Computational bounds for book Ramsey numbers

William (Jack) Wesley

UC San Diego

May 20, 2025

Introduction

Ramsey theory is the study of patterns that necessarily appear when a mathematical structure is sufficiently large: "total disorder is impossible"

Introduction

Ramsey theory is the study of patterns that necessarily appear when a mathematical structure is sufficiently large: "total disorder is impossible"

Every party of 6 people has a group of 3 mutual friends or 3 mutual strangers:

Introduction

Theorem (Ramsey, 1930)

Given positive integers r and s, there exists an integer n such that every red/blue edge coloring of the complete graph K_n contains either a red K_r or a blue K_s .

The Ramsey number R(r, s) is the *smallest* such n.

Ramsey numbers are HARD to compute:

r	2	3	4	5	6	7	8	9	
2	2	3	4	5 14	6	7	8	9	
3		6	9	14	18	23	28	36	
4			18	25					

Ramsey numbers are HARD to compute:

r	2	3	4	5	6	7	8	9	
2	2	3	4	5 14	6	7	8	9	
3		6	9	14	18	23	28	36	
4			18	25					

"Suppose aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack." - Paul Erdős

• Upper bounds often involve massive computations

- Upper bounds often involve massive computations
- More generally, the Ramsey number $R(G_1, G_2)$ is the smallest n such that every red/blue edge coloring of K_n contains either a red G_1 or a blue G_2 .

- Upper bounds often involve massive computations
- More generally, the Ramsey number $R(G_1, G_2)$ is the smallest n such that every red/blue edge coloring of K_n contains either a red G_1 or a blue G_2 .
- Even more generally: $R(G_1, \ldots, G_k)$: no G_i in color i

- Upper bounds often involve massive computations
- More generally, the Ramsey number $R(G_1, G_2)$ is the smallest n such that every red/blue edge coloring of K_n contains either a red G_1 or a blue G_2 .
- Even more generally: $R(G_1, ..., G_k)$: no G_i in color i
- Other families of graphs behave more predictably

- Upper bounds often involve massive computations
- More generally, the Ramsey number $R(G_1, G_2)$ is the smallest n such that every red/blue edge coloring of K_n contains either a red G_1 or a blue G_2 .
- Even more generally: $R(G_1, ..., G_k)$: no G_i in color i
- Other families of graphs behave more predictably
- $R(C_3, C_n) = 2n 1$ for $n \ge 4$, $R(P_m, P_n) = n + \lfloor m/2 \rfloor + 1$

- Upper bounds often involve massive computations
- More generally, the Ramsey number $R(G_1, G_2)$ is the smallest n such that every red/blue edge coloring of K_n contains either a red G_1 or a blue G_2 .
- Even more generally: $R(G_1, ..., G_k)$: no G_i in color i
- Other families of graphs behave more predictably
- $R(C_3, C_n) = 2n 1$ for $n \ge 4$, $R(P_m, P_n) = n + \lfloor m/2 \rfloor + 1$
- Dynamic Survey (Radziszowski '94-present)

Definition

The book graph B_n is the graph $K_2 + \overline{K}_n$

 B_3

 B_4

 Initial study of Ramsey numbers for books by Rousseau and Sheehan in 1978

- Initial study of Ramsey numbers for books by Rousseau and Sheehan in 1978
- "the book (B_n) does not have the same status in graph theory as does, for example, the complete graph (K_n) , the path (P_n) , cycle (C_n) , or wheel (W_n) " -Rousseau and Sheehan, 1978

- Initial study of Ramsey numbers for books by Rousseau and Sheehan in 1978
- "the book (B_n) does not have the same status in graph theory as does, for example, the complete graph (K_n) , the path (P_n) , cycle (C_n) , or wheel (W_n) " -Rousseau and Sheehan, 1978
- Recent interest in asymptotics: Conlon '19, Conlon-Fox-Wigderson '23, Chen-Lin '24

- Initial study of Ramsey numbers for books by Rousseau and Sheehan in 1978
- "the book (B_n) does not have the same status in graph theory as does, for example, the complete graph (K_n) , the path (P_n) , cycle (C_n) , or wheel (W_n) " -Rousseau and Sheehan, 1978
- Recent interest in asymptotics: Conlon '19, Conlon-Fox-Wigderson '23, Chen-Lin '24
- "Book algorithm" plays role in breakthrough proof that $R(s,s) \leq (4-\epsilon)^s$

Theorem (Rousseau-Sheehan '78)

For all n,

- **1** $R(B_n, B_n) = 4n + 2$ if q = 4n + 1 is a prime power,
- (2) $R(B_{n-1}, B_n) \leq 4n-1$,
- **3** $R(B_{n-2}, B_n) \le 4n 3$ if $n \equiv 2 \pmod{3}$.

