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Point Lattices '

A point lattice is a discrete additive subgroup of R".

A basis for a lattice L C R" is a set of linearly independent
vectors by,...,bs € R"™ whose ‘integer span’ generates L:

d
1=1

In particular, we will be concerned about the case when
b, € Z", so L CZ".

d is the dimension of the lattice.
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2D Example Lattice'

e The lattice generated by b; = {3 5} and by = {6 0} in Z?:

e

~




A Bad Basis'




/ Changing Bases '

e The lattices in Z* generated by the rows of

~322799 92
B = [—74 8 29 —31}
—4 69 44 67

—4339936 —682927 —2330272 —6748685

B’ = {268783718 42311760 144378994 418036006}
47833660 7038229 23910075 72218282

are the same. This is shown by writing each row in B as a

Z-linear combination of the rows of B’, and vice versa.

e That is, there exist change-of-basis matrices U and U’ with
integer entries such that B’ = UB and B = U'B’.

e Since U and U’ = U~! both have integer entries, det U and
det U=1 = 1/det U are both integers.

\\o Therefore det U = +1 (U is unimodular).
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Lattice Volume '

ﬂ (] [ ]

vol L

> *—>

We define the volume of a lattice L with basis B to be the

volume of the |0, 1)-span of its basis vectors.

If B is square then vol L = |det B|, and in general
vol L = /det(BBT).

This is well defined: if B’ is some other basis of L then

\Jdet(B'B'™) = [det(UBBTUT) = y/det(BBT)

since U is unimodular.




Lattice Reduction '

e Some bases are much easier to work with than others. This

suggests we try to find:

e A method of ranking the bases of a lattice in some desirable

order.

e An efficient way to find desirable bases of a lattice when
given one of its other bases.




The Best Basis'

e The best possible basis bq,...,bs of L would have by the
shortest possible nonzero vector in L and in general b; the
shortest possible nonzero vector such that b;,...,b; are

linearly independent.

e Of course such vectors always exist, but perhaps surprisingly
for d > 4 they do not necessarily form a basis of L.
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e For example, the lattice generated by the following basis:

2

1

2
1

1

E Zan

e For n > 5 the last vector is no longer the shortest possible

vector in the lattice; in this case the shortest possible vector

has norm 2 and there are exactly n vectors (up to sign) which

reach the minimum.

e These vectors are linearly independent but generate (27Z)"

instead.

/

10



-

~

Minkowski Reduction '

The next best thing:

Definition. A basis by, ...,by of L is Minkowski reduced if b,
is the shortest possible vector such that by, ...,b; may be
extended into a basis of L for each 1 <1 < d.

This is a greedy definition: it may concede a large increase in

later b; for a small decrease in an early b;.

Computationally, finding a Minkowski reduced basis leads to a

combinatorial problem with a search space exponential in d.

Even just computing by (the Shortest Vector Problem) is

NP-hard when the maximum norm is used.

/
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4 N
Lagrange Reduction '

e Historically the first lattice reduction considered (by Lagrange

in 1773) was in two dimensions.

e It gives rise to a simple algorithm, rather similar in style to
Fuclid’s famous gcd algorithm: the norms of the input vectors
are continually decreased by subtracting appropriate multiples
of one vector from the other.

o If |[b1] < ||b2|| then we want to replace by with by — vb; for

some v such that ||by — vby]| is minimized.

- /
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e Optimally, the new value of ||bo — vb;|| would be

b2 — proje, (b2)|| = [|b2 — T al|.

e But it is essential that v € Z, so take

. | {b2,b1)
v {—nbln? l '
(b2,b1)

e In the case T ‘ < % there is no multiplier we can use to

strictly decrease the norm.

