
Myrvold’s Results on Orthogonal Triples of
10 × 10 Latin Squares: A SAT Investigation

Curtis Bright1,3[0000−0002−0462−625X], Amadou Keita2[0009−0001−5861−4617], and
Brett Stevens3[0000−0003−4336−1773]

1 School of Computer Science, University of Windsor, Canada
2 Department of Mathematics and Statistics, University of Windsor, Canada

3 School of Mathematics and Statistics, Carleton University, Canada
{cbright,keitaa}@uwindsor.ca, brett@math.carleton.ca

Abstract. Ever since E. T. Parker constructed an orthogonal pair of
10×10 Latin squares in 1959, an orthogonal triple of 10×10 Latin squares
has been one of the most sought-after combinatorial designs. Despite
extensive work, the existence of such an orthogonal triple remains an open
problem, though some negative results are known. In 1999, W. Myrvold
derived some highly restrictive constraints in the special case in which
one of the Latin squares in the triple contains a 4× 4 Latin subsquare.
In particular, Myrvold showed there were twenty-eight possible cases
for an orthogonal pair in such a triple, twenty of which were removed
from consideration. We implement a computational approach that quickly
verifies all of Myrvold’s nonexistence results and in the remaining eight
cases finds explicit examples of orthogonal pairs—thus explaining for
the first time why Myrvold’s approach left eight cases unsolved. As a
consequence, the eight remaining cases cannot be removed by a strategy
of focusing on the existence of an orthogonal pair; the third square in the
triple must necessarily be considered as well.
Our approach uses a Boolean satisfiability (SAT) solver to derive the
nonexistence of twenty of the orthogonal pair types and find explicit
examples of orthogonal pairs in the eight remaining cases. To reduce
the existence problem into Boolean logic we use a duality between the
concepts of transversal representation and orthogonal pair and we provide
a formulation of this duality in terms of a composition operation on Latin
squares. Using our SAT encoding, we find transversal representations
(and equivalently orthogonal pairs) in the remaining eight cases in under
a day of computing.

Keywords: Latin square · orthogonal Latin square · transversal repre-
sentation · satisfiability solving.

1 Introduction

A Latin square of order n is an n× n array filled with n distinct symbols such
that each symbol appears exactly once in each row and exactly once in each
column. A transversal of a Latin square of order n consists of n cells of the square

2 C. Bright et al.

chosen so that there is exactly one cell from each row, exactly one cell from each
column, and exactly n distinct symbols all together. There are many ways of
representing a transversal, but we follow Myrvold [28] and represent a transversal
by listing the symbols in the transversal in each column from left to right. For
example, the highlighted transversal in

[
0 1 2
2 0 1
1 2 0

]
is represented by the row vector

[2, 1, 0]. We call this row vector the transversal’s row representation.
Two Latin squares of order n are said to be orthogonal when all n2 possible

symbol pairs occur when the two squares are superimposed over each other.
This is equivalent to each Latin square having a decompositon of its cells into
transversals. A set of Latin squares that are pairwise orthogonal to each other
are known as mutually orthogonal Latin squares (MOLS) and a set of k MOLS of
order n are known as a k-MOLS(n). For each order n, let N(n) denote the largest
possible value of k for which a k-MOLS(n) exists. Determining values of N(n) has
a long history [1, Ch. III] and has been of intense interest to mathematicians ever
since Euler conjectured in 1782 that N(n) = 1 for n ≡ 2 (mod 4). It is easily seen
that N(2) = 1, and Tarry showed in 1900 that N(6) = 1 [33]. However, in 1959,
Euler’s conjecture was shown to be false by the discovery of a 2-MOLS(22) [6] and
a 2-MOLS(10) [29]. In fact, in 1960 it was shown that N(n) ≥ 2 for all n > 6 [7].
It is also known that N(n) = n− 1 if and only if a projective plane of order n
exists. Projective planes exist for all prime powers, so the first order for which the
value of N(n) is uncertain is n = 10. It is unknown if N(10) ≥ 3, and determining
the value of N(10) is one of the most prominent unsolved problems concerning
MOLS. In particular, finding a 3-MOLS(10) or proving its nonexistence is a
longstanding open problem in combinatorial design theory.

Although it is not known if a 3-MOLS(10) exists or not, there are several
special results known about this case. Mann [23] proved that a 10 × 10 Latin
square with a 5 × 5 Latin subsquare cannot belong to an orthogonal pair, let
alone an orthogonal triple. Parker [30] proved that two orthogonal 10× 10 Latin
squares with orthogonal 3× 3 Latin subsquares cannot be part of an orthogonal
triple. Myrvold [28] considered a 10 × 10 Latin square L with a 4 × 4 Latin
subsquare. She showed that it is possible for L to be part of an orthogonal
pair, and further considered if L can be part of an orthogonal triple. Myrvold
showed there are seven possible ways of decomposing L into transversals and
twenty-eight possibilities for decomposing L in two ways (a necessary condition
for L to be part of an orthogonal triple). Myrvold ruled out the existence of
twenty of the twenty-eight possibilities which required only the consideration of
constraints arising from only two of the three putative squares. Her work left
open the remaining eight cases:

The most obvious next step in extending the current work is to eliminate
the remaining eight cases from consideration. [28]

We provide a reason why Myrvold’s method was unable to rule out these eight
cases, and show any argument ruling out these cases must necessarily be more
involved—because orthogonal pairs in the remaining eight cases exist (though
it is unclear if orthogonal triples in the remaining eight cases exist). Thus, any

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 3

argument ruling out the remaining eight cases must necessarily involve the triple
as a whole, not only two of the three squares. We give more background on Latin
squares and the formulation of Myrvold’s twenty-eight cases in Section 2.

Our approach uses a satisfiability (SAT) solver to explicitly construct a 2-
MOLS(10) in each of the eight cases that Myrvold left open. Additionally, in
under a second of compute time the SAT solver shows the nonexistence of a
2-MOLS(10) in the twenty cases solved by Myrvold. To use a SAT solver, it is
necessary to reduce the problem of searching for the object in question to the
problem of searching for a satisfying assignment to a formula in Boolean logic
representing Myrvold’s framework and cases.

We reduce the problem of finding a 2-MOLS(10) in each of Myrvold’s twenty-
eight cases to SAT—see Section 4 for a description of our encoding. We develop a
SAT encoding of orthogonality that relies on an equivalence between the orthog-
onality of Latin squares and what Myrvold calls a “transversal representation”
Latin square [28]. Myrvold uses this equivalence for “designing computer programs
for exploring squares and their mates”. We provide a precise duality relating these
two concepts via a “composition” operation on Latin squares and a generalization
of Latin squares where only the columns (and not necessarily the rows) contain
all n symbols (see Section 3). This alternate “transversal representation” encoding
allowed finding a 2-MOLS(10) for all of Myrvold’s previously unsolved cases in a
reasonable amount of computation. The hardest of the eight cases required at
least 13 hours of compute time to solve—see Section 5 for more details.

2 Background

We define the notion of “transversal representation” and relate it to the orthogo-
nality of Latin squares in Section 2.1, give a detailed explanation of the transversal
representation types classified by Myrvold [28] in Section 2.2, and give a brief
description of satisfiability solving in Section 2.3. Finally, we give a summary of
related work in Section 2.4.

2.1 Transversals and Orthogonality

It is well-known that a Latin square has an orthogonal mate if and only if
it can be decomposed into n disjoint transversals [35]. From the n disjoint
transversals, an orthogonal mate can be formed by writing each transversal in
its row representation and stacking the rows together. We call such a square
a transversal representation of the orthogonal mate. An example of a 4 × 4
Latin square D with four disjoint transversals and the associated transversal
representation D′ is provided in Figure 1. The pair (D,D′) is known as a
transversal representation pair.

Although we are primarily interested in Latin squares, in the course of our
investigations, we found that it was helpful to consider the more general case of
“column-Latin” squares. A column-Latin square of order n is an n× n array filled
with n distinct symbols and in which each column contains distinct symbols (and

4 C. Bright et al.

1 2 0 3

0 3 1 2

2 1 3 0

3 0 2 1

D =

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

D′ =

Fig. 1: A transversal representation pair of Latin squares of order four. Each
transversal of D is highlighted in a different colour, and the row representations
of the transversals are given in D′.

is thus a permutation), but the rows are not required to contain distinct symbols.
Row-Latin squares are defined similarly: the rows of the square must contain
distinct entries, but the columns might not [19]. It follows immediately that an
n×n array filled with n distinct symbols is a Latin square if and only if it is both
row-Latin and column-Latin. For our purposes, the usefulness of column-Latin
squares stems from the fact that two column-Latin squares can be “composed” in
a sensible way to form a third column-Latin square which preserves structure
related to orthogonality (see Section 3). Thus, we state most of our results in
terms of column-Latin squares.

The concept of orthogonality of Latin squares translates directly to column-
Latin squares. However, the concept of transversal needs some modification. A
“generalized transversal” of a column-Latin square of order n must still be a
selection of n entries from each row and column, but the entries may not all be
distinct. Figure 2 shows an example of this generalization; note the generalized
transversals highlighted in D1 contain duplicate entries and therefore are not
traditional transversals. However, the row representation construction can still be
used to construct the column-Latin square D′

1 and we refer to the pair (D1, D
′
1)

as a transversal representation pair of column-Latin squares.

0 1 3 2

1 3 2 0

3 2 1 1

2 0 0 3

D1 =

0 0 2 1

1 1 1 3

2 2 3 0

3 3 0 2

D′
1 =

Fig. 2: A transversal representation pair of 4× 4 column-Latin squares. Note that
the highlighted entries of D1 are not transversals, but their row representations
when placed in a 4× 4 array do form a column-Latin square.

