Verified encodings for SAT solvers

Cayden R. Codel
Advised by Marijn J. H. Heule and Jeremy Avigad

June 5, 2023

Repo at https://github.com/ccodel/verified-encodings

Cayden R. Codel

The SAT problem and the SAT toolchain

The Lean theorem prover

Verified encodings library

Applications

SAT is an NP-hard problem in propositional logic

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment $(F \models \top?)$

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment $(F \vDash \top?)$

$$F = (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3)$$

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment $(F \models \top?)$

$$F = (\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\overline{\mathbf{x}}_1 \vee \mathbf{x}_3) \wedge (\overline{\mathbf{x}}_2 \vee \overline{\mathbf{x}}_3)$$

$$\tau = \{x_1, \ \overline{x}_2, \ x_3\}$$

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment $(F \models \top?)$

$$F = (\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\overline{\mathbf{x}}_1 \vee \mathbf{x}_3) \wedge (\overline{\mathbf{x}}_2 \vee \overline{\mathbf{x}}_3)$$

$$\tau = \{x_1, \ \overline{x}_2, \ x_3\}$$

SAT solvers find a satisfying τ , or declare that none exists

SAT solvers accept text input in conjunctive normal form

SAT solvers accept text input in conjunctive normal form

$$F = (x_1 \vee x_2) \wedge (\overline{x}_1 \vee x_3) \wedge (\overline{x}_2 \vee \overline{x}_3)$$

```
p cnf 3 3
1 2 0
-1 3 0
-2 -3 0
```

Hardware/software verification, optimization, SMT solvers

Hardware/software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Hardware/software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller's Conjecture

Hardware/software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller's Conjecture

Pythagorean triples problem

$$a^2 + b^2 = c^2$$

Hardware/software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller's Conjecture

Pythagorean triples problem

 $a^2 + b^2 = c^2$

Lam's Problem

SAT solver

Cayden R. Codel

My work: extend the trusted SAT toolchain to include encodings by using a theorem prover

Lean is an interactive theorem prover based on the calculus of inductive constructions (constructive logic)

Lean is an interactive theorem prover based on the calculus of inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a million lines of code

Lean is an interactive theorem prover based on the calculus of inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a million lines of code

We used version 3; version 4 is under active development

Proofs are written in Lean declaratively or with tactics that manipulate proof state (similar to Coq, Isabelle, etc.)

Cayden R. Codel

Proofs are written in Lean declaratively or with tactics that manipulate proof state (similar to Coq, Isabelle, etc.)

```
theorem take_sublist_of_le \{\alpha : \text{Type*}\}\ \{i \ j : \text{nat}\} : i \le j \rightarrow
  \forall (1 : list \alpha), l.take i <+ l.take j :=
begin
  intros hij 1,
  induction 1 with a as ih generalizing i j,
  { rw [take_nil, take_nil] },
  { cases i,
    { rw take_zero,
      exact nil_sublist _ },
    { cases j,
      { exact absurd hij (not_le.mpr (succ_pos i)) },
      { rw [take, take],
         exact cons_sublist_cons_iff.mpr
           (ih (succ_le_succ_iff.mp hij)) } } }
end
```

Proofs are written in Lean declaratively or with tactics that manipulate proof state (similar to Coq, Isabelle, etc.)

```
theorem take_sublist_of_le \{\alpha : \text{Type*}\}\ \{i \ j : \text{nat}\} : i \leq j \rightarrow
  \forall (1 : list \alpha), l.take i <+ l.take j :=
  intros hij 1,
  induction 1 with a as ih generalizing i j,
  { rw [take_nil, take_nil] },
  { cases i,
    { rw take_zero,
      exact nil_sublist _ },
    { cases j,
      { exact absurd hij (not_le.mpr (succ_pos i)) },
      { rw [take, take],
         exact cons_sublist_cons_iff.mpr
           (ih (succ_le_succ_iff.mp hij)) } } }
end
```