Definition. A basis by, by of L is Lagrange reduced if
<b2,b1>‘ < 1
— 2 °

(ol <t and (b2t

/
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/ e Repeatedly applying this form of reduction yields Algorithm \
1.3.14 in Cohen’s text:

Input: A basis by, by of a lattice L
Output: A Lagrange reduced basis of L
repeat
if ||b1|| > ||b2|| then swap b; and bs
by := by — Vﬁ’;;'ﬁﬂ b,
until [|by || < ||b2

return (by, by)

o ||bs]| decreases by at least a factor of v/3 on every iteration
(except possibly the first and last).

e Since ||bz|| is always at least 1, there are O(log sz]/b2||)
iterations.

\\o The arithmetic operations in each loop take O(log®||bs||), so /
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e Equivalently, we may consider Lagrange’s algorithm as if it was

this algorithm runs in time O(log®||bs|).

using a projected lattice:

15



-

e Let L’ be the lattice L projected orthogonally to by. Then

d =1, so L' has only one basis up to sign:

[ ]

~
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e Now ‘lift’ the basis for L’ into L. Of course, there are an
infinite number ways to lift; we choose the shortest.
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/ Korkin-Zolotarev Reduction ' \

e The advantage to considering Lagrange’s algorithm this way is
that it generalizes to higher dimensions.
e Let b, be the component of b; orthogonal to by, i.e.,

b;, — projspan(bl)J- (b’t> — bz - <|l|)1;;l|)|12> bl — b’L — :ui,lbl-

Definition. A basis by, ...,byg of L is Korkin-Zolotarev

reduced if
e by is the shortest possible nonzero vector of L
e b, ..., b, is a Korkin-Zolotarev reduced basis of L’

o by, ..., by are lifted from L' minimally: |p; 1| < % for 2 <

e Once again, this reduction notion requires solving SVP to find
\\ a Korkin-Zolotarev reduced basis—not good Computationally./
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e There are d recursive lattices in this definition:

L with basis by,...,by
L’ with basis b,, ..., b

L) with basis b:(f), e bf)

L= with basis b&d_l)

e Denote b,gi_l) by bf. By induction it may be shown
b;k — projspan(bf ..... by )+ (bZ)

e These are the Gram-Schmidt orthogonalization vectors.
bi, ..., b} is an orthogonal basis for span(by, ..., b;).

/
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/ Orthogonality Defect ' \

e By the Gram-Schmidt orthogonalization,

d d
vol L = [ I 1l < ] [llol
=1 1=1

with equality if and only if the b; are orthogonal.

e The larger Hglzl |b;]| is compared to vol L the less orthogonal
the b; are. So H?Zl |b;]| /vol L is known as the orthogonality
defect, and is a method of ranking the bases of a lattice.

e We would like a guarantee that the reductions we consider have

an orthogonality defect bounded by some function of d:

d

[]Io:ll < f(d)vol L.

- /
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Hermite Reduction ' \

e Historically, Hermite was the first to consider lattice reduction

in arbitrary dimension in two letters sent to Jacobi in 1845.

e Hermite reduction is weaker than Korkin-Zolotarev reduction,

but stronger than LLL reduction.

e Nevertheless, the properties we will show for Hermite reduced
bases also apply to LLL reduced bases (with small

modifications).

Definition. A basis by, ...,by of L is Hermite reduced if

o b,,...,b) is a Hermite reduced basis of L'

e by,... by are lifted from L' minimally: |p; 1| < 5 for 2 <

21
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A Nice Bound'

e Hermite reduced bases satisfy the following bound:
1b:]1* < 5116517

e Intuitively this says that the projected vector b} isn’t that

much smaller than the original b;.

e Actually follows from the Pythagorean Theorem in d
dimensions and the fact ||u;,101] < $]/b;.

* p2.1by ’
b2 bl

° b/2 °

-
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e Using the Pythagorean Theorem,

163> = [16]* + || 12,151
| A
1o:l* < 167117
1bs]* < 51112
< (3)" o

1
<(3)" &7l
by repeated application of the bound.

e Intuitively, as ¢ increases b; is allowed to become increasingly
smaller than b;, but not arbitrarily smaller.