We now give purely logical definitions of “orthogonal pair” and “transversal
representation” stated in a way that highlights the similarity between the concepts.
Suppose [a0, . . . , an−1] is a row representing a generalized transversal of a column-
Latin square B. This means if i is a row index, j and j′ are two distinct column

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 5

indices, and B[i, j] = aj , then B[i, j′] ̸= aj′ (otherwise, both the jth and j′th
entries of the generalized transversal are in row i, which is not allowed in any
transversal, generalized or not). Equivalently, if both B[i, j] = aj and B[i, j′] = aj′ ,
then the only possibility is that j = j′. This motivates the following definition.

Definition 1. Let A and B be order n column-Latin squares. Row i of A rep-
resents a transversal of B when A[i, j] = B[i′, j] and A[i, j′] = B[i′, j′] imply
j = j′. The square A is said to be a transversal representation of B when each
row of A represents a transversal of B, i.e., for all 0 ≤ i, i′, j, j′ < n,

A[i, j] = B[i′, j] and A[i, j′] = B[i′, j′] imply j = j′.

Because Definition 1 is symmetric in A and B, A is a transversal representation
of B if and only if B is a transversal representation of A. As before, we say (A,B)
is a transversal representation pair.

On the other hand, if two column-Latin squares A and B are orthogonal
this means that if (i, j) and (i′, j′) are two distinct (row, column) pairs then
(A[i, j], B[i, j]) ̸= (A[i′, j′], B[i′, j′]). Equivalently, it means that if both A[i, j] =
A[i′, j′] and B[i, j] = B[i′, j′], the only possibility is that (i, j) = (i′, j′). This
motivates the following definition.

Definition 2. Let A and B be order n column-Latin squares. A is said to be
orthogonal to B if for all 0 ≤ i, i′, j, j′ < n,

A[i, j] = A[i′, j′] and B[i, j] = B[i′, j′] imply j = j′.

Note that the equality of j and j′ in Definition 2 also implies the equality of i
and i′ because A and B are column-Latin squares. The consequent in Definition 2
thus could equivalently been written as the more typical (i, j) = (i′, j′), but
we use the simpler j = j′ in order to highlight the striking similarity between
Definitions 1 and 2.

2.2 Transversal Representation Types

We now review Myrvold’s results [28] on the possible transversal representation
types of a 10× 10 Latin square L containing a 4× 4 Latin subsquare Ω. Without
loss of generality, we assume the subsquare appears in the bottom-right of L, i.e.,
in the rows and columns labeled 6 to 9. We also assume L consists of the symbols
from the set {0, 1, 2, . . . , 9} and Ω consists of symbols from the set {0, 1, 2, 3}.
We partition the other regions of L into ∆ (lower-left), Γ (upper-right), and
Σ (upper-left) as shown in Figure 3. Since the subsquare Ω is a Latin square
containing symbols from the set {0, 1, 2, 3}, the rectangles ∆ and Γ must take
symbols only from the set {4, 5, 6, . . . , 9} and each row and column of Σ must
contain exactly 6− 4 = 2 symbols from the set {4, 5, 6, . . . , 9}.

Suppose the cells with symbols in {0, 1, 2, 3} are coloured white. A transversal
of L can be of five possible forms depending on how many white cells it takes
from the Latin subsquare Ω. A transversal containing i white cells from Ω (i.e., in

6 C. Bright et al.

Ω∆

ΓΣ
p0:

p1:

p2:

p3:

p4:

Fig. 3: The Latin square L (left) and its possible transversal types (right). White
cells represent symbols in {0, 1, 2, 3}, light cells represent symbols in the rectangles
∆ and Γ , and dark cells represent the symbols {4, 5, . . . , 9} in Σ. The cells of
Σ are not shown in absolute positions; in actuality, each row and column of Σ
has exactly two dark cells. Similarly, the transversal types are shown up to a
permutation of the first six entries and the last four entries.

its last four columns) is said to be of form pi (see Figure 3). Since any transversal
will contain exactly four white cells in total, it must contain 4− i white cells in
its first six columns. Consider the entries of pi that were chosen from the first six
rows of L (i.e., Σ or Γ). We have 4− i white entries (all from Σ) and 4− i entries
from the last four columns of L (i.e., from Γ), so there are 6− 2(4− i) = 2i− 2
remaining entries. The only possibilities for these are the nonwhite entries of Σ,
and we colour these entries dark. This results in the following lemma.

Lemma 1 ([28, Lemma 3.1]). A transversal of type pi contains exactly 2i− 2
dark entries.

A simple corollary of Lemma 1 is that p0 is not a possible type, as it would have
to contain −2 dark entries.

Let ni be the number of transversals of type pi in a transversal representation
of L. Simple counting arguments give that the values {n1, n2, n3, n4} satisfy the
following Diophantine linear system.

ni ≥ 0 nonnegativity of the counts,
n1 + n2 + n3 + n4 = 10 ten total transversals,

n1 + 2n2 + 3n3 + 4n4 = 16 sixteen total symbols in Ω.

There are seven possible solutions to this linear system and correspondingly seven
transversal representation types of L. These types are denoted R, S, T, U, V, W,
and X by Myrvold. Table 1 gives the transversal type counts of each case.

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 7

Type n1 n2 n3 n4

R 8 0 0 2
S 7 0 3 0
T 7 1 1 1
U 6 2 2 0
V 6 3 0 1
W 5 4 1 0
X 4 6 0 0

Table 1: A summary of the seven possible transversal types of L.

Up to ordering, there are
(
7
2

)
= 21 ways of choosing a pair with two different

types, and 7 ways of choosing a pair with matching types, for a total of 28 possible
transversal representation pair combinations. Under the assumption that L is
part of an orthogonal triple, Myrvold [28, Thm 4.4] showed that the only possible
pair types that can simultaneously be transversal representations of L are (X, S),
(X,U), (X,V), (X,W), (X,X), (U,U), (U,W), and (W,W).

2.3 Satisfiability Solving

In this section, we provide some basic preliminaries on Boolean logic and satisfia-
bility (SAT) solving. A SAT solver is a program that can determine if a Boolean
logic formula can be satisfied—that is if there is a truth assignment under which
the formula becomes true. In practice, the formulas provided to SAT solvers must
be written in conjunctive normal form (CNF). Formulas in CNF only contain
the Boolean connective operators ∧ (and), ∨ (or), and ¬ (not). These operators
have meanings similar to those in everyday English: the formula x ∧ y is true if
and only if both x and y are true; the formula x ∨ y is true if and only if x or y
(or both) are true; and the formula ¬x is true if and only if x is false.

A literal is a Boolean variable or its negation, i.e., a formula of the form x
or ¬x where x is a Boolean variable. A clause is a disjunction of literals, i.e., a
formula of the form l1 ∨ · · · ∨ lk where l1, . . . , lk are literals. Finally, a formula is
in conjunctive normal form when it is a conjunction of clauses, i.e., a formula of
the form c1 ∧ · · · ∧ ck where c1, . . . , ck are clauses.

When A is a conjunction of literals and B is a disjunction of literals, we use
the notation A→B as shorthand for ¬A ∨B. By basic logic equivalences, the
formula (¬

∧
i ai) ∨

∨
i bi is equivalent to

∨
i ¬ai ∨

∨
i bi, which (after applying

the simplification ¬¬x ≡ x to any doubly negated literal) is a clause. Thus, we
consider the notation A→ B to be shorthand for a clause when B is a clause
and A is a conjunction of literals.

Although there is no guarantee that SAT solvers can solve the SAT problem in
a feasible amount of time, modern SAT solvers are highly effective at solving many
kinds of SAT problems arising in practice [34], including mathematical problems
such as the Boolean Pythagorean triples problem [14] and Lam’s problem [9].
Many problems that at first seem unconnected to logic can be reduced to SAT

8 C. Bright et al.

problems due to the versatility of Boolean logic [10]. Consequently, SAT solvers
are flexible tools that can be used for general-purpose search in many problems,
including combinatorial ones.

2.4 Related Work

Extensive searches for a 3-MOLS(10) have been performed, and some important
cases have been ruled out. For example, it is known that any such triple must
only contain Latin squares with trivial symmetry groups [25]. Another computer-
assisted proof showed that no orthogonal pairs of order ten have corresponding
codes of dimension 33 [12]. Independent computer searches [9,18,31] have revealed
that there is no projective plane of order ten, and because a projective plane
of order n is equivalent to a (n− 1)-MOLS(n) [8,27], these searches imply that
no 9-MOLS(10)s exist or equivalently that N(10) < 9. Together with a result of
Bruck [11], this implies that N(10) ≤ 6 which is currently the best upper bound
known on N(10).

Egan and Wanless [13] enumerate MOLS of small orders, providing counts of
orthogonal mates and classifications up to various equivalence notions for orders
n ≤ 9. They also present a set of three Latin squares L1, L2, L3 of order 10
that is the closest known to forming a complete set of MOLS: L1 is orthogonal
to both L2 and L3, and 91 out of the 100 symbol pairs are different when L2

and L3 are superimposed. They also showed that L2 and L3 have seven common
transversals.

Numerous studies have leveraged SAT solving, integer programming, and con-
straint programming in order to search for Latin squares of various forms such as
diagonal Latin squares (a Latin square with with distinct symbols on its diagonal
and anti-diagonal), and doubly self-orthogonal Latin squares (a Latin square
orthogonal to its transpose and anti-transpose). Appa, Magos, and Mourtos [2,3]
integrated integer programming and constraint programming to tackle the prob-
lem of searching for mutually orthogonal Latin squares. Their comparative study
against traditional constraint and integer programming algorithms revealed the
effectiveness of combining integer and constraint programming in searching for
2-MOLS(n) for n ≤ 12 and 3-MOLS(n) for n ≤ 9. Rubin et al. [32] formulated a
symmetry breaking method and also provided an alternative constraint program-
ming encoding based on a theorem of Mann [22] which performed much better in
their search for pairs of orthogonal Latin squares. The SAT encoding that we use
in our work can be viewed as a reformulation of their constraint programming
encoding into Boolean satisfiability.