Proofs are written in Lean declaratively or with tactics that manipulate proof state (similar to Coq, Isabelle, etc.)

```
theorem take_sublist_of_le \{\alpha : Type*\} \{i j : nat\} : i \leq j \rightarrow j
 \forall (1 : list \alpha), l.take i <+ l.take j :=
  intros hij 1,
  induction 1 with a as ih generalizing i j,
  { rw [take_nil, take_nil] },
  { cases i,
    { rw take_zero,
      exact nil_sublist _ },
    { cases j,
      { exact absurd hij (not_le.mpr (succ_pos i)) },
      { rw [take, take],
         exact cons_sublist_cons_iff.mpr
           (ih (succ_le_succ_iff.mp hij)) } } }
end
```

Proofs are written in Lean declaratively or with tactics that manipulate proof state (similar to Coq, Isabelle, etc.)

```
theorem take_sublist_of_le \{\alpha : Type*\} \{i j : nat\} : i \leq j \rightarrow j
 \forall (1 : list \alpha), l.take i <+ l.take j :=
  intros hij 1,
  induction 1 with a as ih generalizing i j,
  { rw [take_nil, take_nil] },
  { cases i,
    { rw take_zero,
      exact nil_sublist _ },
    { cases j,
      { exact absurd hij (not_le.mpr (succ_pos i)) },
      { rw [take, take],
         exact cons_sublist_cons_iff.mpr
           (ih (succ_le_succ_iff.mp hij)) } } }
end
```

Proofs are written in Lean declaratively or with tactics that manipulate proof state (similar to Coq, Isabelle, etc.)

```
theorem take_sublist_of_le \{\alpha : Type*\} \{i j : nat\} : i \leq j \rightarrow j
 \forall (1 : list \alpha), l.take i <+ l.take j :=
  intros hij 1,
  induction 1 with a as ih generalizing i j,
  { rw [take_nil, take_nil] },
  { cases i.
    { rw take_zero,
      exact nil_sublist _ },
    { cases j,
      { exact absurd hij (not_le.mpr (succ_pos i)) },
      { rw [take, take],
         exact cons_sublist_cons_iff.mpr
           (ih (succ_le_succ_iff.mp hij)) } } }
end
```

Verified encodings library

Open-source on Github

Verified encodings library

Open-source on Github

Contains:

- ▶ Data structures (CNF representations, variable generation)
- ► Supporting lemmas and theorems
- ▶ Proofs of correctness for parity, at-most-one, at-most-k
- Support for combining encodings to form larger ones

Verified encodings library

Open-source on Github

Contains:

- ▶ Data structures (CNF representations, variable generation)
- ► Supporting lemmas and theorems
- ▶ Proofs of correctness for parity, at-most-one, at-most-k
- Support for combining encodings to form larger ones

Basis for future verification efforts

Goal: prove that an encoding is correct

Goal: prove that an encoding is correct

Q: What does it mean for an encoding to be correct?

F is a formula in propositional logic

C is a boolean constraint with inputs $X = x_1, \ldots, x_n$

F is a formula in propositional logic

C is a boolean constraint with inputs $X = x_1, \dots, x_n$

F encodes C if for all truth assignments τ ,

$$C(\tau(x_1),\ldots,\tau(x_n)) \leftrightarrow \exists \sigma,\ \sigma(F) = \top,$$

where σ agrees with τ on X (i.e. $\forall x \in X$, $\tau(x) = \sigma(x)$)

F is a formula in propositional logic

C is a boolean constraint with inputs $X = x_1, \dots, x_n$

F encodes C if for all truth assignments τ ,

$$C(\tau(x_1),\ldots,\tau(x_n)) \leftrightarrow \exists \sigma,\ \sigma(F) = \top,$$

where σ agrees with τ on X (i.e. $\forall x \in X$, $\tau(x) = \sigma(x)$)

An encoding function E is correct for C if the formula it produces encodes C on all inputs

In Lean, the definitions look like:

```
def encodes (C : constraint) (1 : list literal) (F : cnf) := \forall (\tau : assignment), (C.eval \tau 1 = tt) \leftrightarrow \exists \sigma, F.eval \sigma = tt \land agree_on \tau \sigma (vars 1)
```