/
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e From ||b;]| < (%)(i_l)/2 |bF|| we can bound the orthogonality
defect:

SH

Hnb H s )2
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Approximate Shortest Vector Problem'

e Hermite reduced bases can also be used to approrimate a
solution to SVP.

o Let x = Zle r;b; be a shortest nonzero vector in L (i.e., a
solution to SVP), where r; € Z and rp # 0.

e It is difficult to bound a sum of b; directly since they are not

orthogonal. So we rewrite using Gram-Schmidt:

1—1 k—1
. =1

for some s; € Q.

- /
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e Now we can use a generalization of the Pythagorean Theorem,

k—1
l2|® = [lrebi||® + > _llsabi[1* = r2 051> = 1051
=1

e Using previous bounds on b; with 1 = £,
(k—1)/2 (d—1)/2
b1l < bkl < (5) Ibll < (3) l]].

(d-1)/2
)

QO

e So by is at most a factor of ( longer than the shortest

possible nonzero vector in L.

- /
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Optimal-LLL Reduction I

e There is no algorithm known which can provably compute a

Hermite reduced basis efficiently (polynomial time in d). So,

we weaken the conditions again:

Definition. A basis by,...,by of L is optimal-LLL reduced if
o [[b1] < [|b2]]
e b,,...,b) is an optimal-LLL reduced basis of L'
o by, ..., by are lifted from L' minimally: |p; 1| < % for 2 <1

- /
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e Optimal-LLL reduced bases no longer satisfy the nice bound

16| < 5]1b%]|?, but do satisfy a similar one,
167117 < 51167117

e In fact, with a little more work we can derive the same

properties as in the Hermite case:

(i-1)/2 | 1
]| < (5) 167 ]
HHb | < (MY 501 L

Ioall < (2)“7% )

e There is no algorithm known which can provably compute an

optimal-LLL reduced basis efficiently (polynomial time in d).

-
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LLL Reduction '

e We weaken optimal-LLL reduction by allowing some slack

room in the ||by|| < ||b2|| condition:

Definition. A basis by,...,b; of L is LLL reduced with
quality parameter ¢ € (1,4) if

o |[b1]] < Velba]
o b,,...,b), is an LLL reduced basis of L' (with quality c)
o by, ..., by are lifted from L' minimally: |p; 1| < % for 2 <

e The smaller c is, the less slack room and the better the

reduction.

-
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e Define C = 44_00; note that C' > % for ¢ > 1 but we can set C

arbitrarily close to %.

e Analogously to the Hermite case, LLL reduced bases satisfy:

[b;]| < CUD2jb |

d
1o < ¢4 D/ vol L
1=1

[b1]] < CU7D2 ||

4

e In the original LLL paper ¢ = 5 was used, so C' = 2.

~
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The Punchline '

e The straightforward way of applying the definition of an LLL

reduced basis gives an algorithm for computing an LLL

reduced basis efficiently (polynomial time in d).

Input: A basis by,...,by of a lattice L; a quality parameter c
Output: An LLL reduced basis of L (with quality c)
if d =1 then return (b;)
repeat
if ||b1|| > /c||b2|| then swap b; and b,
(ba,...,bg) := lifty, (LLLREDUCE.(b5, ..., b))
until [|by[| < +/c[[ba
return (by,...,by)
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The Iterative LLL Definition: Size Reduction'

e The shortest-lift condition in the jth recursive lattice is
’u,gj)‘ < % for 5 +1 < ¢, where:

9 = (b}, b;j+)1> IRy YNy
o321 Hb ll”
_ <bivb3k+1>
65447
= Hij+1

e So the shortest-lift condition implies |u; ;| < % for j < i.

e This is called size-reduction.

~
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The Iterative LLL Definition: Lovasz Condition'

e The ||b1]| < +/c||b2|| condition in the ith recursive lattice:

[321]] < ve b2

= Vc||biya — Zui+2,jb;H
=1

=/ ||bj s + fit2,i4107 ]

e So the b;-bound condition implies ||b]|| < v/c||bj 1 + tit1,:b] ||
for ¢ > 1.

e This is called the Lowvdsz condition.