Ma and Zhang [21] use a general-purpose model searching program to find
MOLS. They show a k-MOLS(n) exists if and only if there exists a Latin square of
order n which has k−1 transversal matrices T1, . . . , Tk−1 with any two transversal
matrices Ti and Tj (i ̸= j) being transversal matrices of each other [21, Prop 1].
As a result, instead of searching for k-MOLS(n), they searched for one Latin
square and k − 1 of its transversal matrices that are also transversal matrices of
each other. They defined a Latin square L as a function f : R× C → D on row
indices R, column indices C, and symbol set D. Similarly, they defined the ith

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 9

transversal matrix Ti (1 ≤ i ≤ k − 1) as a function fi : Di × C → R, where Di is
the symbol set of Li, the Latin square represented by the transversal matrix Ti.
The formulae they used for encoding a k-MOLS(n) then consist of three types:

1. Formulae to specify that f and fi are Latin squares:

f(x1, y) = f(x2, y)→ x1 = x2, f(x, y1) = f(x, y2)→ y1 = y2,

fi(t1, y) = fi(t2, y)→ t1 = t2, fi(t, y1) = fi(t, y2)→ y1 = y2.

2. Formulae to specify that fi is a transversal matrix of f :

f(fi(t, y1), y1) = f(fi(t, y2), y2)→ y1 = y2.

3. Formulae to ensure that Li and Lj are orthogonal by stating that Ti and Tj

are a transversal representation pair:(
fi(t1, y1) = fj(t2, y1) ∧ fi(t1, y2) = fj(t2, y2)

)
→ y1 = y2.

Our encoding of “transversal representation pair” uses formulae that are sim-
ilar to their first two types, though our encoding is purely represented as a
Boolean satisfiability problem which doesn’t natively support expressions like
f(fi(t, y1), y1).

A Latin square that is orthogonal to both its transpose and its transpose
across its anti-diagonal is known as a doubly self-orthogonal Latin square. For
orders n ≡ 2 (mod 4), the existence of such squares is unknown for n > 10. In
2011, Lu et al. [20] proved the nonexistence of a doubly self-orthogonal Latin
square of order ten. They encoded the existence of a doubly self-orthogonal Latin
square of order ten as a SAT problem and proved the nonexistence by showing
the resulting SAT instance was unsatisfiable. To describe their encoding, let A be
a self-orthogonal Latin square of order n, let AT denote the transpose of A, and
let A∗ denote the transpose across the anti-diagonal of A, i.e., AT [x, y] = A[y, x]
and A∗[x, y] = A[n − 1 − y, n − 1 − x] where 0 ≤ x, y < n. In addition to the
properties of a Latin square, they generated the constraints

(A[x1, y1] = A[x2, y2] ∧A[y1, x1] = A[y2, x2])

→ (x1 = x2 ∧ y1 = y2), i.e., orthogonality of A and AT , and
(A[x1, y1] = A[x2, y2] ∧A[n− 1− y1, n− 1− x1] = A[n− 1− y2, n− 1− x2])

→ (x1 = x2 ∧ y1 = y2), i.e., orthogonality of A and A∗.

A Costas array of order n is an n×n grid with n dots and n2−n empty cells,
with one dot in every row and column, and with no two dots sharing the same
relative horizontal, vertical, or diagonal displacement. A Costas Latin square is a
Latin square in which the cells for each symbol are a Costas array. Jin et al. [16]
introduced an efficient method of using SAT solvers to search for Costas Latin
squares. They established new existence and nonexistence results for various
types of Costas Latin squares of even orders n ≤ 10 including orthogonal pairs of
Costas Latin squares. In their encoding, they define from square A a new square

10 C. Bright et al.

TA by the rule A[i, j] = k → TA[k, j] = i. This makes TA the (3, 2, 1)-parastrophe
or the column inverse of A (cf. [17]), though they refer to TA as a transversal
matrix. To encode orthogonality of (A,B), they impose the constraints

x ̸= y → (TA[u, x] ̸= TB [v, x] ∨ TA[u, y] ̸= TB [v, y]) for 0 ≤ x, y, u, v < n.

In the rest of this paper, we will use the notation A−1 for the column inverse
(see Section 3.1).

A Latin square of order n is idempotent when its diagonal consists of the
entries 0, 1, . . . , n in order, and it is symmetric if it is equal to its own transpose.
A golf design of order n is a collection of n − 2 idempotent symmetric Latin
squares of order n that are mutually disjoint, meaning that any two Latin squares
in the collection share no common symbols in any cell (except for the cells along
their diagonals). Two golf designs are orthogonal if every Latin square in one
design has an orthogonal mate in the other design.

Huang et al. [15] investigated the existence of orthogonal golf designs via con-
straint programming and satisfiability testing. They reformulated the orthogonal
mate finding problem as a transversal finding problem. They constructed the
transversal matrix T of a Latin square L with the constraints

(y1 = y2 ∨ L[T [x, y1], y1] ̸= L[T [x, y2], y2]) for 0 ≤ x, y1, y2 < n,

and additionally used constraints specifying that T is a Latin square.
Diagonal Latin squares feature distinct symbols along both the main and back

diagonals. Zaikin and Kochemazov [36] constructed SAT encodings to discover
pairs of orthogonal diagonal Latin squares of order ten and pseudotriples of
orthogonal diagonal Latin squares. A pseudotriple refers to a set of three Latin
squares that nearly form an orthogonal triple, but the orthogonality condition is
only required to hold on a subset of the cells of the Latin squares. They discovered
a triple of diagonal Latin squares of order ten for which the orthogonality condition
holds across 73 cells (the same 73 cells in each Latin square in the triple).

3 Composition and Duality

In this section, we describe a duality between the concepts of orthogonality
and transversal representation. First, in Section 3.1 we define a “composition”
operation on column-Latin squares. Then in Section 3.2 we use the composition
operation to concisely characterize the duality.

3.1 Composition of Column-Latin Squares

A column-Latin square of order n can be denoted by (f0, f1, . . . , fn−1) where
fj represents the permutation of the jth column. For any two permutations f
and g of the same length, the composition fg is another permutation where
(fg)(i) = f(g(i)), i.e., applying g then f . The composition of two column-Latin
squares F = (f0, . . . , fn−1) and G = (g0, . . . , gn−1) is defined as

FG = (f0g0, . . . , fn−1gn−1).

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 11

The (i, j)th entry of FG is then fjgj(i) = F [G[i, j], j]. The column inverse of a
column-Latin square F , denoted F−1, is the column-Latin square in which each
column is the inverse permutation of the corresponding column of F .

Let e denote the identity column permutation with e(i) = i for 0 ≤ i < n
and E = (e, . . . , e) the column-Latin square of order n formed by n copies of e.
The following two lemmas appear in Laywine and Mullen [19, pp. 98–99], except
stated in terms of row-Latin squares instead of column-Latin squares.

Lemma 2. Let C be a column-Latin square. Then (C,E) is an orthogonal pair
if and only if C is a Latin square.

Lemma 3. If {C1, C2, . . . , Cm} is a set of mutually orthogonal column-Latin
squares, then for any column-Latin square G, the set {C1G,C2G, . . . , CmG}
comprises a set of mutually orthogonal column-Latin squares.

The next proposition provides criteria that establish a necessary and sufficient
condition for a Latin square to “witness” the orthogonality of two column-Latin
squares. The biconditional statement in the proposition was proven by Mann [22]
and also appears as Theorem 6.6 in [19], though we strengthen the proposition
by showing that when the squares are Latin (not just column-Latin) the witness
square arises as a transversal representation of one of the original two squares.

Proposition 1. Let C and F be column-Latin squares. Then (C,F) is an or-
thogonal pair if and only if there is a Latin square Z such that ZC = F . Moreover,
if in addition, C is a Latin square, then (Z,F) is a TRP.

Proof. Suppose Z is a Latin square and ZC = F for column-Latin squares C
and F . By Lemma 2, (Z,E) is an orthogonal pair. By Lemma 3, (ZC,EC) is
an orthogonal pair. Since ZC = F and EC = C, it follows that (F,C) is an
orthogonal pair.

Conversely, suppose (C,F) is an orthogonal pair. Let Z = FC−1 (i.e., ZC =
F). Since (C,F) is an orthogonal pair, by Lemma 3, (Z,E) is an orthogonal pair
(since FC−1 = Z and CC−1 = E). By Lemma 2, Z is a Latin square.

We now show that if C is a Latin square and F is a column-Latin square such
that (C,F) is an orthogonal pair, then (Z,F), which is equal to (Z,ZC), is a TRP.
Suppose that (Z,F) is not a TRP. Then there exist i, i′, j, j′ ∈ {0, 1, 2, . . . , n−1}
where j ̸= j′ with

Z[i, j] = ZC[i′, j] = Z[C[i′, j], j], and
Z[i, j′] = ZC[i′, j′] = Z[C[i′, j′], j′].

Since Z is a Latin square, the symbols in each of its columns are distinct. Thus,
considering the entries of column j of Z, we must have C[i′, j] = i and C[i′, j′] = i,
but C[i′, j] = C[i′, j′] is a contradiction because the rows of C (in particular,
row i′) are permutations, implying j = j′. Thus (Z,F) is a TRP. ⊓⊔

12 C. Bright et al.

3.2 Orthogonal Pair / Transversal Representation Duality

We now state a duality between orthogonality and transversal representations.
This duality was already used by Myrvold [28, Thm 1.1], but we show how the
duality can be concisely formulated in terms of the composition operation on
column-Latin squares—a convenient viewpoint that we were unable to find in the
literature. Roughly speaking, the following Lemmas 4 and 5 are the analogue of
Lemmas 2 and 3 with “orthogonal pair” replaced by “transversal representation
pair”.

Lemma 4. Let C be a column-Latin square. Then (C,E) is a TRP if and only
if C is a Latin square.

