
Formalizing Combinatorics Definitions in the
Lean Theorem Prover

Alena Gusakov

University of Waterloo

CanaDAM

Outline

▶ Formalizing mathematics: What is it and why do we care?

▶ The Lean algebra hierarchy: A template for formalizing
theories?

▶ The Lean graph theory library: Why the algebra library design
doesn’t work

Formalizing Mathematics

Formalizing a mathematical theory is the process of expressing it
precisely in a logical framework, usually in a proof assistant.

We do it for many reasons, including searching for mistakes, e.g.

▶ Terry Tao led a team in formalizing the proof of the PFR
Conjecture, and found a mistake in one of the lemmas in the
proof! (This was corrected in the formalization).

Formalizing also leads us to new and interesting insights about the
theory we formalize.

Dependent Type Theory

Dependent type theory is a grammar for expressing mathematical
statements.

Everything is a term or a type, and every term has a unique type.

Types, Subtypes, Sets

Prop : Type

hx : x ∈ S
y.2 : y.1 ∈ S

V : Type u

a : V
S : Set V

x : V

y.1 : V

↑S : Type u

⟨x, hx⟩ : ↑S

y : ↑S

Subtype.mk

Subtype.val

Simple graphs in mathlib

Question: Do we want to treat the vertices of a graph as a type, or
a set?

mathlib’s Algebra Hierarchy

Algebraic objects, i.e. groups, rings, semigroups, etc are classes
defined on a Type.

▶ We can easily express statements without type coercions.

▶ We can take advantage of “ad hoc polymorphism,” i.e. the
dependent type theory equivalent of inheritance of properties.

Algebraic subojects, i.e. subgroups, subrings, submodules, etc are
classes defined on Sets.

▶ We can avoid type coercions for the most part, because the
binary operation is still defined on the Type and not the Set.

Groups

This is a simplified version of the definition of a group, we have a
lot of syntactic sugar and additional definitions that go into this.

class Group (G : Type u) extends DivInvMonoid G where

/-- Binary operation denoted by ‘*‘ -/

binary_op : α → α → α
/-- Associativity -/

op_assoc : ∀ a b c : G, a * b * c = a * (b * c)

/-- Identity element, denoted by ‘1‘ -/

one : α
one_mul : ∀ a : M, 1 * a = a

/-- Invert an element of α, denoted by ‘a−1‘. -/

inv : α → α
inv_mul_cancel : ∀ a : G, a−1 * a = 1

Subgroups

structure Subgroup (G : Type*) [Group G] where

carrier : Set G

mul_mem {a b} : a ∈ carrier → b ∈ carrier → a * b ∈
carrier

/-- A subgroup contains 1‘. -/

one_mem : (1 : M) ∈ carrier

/-- ‘s‘ is closed under inverses -/

inv_mem : ∀ {s : S} {x}, x ∈ s → x−1 ∈ s

Subgroups vs Subgraphs

Similarities: Both are structures defined on subsets of the parent
object, inheriting certain properties and requiring their own
versions, e.g.

▶ A subgroup inherits the binary operation, and must be closed
under the binary operation.

▶ A subgraph is a subset of the binary relation, which must still
be symmetric and inherits irreflexivity.

Subgroups vs Subgraphs

Differences:
▶ Hierarchies:

▶ Algebraic objects have an inheritance hierarchy, where e.g. the
definition of a ring builds on the definition of a group.

▶ Graphs don’t have a hierarchy - e.g. we can think of an
undirected graph as a digraph where we forget edge
orientations, or we can think of a digraph as an undirected
graph where we choose edge orientations.

▶ What we do with groups is often very different from what we
do with graphs, more on this later...

Simple graphs in mathlib

The simple graph hierarchy was designed to imitate that of the
algebra library.

▶ SimpleGraph is defined as a symmetric, irreflexive adjacency
relation on a vertex type V .

▶ If G : SimpleGraph V, then Subgraph G is defined* as an
adjacency relation on vertex type Set V .

*We also have an IsSubgroup predicate for SimpleGraphs.