In Lean, the definitions look like:

```
def encodes (C : constraint) (l : list literal) (F : cnf) :=
  \forall (\tau : assignment),
  (C.eval \tau l = tt) \to 
  \forall \sigma, F.eval \sigma = tt \wedge agree_on \tau \sigma (vars l)

def is_correct (C) (enc : enc_fn) :=
  \forall \{ l : list literal \} \{ g : gensym \}, disjoint l g \to encodes C (formula (enc l g)) l
```

In Lean, the definitions look like:

```
def encodes (C : constraint) (1 : list literal) (F : cnf) := \forall (\tau : assignment), (C.eval \tau l = tt) \leftrightarrow \exists \sigma, F.eval \sigma = tt \land agree_on \tau \sigma (vars l) def is_correct (C) (enc : enc_fn) := \forall {l : list literal} {g : gensym}, disjoint l g \rightarrow encodes C (formula (enc l g)) l
```

We prove that the encodings in our library are correct and well-behaved (generate new variables in a reasonable manner)

The at-most-one encoding is true iff at most one of the boolean variables is true

The at-most-one encoding is true iff at most one of the boolean variables is true

The naive encoding produces $O(n^2)$ clauses and enumerates all pairs of variables:

$$Naive(X) = \bigwedge_{1 \le i < j \le n} (\overline{x}_i \lor \overline{x}_j)$$

The at-most-one encoding is true iff at most one of the boolean variables is true

The naive encoding produces $O(n^2)$ clauses and enumerates all pairs of variables:

$$Naive(X) = \bigwedge_{1 \le i < j \le n} (\overline{x}_i \vee \overline{x}_j)$$

The Sinz encoding produces O(n) clauses and needs n-1 new variables:

$$\operatorname{Sinz}(X) = \bigwedge_{i=1}^{n-1} \left((\overline{x}_i \vee s_i) \wedge (\overline{s}_i \vee s_{i+1}) \wedge (\overline{s}_i \vee \overline{x}_{i+1}) \right)$$

The at-most-one encoding is true iff at most one of the boolean variables is true

The naive encoding produces $O(n^2)$ clauses and enumerates all pairs of variables:

$$Naive(X) = \bigwedge_{1 \le i < j \le n} (\overline{x}_i \vee \overline{x}_j)$$

The Sinz encoding produces O(n) clauses and needs n-1 new variables:

$$\operatorname{Sinz}(X) = \bigwedge_{i=1}^{n-1} \left((\overline{x}_i \vee s_i) \wedge (\overline{s}_i \vee s_{i+1}) \wedge (\overline{s}_i \vee \overline{x}_{i+1}) \right)$$

The three clauses are logically equivalent to

$$(x_i \rightarrow s_i) \land (s_i \rightarrow s_{i+1}) \land (s_i \rightarrow \overline{x}_{i+1})$$

(Hollow arrow heads indicate negated implications)

Encodings in Lean's functional programming language:

Encodings in Lean's functional programming language:

Encodings in Lean's functional programming language:

Encodings in Lean's functional programming language:

```
def Sinz_amo : enc_fn  | [l_1, l_2] \qquad g := \\ \textbf{let } \langle \textbf{y}, \textbf{g}_1 \rangle := \textbf{g.fresh in} \\ \langle [[l_1.flip, Pos y], [Neg y, l_2.flip]], g_1 \rangle   | (l_1 :: l_2 :: ls) g := \\ \textbf{let } \langle \textbf{y}, \textbf{g}_1 \rangle := \textbf{g.fresh in} \\ \textbf{let } \langle \textbf{z}, \_ \rangle := \textbf{g.fresh in} \\ \textbf{let } \langle \textbf{F.rec}, g_2 \rangle := \textbf{sinz\_rec} (l_2 :: ls) g_1 \text{ in} \\ \langle [[l_1.flip, Pos y], [Neg y, Pos z], \\ [Neg y, l_2.flip]] ++ F_rec, g_2 \rangle
```

