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The SAT problem

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment (F F T7)
F = (X1 \/X2) VAN (71 V X3) AN (iz \/73)

T = {X17 727 X3}

SAT solvers find a satisfying 7, or declare that none exists
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The SAT problem

SAT solvers accept text input in conjunctive normal form
[F = (X]_ V X2) VAN (71 V X3) VAN (72 \/73)

p cnf 3 3
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SAT solvers at work

Hardware /software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller's Conjecture

Pythagorean triples problem as - bo ==

Lam’s Problem
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My work: extend the trusted SAT toolchain to
include encodings by using a theorem prover
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The Lean theorem prover

VN

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)
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The Lean theorem prover

VN

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million lines of code

We used version 3; version 4 is under active development
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The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)
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The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

theorem take_sublist_of_le {a : Typex} {i j : nat} :
vV (1 : list a), l.take i <+ l.take j :=
begin
intros hij 1,
induction 1 with a as ih generalizing i j,
{ rwv [take_nil, take_nil] },
{ cases i,
{ rwv take_zero,
exact nil_sublist _ },
{ cases j,
{ exact absurd hij (not_le.mpr (succ_pos i)) },
{ rw [take, take],
exact cons_sublist_cons_iff.mpr

(ih (succ_le_succ_iff.mp hij)) } } }
end
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Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

theorem take_sublist_of_le {a : Typex} {i j : nat} : i < j —
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The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)
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The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

{ rv [take_nil, take_nil] 1},
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Verified encodings library

Open-source on Github

Contains:
» Data structures (CNF representations, variable generation)
» Supporting lemmas and theorems
» Proofs of correctness for parity, at-most-one, at-most-k
» Support for combining encodings to form larger ones

Basis for future verification efforts
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Library preliminaries

Goal: prove that an encoding is correct

Q: What does it mean for an encoding to be
correct?
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F is a formula in propositional logic

C is a boolean constraint with inputs X = x, ..., x,

F encodes C if for all truth assignments 7,
C(r(x1),...,7(xy)) < o, o(F) =T,

where o agrees with 7 on X (i.e. Vx € X, 7(x) = o(x))

An encoding function E is correct for C if the formula it
produces encodes C on all inputs
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Library preliminaries

In Lean, the definitions look like:

def encodes (C : comstraint) (1 : list literal) (F : cnf) :=
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Cayden R. Codel 14 / 20



Library preliminaries

In Lean, the definitions look like:

def encodes (C : comstraint) (1 : list literal) (F : cnf) :=
V (7 : assignment),
(C.eval 7 1 = tt) «
J o, F.eval 0 = tt A agree_on 7 o (vars 1)

def is_correct (C) (enc : enc_fn) :=
vV {1 : list literal} {l|g : gensym[}, disjoint 1 g —
encodes C (formula (enc 1 g)) 1

Cayden R. Codel 14 / 20



Library preliminaries

In Lean, the definitions look like:

def encodes (C : constraint) (1 : list literal) (F : cnf) :=
V (7 : assignment),
(C.eval 7 1 = tt) «
J o, F.eval 0 = tt A agree_on 7 o (vars 1)

def is_correct (C) (enc : enc_fn) :=
vV {1 : list literal} {l|g : gensym[}, disjoint 1 g —
encodes C (formula (enc 1 g)) 1

We prove that the encodings in our library are correct and
well-behaved (generate new variables in a reasonable manner)
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Case study: at-most-one

The at-most-one encoding is true iff at most one of the
boolean variables is true
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Case study: at-most-one

The at-most-one encoding is true iff at most one of the
boolean variables is true

The naive encoding produces O(n?) clauses and enumerates
all pairs of variables:

Naive(X) = /\1§i<j§n (xi VX))

The Sinz encoding produces O(n) clauses and needs n — 1
new variables:

SIHZ(X) = /\7;11 (()_(,' V S,') VAN (§,- V S;+1) AN (§,~ V )_<i+1))

The three clauses are logically equivalent to

(xi = si) A (si = siv1) A (si = Xit1)
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Case study: at-most-one

H-@-@0-0-0
INNSNN
» ® & ©

(Hollow arrow heads indicate negated implications)
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Case study: at-most-one

Encodings in Lean’s functional programming language:

def Sinz_amo : enc_fn
| [11, 121 g :=
let (y, g1) := g.fresh in
([[1;.flip, Pos yl, [Neg y, 1,.flipll, gi)

| (1; :: 1 :: 1s) g :=
let (y, g1) := g.fresh in
let (z, _) := gi.fresh in
let (F_rec, gz) := sinz_rec (12 :: 1ls) g in
([[1;.flip, Pos y], [Neg y, Pos z],
[Neg y, 1,.flip]l] ++ F_rec, g)
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Encodings in Lean's functional programming language:
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Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc; ency : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, gi1) := enc; 1 g in
let (F2, go) :=ency 1 g1 in
(F1 ++ F2, g2)
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Easily recover proofs of correctness

def append (enc; ency : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, gi1) := enc; 1 g in
let (F2, go) :=ency 1 g1 in
(F1 ++ F2, g2)

theorem is_correct_append
{c1 c» : constraint} {enc; enc, : enc_fn V} :
is_correct c; enci — is_correct c» ency —
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Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc; encp : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, g1) := enc; 1 g in
let (F2, go) :=ency 1 g1 in
(F1 ++ F2, g2)

theorem is_correct_append
{c1 c» : constraint} {enc; enc, : enc_fn V} :
is_correct c; enci — is_correct c» ency —
is_correct (ci; ++ c) (ency ++ ency) := ...

Already demonstrated by combining sub-encodings for Sudoku

Cayden R. Codel 18 / 20



Applications and future work

» Prove more (sub-)encodings correct
» Prove the Keller reduction correct
» Write verified proof checkers for SAT proof systems
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Applications and future work

» Prove more (sub-)encodings correct
» Prove the Keller reduction correct
» Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way
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Verified encodings for SAT solvers

Thank you!
Any questions?
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