Simple graphs in mathlib

structure SimpleGraph (V : Type u) where

/-- The adjacency relation of a simple graph. -/

Adj : V → V → Prop

symm : Symmetric Adj

loopless : Irreflexive Adj

structure Subgraph {V : Type u} (G : SimpleGraph V) where

/-- Vertices of the subgraph -/

verts : Set V

/-- Edges of the subgraph -/

Adj : V → V → Prop

adj_sub : ∀ {v w : V}, Adj v w → G.Adj v w

edge_vert : ∀ {v w : V}, Adj v w → v ∈ verts

symm : Symmetric Adj := by aesop_graph

Simple graphs in mathlib

The SimpleGraph definition has some nice properties, and in some
ways is easy to work with.

However, there is a significant drawback: it is difficult to work with
common graph operations, substructures, etc!!

Vertex Deletion

Vertex deletion (or, equivalently, graph restriction) can be defined
on our definition of SimpleGraph V in two ways:

1. Output SimpleGraph W, where W is a subtype derived from V

by deleting everything in S, e.g. SimpleGraph (univ \ S)

where univ \ S is coerced to a type

2. Output Subgraph G, where verts is the set complement of S
and has type Set V.

In the second case, we still have to perform type coercions: Any
time we want to use SimpleGraph lemmas on a Subgraph, we have
to use a type coercion...or copy all the lemmas for Subgraph. This
is bad practice.

Walks in simple graphs

We define walks in simple graphs inductively, i.e.

inductive Walk : V → V → Type u

| nil {u : V} : Walk u u

| cons {u v w : V} (h : G.Adj u v) (p : Walk v w) :

Walk u w

In this definition, nil is the type of empty walks, and cons requires
us to provide a proof that u is adjacent to v in order for us to
append edge G.adj u v to Walk v w.

Walks in subgraphs

If we want to define walks in a subgraph, we have two options:

1. Coerce Subgraphs to SimpleGraphs every time we want to use
Walk

2. Make a new Walk definition for Subgraph, along with new
lemmas and additional definitions

Once again, both options introduce a lot of extra work.

Graph Operations

Regardless of what we do, we end up having to deal with either a
lot of type coercions or a lot of code duplication.

This might indicate that our definitions could be better...

Groups vs Graphs, Revisited

The key observation here is that in graph theory, every possible
subobject is a graph, i.e. any combination of a subset of the vertex
set and subset of the edge set will still give us some kind of graph.

On the other hand, deleting an element of a group gives
us...something that is not usually a group.

Recall: Types, Subtypes, Sets

Prop : Type

hx : x ∈ S
y.2 : y.1 ∈ S

V : Type u

a : V
S : Set V

x : V

y.1 : V

↑S : Type u

⟨x, hx⟩ : ↑S

y : ↑S

Subtype.mk

Subtype.val

New Definitions

We are led to the conclusion that it is better to work with Sets in
ambient Types, as opposed to imitating the algebra hierarchy with
objects on Types and subobjects on Sets.

There are new PRs to mathlib’s combinatorics library, with the
definition of multigraphs implemented and accepted.

Multigraphs on Sets

structure Graph (α β : Type*) where

/-- The vertex set. -/

vertexSet : Set α
/-- If ‘G.IsLink e x y‘ then we refer to ‘e‘ as ‘edge‘

and ‘x‘ and ‘y‘ as ‘left‘ and ‘right‘. -/

IsLink : β → α → α → Prop

/-- The edge set. -/

edgeSet : Set β := {e | ∃ x y, IsLink e x y}

isLink_symm : ∀ {|e|}, e ∈ edgeSet →
(Symmetric <| IsLink e)

eq_or_eq_of_isLink_of_isLink : ∀ {|e x y v w|}, IsLink e

x y → IsLink e v w → x = v ∨ x = w

edge_mem_iff_exists_isLink : ∀ e, e ∈ edgeSet ↔ ∃ x y,

IsLink e x y := by exact fun _ 7→ Iff.rfl

left_mem_of_isLink : ∀ {|e x y|}, IsLink e x y → x ∈
vertexSet