Encodings in Lean's functional programming language:

```
def Sinz_amo : enc_fn  | [l_1, l_2] \qquad g := \\ let \ \langle y, g_1 \rangle := g.fresh \ in \\ \ \langle [[l_1.flip, Pos y], [Neg y, l_2.flip]], g_1 \rangle   | (l_1 :: l_2 :: ls) g := \\ let \ \langle y, g_1 \rangle := g.fresh \ in \\ let \ \langle z, \_ \rangle := g_1.fresh \ in \\ let \ \langle F\_rec, g_2 \rangle := sinz\_rec \ (l_2 :: ls) \ g_1 \ in \\ \ \langle [[l_1.flip, Pos y], [Neg y, Pos z], \\ [Neg y, l_2.flip]] \ ++ \ F\_rec, g_2 \rangle
```

Encodings in Lean's functional programming language:

```
def Sinz_amo : enc_fn  | [l_1, l_2] \qquad g := \\ let \ \langle y, g_1 \rangle := g.fresh \ in \\ \ \langle [[l_1.flip, Pos y], [Neg y, l_2.flip]], g_1 \rangle   | (l_1 :: l_2 :: ls) g := \\ let \ \langle y, g_1 \rangle := g.fresh \ in \\ let \ \langle z, \_ \rangle := g_1.fresh \ in \\ let \ \langle F\_rec, g_2 \rangle := sinz\_rec \ (l_2 :: ls) \ g_1 \ in \\ \ \langle [[l_1.flip, Pos y], [Neg y, Pos z], \\ [Neg y, l_2.flip]] ++ F\_rec, g_2 \rangle
```

Encodings in Lean's functional programming language:

```
def Sinz_amo : enc_fn  | [l_1, l_2] \qquad g := \\ let \langle y, g_1 \rangle := g.fresh in \\ \langle [[l_1.flip, Pos y], [Neg y, l_2.flip]], g_1 \rangle   | (l_1 :: l_2 :: ls) g := \\ let \langle y, g_1 \rangle := g.fresh in \\ let \langle z, \_ \rangle := g_1.fresh in \\ let \langle F\_rec, g_2 \rangle := sinz\_rec (l_2 :: ls) g_1 in \\ \langle [[l_1.flip, Pos y], [Neg y, Pos z], \\ [Neg y, l_2.flip]] ++ F\_rec, g_2 \rangle
```

Encodings in Lean's functional programming language:

```
def Sinz_amo : enc_fn  | [l_1, l_2] \qquad g := \\ let \ \langle y, g_1 \rangle := g.fresh \ in \\ \ \langle [[l_1.flip, Pos y], [Neg y, l_2.flip]], g_1 \rangle   | (l_1 :: l_2 :: ls) g := \\ let \ \langle y, g_1 \rangle := g.fresh \ in \\ let \ \langle z, \_ \rangle := g_1.fresh \ in \\ let \ \langle F\_rec, g_2 \rangle := sinz\_rec \ (l_2 :: ls) \ g_1 \ in \\ \ \langle [[l_1.flip, Pos y], [Neg y, Pos z], \\ [Neg y, l_2.flip]] ++ F\_rec, g_2 \rangle
```

Encodings in Lean's functional programming language:

```
def Sinz_amo : enc_fn  | [l_1, l_2] \qquad g := \\ let \langle y, g_1 \rangle := g.fresh in \\ \langle [[l_1.flip, Pos y], [Neg y, l_2.flip]], g_1 \rangle   | (l_1 :: l_2 :: ls) g := \\ let \langle y, g_1 \rangle := g.fresh in \\ let \langle z, _ \rangle := g_1.fresh in \\ let \langle F_rec, g_2 \rangle := sinz_rec (l_2 :: ls) g_1 in \\ \langle [[l_1.flip, Pos y], [Neg y, Pos z], \\ [Neg y, l_2.flip]] ++ F_rec, g_2 \rangle
```

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

Combine sub-encodings to form more complex ones Easily recover proofs of correctness

```
def append (enc<sub>1</sub> enc<sub>2</sub> : enc_fn) : enc_fn := \lambda (1 : list literal) (g : gensym),
let (f<sub>1</sub>, g<sub>1</sub>) := enc<sub>1</sub> 1 g in
let (f<sub>2</sub>, g<sub>2</sub>) := enc<sub>2</sub> 1 g<sub>1</sub> in
(f<sub>1</sub> ++ f<sub>2</sub>, g<sub>2</sub>)
```

