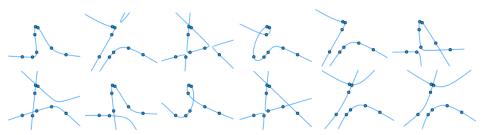
Rational Cubics Through Non-Generic Points

Taylor Brysiewicz University of Western Ontario

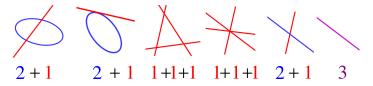
Joint work in progress with Fulvio Gesmundo and Avi Steiner (assisted by *Salmon* the computer)

Monday, June 5, 2023 Computer-Assisted Mathematics CanaDAM 2023

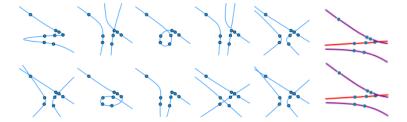
How many rational cubics go through 8 generic points?



Generically, no reducible cubic goes through them



How many rational cubics go through 8 (distinct) non-generic points?

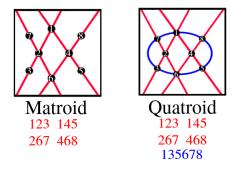


Big Ideas:

- Generic means no 3 points on a line and no 6 points on a conic
- Otherwise, there are reducible cubics through the configuration
- These reducible cubics steal from the count of 12 singular cubics

Quatroids

The combinatorial data describing how 8 points lie on lines and conics is a quatroid



Two Big Questions

- What quatroids exist on eight points?
- Is For a generic quatroid representation, how many rational cubics go through it?

Finding All Candidate Quatroids

Pairs $Q = (\underbrace{\mathcal{I}}_{triples}, \underbrace{\mathcal{J}}_{sextuples})$ satisfying the obvious necessary conditions are candidates

Matroidal Condition

- The linear conditions must be satisfiable (*I* gives a realizable matroid) Bézout Condition
- Any two triples (lines) intersect in at most one point
- Any two sextuples (conics) intersect in at most four points
- Any triple/sextuple (line/conic) pair intersect in at most two points

Algorithm

- **③** Start with a simple rank \leq 2 matroid on 8 elements (databases exist)
- I Greedily append conic conditions while satisfying Bézout
- $\textcircled{O} Apply the symmetry group of \mathfrak{S}_8$
- 9 Find representatives of each, or show none exists

Theorem (Brysiewicz, Gesmundo, and Steiner (assisted by Salmon the Computer))

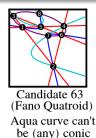
There are 780617 candidate quatroids, appearing in 126 orbits Q_1, \ldots, Q_{126} :

Orbit Size	1	8	28	35	56	70	105	168	210	280
# Orbits	3	2	2	1	3	1	1	3	2	3
Orbit Size	420	560	840	1680	2520	3360	5040	6720	10080	20160
# Orbits	2	1	13	4	10	13	17	6	22	17

- Not representable over \mathbb{C} : Only \mathcal{Q}_{63}
- Not representable over \mathbb{R} : \mathcal{Q}_{41} and \mathcal{Q}_{63}
- All others are representable over \mathbb{Q} (proof by examples)

Hence, there are 779777 (125 orbits) quatroids represented by 8 distinct points.

Quatroid 41 (MacLane) Not all lines real



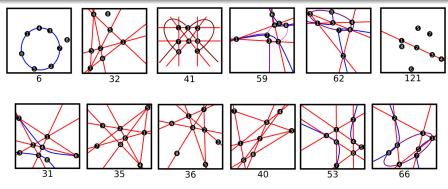
Theorem (Brysiewicz, Gesmundo, and Steiner (assisted by Salmon the Computer))

For each quatroid Q, we determine the number d_Q of rational cubics through a generic point on the realization space of Q. Those that have no rational cubics through them are those containing a quatroid of the form

 $\mathcal{Q}_6, \mathcal{Q}_{32}, \mathcal{Q}_{41}, \mathcal{Q}_{59}, \mathcal{Q}_{62}$

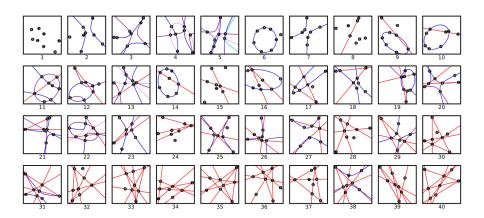
Those with $d_Q = 1$ are

 $\mathcal{Q}_{31}, \mathcal{Q}_{35}, \mathcal{Q}_{36}, \mathcal{Q}_{40}, \mathcal{Q}_{53}, \mathcal{Q}_{66}$



Proof: Lower bound (examples), upper bound (count the "steal")

#	Type	Lines	Conics	Bez.	Codim	Orbit	d_Q
1	1.0	{}	{}	true	0	1	12
2	1.1	{}	$\{123456\}$	true	1	28	10
3	1.2	{}	$\{123456, 123478\}$	true	2	210	8
4	1.3	{}	$\{123456, 123478, 125678\}$	true	3	420	6
5	1.4	{}	$\{123456, 123478, 125678, 345678\}$	true	4	105	4
6	1.7	{}	$\{1234567\}$	false	2	8	NB
7	1.28	{}	$\{12345678\}$	false	3	1	NB
8	2.0	{123}	{}	true	1	56	10
9	2.1	$\{123\}$	$\{124567\}$	true	2	840	8
10	2.1	{123}	$\{145678\}$	true	2	168	9
11	2.2	$\{123\}$	$\{124567, 134568\}$	true	3	3360	6
12	2.2	{123}	$\{124567, 345678\}$	true	3	840	7
13	2.3	$\{123\}$	$\{124567, 134568, 234578\}$	true	4	3360	4
14	2.7	{123}	$\{1245678\}$	false	3	168	NB
15	3.0	$\{123, 145\}$	8	true	2	840	8
16	3.1	$\{123, 145\}$	$\{124678\}$	true	3	3360	6
17	3.1	$\{123, 145\}$	{234567}	true	3	2520	6
18	3.1	$\{123, 145\}$	{234678}	true	3	3360	7
	1						



