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SAT:
Boolean satisfiability problem

SAT solvers: Clever brute force
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Effectiveness of SAT solvers

Many problems that have nothing to do with logic can be
effectively solved by reducing them to Boolean logic and using a
SAT solver.

Examples

I Hardware and software verification
I Scheduling subject to constraints
I Finding or disproving the existence of combinatorial objects

Limitations

Lack of expressiveness, and SAT solvers perform poorly on highly
symmetric problems.
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CAS:
Computer algebra system

Symbolic mathematical computing
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Example
What is the automorphism group of this graph?

4 3

6 1

7

25

8

Maple returns〈
(2, 5), (3, 8)(4, 7), (1, 2)(3, 4)(5, 6)(7, 8)

〉
.

Limitations
CASs are not optimized to do large (i.e., exponential) searches.
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SAT + CAS

Brute force + Knowledge
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MathCheck

Our SAT+CAS system MathCheck has constructed over 100,000
various combinatorial objects. For example, this {±1}-matrix with
pairwise orthogonal rows:
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Results first shown by MathCheck

I Found the smallest counterexample of the Williamson conjecture.

I Verified the even Williamson conjecture up to order 70.

I Found three new counterexamples to the good matrix conjecture.

I Verified the best matrix conjecture up to order seven.

I Verified the Ruskey–Savage conjecture up to order five.

I Verified the Norine conjecture up to order six.

Details available at:

uwaterloo.ca/mathcheck
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Projective planes

A projective plane is a set of points and lines and a relation
between points and lines such that:
I There is a unique line between any two points.
I Any two lines meet at a unique point.
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Projective planes of order n

A finite projective plane is a collection of n2 + n + 1 lines and
n2 + n + 1 points such that:
I There are n + 1 points on each line.
I There are n + 1 lines through each point.
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Incidence matrix representation

Projective plane of order 2:

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


I {0, 1}-matrix of size 7× 7.
I Each row (representing lines) contains exactly three 1s.
I Each column (representing points) contains exactly three 1s.
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For what orders do projective
planes exist?
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. . . every known plane has prime power order . . . [and]
has been constructed in one way or another from a finite
field. . .

Peter Lorimer
The Construction of

Finite Projective Planes
1981
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The Bruck–Ryser theorem

If n is the order of a projective plane and n ≡ 1, 2 (mod 4) then n
is the sum of two squares.
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Projective planes of small orders

2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 3 3 3 7 3 3 3 ? 3 ? 3 7 ?

3 Finite field construction
7 Bruck–Ryser theorem
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The first critical value of n is n = 10. A thorough inves-
tigation of this case is currently beyond the facilities of
computing machines.

Marshall Hall Jr.
Finite Projective Planes

1955
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Enter coding theory
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Codewords

A codeword generated by a projective plane is a vector in the row
space of its incidence matrix (over F2 = {0, 1}).

The weight of a codeword is the number of 1s it contains.
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A search for weight 15 codewords

In 1970, MacWilliams, Sloane, and Thompson showed that a
projective plane of order ten must generate weight 15, 16, or 19
codewords.

Furthermore, they used three hours of computing on a mainframe
computer to show that codewords of weight 15 do not exist.
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Other searches

We know of three other searches with code we could run:
I [Dominique Roy, 2005] Implementation in C, runs in 78

minutes.
I [Casiello, Indaco, and Nagy, 2010] Implementation in GAP,

runs in 7 minutes.
I [Xander Perrott, 2016] Implementation in Mathematica,

runs in 55 minutes.

Our result

We verified the search using a SAT+CAS method in seconds.
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Searches for weight 16 codewords

In 1974, Carter performed a partial search for weight 16 codewords
using approximately 140 hours on a mainframe computer.
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Searches for weight 16 codewords

In 1986, Lam, Thiel, and Swiercz completed the weight 16 search
using about 1,900 hours of computing on a VAX-11/780.
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Searches for codewords of weight 19

In 1989, Lam, Thiel, and Swiercz used about 19,200 hours on a
VAX-11/780 and 2,000 hours on a CRAY-1A supercomputer run
by the Institute for Defense Analyses to show that no weight 19
codewords exist.
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I’m sorry, but that’s the way it goes. The order 12 case is
open, by the way, but a computer attack along the same
lines would take ten thousand million times as long.

Ian Stewart
Another Fine Math

You’ve Got Me Into. . .
1992
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Using SAT solvers for
combinatorial search
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Surprisingly, SAT solving is getting so strong that indeed
[SAT solvers seem] today the best solution in most cases.

