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The SAT problem

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment (F ⊨ ⊤?)

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

τ = {x1, x2, x3}

SAT solvers find a satisfying τ , or declare that none exists
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The SAT problem

SAT solvers accept text input in conjunctive normal form

F = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)

p cnf 3 3

1 2 0

-1 3 0

-2 -3 0
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SAT solvers at work

Hardware/software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller’s Conjecture

Pythagorean triples problem a2 + b2 = c2

Lam’s Problem
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SAT toolchain

Trusted SAT toolchain

F

SAT solver

SAT solver

τ

F ⊨ ⊤

Pf

F ⊨ ⊥

Model
checker ✓
Model
checker ✓

Proof
checker ✓
Proof
checker ✓
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Using the SAT toolchain
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SAT
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My work: extend the trusted SAT toolchain to
include encodings by using a theorem prover
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The Lean theorem prover

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million lines of code

We used version 3; version 4 is under active development
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The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

theorem take_sublist_of_le {α : Type*} {i j : nat} : i ≤ j →
∀ (l : list α), l.take i <+ l.take j :=

begin

intros hij l,

induction l with a as ih generalizing i j,

{ rw [take_nil, take_nil] },

{ cases i,

{ rw take_zero,

exact nil_sublist _ },

{ cases j,

{ exact absurd hij (not_le.mpr (succ_pos i)) },

{ rw [take, take],

exact cons_sublist_cons_iff.mpr

(ih (succ_le_succ_iff.mp hij)) } } }

end
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Verified encodings library

Open-source on Github

Contains:

▶ Data structures (CNF representations, variable generation)

▶ Supporting lemmas and theorems

▶ Proofs of correctness for parity, at-most-one, at-most-k

▶ Support for combining encodings to form larger ones

Basis for future verification efforts
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Library preliminaries

Goal: prove that an encoding is correct

Q: What does it mean for an encoding to be
correct?
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Library preliminaries

F is a formula in propositional logic

C is a boolean constraint with inputs X = x1, . . . , xn

F encodes C if for all truth assignments τ ,

C (τ(x1), . . . , τ(xn)) ↔ ∃σ, σ(F ) = ⊤,

where σ agrees with τ on X (i.e. ∀x ∈ X , τ(x) = σ(x))

An encoding function E is correct for C if the formula it
produces encodes C on all inputs
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Library preliminaries

In Lean, the definitions look like:

def encodes (C : constraint) (l : list literal) (F : cnf) :=

∀ (τ : assignment),

(C.eval τ l = tt) ↔
∃ σ, F.eval σ = tt ∧ agree_on τ σ (vars l)

def is_correct (C) (enc : enc_fn) :=

∀ {|l : list literal|} {|g : gensym|}, disjoint l g →
encodes C (formula (enc l g)) l

We prove that the encodings in our library are correct and
well-behaved (generate new variables in a reasonable manner)
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Case study: at-most-one
The at-most-one encoding is true iff at most one of the
boolean variables is true

The naive encoding produces O(n2) clauses and enumerates
all pairs of variables:

Naive(X ) =
∧

1≤i<j≤n (x i ∨ x j)

The Sinz encoding produces O(n) clauses and needs n − 1
new variables:

Sinz(X ) =
∧n−1

i=1

(
(x i ∨ si) ∧ (s i ∨ si+1) ∧ (s i ∨ x i+1)

)
The three clauses are logically equivalent to

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)
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Case study: at-most-one

x1

s1

x2

s2

x3

s3

x4

s4

. . .

. . .

(Hollow arrow heads indicate negated implications)
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Case study: at-most-one

Encodings in Lean’s functional programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[l1.flip, Pos y], [Neg y, l2.flip]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[l1.flip, Pos y], [Neg y, Pos z],

[Neg y, l2.flip]] ++ F_rec, g2⟩
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Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (F1, g1) := enc1 l g in

let (F2, g2) := enc2 l g1 in

(F1 ++ F2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn V} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Already demonstrated by combining sub-encodings for Sudoku
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Applications and future work

▶ Prove more (sub-)encodings correct

▶ Prove the Keller reduction correct

▶ Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way
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Verified encodings for SAT solvers

Thank you!
Any questions?
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