- /
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/ Non-recursive LLL Reduction'

e Putting these conditions together gives Definition 2.6.1 in
Cohen’s text:

Definition. A basis by, ...,by is LLL reduced with quality
parameter ¢ € (1,4) if

o |uijl<:forl<j<i<d
o ||bj_i|| < Vel|lbf 4 pii—1bj_]] for 1 <i<d

e Say we have some basis by, ..., bg such that the first £ — 1
vectors form an LLL reduced basis. If

e b, is size-reduced against the first £ — 1 vectors

e the Lovasz condition holds for 7 = k

\\ then bq,..., b is also an LLL reduced basis.

~
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The Iterative LLL Algorithm' \

Input: A basis by, ...,by of a lattice L; a quality parameter c
Output: An LLL reduced basis of L (with quality c)

k=2
while £ < d do
size-reduce by against by,...,bg_1
if ||by_ [l < Vellbf, + prk—1b;_4 || then
k=k+1
else

swap br_1 and by
k:=max(k — 1,2)
end if
end while
return (by,...,by)

At the start of the loop, by,...,bi_1 is an LLL reduced basis./
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/ The Gram-Schmidt Vectors During LLL' \

e Size reduction does not change the b;.

o If ¢ are the Gram-Schmidt vectors after a swap, then:

Before After
b, 167 = ||t | b1
br—1 | [[br 1] = llef 4] by 1
b | bt > vellepl | b
e | bl < vEliciall | b
brv2 | [1bpqall = llcf 2| D12
\\ ba 1631 = ezl ba /
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Bounding the Number of Swaps' \

Let Bj be the basis consisting of the first k£ basis vectors, L;
the lattice formed by the basis By, and

di, = (vol Ly)? = det(BxBY) H||b*u2

If the b; are integer vectors then dj, € Z™.

During LLL, a swap of by and by, decreases dj, by a factor of
at least ¢, and doesn’t change d; for ¢ # k.

Thus, if we define

then D decreases by a factor of at least ¢ after every swap. /
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Thus, there are at most log.(D) swaps. Since \

d d
D = HHb;‘H?(d—iH) < HHbiH2(d_i+1) < miaXHbin(dnLl)
1=1 i=1

there are O(log D) = O(d? log B) swaps, where B = max;||b;||
for the original b;.
The size of the numbers involved remain reasonable throughout
the algorithm:

. lb:ll < B

e The denominators of b7 and p; ; divide dj, for some k.

e log||b;|| and log|u; ;| are O(dlog B).

Size-reduction requires O(n) arithmetic operations, and there
are O(d) vectors to size-reduce against.

Total cost of LLL is therefore O(nd®(log B)?) without fast

arithmetic. /
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Factoring Polynomials over the Integers'

e If f is an integer polynomial with an algebraic root, if we can
find the minimal polynomial of that root then we have an
irreducible factor of f.

e Let a € C be an approximation to an algebraic root of f with

minimal polynomial h of degree m.

a

/
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e For some constant IV let L be the lattice generated by the rows

of the following basis:

bo 1

e Any x € L has form ¢ =>_." , ¢;b; for some g¢; € Z.

N R(a?)

N R(a?)

1 NRQ@™) NS(a™

N (o
NR(a') NS(a
N (o

e Can think of (go,...,gm) as g € Z™*! or an integer polynomial

9(37) = Z:io giﬂfi

/
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Any @ € L has the form

z=g" NR(g(a)) NS(ga),
and it follows [|z[|2 = ||lg]|2 + N2|g(c)[.

We can make h(«) arbitrarily small by increasing the precision

of «.

So by taking NV large enough, we can make the shortest

nonzero vector in L be

— [hT N R(h(a)) Ng(h(a))} '

And then increasing N by a factor ~ 2(m+1/2 ensures that any

vector £ € L not a multiple of s will have [|z||* > 2™*1||s]|?.

/

LLL will always find a vector ||bp||? < 2™ T s||?.
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