Proof. Let C be a column-Latin square and (C,E) be a TRP. It is enough to show
that rows of C are each an n-permutation. Assume, for a contradiction, that this
is not the case. Then for some 0 ≤ i, j, j′, k < n with j ̸= j′, C[i, j] = k = C[i, j′].
Since E is a transversal representation of C, row i of C has its tth symbol from
column t of E. Therefore, the symbol k is on two different rows of E, which
contradicts the definition of E. Therefore, rows of C are each an n-permutation,
and consequently, C is a Latin square.

Conversely, suppose C is a Latin square. Since all symbols are distinct on
each row of C and the same on each row of E, then each row of C takes symbols
from distinct rows and columns of E and the tth symbol on each row is from
column t of E. Thus E is a transversal representation of C. It follows that (C,E)
is a TRP. ⊓⊔

Lemma 5. Let {C1, C2, . . . , Cm} be a set of mutual TRPs of column-Latin
squares, then for any column-Latin square G, the set {GC1, GC2, . . . , GCm}
comprises mutual TRPs.

Proof. It is enough to prove this statement for a set of two column-Latin squares.
The columns of GC1 and GC2 are compositions of two permutations, therefore
GC1 and GC2 are column-Latin squares. Assume, for a contradiction, that this
is not the case. Suppose there exist i, i′, j, j′ ∈ {0, 1, 2, . . . , n− 1} where j ̸= j′

with
GC1[i, j] = GC2[i

′, j] and GC1[i, j
′] = GC2[i

′, j′].

Thus by equality of the symbols

G[C1[i, j], j] = G[C2[i
′, j], j] and G[C1[i, j

′], j′] = G[C2[i
′, j′], j′].

Since G is a column-Latin square, the uniqueness of symbols in its columns
provides that

C1[i, j] = C2[i
′, j] and C1[i, j

′] = C2[i
′, j′].

Since (C1, C2) is a TRP, we have j = j′. This contradicts our assumption. Thus
(GC1, GC2) is a TRP. Therefore, the set consists of mutual TRPs. ⊓⊔

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 13

Proposition 2. Let C and F be column-Latin squares. Then (C,F) is a TRP
if and only if there is a Latin square Z such that CZ = F . Moreover, if C is a
Latin square, then Z is orthogonal to F .

Proof. Assume there exists a Latin square Z such that CZ = F . By Lemma 4,
(Z,E) is a TRP. By Lemma 5, (C,F), which is equal to (CE,CZ), is a TRP.

Conversely, assume (C,F) is a TRP. Let Z = C−1F . Since (C,F) is a TRP
and (C−1C,C−1F) = (E,Z), by Lemma 5, (E,Z) is a TRP. Thus (E,Z) is a
TRP. We have that Z is a Latin square by Lemma 4.

Now we prove that if C is a Latin square, Z and F are orthogonal. Assume,
for a contradiction, that (Z,F) (where F = CZ) is not an orthogonal pair, i.e.,
there exist i, i′, j, j′ ∈ {0, 1, 2, . . . , n− 1} with j ̸= j′ for which

Z[i, j] = Z[i′, j′] and F [i, j] = F [i′, j′].

The second equation implies C[Z[i, j], j] = C[Z[i′, j′], j′] an equality between
two symbols in rows j and j′ of C, which, after using the first equation, yields
C[Z[i, j], j] = C[Z[i, j], j′]. Since C is a Latin square, its rows are permutations,
which implies j = j′ and contradicts the assumption that j ̸= j′. Therefore,
(Z,F) must be an orthogonal pair. ⊓⊔

The following result describes the equivalence between a set of mutually
orthogonal column-Latin squares and a set of mutually TRPs. The correctness of
our SAT encoding relies on this equivalence.

Theorem 1 (cf. [28]). Let C denote the set {C1, . . . , Cr} of r column-Latin
squares of order n.

(a) If C contains mutually orthogonal squares, then the set

{Z1, . . . , Zr : Z1 = C1, Zt = C1C
−1
t for 2 ≤ t ≤ r }

contains mutual TRPs.
(b) If C consists of mutual TRPs, then the set

{Y1, . . . , Yr : Y1 = C1, Yt = C−1
t C1 for 2 ≤ t ≤ r }

contains mutually orthogonal pairs.

Proof. For (a), suppose the set {Ci : 1 ≤ i ≤ r } consists of mutually orthogonal
column-Latin squares of order n. Construct a set of r squares {Zi : 1 ≤ i ≤ r }
by letting Z1 = C1 and Zt = C1C

−1
t for 2 ≤ t ≤ r. Proposition 1 gives that each

Zt, 2 ≤ t ≤ r is a Latin square; further it ensures that (Z1, Zt) is a TRP. Observe
that ZtCtC

−1
s = Zs for 2 ≤ t, s ≤ r where t ̸= s. Since both Ct and C−1

s are
column-Latin squares, their composition is a column-Latin square. Thus (Zt, Zs)
for 2 ≤ t, s ≤ r where t ̸= s, being a TRP also follows from Proposition 1.

For (b), suppose the set {Ci : 1 ≤ i ≤ r } consists of column-Latin squares
of order n such that any two squares form a TRP. Construct a set of r squares
{Yi : 1 ≤ i ≤ r } by letting Y1 = C1 and Yt = C−1

t C1 for 2 ≤ t ≤ r. Proposition 2

14 C. Bright et al.

gives that each Yt, 2 ≤ t ≤ r is a Latin square; and that Y1 and Yt are orthogonal.
Observe that C−1

s CtYt = Ys for 2 ≤ t, s ≤ r where t ̸= s. Since both C−1
s

and Ct are column-Latin squares, their composition is a column-Latin square.
Therefore, Yt being orthogonal to Ys for 2 ≤ t, s ≤ r where t ̸= s also follows
from Proposition 2. ⊓⊔

4 Encoding and Implementation

In this section we describe our encoding of the problem of constructing transversal
representation pairs (TRPs) into a Boolean satisfiability problem and how we
use our encoding to search for TRPs for each of Myrvold’s 28 possible types
described in Section 2.2. Recall that Myrvold’s 28 types describe TRPs (P,Q)
for which P and Q are each transversal representations of a Latin square L of
order n = 10 containing a 4× 4 Latin subsquare.

To reduce the existence of the n× n square P into Boolean logic, we use n3

Boolean variables Pi,j,k (for 0 ≤ i, j, k < n) with Pi,j,k denoting the fact that
the (i, j)th entry of P is k. Similarly, another n3 Boolean variables Qi,j,k for
0 ≤ i, j, k < n represent the entries of the square Q.

Once these variables have been defined, we need to specify constraints that P
and Q are Latin squares (see Section 4.1), are a transversal representation pair
(see Section 4.2), and conform to one of Myrvold’s 28 types (see Section 4.3). We
also describe a method of symmetry breaking which reduces the size of the search
space by adding additional constraints which hold without loss of generality
(see Section 4.4). Finally, once we have found a collection of TRPs, we run a
postprocessing step on them, ensuring that the TRPs are pairwise inequivalent
and that they cannot be extended to a set of three mutual TRPs (see Section 4.5).

Our encoding scripts were written in Python and are freely available at
https://github.com/curtisbright/Myrvold-MOLS.

4.1 Latin Square Constraints

First, we need to describe constraints on the variables Pi,j,k (meaning that
P [i, j] = k) which assert that P is a Latin square. Direct methods for doing this
from the definition of a Latin square are well known and widely used; e.g., see
(10.1)–(10.4) in Zhang’s survey [37]. The direct method asserts that every cell of
P contains at least one symbol and at most one symbol, i.e.,∨

0≤i<n

Pp,q,i and
∧

0≤i<j<n

(¬Pp,q,i ∨ ¬Pp,q,j) for all 0 ≤ p, q < n.

Additionally, every column of P contains n distinct symbols,∨
0≤i<n

Pi,q,r and
∧

0≤i<j<n

(¬Pi,q,r ∨ ¬Pj,q,r) for all 0 ≤ q, r < n,

https://github.com/curtisbright/Myrvold-MOLS

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 15

and similarly every row of P contains n distinct symbols,∨
0≤i<n

Pp,i,r and
∧

0≤i<j<n

(¬Pp,i,r ∨ ¬Pp,j,r) for all 0 ≤ p, r < n.

Such an encoding uses 3n + 3
(
n
2

)
clauses and is known as the “binomial” or

“pairwise” encoding of the exactly one predicate [24]. While this encoding gave
good performance, in our experiments we got slightly better performance with
the cardinality encoding of Bailleux and Boufkhad [4]. Their encoding reduces a
constraint like x1 + · · ·+ xn = r (where r is a fixed integer between 0 and n and
we think of the Boolean xis as {0, 1} variables) into conjunctive normal form.
Using this encoding we specify that P is a Latin square with the cardinality
constraints∑

0≤i<n

Pp,q,i = 1,
∑

0≤i<n

Pi,p,q = 1,
∑

0≤i<n

Pp,i,q = 1 for all 0 ≤ p, q < n,

and a similar encoding can be used to specify that Q is also a Latin square.

4.2 Transversal Representation Constraints

The direct encoding that (P,Q) is a TRP using the contrapositive of Definition 1
would be

(Pi,j,k ∧ Pi,j′,l ∧Qi′,j,k)→¬Qi′,j′,l for all 0 ≤ i, i′, j, j′, k, l < n with j < j′.

This is because if row i of P has its jth entry as k and its (j′)th entry as l, then
in whatever row of Q which has its jth entry as k (one such row must exist
since Q is a Latin square) that row cannot have its (j′)th entry as l, or that
row wouldn’t represent a transversal. However, this encoding uses n4

(
n
2

)
= Θ(n6)

clauses of length 4 which is not ideal in practice. Instead, our encoding that
(P,Q) is a TRP will assert the existence of the Latin square Z = P−1Q and by
Proposition 2 this implies that P and Q are a transversal representation pair.