Marijn Heule,
Oliver Kullmann,

Victor Marek
Solving Very Hard Problems:

Cube-and-Conquer,
a Hybrid SAT Solving Method

2017
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If a weight 15 codeword exists, MacWilliams, Sloane, and
Thompson showed that the first 21 rows (up to equivalence) of the
incidence matrix of a projective plane of order ten are exactly:

111110000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000000000000000
100001111000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000000000
010001000111000000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000
001000100100110000000000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000
000100010010101000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111000000
000010001001011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111
100000000100001000000000000000000000000000000110000110000110000110000000000000000000000000000000000000000000000
100000000010010000000000000000000000000110000000000000110000110000000110000000000000000000000000000000000000000
100000000001100000000000000000000000000000110000110000000000000000110000110000000000000000000000000000000000000
010000100000001000000000000000011101000000000000000000000000101000101000000000000000000000000000000000000000000
010000010000010000000000110000000000011000000000000000000101000000000000101000000000000000000000000000000000000
010000001000100000000110000110000000000000000000000000000000000101000101000000000000000000000000000000000000000
001001000000001000000000000011000000110000000000101000011000000000000000000000000000000000000000000000000000000
001000010001000110000000000000000011000000000101000000000000000000000011000000000000000000000000000000000000000
001000001010000001010000000000101000000000000000000101000000000000000000011000000000000000000000000000000000000
000101000000010000000101000000000110000000101000000011000000000000000000000000000000000000000000000000000000000
000100100001000001001000000000000000101101000000000000000000000011000000000000000000000000000000000000000000000
000100001100000100100000011000000000000000000000000000101000000000011000000000000000000000000000000000000000000
000011000000100000000000101000110000000011000011000000000000000000000000000000000000000000000000000000000000000
000010100010000010100000000101000000000000011000000000000011000000000000000000000000000000000000000000000000000
000010010100000000011011000000000000000000000000011000000000011000000000000000000000000000000000000000000000000
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The next 24 rows are of this form, where blanks are unknown
entries:

100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
0000000001000000 000 00 00 00 0000 0 000 0000 00 000000000000
0000000001000000 000 00 00 00 0000 0 000 0000 00 000000000000
0000000001000000 000 00 00 00 0000 0 000 0000 00 000000000000
0000000001000000 000 00 00 00 0000 0 000 0000 00 000000000000
0000000001000000 000 00 00 00 0000 0 000 0000 00 000000000000
0000000001000000 000 00 00 00 0000 0 000 0000 00 000000000000
000000000000001 00 000 000 00 0 000 0000 0 000 0 0 000000000000
000000000000001 00 000 000 00 0 000 0000 0 000 0 0 000000000000
000000000000001 00 000 000 00 0 000 0000 0 000 0 0 000000000000
000000000000001 00 000 000 00 0 000 0000 0 000 0 0 000000000000
000000000000001 00 000 000 00 0 000 0000 0 000 0 0 000000000000
000000000000001 00 000 000 00 0 000 0000 0 000 0 0 000000000000
000000000010000 0000 0 00 0 00 00 0 000 0000 00 00 000000 000000
000000000010000 0000 0 00 0 00 00 0 000 0000 00 00 000000 000000
000000000010000 0000 0 00 0 00 00 0 000 0000 00 00 000000 000000
000000000010000 0000 0 00 0 00 00 0 000 0000 00 00 000000 000000
000000000010000 0000 0 00 0 00 00 0 000 0000 00 00 000000 000000
000000000010000 0000 0 00 0 00 00 0 000 0000 00 00 000000 000000

28/37



SAT encoding

Consider lines 1 and 28:

11111000000000000000...000000000000000000111111000...
0000000001000000 00...00 0000 00 ...

There must be some point that is on both of these lines.

A 1 must appear here.

In Boolean logic:
a ∨ b ∨ c ∨ d ∨ e ∨ f
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SAT encoding

Consider lines 1 and 28:

11111000000000000000...000000000000000000111111000...
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SAT encoding

Consider lines 22 and 40:

100000000000000 ...
000000000010000 0000 ...

Exactly one point must appear on both of these two lines.

These cannot all simultaneously be 1.

In Boolean logic:
¬a ∨ ¬b ∨ ¬c ∨ ¬d

30/37



SAT encoding

Consider lines 22 and 40:

100000000000000 ...
000000000010000 0000 ...

Exactly one point must appear on both of these two lines.

These cannot all simultaneously be 1.

In Boolean logic:
¬a ∨ ¬b ∨ ¬c ∨ ¬d

30/37



SAT encoding

Consider lines 22 and 40:

100000000000000* * ...
000000000010000*0000* ...

Exactly one point must appear on both of these two lines.

These cannot all simultaneously be 1.

In Boolean logic:
¬a ∨ ¬b ∨ ¬c ∨ ¬d

30/37



SAT encoding

Consider lines 22 and 40:

100000000000000a b ...
000000000010000c0000d ...

Exactly one point must appear on both of these two lines.