Theorem (Rousseau-Sheehan '78)

For all n,

- **1** $R(B_n, B_n) = 4n + 2$ if q = 4n + 1 is a prime power,
- (2) $R(B_{n-1}, B_n) \leq 4n 1$,
- **3** $R(B_{n-2}, B_n) \le 4n 3$ if $n \equiv 2 \pmod{3}$.
 - Upper bounds come from Goodman's bound for number of triangles

Theorem (Rousseau-Sheehan '78)

For all n,

- **1** $R(B_n, B_n) = 4n + 2$ if q = 4n + 1 is a prime power,
- $P(B_{n-1},B_n) \leq 4n-1,$
- **3** $R(B_{n-2}, B_n) \le 4n 3$ if $n \equiv 2 \pmod{3}$.
 - Upper bounds come from Goodman's bound for number of triangles
- Lower bounds in (1) come from Paley graphs

New results on books

Theorem (W '24)

If q = 2n - 1 is a prime power congruent to 1 mod 4, then $R(B_{n-1}, B_n) = 4n - 1$.

Theorem (W'24, Lidický-McKinley-Pfender-Van Overberghe '24)

- $R(B_{n-2}, B_n) = 4n 3$ for $n \le 17$
- $R(B_{n-1}, B_n) = 4n 1$ for $n \le 20$
- $R(B_n, B_n) \ge 4n + 1$ for $n \le 16$

New results on books and other graphs

Theorem (W '24, '25, Lidický-McKinley-Pfender-Van Overberghe '24)

Ramsey number	old lower	old upper	new lower	new upper
$R(B_2, B_8)$	19	22	21	21
$R(B_2, B_9)$	21	24	22	22
$R(B_2, B_{10})$	23	26	25	25
$R(B_2, B_{12})$	27	29	28	28
$R(B_2, B_{13})$	29	31	29	29
$R(B_3, B_7)$			20	20
$R(C_3, C_6, C_6)$	15	18		15
$R(C_5, C_6, C_6)$	15	17		15
$R(K_4,K_4-e,K_4-e)$	33	47	35	

- Boolean satisfiability (SAT) solvers have been used with great success in graph and arithmetic Ramsey theory!
 - R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller '16)
 - R(G, G) for many sparse G (Low-Kapbasov-Kapbasov-Bereg '22)
 - Certification of R(3,8) = 28 (Duggan-Li-Bright-Ganesh '23)
 - $R(5,5) \le 46$ (Angeltveit-McKay '24)

- Boolean satisfiability (SAT) solvers have been used with great success in graph and arithmetic Ramsey theory!
 - R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller '16)
 - R(G, G) for many sparse G (Low-Kapbasov-Kapbasov-Bereg '22)
 - Certification of R(3,8) = 28 (Duggan-Li-Bright-Ganesh '23)
 - $R(5,5) \le 46$ (Angeltveit-McKay '24)
- Most of our bounds obtained by the solver Kissat

- Boolean satisfiability (SAT) solvers have been used with great success in graph and arithmetic Ramsey theory!
 - R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller '16)
 - R(G, G) for many sparse G (Low-Kapbasov-Kapbasov-Bereg '22)
 - Certification of R(3,8) = 28 (Duggan-Li-Bright-Ganesh '23)
 - $R(5,5) \le 46$ (Angeltveit-McKay '24)
- Most of our bounds obtained by the solver Kissat
- Solve times for upper bounds ranged from a few minutes to 60 hours

- Boolean satisfiability (SAT) solvers have been used with great success in graph and arithmetic Ramsey theory!
 - R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller '16)
 - R(G, G) for many sparse G (Low-Kapbasov-Kapbasov-Bereg '22)
 - Certification of R(3,8) = 28 (Duggan-Li-Bright-Ganesh '23)
 - $R(5,5) \le 46$ (Angeltveit-McKay '24)
- Most of our bounds obtained by the solver Kissat
- Solve times for upper bounds ranged from a few minutes to 60 hours
- Proof certificate sizes up to 186 GB

- Boolean satisfiability (SAT) solvers have been used with great success in graph and arithmetic Ramsey theory!
 - R(3,3,4) = 30 (Codish-Frank-Itzhakov-Miller '16)
 - R(G, G) for many sparse G (Low-Kapbasov-Kapbasov-Bereg '22)
 - Certification of R(3,8) = 28 (Duggan-Li-Bright-Ganesh '23)
 - $R(5,5) \le 46$ (Angeltveit-McKay '24)
- Most of our bounds obtained by the solver Kissat
- Solve times for upper bounds ranged from a few minutes to 60 hours
- Proof certificate sizes up to 186 GB
- Lower bound constructions from circulant graphs and generalizations