As before, the entries of the square Z are encoded via n3 new variables
Zi,j,k (with 0 ≤ i, j, k < n) and Z is enforced to be a Latin square using the
same encoding described in Section 4.1. Now we need to enforce the relationship
Q = PZ, which means that the (i, j)th entry of Q is equal to the (i′, j)th entry
of P , where i′ = Z[i, j]. Letting k represent the (i, j)th entry of Q, this gives the
constraints

(Zi,j,i′ ∧ Pi′,j,k)→Qi,j,k for all 0 ≤ i, i′, j, k < n.

Moreover, because P = QZ−1 and Z = QP−1, we similarly derive the constraints

(Zi,j,i′ ∧Qi,j,k)→ Pi′,j,k for all 0 ≤ i, i′, j, k < n,
(Pi′,j,k ∧Qi,j,k)→ Zi,j,i′ for all 0 ≤ i, i′, j, k < n.

16 C. Bright et al.

These last two kinds of constraints are technically redundant, but we found that
they tended to improve the performance of the solving in practice.

Thus, our encoding that (P,Q) is a TRP uses 3n4 clauses and the 3n2

cardinality constraints
∑

i Zi,j,k =
∑

i Zj,k,i =
∑

i Zj,i,k = 1 for all 0 ≤ j, k < n.
Altogether, this TRP encoding uses Θ(n4) clauses of length at most 3, and in
practice this is preferable to the Θ(n6) clauses of length 4 used by the direct
encoding.

A similar Θ(n4) clause encoding was previously derived by Zhang (see [37,
Lemma 2]), for ensuring the orthogonality of a pair (A,B) of Latin squares
of order n. Zhang’s encoding for orthogonality uses a new predicate Φ(i, j, k)
introduced via a clever trick and Zhang mentions that “It is a challenge to develop
a method which can automatically generate the predicates like Φ. . . ” [38]. Zhang
essentially uses constraints saying that the “columns” of Φ have distinct symbols
and that the entries of A and B determine the “entries” of Φ. Following our
notation, Zhang uses constraints of the form

(Aijk ∧Bijl)→ Φ(i, k, l), for all 0 ≤ i, j, k, l < n.

In light of the above and Proposition 1, this means that not only is Φ itself a
Latin square, it can be naturally viewed as a transversal representation of one of
the original Latin squares and conveniently expressed via a composition square.∗
Viewing Φ as a composition square, one can derive additional constraints using
this extra structure on Φ (e.g., the entries of A and Φ determine the entries
of B). While such constraints are technically redundant, they tended to help the
efficiency of the solver, at least in the experiments that we performed.

4.3 Colour Constraints

We now describe how we encode that the square P is one of Myrvold’s eight
types as described in Table 1 (and an identical encoding can be used for Q).
In order to do this, we need to be able to specify the colour of each cell in the
square P to be either white, light, or dark. Let w and d represent fixed symbols
which are not in our symbol set {0, . . . , n− 1}.

We let the Boolean variable Pi,j,w represent the (i, j)th entry of P is white,
and let the Boolean variable Pi,j,d represent that the (i, j)th entry of P is dark.
Otherwise, if both Pi,j,w and Pi,j,d are false, then the (i, j)th entry of P will
be light. Note that dark variables are only necessary in the first six columns,
since no dark entries appear in the last four columns (see Figure 3). Additionally,
the position of darks in the first six columns completely determine the position
of whites in the first six columns—the whites will be the cells with symbols
{4, . . . , 9} not coloured black—making the variables Pi,j,w only necessary for
j ≥ 6. Altogether, we introduce n2 new variables encoding the colours of P .

∗In fact, the specific constraints used by Zhang causes the columns of Φ to represent
transversals of B and for Φ to be the composition square BA−1 where the composition
and inverse is defined row-wise instead of column-wise like in the rest of this paper.

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 17

To ensure the symbols {0, . . . , 3} are coloured white, we use the clauses

Pi,j,r → Pi,j,w for all 0 ≤ i < n, 6 ≤ j < n, and 0 ≤ r < 4,

and conversely to ensure that only symbols {0, . . . , 3} are coloured white we use
Pi,j,w →

∨
0≤r<4 Pi,j,r for all 0 ≤ i < n and 6 ≤ j < n. Similarly, to ensure that

only symbols {4, . . . , 9} are coloured dark, we use the clauses

Pi,j,d →
∨

4≤r<n

Pi,j,r for all 0 ≤ i < n and 0 ≤ j < 6.

Recall that a transversal is said to be of type pk when it has k whites in its
last four entries. By Lemma 1, pk will also have 2k − 2 dark entries in its first
six entries. Thus, in order to specify that row i in P is of type pk, we use the
constraints ∑

0≤j<6

Pi,j,d = 2k − 2 and
∑

6≤j<n

Pi,j,w = k.

Here, like in Section 4.1, we think of Boolean variables as taking {0, 1} values and
encode the cardinality constraints with the encoding of Bailleux and Boufkhad [4].
We also know that each of the first six columns of P contain exactly two dark
entries, so we use the cardinality constraints∑

0≤i<n

Pi,j,d = 2 for all 0 ≤ j < 6.

Similarly, we also use n2 Boolean variables Qi,j,w and Qi,j,d to represent the
colours of the square Q and add similar constraints to those above (using the
Qi,j,w and Qi,j,d variables in place of the Pi,j,w and Pi,j,d variables). We now have
specified a coloured TRP (P,Q) with each of P and Q conforming to any of
Myrvold’s types R, S, . . . , X that we select in advance. However, because P
and Q are both transversal representations of the same coloured square L, it is
important that their colours are consistent between themselves. In particular,
the two entries coloured dark in each of the first six columns of P must match
the two entries coloured dark in each of the first six columns of Q. (The white
colours always match as they correspond exactly to the symbols {0, 1, 2, 3}, so if
the black colours match then so must the light colours.)

Suppose the (i, j)th entry of P had symbol k and was coloured dark. Then, in
order for the colouring to be consistent, the entry of Q in the jth column having
symbol k must also be coloured dark. Note that symbol k must exist in the jth
column of Q because Q is a Latin square, so say this happens in row i′. Then to
express the consistency of the colours in P and Q we use the constraints

(Pi,j,k ∧Pi,j,d ∧Qi′,j,k)→Qi′,j,d for all 0 ≤ i, i′ < n, 0 ≤ j < 6, and 4 ≤ k < n.

Although not strictly necessary, we also add the same constraints except deriving
colour of cell (i, j) in P from the colour of cell (i′, j) in Q. This gives the
constraints

(Pi,j,k ∧Qi′,j,d ∧Qi′,j,k)→Pi,j,d for all 0 ≤ i, i′ < n, 0 ≤ j < 6, and 4 ≤ k < n.

18 C. Bright et al.

4.4 Symmetry Breaking

The ordering of rows of a transversal representation square is arbitrary in the
sense that if P is a transversal representation of Q, then the rows of P can be
freely permuted while preserving the fact that it is a transversal representation
of Q. Similarly, the rows of Q may also be permuted. Columns may not be
permuted independently, but if (P,Q) is a TRP and the same permutation of
columns is applied to both P and Q simultaneously, then the resulting new
pair will also be a TRP. Similarly, the same permutation of symbols applied
to both squares in a TRP maintains the property of the pair being a TRP.
By a coloured TRP we mean one whose cells have been assigned the colours
{white, light, dark} corresponding to Myrvold’s types described in Section 2.2.
Permuting the rows or columns of a coloured TRP will permute its colours, but
permutation of symbols will not permute colours. However, because symbols
{0, 1, 2, 3} are always coloured white in this paper, we only consider symbol
permutations fixing the symbols {0, 1, 2, 3} amongst themselves.

We say that two TRPs (P,Q) are equivalent when one can be generated from
the other by applying symbol permutations to both squares simultaneously, col-
umn permutations to both squares simultaneously, or row permutations to either
square independently. We will restrict ourselves to these equivalence operations,
though other more involved equivalence operations on TRPs are possible.∗ The
above equivalence operations generate a group of size (n!)4, meaning that the
search space contains a large number of symmetries which artificially increase
its size. Ideally, we would like to add constraints to the search space in order to
limit the search to just one representative from each equivalence class—this is
known as a perfect symmetry break. Although we do not achieve the goal of a
perfect symmetry break, we are able to remove most symmetries from the search
by only searching for TRPs in what we call standard type.

Definition 3. A coloured TRP (P,Q) is in standard type if the rows of each
square are sorted by transversal type (i.e., if row i has type pk and row i′ ≥ i has
type pk′ then k ≤ k′), the final row of P is one of

q2: 2 3 4 5 6 7 0 1 8 9 ,

q3: 3 4 5 6 7 8 0 1 2 9 ,

q4: 4 5 6 7 8 9 0 1 2 3 ,

and all rows of P (except the last) and all rows of Q are sorted in increasing
lexicographic order when they have the same transversal type.

In the following result, we demonstrate that every equivalence class of TRPs
contains at least one TRP in standard type.

∗For example, if (P,Q) is a TRP then (Z,Q) (with Z = P−1Q) is an orthogonal
pair by Proposition 2, so (ZT , QT) is also an orthogonal pair, and so (ZT (QT)−1, QT)
is a TRP by Proposition 1.

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 19

Theorem 2. Every coloured TRP is isomorphic to a coloured TRP in standard
type.

Proof. Let (Z,Z ′) be an arbitrary coloured TRP that we want to transform to a
pair (Y, Y ′) in standard type. First, permute the rows of Z to put together rows
of the same transversal type pi (for i ∈ {1, 2, 3, 4}) such that all rows of type pk
come before all rows of type pk′ when k < k′. Next, permute the rows of Z ′ in a
similar fashion so the rows of Z ′ are also sorted by transversal type.

Suppose the last row of Z (i.e., Zn−1), is of transversal type pm for m ∈
{2, 3, 4} (note that m = 1 is not possible due to the previous sorting of the rows
of Z). If m = 2, permute the columns of Z and Z ′ simultaneously to colour light
columns two, three, eight, and nine of Zn−1, and to colour dark columns four
and five of Zn−1. If m = 3, permute the columns of Z and Z ′ simultaneously to
colour light columns one and nine of Zn−1, and colour dark columns two to five
of Zn−1. If m = 4, permute the columns of Z and Z ′ simultaneously to colour
dark columns zero to five of Zn−1.

