Verified encodings for SAT solvers

Cayden R. Codel
Advised by Marijn J. H. Heule and Jeremy Avigad

June 5, 2023

Repo at https://github.com/ccodel/verified-encodings
Cayden R. Codel

1/20

https://github.com/ccodel/verified-encodings

The SAT problem and the SAT toolchain

The Lean theorem prover

Verified encodings library

Applications

Cayden R. Codel 2/20

The SAT problem

SAT is an NP-hard problem in propositional logic

Cayden R. Codel 3/20

The SAT problem

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment (F F T7)

Cayden R. Codel 3/20

The SAT problem

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment (F F T7)

F = (X1 \/X2) N (71 \/X3) A (72 \/73)

Cayden R. Codel 3/20

The SAT problem

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment (F F T7)
F = (X1 \/X2) VAN (71 V X3) AN (iz \/73)

T = {X17 727 X3}

Cayden R. Codel

3/20

The SAT problem

SAT is an NP-hard problem in propositional logic

Q: Does there exist a satisfying assignment (F F T7)
F = (X1 \/X2) VAN (71 V X3) AN (iz \/73)

T = {X17 727 X3}

SAT solvers find a satisfying 7, or declare that none exists

Cayden R. Codel 3/20

The SAT problem

SAT solvers accept text input in conjunctive normal form

Cayden R. Codel 4/20

The SAT problem

SAT solvers accept text input in conjunctive normal form
[F = (X]_ V X2) VAN (71 V X3) VAN (72 \/73)

p cnf 3 3
120
-130
-2 -30

Cayden R. Codel 4/20

SAT solvers at work

Hardware /software verification, optimization, SMT solvers

Cayden R. Codel 5/20

SAT solvers at work

Hardware /software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Cayden R. Codel 5/ 20

SAT solvers at work

Hardware /software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller's Conjecture

Cayden R. Codel 5/20

SAT solvers at work

Hardware /software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller's Conjecture

Pythagorean triples problem as - bo ==

Cayden R. Codel 5/20

SAT solvers at work

Hardware /software verification, optimization, SMT solvers

Resolve longstanding problems in mathematics:

Keller's Conjecture

Pythagorean triples problem as - bo ==

Lam’s Problem

Cayden R. Codel 5 /20

SAT toolchain

SAT solver

Cayden R. Codel 6/ 20

SAT toolchain

@ —— | SAT solver

Cayden R. Codel 6/ 20

SAT toolchain

@

FET I

@ —— | SAT solver

Cayden R. Codel 6/ 20

SAT toolchain

O,

FET I

@ —— | SAT solver

FEL l

Cayden R. Codel 6/ 20

SAT toolchain

O,

Model
_> /
FET I
@ —— | SAT solver

FEL l

Cayden R. Codel 6/ 20

SAT toolchain

O,

@ — | SAT solver
FE L
Proof
_> /

Cayden R. Codel 6/ 20

Model
_> /
FET I

SAT toolchain

Model
/

E

@_.
F T[
) el
FI:Ll
(or) — [amn] — <

Cayden R. Codel 6 /20

SAT toolchain

FET I

o)

FEL l

Cayden R. Codel 6/ 20

Proof

checker v

SAT toolchain
Trusted SAT toolchain

v
Model %
checker

FET I

D
@ — | SAT solver

FEL l

v/
Proof v
checker

Cayden R. Codel 6/ 20

Using the SAT toolchain

@)

Cayden R. Codel 7/ 20

Using the SAT toolchain

. SAT
— |Encoding| ——— S — :
toolchain

Cayden R. Codel 7/ 20

Using the SAT toolchain

@

f

. SAT
— |Encoding| ——— S — :
toolchain

Cayden R. Codel 7/ 20

Using the SAT toolchain

@

f

. SAT
— |Encoding| ——— S — :
toolchain

|

Cayden R. Codel 7/ 20

Using the SAT toolchain

@ <— | Unenc | «——
. SAT
@ — |Encoding| ——— @ _

Cayden R. Codel 7/ 20

Using the SAT toolchain

Unenc | «——

. SAT
@ — |Encoding| ——— @ _

Cayden R. Codel 7/ 20

?

A

Using the SAT toolchain

<— | Unenc ‘—@

f

v
. SAT
— |Encoding| ——— _ :
toolchain

Cayden R. Codel 7/ 20

A

Using the SAT toolchain

<— | Unenc ‘—@

f

v
. SAT
— |Encoding| ——— _ :
toolchain

Cayden R. Codel 7/ 20

A

My work: extend the trusted SAT toolchain to
include encodings by using a theorem prover