Direct encoding for $R(G_1, G_2) > n$:

Direct encoding for $R(G_1, G_2) > n$:

 Each edge has a variable x_e that is set to true if and only if e is colored red

Direct encoding for $R(G_1, G_2) > n$:

- Each edge has a variable x_e that is set to true if and only if e is colored red
- For each subgraph H of K_n isomorphic to G_1 , include the clause $\bigvee_{e \in E(H)} \bar{x}_e$ (one edge must be blue)
- For each subgraph H of K_n isomorphic to G_2 , include the clause $\bigvee_{e \in E(H)} x_e$ (one edge must be red)

Direct encoding for $R(G_1, G_2) > n$:

- Each edge has a variable x_e that is set to true if and only if e is colored red
- For each subgraph H of K_n isomorphic to G_1 , include the clause $\bigvee_{e \in E(H)} \bar{x}_e$ (one edge must be blue)
- For each subgraph H of K_n isomorphic to G_2 , include the clause $\bigvee_{e \in E(H)} x_e$ (one edge must be red)

Satisfying assignments give lower bounds

Direct encoding for $R(G_1, G_2) > n$:

- Each edge has a variable x_e that is set to true if and only if e is colored red
- For each subgraph H of K_n isomorphic to G_1 , include the clause $\bigvee_{e \in E(H)} \bar{x}_e$ (one edge must be blue)
- For each subgraph H of K_n isomorphic to G_2 , include the clause $\bigvee_{e \in E(H)} x_e$ (one edge must be red)

Satisfying assignments give **lower bounds**Proofs of unsatisfiability give **upper bounds**

SAT toolchain

Circulant graphs

Definition

A graph G = (V, E) on n vertices is circulant if there exists a set $S \subseteq \mathbb{Z}_n$ such that $\{x, y\} \in E$ if and only if $x - y \pmod{n} \in S$.

Circulant graphs

Definition

A graph G = (V, E) on n vertices is circulant if there exists a set $S \subseteq \mathbb{Z}_n$ such that $\{x, y\} \in E$ if and only if $x - y \pmod{n} \in S$.

Example

Paley graphs are circulant graphs with vertex set the finite field \mathbb{F}_q for $q \equiv 1 \pmod{4}$ a prime power where S is the set of squares in \mathbb{F}_q .

$$q = 13$$
, $S = \{1, 4, 9, 3, 12, 10\}$

Lower bounds for small Ramsey numbers

$$n = 5, S = \{1, 4\}$$

$$n = 13, S = \{1, 5, 8, 12\}$$

$$n = 8, S = \{1, 4, 7\}$$

$$n = 17, S = \{1, 2, 4, 8, 9, 13, 15, 16\}$$

Lower bounds for small Ramsey numbers

$$n = 5, S = \{1, 4\}$$

$$n = 13, S = \{1, 5, 8, 12\}$$

$$n = 8, S = \{1, 4, 7\}$$

$$n = 17, S = \{1, 2, 4, 8, 9, 13, 15, 16\}$$

Tight lower bounds for R(3,3), R(3,4), R(3,5), R(4,4)

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Definition

A matrix is circulant if each row is a rightward cyclic shift of the previous row.

Definition

A matrix is circulant if each row is a rightward cyclic shift of the previous row.

Circulant graphs have circulant adjacency matrices

Definition

A matrix is circulant if each row is a rightward cyclic shift of the previous row.

- Circulant graphs have circulant adjacency matrices
- A generalization:

Definition

A graph is block-circulant (or *polycirculant* or *multicirculant*) if its adjacency matrix is of the form

$$A = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1k} \\ C_{21} & C_{22} & \dots & C_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ C_{k1} & C_{k2} & \dots & C_{kk} \end{pmatrix},$$

where each C_{ij} is a circulant matrix.

- Block-circulant graphs often yield good lower bounds for $R(K_r, K_s e)$ (Goedgebeur-Van Overberghe '22)
- Many new lower bounds for diagonal or "nearly diagonal" book Ramsey numbers use 2-block constructions (Lidický-McKinley-Pfender-Van Overberghe '24, W'24)
- "2-block" version of Paley graphs gives $R(B_{n-1}, B_n) = 4n 1$ (W '24)

• Cayley and "block Cayley" colorings for other groups G: $\{x,y\} \in E \iff xy^{-1} \in S$

Additional local search methods

- Additional local search methods
- ullet Dynamic symmetry breaking, CAS + SAT

- Additional local search methods
- Dynamic symmetry breaking, CAS + SAT
- Finite geometry, other coloring problems

- Additional local search methods
- Dynamic symmetry breaking, CAS + SAT
- Finite geometry, other coloring problems
- Proof verification and minimization

Thank you! Merci!