These cannot all simultaneously be 1.

In Boolean logic:
¬a ∨ ¬b ∨ ¬c ∨ ¬d
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Solving the SAT instance

Up to 27 rows, the SAT instance has about 150 unknown variables,
1000 clauses, and over 1018 solutions.

However, many columns are rows are identical and permuting them
produces other equivalent solutions.
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Symmetry breaking
Using appropriate row/column permutations, we can assume the
first 27 rows are:
111110000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000000000000000
100001111000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000000000
010001000111000000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000000000
001000100100110000000000000000000000000000000000000000000000000000000000000000000000000000000111111000000000000
000100010010101000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111000000
000010001001011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111
100000000100001000000000000000000000000000000110000110000110000110000000000000000000000000000000000000000000000
100000000010010000000000000000000000000110000000000000110000110000000110000000000000000000000000000000000000000
100000000001100000000000000000000000000000110000110000000000000000110000110000000000000000000000000000000000000
010000100000001111111000000000000000000000000000000000000000100000100000000000000000000000000000000000000000000
010000010000010000000000110000000000011000000000000000000101000000000000101000000000000000000000000000000000000
010000001000100000000110000110000000000000000000000000000000000101000101000000000000000000000000000000000000000
001001000000001000000000000011000000110000000000101000011000000000000000000000000000000000000000000000000000000
001000010001000000100000000000011010000000000101000000000000000000000011000000000000000000000000000000000000000
001000001010000010000000000000100100000000000000000101000000001000000000011000000000000000000000000000000000000
000101000000010001000101000000000010000000101000000011000000000000000000000000000000000000000000000000000000000
000100100001000000000000000000000100101101000000000000000000000011001000000000000000000000000000000000000000000
000100001100000000001000011000010001000000000000000000101000000000010000000000000000000000000000000000000000000
000011000000100100000000101000100000000011000011000000000000000000000000000000000000000000000000000000000000000
000010100010000000000000000101001001000000011000000000000011000000000000000000000000000000000000000000000000000
000010010100000000010011000000000000000000000000011000000000011000001000000000000000000000000000000000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
100000000000000 00 00 00 00 00 00 00 00 00 00 00 00 000000000000
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These rows can be sorted using row permutations.
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Using appropriate row/column permutations, we can assume the
first 27 rows are:
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010000001000100000000110000110000000000000000000000000000000000101000101000000000000000000000000000000000000000
001001000000001000000000000011000000110000000000101000011000000000000000000000000000000000000000000000000000000
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001000001010000010000000000000100100000000000000000101000000001000000000011000000000000000000000000000000000000
000101000000010001000101000000000010000000101000000011000000000000000000000000000000000000000000000000000000000
000100100001000000000000000000000100101101000000000000000000000011001000000000000000000000000000000000000000000
000100001100000000001000011000010001000000000000000000101000000000010000000000000000000000000000000000000000000
000011000000100100000000101000100000000011000011000000000000000000000000000000000000000000000000000000000000000
000010100010000000000000000101001001000000011000000000000011000000000000000000000000000000000000000000000000000
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1000000000000001 00 00 00 00 00 00 00 00 00 00 00 00 0000000000001 1 1 1
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100000000000000 1 00 00 00 00 00 00 00 00 00 00 00 00 000000000000 1 1 1 1
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Now 42,496 solutions.
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Solving the SAT instances

The instances with up to 42 rows can now be solved in seconds.
These instances are all satisfiable.

The instance with 43 rows is unsatisfiable and requires about
7 minutes to solve.

This verifies the search of MacWilliams–Sloane–Thompson, but we
can do better. . .
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Using CAS to
speed up the search
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CAS symmetry breaking

A CAS can be used to find symmetries of the partially filled
incidence matrix.

There are 48 symmetries that fix the already assigned entries in the
first 27 rows.
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Isomorphism blocking

When the SAT solver finds a solution of the first 27 rows, we use
the 48 symmetries to block all isomorphic solutions.

The SAT solver finds 1,021 inequivalent solutions in 2.5 seconds.

It takes just 6.5 seconds to show that the SAT instances up to 43
rows generated by these 1,021 solutions are unsatisfiable.

This verifies MacWilliams–Sloane–Thompson’s search in 9 seconds.
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Weight 16 searches

In 1974, Carter spent ∼140 hours on a mainframe. We verified his
searches in 7 hours.

In 1986, Lam, Thiel, and Swiercz spent ∼1,900 hours of computing
on a VAX-11/780. We verified their searches in 124 hours.

This verifies the weight 16 search (also verified by Roy using
∼16,000 hours on a desktop in 2010) in 131 hours.

Next steps

We are currently working on verifying the weight 19 searches to
produce a fully independent verification of the order ten search.
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