Cayden R. Codel 8 /20

The Lean theorem prover

VN

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

Cayden R. Codel 9/20

The Lean theorem prover

VN

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million lines of code

Cayden R. Codel 9/20

The Lean theorem prover

VN

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million lines of code

We used version 3; version 4 is under active development

Cayden R. Codel 9/20

The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

Cayden R. Codel 10 / 20

The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

theorem take_sublist_of_le {a : Typex} {i j : nat} :
vV (1 : list a), l.take i <+ l.take j :=
begin
intros hij 1,
induction 1 with a as ih generalizing i j,
{ rwv [take_nil, take_nil] },
{ cases i,
{ rwv take_zero,
exact nil_sublist _ },
{ cases j,
{ exact absurd hij (not_le.mpr (succ_pos i)) },
{ rw [take, take],
exact cons_sublist_cons_iff.mpr

(ih (succ_le_succ_iff.mp hij)) } } }
end

Cayden R. Codel 10 / 20

The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

theorem take_sublist_of_le {a : Typex} {i j : nat} : i < j —
vV (1 : list a), l.take i <+ l.take j :=

Cayden R. Codel 10 / 20

The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

\ + 1=

intros hij 1,

Cayden R. Codel 10 / 20

The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

induction 1 with a as ih generalizing i j,

Cayden R. Codel 10 / 20

The Lean theorem prover

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

{ rv [take_nil, take_nil] 1},

Cayden R. Codel 10 / 20

Verified encodings library

Open-source on Github

Cayden R. Codel 11 /20

Verified encodings library

Open-source on Github

Contains:
» Data structures (CNF representations, variable generation)
» Supporting lemmas and theorems
» Proofs of correctness for parity, at-most-one, at-most-k
» Support for combining encodings to form larger ones

Cayden R. Codel 11 /20

Verified encodings library

Open-source on Github

Contains:
» Data structures (CNF representations, variable generation)
» Supporting lemmas and theorems
» Proofs of correctness for parity, at-most-one, at-most-k
» Support for combining encodings to form larger ones

Basis for future verification efforts

Cayden R. Codel 11 /20

Library preliminaries

Goal: prove that an encoding is correct

Cayden R. Codel 12 /20

Library preliminaries

Goal: prove that an encoding is correct

Q: What does it mean for an encoding to be
correct?

Cayden R. Codel 12 /20

Library preliminaries

F is a formula in propositional logic

C is a boolean constraint with inputs X = x, ..., x,

Cayden R. Codel 13 /20

Library preliminaries

F is a formula in propositional logic

C is a boolean constraint with inputs X = x, ..., x,

F encodes C if for all truth assignments 7,
C(r(x1),...,7(xy)) < o, o(F) =T,

where o agrees with 7 on X (i.e. Vx € X, 7(x) = o(x))

Cayden R. Codel

13 /20

Library preliminaries

F is a formula in propositional logic

C is a boolean constraint with inputs X = x, ..., x,

F encodes C if for all truth assignments 7,
C(r(x1),...,7(xy)) < o, o(F) =T,

where o agrees with 7 on X (i.e. Vx € X, 7(x) = o(x))

An encoding function E is correct for C if the formula it
produces encodes C on all inputs

Cayden R. Codel 13 /20

Library preliminaries

In Lean, the definitions look like:

def encodes (C : comstraint) (1 : list literal) (F : cnf) :=
V (7 : assignment),
(C.eval 7 1 = tt) «
J o, F.eval 0 = tt A agree_on 7 o (vars 1)

Cayden R. Codel 14 / 20

Library preliminaries

In Lean, the definitions look like:

def encodes (C : comstraint) (1 : list literal) (F : cnf) :=
V (7 : assignment),
(C.eval 7 1 = tt) «
J o, F.eval 0 = tt A agree_on 7 o (vars 1)

def is_correct (C) (enc : enc_fn) :=
vV {1 : list literal} {l|g : gensym[}, disjoint 1 g —
encodes C (formula (enc 1 g)) 1

Cayden R. Codel 14 / 20

Library preliminaries

In Lean, the definitions look like:

def encodes (C : constraint) (1 : list literal) (F : cnf) :=
V (7 : assignment),
(C.eval 7 1 = tt) «
J o, F.eval 0 = tt A agree_on 7 o (vars 1)

def is_correct (C) (enc : enc_fn) :=
vV {1 : list literal} {l|g : gensym[}, disjoint 1 g —
encodes C (formula (enc 1 g)) 1

We prove that the encodings in our library are correct and
well-behaved (generate new variables in a reasonable manner)

Cayden R. Codel 14 / 20

Case study: at-most-one

The at-most-one encoding is true iff at most one of the
boolean variables is true

Cayden R. Codel 15 / 20

Case study: at-most-one

The at-most-one encoding is true iff at most one of the
boolean variables is true

The naive encoding produces O(n?) clauses and enumerates
all pairs of variables:

Naive(X) = /\1§i<j§n (xi VX))

Cayden R. Codel 15 / 20

Case study: at-most-one

The at-most-one encoding is true iff at most one of the
boolean variables is true

The naive encoding produces O(n?) clauses and enumerates
all pairs of variables:

Naive(X) = /\1§i<j§n (xi VX))

The Sinz encoding produces O(n) clauses and needs n — 1
new variables:

