 4 (Dec. 1982), 515–534. https://doi.org/10.

1007/bf01457454

[37] Zhengyu Li, Curtis Bright, and Vijay Ganesh. 2022. An SC-Square Approach

to the Minimum Kochen–Specker Problem. In Proceedings of the 7th SC-Square
Workshop, Haifa, Israel, August 12, 2022 (CEUR Workshop Proceedings, Vol. 3458),
Ali Kemal Uncu and Haniel Barbosa (Eds.). CEUR-WS.org, 55–66. https://ceur-

ws.org/Vol-3458/paper6.pdf

[38] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. 2016.

Learning Rate Based Branching Heuristic for SAT Solvers. Springer International
Publishing, 123–140. https://doi.org/10.1007/978-3-319-40970-2_9

[39] Alireza Mahzoon, Daniel Große, and Rolf Drechsler. 2018. Combining Symbolic

Computer Algebra and Boolean Satisfiability for Automatic Debugging and Fixing

of Complex Multipliers. In 2018 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). IEEE, 351–356. https://doi.org/10.1109/isvlsi.2018.00071

[40] João P. Marques Silva and Karem A. Sakallah. 1996. GRASP—A new search

algorithm for satisfiability. In Proceedings of International Conference on Computer
Aided Design (ICCAD-96). IEEE Comput. Soc. Press, 220–227. https://doi.org/10.

1109/iccad.1996.569607

[41] Alexander May. 2004. Computing the RSA Secret Key Is Deterministic Polynomial

Time Equivalent to Factoring. In Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 213–219. https://doi.org/10.1007/978-3-540-28628-8_13

[42] Alexander May. 2021. Lattice-Based Integer Factorisation: An Introduction to

Coppersmith’s Method. In Computational Cryptography: Algorithmic Aspects
of Cryptology (London Mathematical Society Lecture Note Series). Cambridge

University Press, 78–105. https://doi.org/10.1017/9781108854207.006

[43] Michele Mosca and Sebastian R. Verschoor. 2022. Factoring semi-primes with

(quantum) SAT-solvers. Scientific Reports 12, 1 (May 2022). https://doi.org/10.

1038/s41598-022-11687-7

[44] Constantinos Patsakis. 2013. RSA private key reconstruction from random

bits using SAT solvers. Cryptology ePrint Archive, Paper 2013/026. https:

//eprint.iacr.org/2013/026

[45] Vaughan R. Pratt. 1975. Every Prime Has a Succinct Certificate. SIAM J. Comput.
4, 3 (Sept. 1975), 214–220. https://doi.org/10.1137/0204018

[46] Paul Purdom and Amr Sabry. 2003. CNF Generator for Factoring Problems.

https://cgi.luddy.indiana.edu/~sabry/cnf.html.

[47] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM 21, 2 (Feb. 1978),

120–126. https://doi.org/10.1145/359340.359342

[48] Santanu Sarkar, Sourav Sen Gupta, and Subhamoy Maitra. 2013. Error Correction
of Partially Exposed RSA Private Keys from MSB Side. Springer Berlin Heidelberg,

345–359. https://doi.org/10.1007/978-3-642-45204-8_26

[49] Jarkko Savela, Emilia Oikarinen, and Matti Järvisalo. 2020. Finding Periodic

Apartments via Boolean Satisfiability and Orderly Generation. In EPiC Series in
Computing. EasyChair, 465–482. https://doi.org/10.29007/k8jd

[50] Stefan Schoenmackers and Anna Cavender. 2004. Satisfy This: An Attempt

at Solving Prime Factorization using Satisfiability Solvers. Technical report,

University of Washington.

[51] Peter W. Shor. 1999. Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a QuantumComputer. SIAMRev. 41, 2 (Jan. 1999), 303–332.
https://doi.org/10.1137/s0036144598347011

[52] The fplll development team. 2023. fplll, a lattice reduction library, Version: 5.4.4.

(2023). Available at https://github.com/fplll/fplll.

[53] The Sage Developers. 2024. SageMath, the Sage Mathematics Software System.

https://www.sagemath.org

[54] Gregory S. Tseytin. 1968. On the Complexity of Derivation in Propositional

Calculus. In Structures in Constructive Mathematics and Mathematical Logic, Part
II. Springer, 115–125. Reprinted in https://doi.org/10.1007/978-3-642-81955-1_28.