Combine sub-encodings to form more complex ones Easily recover proofs of correctness

```
def append (enc<sub>1</sub> enc<sub>2</sub> : enc_fn) : enc_fn := \lambda (1 : list literal) (g : gensym),

let (F<sub>1</sub>, g<sub>1</sub>) := enc<sub>1</sub> 1 g in

let (F<sub>2</sub>, g<sub>2</sub>) := enc<sub>2</sub> 1 g<sub>1</sub> in

(F<sub>1</sub> ++ F<sub>2</sub>, g<sub>2</sub>)
```

Combine sub-encodings to form more complex ones Easily recover proofs of correctness

```
def append (enc<sub>1</sub> enc<sub>2</sub> : enc_fn) : enc_fn := \lambda (1 : list literal) (g : gensym),
let (F<sub>1</sub>, g<sub>1</sub>) := enc<sub>1</sub> 1 g in
let (F<sub>2</sub>, g<sub>2</sub>) := enc<sub>2</sub> 1 g<sub>1</sub> in
(F<sub>1</sub> ++ F<sub>2</sub>, g<sub>2</sub>)
```

Combine sub-encodings to form more complex ones Easily recover proofs of correctness

```
def append (enc<sub>1</sub> enc<sub>2</sub> : enc_fn) : enc_fn := \lambda (1 : list literal) (g : gensym),
let (F<sub>1</sub>, g<sub>1</sub>) := enc<sub>1</sub> l g in
let (F<sub>2</sub>, g<sub>2</sub>) := enc<sub>2</sub> l g<sub>1</sub> in
(F<sub>1</sub> ++ F<sub>2</sub>, g<sub>2</sub>)
```

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

```
def append (enc<sub>1</sub> enc<sub>2</sub> : enc_fn) : enc_fn := \lambda (1 : list literal) (g : gensym), let (F<sub>1</sub>, g<sub>1</sub>) := enc<sub>1</sub> l g in let (F<sub>2</sub>, g<sub>2</sub>) := enc<sub>2</sub> l g<sub>1</sub> in (F<sub>1</sub> ++ F<sub>2</sub>, g<sub>2</sub>) theorem is_correct_append {c<sub>1</sub> c<sub>2</sub> : constraint} {enc<sub>1</sub> enc<sub>2</sub> : enc_fn V} : is_correct c<sub>1</sub> enc<sub>1</sub> \rightarrow is_correct c<sub>2</sub> enc<sub>2</sub> \rightarrow is_correct (c<sub>1</sub> ++ c<sub>2</sub>) (enc<sub>1</sub> ++ enc<sub>2</sub>) := ...
```

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

```
def append (enc<sub>1</sub> enc<sub>2</sub> : enc_fn) : enc_fn := \lambda (1 : list literal) (g : gensym),
let (F<sub>1</sub>, g<sub>1</sub>) := enc<sub>1</sub> 1 g in
let (F<sub>2</sub>, g<sub>2</sub>) := enc<sub>2</sub> 1 g<sub>1</sub> in
(F<sub>1</sub> ++ F<sub>2</sub>, g<sub>2</sub>)

theorem is_correct_append
{c<sub>1</sub> c<sub>2</sub> : constraint} {enc<sub>1</sub> enc<sub>2</sub> : enc_fn V} :
is_correct c<sub>1</sub> enc<sub>1</sub> \rightarrow is_correct c<sub>2</sub> enc<sub>2</sub> \rightarrow
is_correct (c<sub>1</sub> ++ c<sub>2</sub>) (enc<sub>1</sub> ++ enc<sub>2</sub>) := ...
```

Already demonstrated by combining sub-encodings for Sudoku

- ► Prove more (sub-)encodings correct
- Prove the Keller reduction correct
- Write verified proof checkers for SAT proof systems

- ► Prove more (sub-)encodings correct
- ▶ Prove the Keller reduction correct
- Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for generating SAT queries in a trusted way

Verified encodings for SAT solvers

Thank you! Any questions?

Cayden R. Codel 20 / 20