Quatroid $\#$	Rational Representaive
1:	[5 0 -5 -7 -6 5 0 -5; -1 -4 2 7 3 2 1 -9; -2 -1 -3 8 6 9 -9 1]
2:	$[24\ 0\ 0\ 24\ -3\ -1\ -2\ 1;\ 0\ 24\ 0\ 24\ -5\ 3\ -3\ -1;\ 0\ 0\ 24\ 24\ -1\ 1\ -4\ -4]$
3:	[-2 2 -1 -1 1 2 2 1; 2 -1 2 -1 2 -2 1 -2; -1 -1 -2 2 2 -1 2 -1
4:	[2 1 -2 1 1 1 2 -2; -2 1 -1 1 2 -2 -1 1; 2 -1 -1 2 1 -1 0 1]
5:	[1 -1 0 1 2 2 0 -1; 2 0 1 1 1 -2 0 2; 0 -2 2 2 -2 -2 -1 0]
6:	[-2 0 2 0 -2 1 1 1; 2 2 1 -2 -1 2 -2 -1; -1 -2 0 -1 -1 1 1 1 -2]
7:	$[1 - 15 - 8 \ 0 - 3 \ 0 \ 5 - 4; \ 0 \ 8 - 6 - 2 - 4 \ 2 \ 0 - 3; \ 1 \ 17 \ 10 \ 2 \ 5 \ 2 - 5 - 5]$
8:	$[4 - 2 - 9 \ 7 - 4 \ 2 \ 9 - 9; -6 \ 1 - 9 - 3 - 1 \ 9 \ 0 - 6; \ 3 \ 4 \ 0 \ 5 - 8 - 6 - 5 \ 1]$
9:	$[24\ 0\ 0\ 24\ -1\ 3\ -4\ -5;\ 0\ 24\ 0\ 24\ 3\ -1\ 4\ 5;\ 0\ 0\ 24\ 24\ 5\ 4\ 5\ 4]$
10:	$[24\ 0\ 0\ 24\ -1\ 2\ -2\ 1;\ 0\ 24\ 0\ 24\ -4\ 4\ 4\ 3;\ 0\ 0\ 24\ 24\ 2\ -3\ -3\ -3]$
11:	[4 5 -2 -1 2 2 -4 2; 4 -5 2 -5 5 5 -4 2; 1 -5 -2 -2 -2 2 5 4]
12:	[-3 3 2 -3 -2 3 3 -2; 0 3 2 3 2 0 4 -2; 5 -1 -2 -1 5 4 1 -5]
13:	[-2 -1 1 0 -1 2 0 -1; 0 0 2 -2 -2 -2 -2 2 0; -1 -2 2 -1 -1 -2 -2 1]
14:	$[2 \ 2 \ -2 \ -1 \ -1 \ 2 \ 2 \ -1; \ -2 \ -1 \ -1 \ 1 \ -1 \ 1 \ -1 \ 2; \ 0 \ -2 \ 0 \ 2 \ 1 \ -1 \ -1 \ 1]$
15:	[2 -1 -10 -2 6 10 3 1; 2 7 -10 -2 -1 -3 5 7; 7 0 9 -4 2 2 6 -10]
16:	$[24\ 0\ 0\ 24\ 1\ 5\ -5\ -5;\ 0\ 24\ 0\ 24\ 0\ -3\ 3\ -2;\ 0\ 0\ 24\ 24\ -5\ -5\ -1\ 4]$
17:	$[24\ 0\ 0\ 24\ -1\ -3\ -5\ -5;\ 0\ 24\ 0\ 24\ -4\ 5\ -2\ 0;\ 0\ 0\ 24\ 24\ 1\ 4\ 0\ 1]$
18:	$[24\ 0\ 0\ 24\ 2\ 1\ -4\ -2;\ 0\ 24\ 0\ 24\ -3\ 4\ -1\ -2;\ 0\ 0\ 24\ 24\ -3\ 2\ 1\ 5]$
19:	$[24\ 0\ 0\ 24\ 5\ 5\ -1\ -4;\ 0\ 24\ 0\ 24\ 3\ -4\ -5\ 2;\ 0\ 0\ 24\ 24\ 4\ 4\ 5\ -3]$
20:	$\begin{bmatrix} 1 \ 2 \ 1 \ -2 \ 2 \ -1 \ -1 \ 2; \ -1 \ 2 \ 0 \ 1 \ -1 \ -2 \ 1 \ 0; \ 1 \ 0 \ 0 \ 2 \ 1 \ 1 \ 2 \ -1 \end{bmatrix}$
21:	$\begin{bmatrix} 2 \ 2 \ -1 \ -1 \ 2 \ 1 \ 1 \ -1; \ 1 \ 0 \ -2 \ 2 \ 2 \ -1 \ 1 \ 1; \ 1 \ 1 \ 1 \ -2 \ -1 \ 0 \ 1 \ -1 \end{bmatrix}$
22:	$\begin{bmatrix} 1 -2 -2 -2 & 2 & 0 & -1 & 0; & 0 & 1 & 2 & -1 & 0 & -1 & 1 & 2; & -1 & 2 & 0 & 2 & 2 & -2 & 2 & -1 \end{bmatrix}$
23:	[2 0 1 2 - 2 - 1 2 0; 2 - 2 1 - 2 - 1 1 1 - 2; -1 - 1 0 1 2 2 - 1 0]