Afterward, apply symbol permutations to Z and Z ′ simultaneously to fix a
symbol assignment for Zn−1. If m = 2, fix the last row as 2 3 4 5 6 7 0 1 8 9 ; if
m = 3, fix the last row as 3 4 5 6 7 8 0 1 2 9 ; and if m = 4, fix the last row as
4 5 6 7 8 9 0 1 2 3 .

Finally, within each subset of rows of the same transversal type in the first
n − 1 rows of Z and all the n rows of Z ′, permute the rows so they appear
in increasing lexicographic order. Note that the final row Zn−1 cannot be so
permuted without disturbing its entries which have already been fixed. ⊓⊔

Thus, without loss of generality we can assume the TRP we are searching for
is in standard type and so we add extra constraints into our encoding to enforce
this. Fixing the last row of P is easy by adding appropriate unit clauses (i.e.,
clauses of length 1), namely,

for q2,
5∧

j=0

P9,j,j+2 ∧
7∧

j=6

P9,j,j−6 ∧
9∧

j=8

P9,j,j ∧
5∧

j=4

A9,j,d;

for q3,
5∧

j=0

P9,j,j+3 ∧
8∧

j=6

P9,j,j−6 ∧ P9,9,9 ∧
5∧

j=2

A9,j,d;

for q4,
5∧

j=0

P9,j,j+4 ∧
9∧

j=6

P9,j,j−6 ∧
5∧

j=0

A9,j,d.

Enforcing the fact that rows are sorted by transversal type is done with the
cardinality constraints discussed in Section 4.3, as these constraints allow us to
fix which rows are of which types. For example, suppose that P is of type R,
meaning that P consists of eight transversals of type p1 and two transversals of
type p4. Then we would enforce the first eight rows of P to be of type p1 with
Pi,6,w + · · ·+Pi,9,w = 1 and Pi,0,d + · · ·+Pi,5,d = 0 for 0 ≤ i < 8, and the last two

20 C. Bright et al.

rows of P to be of type p4 with Pi,6,w+ · · ·+Pi,9,w = 4 and Pi,0,d+ · · ·+Pi,5,d = 6
for i = 8 and 9.

Finally, we enforce that rows with the same transversal type in Q are sorted
in lexicographic order by ensuring their initial entries are increasing. For example,
suppose rows i and i+ 1 of Q have the same transversal type. Then we add the
constraint Qi,0,k →¬Qi+1,0,l for all 0 ≤ l < k < n, which says that the initial
entry of row i+ 1 cannot be smaller than the initial entry of row i. We add the
same constraints for P as well, except we only add the constraints for rows i and
i+ 1 of the same transversal type with i < 8 in order to not add a lexicographic
constraint on the final row of P .

4.5 Postprocessing

As we will describe in Section 5, the encoding presented thus far successfully
found many TRPs (P,Q) corresponding to Myrvold’s eight unsolved cases. We
performed some postprocessing on these pairs to check if they were extendable
to a triple of mutual transversal representations and also to check the pairs for
equivalence.

First, we used a SAT solver to check all pairs (P,Q) for extendability to a
triple. This was done by creating new SAT instances for each pair encoding both
squares P and Q, along with a new Latin square L, and then asserting that (L,P)
is a TRP and (L,Q) is a TRP by using the encoding described in Section 4.2
twice. The entries of P and Q were specified using unit clauses; i.e., if P [i, j] = k
then the clause Pi,j,k was added to the SAT instance. Because of the presence
of so many unit clauses these instances were highly constrained and in all cases
were shown by the SAT solver to be unsatisfiable within 0.1 seconds. Thus, no
pairs we found were extendable to a triple. However, this does not eliminate
the possibility that there might exist a triple (P,Q,L) corresponding to some of
Myrvold’s cases, because we did not exhaustively enumerate all (P,Q)s for any
of Myrvold’s unsolved types.

Finally, we checked all the TRPs (P,Q) that we found to see if any were
equivalent to each other. This was done by converting the TRP into its orthogonal
pair representation (P−1Q,Q), reducing the orthogonal pair to a graph using
the reduction given by Egan and Wanless [13], and finally checking the graphs
for equivalence using the graph isomorphism tool nauty [26].

Precisely, the reduction from a (k−2)-MOLS(n) to a graph is described using
what is known as an orthogonal array. An orthogonal array for a (k−2)-MOLS(n)
is a matrix O of size n2×k, with entries in {0, . . . , n−1}, with every possible pair
of symbols appears exactly once in any two columns of O. Define an undirected
graph GO corresponding to O. The vertices of GO are of three types:

– k type 1 vertices that correspond to the columns of O,
– kn type 2 vertices that correspond to the symbols in each of the columns of

O, and
– n2 type 3 vertices that correspond to the rows of O.

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 21

solved mean median minimum maximum
(U, U) 45/45 35305.9 17664.5 1711.1 168816.2
(U, W) 45/45 78597.0 46405.1 1916.1 230692.4
(V, X) 45/45 81822.4 42871.7 2532.5 462846.9
(S, X) 45/45 102768.9 56155.6 1882.8 449225.4
(U, X) 45/45 104215.3 78370.3 289.5 494242.1
(W, W) 42/45 248711.1 139056.9 6913.3 timeout
(W, X) 38/45 387779.8 252130.0 8735.5 timeout
(X, X) 13/45 951393.5 timeout 48016.3 timeout

Table 2: A summary of the running times (in seconds) of forty-five SAT instances
for each of the eight pair types with solutions. The timeout was one week.

Each type 1 vertex is joined to the n type 2 vertices that correspond to the
symbols in its column. Each type 3 vertex is connected to the k type 2 vertices
that correspond to the symbols in its row. Vertices are coloured according to
their type so that isomorphisms are not allowed to change the type of a vertex.

After forming the graphs corresponding to all TRPs (P,Q) we found, nauty
determined that no two graphs were isomorphic. Thus, we have confirmation
that the SAT solver was indeed exploring different parts of the search space and
that multiple inequivalent TRPs exist corresponding to Myrvold’s unsolved cases.
However, we did not attempt to perform an exhaustive search for TRPs in any of
Myrvold’s unsolved cases. Given the enormity of the search space, and the fact
that no solutions were repeated even after several hundred solutions had already
been found, makes us suspect that an exhaustive search would require a huge
amount of additional computational resources or at least some more restrictive
properties that could be applied to Myrvold’s unsolved cases.

5 Results

We now discuss the results of our computational investigation into Myrvold’s
results. The computations were performed using the SAT solver Kissat 4.0 [5]
run on Intel Gold 6148 Skylake processors running at 2.4 GHz and equipped with
4 GiB of memory.

Recall Myrvold showed [28, Thm 4.4], if P and Q are both transversal
representations of a Latin square of order ten containing a subsquare of order
four, then up to ordering there are twenty-eight possible cases for P and Q and
twenty of these cases can be ruled out. The eight possible cases Myrvold left
remaining are (S,X), (U,X), (V,X), (W,X), (X,X), (U,U), (U,W), and (W,W).

We used our SAT encoding to generate twenty-eight SAT instances, one for
each of Myrvold’s cases. The twenty cases ruled out by Myrvold were each found
to be unsatisfiable in under 0.2 seconds. The eight cases left open by Myrvold were
all considerably harder to solve but each were found to be satisfiable, explaining
why Myrvold was unable to eliminate these eight cases from consideration. Kissat

22 C. Bright et al.

stops solving as soon as it finds a satisfying assignment of the provided instance,
and we use the satisfying assignment reported by Kissat to form a coloured TRP
in each of the eight cases (see the Appendix for explicit examples of TRPs in
each case).

Because the satisfiable cases were significantly more difficult than the un-
satisfiable cases, we found it useful to exploit parallelization when solving the
satisfiable instances. We started fourty-five independent Kissat processes for each
satisfiable case and each process was run on one core of a Skylake CPU for up to
one week. Each process was provided with a different random seed, so no two
copies of Kissat would make the same choices during the solving process. Each
process was terminated if Kissat did not find a solution within a week. Results
from these searches are available in Table 2 and a scatterplot of the running
times are plotted in Figure 4.

Although there is a significant amount of variance in the running times it was
evident that some instances were more difficult to solve than others. In general,
the case (U,U) was the easiest to solve and the case (X,X) was the hardest to
solve.

UU UW VX SX UX WW WX XX
Pair Type

0

20

40

60

80

100

120

140

160

Ti
m

e
in

 H
ou

rs

Running Times of Instances Solved

Fig. 4: A scatter plot of the runtimes.

6 Conclusion

In this paper we use a satisfiability (SAT) solver to investigate Myrvold’s nonex-
istence results [28] on orthogonal triples of Latin squares of order ten. The SAT
solver automatically rules out the cases that Myrvold ruled out, and more signifi-
cantly, the SAT solver provides explicit examples of Latin square pairs in each of
the cases that Myrvold was unable to rule out—providing an explanation for why

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 23

Myrvold was unable to rule out these cases and determining a negative resolution
to the following question left open by Myrvold:

Possibly, with a bit more ingenuity, the remaining cases can be eliminated.

We show that pairs exist in the remaining cases, and so eliminating the remaining
cases with “a bit more ingenuity” is probably not achievable—at the very least,
any argument required to eliminate the remaining cases would need to be more
sophisticated in having to rely on the existence of a third square.

In order to derive a concise and effective SAT encoding for our search we make
use of a duality between orthogonal Latin squares and transversal representation
pairs. Although such a duality has long been used in searches for Latin squares,
we also give an explicit formulation of how this duality arises via a composition
operation on Latin squares. We found this viewpoint useful when deriving our
encoding and surprisingly we were not able to find it expressed in prior literature.