[55] Luke Valenta, Shaanan Cohney, Alex Liao, Joshua Fried, Satya Bodduluri, and

Nadia Heninger. 2017. Factoring as a Service. In Financial Cryptography and
Data Security. Springer Berlin Heidelberg, 321–338. https://doi.org/10.1007/978-

3-662-54970-4_19

[56] Joachim von zur Gathen and Jürgen Gerhard. 2013. Modern Computer Algebra.
Cambridge University Press. https://doi.org/10.1017/cbo9781139856065

[57] Henry Yuen and Joseph Bebel. 2011. ToughSAT Generation. https://toughsat.

appspot.com/

[58] Edward Zulkoski, Curtis Bright, Albert Heinle, Ilias Kotsireas, Krzysztof Czar-

necki, and Vijay Ganesh. 2016. Combining SAT Solvers with Computer Algebra

Systems to Verify Combinatorial Conjectures. Journal of Automated Reasoning
58, 3 (Dec. 2016), 313–339. https://doi.org/10.1007/s10817-016-9396-y

[59] Edward Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki. 2015. MathCheck:

A Math Assistant via a Combination of Computer Algebra Systems and SAT

Solvers. In Automated Deduction - CADE-25. Springer International Publishing,
607–622. https://doi.org/10.1007/978-3-319-21401-6_41

https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921
https://doi.org/10.1080/0025570x.1980.11976835
https://doi.org/10.1080/0025570x.1980.11976835
https://doi.org/10.1090/dimacs/035/01
https://doi.org/10.1090/dimacs/035/01
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1016/j.jsc.2019.07.017
https://doi.org/10.1016/j.jsc.2019.07.017
https://doi.org/10.62056/ahjbksdja
https://ceur-ws.org/Vol-3273/invited1.pdf
https://ceur-ws.org/Vol-3273/invited1.pdf
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.1017/CBO9781139012843
https://doi.org/10.1007/978-3-642-31612-8_12
https://doi.org/10.1007/978-3-642-31612-8_12
http://gmplib.org/
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1609/aimag.v34i2.2450
https://doi.org/10.1609/aimag.v34i2.2450
https://flintlib.org
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-540-89255-7_25
https://doi.org/10.1007/978-3-540-89255-7_25
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1016/j.jsc.2020.10.003
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/s10009-022-00688-6
https://doi.org/10.1007/s10009-022-00688-6
https://doi.org/10.4230/LIPICS.SAT.2023.14
https://doi.org/10.1007/bfb0091534
https://doi.org/10.1007/bf01457454
https://doi.org/10.1007/bf01457454
https://ceur-ws.org/Vol-3458/paper6.pdf
https://ceur-ws.org/Vol-3458/paper6.pdf
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1109/isvlsi.2018.00071
https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1007/978-3-540-28628-8_13
https://doi.org/10.1017/9781108854207.006
https://doi.org/10.1038/s41598-022-11687-7
https://doi.org/10.1038/s41598-022-11687-7
https://eprint.iacr.org/2013/026
https://eprint.iacr.org/2013/026
https://doi.org/10.1137/0204018
https://cgi.luddy.indiana.edu/~sabry/cnf.html
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-642-45204-8_26
https://doi.org/10.29007/k8jd
https://doi.org/10.1137/s0036144598347011
https://github.com/fplll/fplll
https://www.sagemath.org
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-662-54970-4_19
https://doi.org/10.1007/978-3-662-54970-4_19
https://doi.org/10.1017/cbo9781139856065
https://toughsat.appspot.com/
https://toughsat.appspot.com/
https://doi.org/10.1007/s10817-016-9396-y
https://doi.org/10.1007/978-3-319-21401-6_41

	Abstract
	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	2.1 RSA cryptosystem
	2.2 Side channel attacks
	2.3 Boolean satisfiability
	2.4 SAT & computer algebra
	2.5 Lattices and the LLL algorithm
	2.6 Coppersmith's method
	2.7 Factoring with Coppersmith's method

	3 Previous work
	4 SAT + Coppersmith Approach
	4.1 SAT encoding
	4.2 Coppersmith's method in programmatic SAT
	4.3 Low public exponent RSA encoding

	5 Results
	5.1 Solving method
	5.2 Summary of results
	5.3 Comparison with other approaches

	6 Conclusion
	Acknowledgments
	References