SIHZ(X) = /\7;11 (()_(,' V S,') VAN (§,- V S;+1) AN (§,~ V)_<i+1))

Cayden R. Codel 15 / 20

Case study: at-most-one

The at-most-one encoding is true iff at most one of the
boolean variables is true

The naive encoding produces O(n?) clauses and enumerates
all pairs of variables:

Naive(X) = /\1§i<j§n (xi VX))

The Sinz encoding produces O(n) clauses and needs n — 1
new variables:

SIHZ(X) = /\7;11 (()_(,' V S,') VAN (§,- V S;+1) AN (§,~ V)_<i+1))

The three clauses are logically equivalent to

(xi = si) A (si = siv1) A (si = Xit1)

Cayden R. Codel 15 / 20

Case study: at-most-one

H-@-@0-0-0
INNSNN
» ® & ©

(Hollow arrow heads indicate negated implications)

Cayden R. Codel

16 / 20

Case study: at-most-one

Encodings in Lean’s functional programming language:

def Sinz_amo : enc_fn
| [11, 121 g :=
let (y, g1) := g.fresh in
([[1;.flip, Pos yl, [Neg y, 1,.flipll, gi)

| (1; :: 1 :: 1s) g :=
let (y, g1) := g.fresh in
let (z, _) := gi.fresh in
let (F_rec, gz) := sinz_rec (12 :: 1ls) g in
([[1;.flip, Pos y], [Neg y, Pos z],
[Neg y, 1,.flip]l] ++ F_rec, g)

Cayden R. Codel 17 / 20

Case study: at-most-one

Encodings in Lean's functional programming language:

I [11, 12] g :=
let (y, g1) := g.fresh in
([[11.flip, Pos yl, [Neg y, 1».flipll, gi)

++

Cayden R. Codel 17 / 20

Case study: at-most-one

Encodings in Lean's functional programming language:

[[11, 12]

Cayden R. Codel

++

17 /20

Case study: at-most-one

Encodings in Lean's functional programming language:

let (y, g1) := g.fresh in

++

Cayden R. Codel

17 /20

Case study: at-most-one

Encodings in Lean's functional programming language:

([[11.flip, Pos yl, [Neg y, 1,.flipll, gi1)

++

Cayden R. Codel 17 / 20

Case study: at-most-one

Encodings in Lean's functional programming language:

| (11 :: 1o ::

-
n

-~
(o]
]

++

Cayden R. Codel 17 / 20

Case study: at-most-one

Encodings in Lean's functional programming language:

let (y, g1) := g.fresh in
let (z, _) := gi.fresh in

++

Cayden R. Codel

17 /20

Case study: at-most-one

Encodings in Lean's functional programming language:

let (F_rec, gz) := sinz_rec (12 :: 1ls) g in

++

Cayden R. Codel

17 /20

Case study: at-most-one

Encodings in Lean's functional programming language:

([[11.flip, Pos y], [Neg y, Pos z],
[Neg y, 1,.flip]l] ++ F_rec, g)

Cayden R. Codel 17 / 20

Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc; ency : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, gi1) := enc; 1 g in
let (F2, go) :=ency 1 g1 in
(F1 ++ F2, g2)

Cayden R. Codel 18 / 20

Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

A (1 : list literal) (g : gensym),

++

Cayden R. Codel 18 / 20

Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

A
let (F1, gi1) := enc; 1 g in

++

Cayden R. Codel 18 / 20

Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

A

let (F2, go) :=ency 1 g1 in
++

Cayden R. Codel 18 / 20

Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

(F1 ++ F2, g2)

Cayden R. Codel 18 / 20

Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc; ency : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, gi1) := enc; 1 g in
let (F2, go) :=ency 1 g1 in
(F1 ++ F2, g2)

theorem is_correct_append
{c1 c» : constraint} {enc; enc, : enc_fn V} :
is_correct c; enci — is_correct c» ency —
is_correct (ci; ++ c) (ency ++ ency) := ...

Cayden R. Codel 18 / 20

Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc; encp : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, g1) := enc; 1 g in
let (F2, go) :=ency 1 g1 in
(F1 ++ F2, g2)

theorem is_correct_append
{c1 c» : constraint} {enc; enc, : enc_fn V} :
is_correct c; enci — is_correct c» ency —
is_correct (ci; ++ c) (ency ++ ency) := ...

Already demonstrated by combining sub-encodings for Sudoku

Cayden R. Codel 18 / 20

Applications and future work

» Prove more (sub-)encodings correct
» Prove the Keller reduction correct
» Write verified proof checkers for SAT proof systems

Cayden R. Codel 19 / 20

Applications and future work

» Prove more (sub-)encodings correct
» Prove the Keller reduction correct
» Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way

Cayden R. Codel 19 / 20

Verified encodings for SAT solvers

Thank you!
Any questions?

Cayden R. Codel 20 / 20

	The SAT problem and the SAT toolchain
	The Lean theorem prover
	Verified encodings library
	Applications