References

1. Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares
(MOLS). In: Handbook of Combinatorial Designs, pp. 186–218. Chapman and
Hall/CRC (2006)

2. Appa, G., Magos, D., Mourtos, I.: Searching for mutually orthogonal Latin squares
via integer and constraint programming. European Journal of Operational Research
173(2), 519–530 (Sep 2006). https://doi.org/10.1016/j.ejor.2005.01.048

3. Appa, G., Mourtos, I., Magos, D.: Integrating Constraint and Integer Programming
for the Orthogonal Latin Squares Problem, p. 17–32. Springer Berlin Heidelberg
(2002). https://doi.org/10.1007/3-540-46135-3_2

4. Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Con-
straints, p. 108–122. Springer Berlin Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45193-8_8, http://dx.doi.org/10.1007/978-3-540-45193-8_8

5. Biere, A., Fleury, M.: Gimsatul, IsaSAT and Kissat entering the SAT competition
2022. Proc. of SAT Competition: Solver and Benchmark Descriptions, 2022 pp.
10–11 (2022)

6. Bose, R.C., Shrikhande, S.S.: On the falsity of Euler’s conjecture about the non-
existence of two orthogonal latin squares of order 4t+2. Proceedings of the National
Academy of Sciences 45(5), 734–737 (May 1959). https://doi.org/10.1073/pnas.
45.5.734

7. Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further results on the construction of
mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Cana-
dian Journal of Mathematics 12, 189–203 (1960). https://doi.org/10.4153/
cjm-1960-016-5

8. Bose, R.C.: On the application of the properties of Galois fields to the problem
of construction of Hyper-Græco-Latin squares. Sankhyā: The Indian Journal of
Statistics 3(4), 323–338 (1938), http://www.jstor.org/stable/40383859

9. Bright, C., Cheung, K.K.H., Stevens, B., Kotsireas, I., Ganesh, V.: A SAT-based
resolution of Lam’s problem. Proceedings of the AAAI Conference on Artificial
Intelligence 35(5), 3669–3676 (May 2021). https://doi.org/10.1609/aaai.v35i5.
16483

https://doi.org/10.1016/j.ejor.2005.01.048
https://doi.org/10.1016/j.ejor.2005.01.048
https://doi.org/10.1007/3-540-46135-3_2
https://doi.org/10.1007/3-540-46135-3_2
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-540-45193-8_8
http://dx.doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1073/pnas.45.5.734
https://doi.org/10.1073/pnas.45.5.734
https://doi.org/10.1073/pnas.45.5.734
https://doi.org/10.1073/pnas.45.5.734
https://doi.org/10.4153/cjm-1960-016-5
https://doi.org/10.4153/cjm-1960-016-5
https://doi.org/10.4153/cjm-1960-016-5
https://doi.org/10.4153/cjm-1960-016-5
http://www.jstor.org/stable/40383859
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1609/aaai.v35i5.16483
https://doi.org/10.1609/aaai.v35i5.16483

24 C. Bright et al.

10. Bright, C., Gerhard, J., Kotsireas, I., Ganesh, V.: Effective Problem Solving Using
SAT Solvers, p. 205–219. Springer International Publishing (2020). https://doi.
org/10.1007/978-3-030-41258-6_15

11. Bruck, R.H.: Finite nets. II. Uniqueness and imbedding. Pacific Journal of Mathe-
matics 13(2), 421–457 (Jun 1963). https://doi.org/10.2140/pjm.1963.13.421

12. Delisle, E.: The Search for a Triple of Mutually Orthogonal Latin Squares of Order
Ten: Looking Through Pairs of Dimension Thirty-Five and Less. Master’s thesis,
University of Victoria (2010)

13. Egan, J., Wanless, I.M.: Enumeration of MOLS of small order. Mathematics of
Computation 85(298), 799–824 (Jul 2015). https://doi.org/10.1090/mcom/3010

14. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and Verifying the Boolean
Pythagorean Triples Problem via Cube-and-Conquer, p. 228–245. Springer Interna-
tional Publishing (2016). https://doi.org/10.1007/978-3-319-40970-2_15

15. Huang, P., Liu, M., Ge, C., Ma, F., Zhang, J.: Investigating the existence of orthog-
onal golf designs via satisfiability testing. In: Proceedings of the 2019 International
Symposium on Symbolic and Algebraic Computation. pp. 203–210. ISSAC ’19,
ACM (Jul 2019). https://doi.org/10.1145/3326229.3326232

16. Jin, J., Lv, Y., Ge, C., Ma, F., Zhang, J.: Investigating the Existence of Costas Latin
Squares via Satisfiability Testing, p. 270–279. Springer International Publishing
(2021). https://doi.org/10.1007/978-3-030-80223-3_19

17. Keedwell, A.D., Dénes, J.: Latin Squares and their Applications, Second Edition.
Elsevier (2015). https://doi.org/10.1016/c2014-0-03412-0

18. Lam, C.W.H., Thiel, L., Swiercz, S.: The non-existence of finite projective planes of
order 10. Canadian Journal of Mathematics 41(6), 1117–1123 (Dec 1989). https:
//doi.org/10.4153/cjm-1989-049-4

19. Laywine, C.F., Mullen, G.L.: Discrete Mathematics Using Latin Squares, vol. 49.
John Wiley & Sons (1998)

20. Lu, R., Liu, S., Zhang, J.: Searching for Doubly Self-orthogonal Latin Squares,
p. 538–545. Springer Berlin Heidelberg (2011). https://doi.org/10.1007/
978-3-642-23786-7_41

21. Ma, F., Zhang, J.: Finding orthogonal Latin squares using finite model searching
tools. Science China Information Sciences 56(3), 1–9 (Sep 2011). https://doi.
org/10.1007/s11432-011-4343-3

22. Mann, H.B.: The construction of orthogonal Latin squares. The Annals of Mathe-
matical Statistics 13(4), 418–423 (1942)

23. Mann, H.B.: On orthogonal Latin squares. Bulletin of the American
Mathematical Society 50(4), 249–257 (1944). https://doi.org/10.1090/
s0002-9904-1944-08127-5

24. Marques-Silva, J., Lynce, I.: Towards Robust CNF Encodings of Cardinality
Constraints, p. 483–497. Springer Berlin Heidelberg. https://doi.org/10.1007/
978-3-540-74970-7_35, http://dx.doi.org/10.1007/978-3-540-74970-7_35

25. McKay, B.D., Meynert, A., Myrvold, W.: Small Latin squares, quasigroups, and
loops. Journal of Combinatorial Designs 15(2), 98–119 (Mar 2006). https://doi.
org/10.1002/jcd.20105

26. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic
Computation 60, 94–112 (Jan 2014). https://doi.org/10.1016/j.jsc.2013.09.
003

27. Moore, E.H.: Tactical memoranda I-III. American Journal of Mathematics 18(3),
264 (Jul 1896). https://doi.org/10.2307/2369797

https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.1007/978-3-030-41258-6_15
https://doi.org/10.2140/pjm.1963.13.421
https://doi.org/10.2140/pjm.1963.13.421
https://doi.org/10.1090/mcom/3010
https://doi.org/10.1090/mcom/3010
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1145/3326229.3326232
https://doi.org/10.1145/3326229.3326232
https://doi.org/10.1007/978-3-030-80223-3_19
https://doi.org/10.1007/978-3-030-80223-3_19
https://doi.org/10.1016/c2014-0-03412-0
https://doi.org/10.1016/c2014-0-03412-0
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.4153/cjm-1989-049-4
https://doi.org/10.1007/978-3-642-23786-7_41
https://doi.org/10.1007/978-3-642-23786-7_41
https://doi.org/10.1007/978-3-642-23786-7_41
https://doi.org/10.1007/978-3-642-23786-7_41
https://doi.org/10.1007/s11432-011-4343-3
https://doi.org/10.1007/s11432-011-4343-3
https://doi.org/10.1007/s11432-011-4343-3
https://doi.org/10.1007/s11432-011-4343-3
https://doi.org/10.1090/s0002-9904-1944-08127-5
https://doi.org/10.1090/s0002-9904-1944-08127-5
https://doi.org/10.1090/s0002-9904-1944-08127-5
https://doi.org/10.1090/s0002-9904-1944-08127-5
https://doi.org/10.1007/978-3-540-74970-7_35
https://doi.org/10.1007/978-3-540-74970-7_35
https://doi.org/10.1007/978-3-540-74970-7_35
https://doi.org/10.1007/978-3-540-74970-7_35
http://dx.doi.org/10.1007/978-3-540-74970-7_35
https://doi.org/10.1002/jcd.20105
https://doi.org/10.1002/jcd.20105
https://doi.org/10.1002/jcd.20105
https://doi.org/10.1002/jcd.20105
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.2307/2369797
https://doi.org/10.2307/2369797

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 25

28. Myrvold, W.: Negative results for orthogonal triples of Latin squares of order 10.
Journal of Combinatorial Mathematics and Combinatorial Computing 29, 95–106
(1999)

29. Parker, E.T.: Orthogonal Latin squares. Proceedings of the National Academy of
Sciences 45(6), 859–862 (Jun 1959). https://doi.org/10.1073/pnas.45.6.859

30. Parker, E.: On orthogonal Latin squares. 1960 Institute on Finite Groups 6, 43–36
(1962). https://doi.org/10.1090/pspum/006/0132704

31. Roy, D.J.: Confirmation of the Non-existence of a Projective Plane of Order 10.
Master’s thesis, Carleton University (2011)

32. Rubin, N., Bright, C., Cheung, K., Stevens, B.: Improving integer and con-
straint programming for Graeco–Latin squares. In: 2021 IEEE 33rd Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI). IEEE (Nov 2021).
https://doi.org/10.1109/ictai52525.2021.00096

33. Tarry, G.: Le problème des 36 officiers. C. R. Assoc. Française Avancement Sci.,
Paris 29, No. 2, 170-203 (1900). (1900)

34. Vardi, M.Y.: Boolean satisfiability: theory and engineering. Communications of the
ACM 57(3), 5–5 (Mar 2014). https://doi.org/10.1145/2578043

35. Wanless, I.: Transversals in Latin Squares: A Survey, p. 403–437. Cambridge
University Press (Jun 2011). https://doi.org/10.1017/cbo9781139004114.010

36. Zaikin, O., Kochemazov, S.: The search for systems of diagonal Latin squares using
the SAT@home project. International Journal of Open Information Technologies
3(11), 4–9 (2015)

37. Zhang, H.: Specifying Latin square problems in propositional logic. In: Automated
reasoning and its applications: essays in honor of Larry Wos, pp. 115–146 (1997)

38. Zhang, H.: Combinatorial designs by SAT solvers. In: Handbook of Satisfiability.
pp. 819–858. IOS Press (Feb 2021). https://doi.org/10.3233/faia201005

Appendix

In the appendix we provide eight explicit pairs we found which prove the existence
of TRPs for Myrvold’s eight unresolved cases [28].

0 8 6 2 5 1 9 3 4 7

1 2 3 5 9 6 8 0 7 4

2 3 4 0 6 5 7 9 1 8

4 9 2 3 1 7 6 8 5 0

7 0 9 1 8 2 4 5 6 3

8 6 1 4 2 0 3 7 9 5

9 1 0 7 3 4 5 6 8 2

5 7 8 9 4 3 1 2 0 6

6 5 7 8 0 9 2 4 3 1

3 4 5 6 7 8 0 1 2 9

type S

3 1 9 2 6 7 8 4 0 5

4 2 7 1 5 3 0 6 9 8

8 3 2 7 0 6 1 5 4 9

9 4 3 0 8 1 2 7 5 6

0 7 1 6 9 5 4 8 3 2

1 8 5 4 3 9 7 2 6 0

2 9 6 8 4 0 5 1 7 3

6 0 8 5 1 4 3 9 2 7

7 5 0 9 2 8 6 3 1 4

5 6 4 3 7 2 9 0 8 1

type X

https://doi.org/10.1073/pnas.45.6.859
https://doi.org/10.1073/pnas.45.6.859
https://doi.org/10.1090/pspum/006/0132704
https://doi.org/10.1090/pspum/006/0132704
https://doi.org/10.1109/ictai52525.2021.00096
https://doi.org/10.1109/ictai52525.2021.00096
https://doi.org/10.1145/2578043
https://doi.org/10.1145/2578043
https://doi.org/10.1017/cbo9781139004114.010
https://doi.org/10.1017/cbo9781139004114.010
https://doi.org/10.3233/faia201005
https://doi.org/10.3233/faia201005

26 C. Bright et al.

0 9 4 2 1 6 7 8 3 5

1 2 8 4 6 3 9 5 7 0

4 0 9 5 3 2 8 7 6 1

6 8 7 1 2 0 5 3 9 4

7 1 3 0 9 5 4 6 8 2

9 5 2 3 0 7 6 4 1 8

2 3 6 8 4 9 1 0 5 7

5 6 0 7 8 1 2 9 4 3

8 7 1 9 5 4 3 2 0 6

3 4 5 6 7 8 0 1 2 9

type U

0 8 1 4 3 5 6 9 2 7

1 0 7 3 8 6 4 2 5 9

2 4 9 7 1 3 5 6 0 8

3 5 8 1 9 2 7 0 4 6

4 1 6 9 0 8 2 3 7 5

5 7 2 0 6 9 8 1 3 4

6 3 0 5 7 4 9 8 1 2

7 9 5 8 2 1 3 4 6 0

8 6 3 2 4 7 0 5 9 1

9 2 4 6 5 0 1 7 8 3

type X

0 9 1 4 3 8 7 6 5 2

2 1 9 3 6 7 4 5 8 0

3 6 5 0 7 1 9 2 4 8

5 0 4 6 1 2 3 8 7 9

7 3 8 2 5 0 6 9 1 4

8 2 0 1 9 6 5 4 3 7

1 7 2 9 4 5 8 3 0 6

6 8 3 5 0 4 2 7 9 1

9 4 7 8 2 3 1 0 6 5

4 5 6 7 8 9 0 1 2 3

type V

1 3 5 4 2 6 0 7 8 9

3 9 0 2 6 4 8 1 7 5

7 1 4 9 0 3 5 6 2 8

9 8 2 0 1 7 6 4 5 3

0 4 9 7 5 1 2 8 3 6

2 5 3 6 4 8 9 0 1 7

4 0 8 3 9 5 7 2 6 1

5 6 7 1 8 0 4 3 9 2

6 2 1 8 7 9 3 5 0 4

8 7 6 5 3 2 1 9 4 0

type X

0 3 8 1 4 5 6 9 7 2

1 8 2 0 6 7 4 3 9 5

2 1 7 4 9 3 8 6 5 0

5 0 6 7 1 2 9 4 3 8

6 2 1 9 3 4 5 0 8 7

4 5 9 8 2 0 1 7 6 3

7 9 0 2 5 6 3 8 4 1

8 7 4 3 0 9 2 5 1 6

9 6 3 5 8 1 7 2 0 4

3 4 5 6 7 8 0 1 2 9

type W

3 6 8 9 0 2 4 7 5 1

5 4 7 0 2 1 3 9 8 6

6 8 9 2 1 3 0 5 7 4

8 2 3 7 9 0 6 1 4 5

0 9 4 5 3 7 1 6 2 8

1 5 0 6 4 9 8 2 3 7

2 7 5 1 6 4 9 8 0 3

4 1 6 3 5 8 7 0 9 2

7 0 1 4 8 5 2 3 6 9

9 3 2 8 7 6 5 4 1 0

type X

Myrvold’s Results on Orthogonal Triples of 10× 10 Latin Squares 27

4 9 0 3 8 2 5 6 7 1

5 2 9 4 0 1 3 7 6 8

6 7 2 9 1 3 4 8 5 0

7 0 3 2 9 4 8 5 1 6

0 1 6 7 5 8 9 2 3 4

1 6 5 8 2 9 7 0 4 3

3 4 8 0 7 6 1 9 2 5

8 5 1 6 4 0 2 3 9 7

9 8 7 1 3 5 6 4 0 2

2 3 4 5 6 7 0 1 8 9

type X

1 7 9 5 3 0 8 6 2 4

2 4 1 9 0 8 6 5 7 3

6 2 3 0 8 5 9 1 4 7

7 1 4 6 2 3 5 9 0 8

0 5 8 3 6 9 4 7 1 2

3 9 7 8 4 1 0 2 5 6

5 6 0 1 7 4 2 8 3 9

8 3 5 7 9 2 1 4 6 0

9 0 2 4 5 6 7 3 8 1

4 8 6 2 1 7 3 0 9 5

type X

1 2 0 8 6 7 9 4 3 5

2 5 9 1 8 0 4 7 6 3

4 0 6 7 2 3 1 5 9 8

5 7 2 9 3 1 6 0 8 4

6 1 3 5 9 2 7 8 4 0

9 3 8 0 1 4 5 2 7 6

0 8 7 2 4 6 3 9 5 1

8 9 4 3 0 5 2 6 1 7

7 6 1 4 5 9 8 3 0 2

3 4 5 6 7 8 0 1 2 9

type U

0 4 8 5 2 1 9 3 6 7

1 0 3 9 4 5 8 7 2 6

2 3 6 8 0 9 7 1 5 4

3 1 4 7 6 0 5 9 8 2

6 8 2 3 1 7 4 5 0 9

9 7 1 2 8 3 0 6 4 5

5 6 9 0 7 2 3 4 1 8

7 5 0 6 3 4 2 8 9 1

4 9 7 1 5 8 6 2 3 0

8 2 5 4 9 6 1 0 7 3

type U

0 7 1 2 8 5 6 4 9 3

1 6 0 8 3 4 9 5 7 2

4 9 2 3 1 6 8 7 0 5

5 0 8 1 9 2 4 3 6 7

6 1 9 7 2 3 5 8 4 0

7 2 3 5 4 0 1 9 8 6

8 3 6 4 0 9 7 2 5 1

9 8 7 0 5 1 2 6 3 4

2 5 4 9 6 7 3 0 1 8

3 4 5 6 7 8 0 1 2 9

type U

0 4 2 1 5 9 3 8 7 6

1 3 4 0 8 6 5 9 2 7

2 1 8 5 0 4 6 7 3 9

3 2 9 8 1 5 7 0 6 4

6 9 7 2 3 0 4 1 5 8

4 0 3 7 6 8 2 5 9 1

7 5 0 6 9 1 8 2 4 3

8 7 5 3 4 2 9 6 1 0

9 6 1 4 2 7 0 3 8 5

5 8 6 9 7 3 1 4 0 2

type W

28 C. Bright et al.

2 8 7 9 3 0 5 6 4 1

4 2 1 8 0 6 9 3 7 5

5 1 0 7 4 2 8 9 3 6

7 0 3 5 6 1 2 4 9 8

9 3 6 2 1 5 4 7 8 0

0 7 9 4 8 3 1 5 6 2

1 6 8 0 9 4 3 2 5 7

6 5 4 1 2 9 7 8 0 3

8 9 2 3 5 7 6 0 1 4

3 4 5 6 7 8 0 1 2 9

type W

0 6 4 2 3 7 8 1 9 5

1 4 2 7 6 0 9 5 8 3

3 8 0 1 9 5 6 4 7 2

5 0 1 3 8 9 4 6 2 7

7 2 6 0 4 3 5 8 1 9

2 3 8 5 7 6 1 9 0 4

4 1 3 9 5 8 7 2 6 0

6 9 7 4 1 2 0 3 5 8

9 7 5 8 2 1 3 0 4 6

8 5 9 6 0 4 2 7 3 1

type W

	Myrvold's Results on Orthogonal Triples of 1010 Latin Squares: A SAT Investigation

