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Part I: The Problem & Patterns
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Fibonaccci Conference in 2014 by Clark Kimberling:



  

● The following problem was posed at the Sixteenth 
Fibonaccci Conference in 2014 by Clark Kimberling:

Let     be the set generated by these rules:

   Let               and if               then



  

● The following problem was posed at the Sixteenth 
Fibonaccci Conference in 2014 by Clark Kimberling:

Let     be the set generated by these rules:

   Let               and if               then

                                     and                    ,



  

● The following problem was posed at the Sixteenth 
Fibonaccci Conference in 2014 by Clark Kimberling:

Let     be the set generated by these rules:

   Let               and if               then

                                     and                    ,

so that     grows in generations:



  

● The following problem was posed at the Sixteenth 
Fibonaccci Conference in 2014 by Clark Kimberling:

Let     be the set generated by these rules:

   Let               and if               then

                                     and                    ,

so that     grows in generations:

Prove or disprove that each generation contains at 
least one Fibonacci number or its negative.



  

● The following problem was posed at the Sixteenth 
Fibonaccci Conference in 2014 by Clark Kimberling:

Let     be the set generated by these rules:

   Let               and if               then

                                     and                    ,

so that     grows in generations:

Prove or disprove that each generation contains at 
least one Fibonacci number or its negative.

● We call      generation i and we call i the generation 
index. 



  

● The following problem was posed at the Sixteenth 
Fibonaccci Conference in 2014 by Clark Kimberling:

Let     be the set generated by these rules:

   Let               and if               then

                                     and                    ,

so that     grows in generations:

Prove or disprove that each generation contains at 
least one Fibonacci number or its negative.

● We call      generation i and we call i the generation 
index. 

● Note that the sets      are pairwise disjoint as they 
consist only of new elements added to    . 
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● We can in fact start with                  and apply the rules 
of the problem.

● The first several generations of     are:

● So far each generation contains at least one Fibonacci 
number or its negative! 



  

● We can easily visualize the growth of     using a binary 
tree:
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subtracting the double of all terms of         from 1.  
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● Structure in the tree:

Theorem 1: For            the even elements of          
(right children) come from doubling all terms of          , 
and the odd elements of       (left children) come from 
subtracting the double of all terms of         from 1.  

Note that we do not 
apply the 1-x operation 
to odd numbers in the 
tree, as that brings us 
back to the parent!
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number     for         .

This follows from a simple induction because

                          and from Theorem 1,  

● The number of terms in each row is growing 
exponentially, at rate approximately the golden ratio,      
ϕ = 1.618033...

● After a failed cursory search for a counterexample, we 
moved to other methods. 
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● The first questions we asked were:

– What numbers do appear in    ?
– Where do they appear in the tree?

● Theorem 2: All integers belong to the set     .

Idea of proof: We can use a contradiction, assuming 
some integer k is not in    . We can then trace a 
decreasing sequence (in absolute value) of uniquely 
appearing integers from k back to the node of our tree 
using the two operations defined in Theorem 1



  

● The following table gives the generation index i for 
integers |k| ≤ 15:

k i k i k i k i

2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5

1 1 3 5 5 6 7 6

-1 3 -3 4 -5 7 -7 5

k i k i k i k i

8 4 10 7 12 7 14 7

-8 6 -10 8 -12 6 -14 6

9 7 11 9 13 7 15 7

-9 8 -11 8 -13 8 -15 6



  

● The following table gives the generation index i for 
integers |k| ≤ 15:

● The sequence of indices was not in OEIS!

k i k i k i k i

2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5

1 1 3 5 5 6 7 6

-1 3 -3 4 -5 7 -7 5

k i k i k i k i

8 4 10 7 12 7 14 7

-8 6 -10 8 -12 6 -14 6

9 7 11 9 13 7 15 7

-9 8 -11 8 -13 8 -15 6



  

● We will now uncover patterns found in the table.



  

● We will now uncover patterns found in the table.
● Theorem 3: When moving from a negative odd 

number (1-2l) to a positive even number (2l) in the 
table, the generation index decreases by 1.

● Idea of Proof: Given a positive integer l, its double 2l 
appears in the next generation and 1-2l appears two 
generations later, by the operations defined in the 
problem.



  

k i k i k i k i

2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5

1 1 3 5 5 6 7 6

-1 3 -3 4 -5 7 -7 5

k i k i k i k i

8 4 10 7 12 7 14 7

-8 6 -10 8 -12 6 -14 6

9 7 11 9 13 7 15 7
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● Theorem 4: When moving from a negative even 
number to a positive odd number in the table, the 
generation index increases by 1.

k i k i k i k i

2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5

1 1 3 5 5 6 7 6

-1 3 -3 4 -5 7 -7 5

k i k i k i k i

8 4 10 7 12 7 14 7

-8 6 -10 8 -12 6 -14 6

9 7 11 9 13 7 15 7

-9 8 -11 8 -13 8 -15 6



  

● Theorem 5: When moving from a positive odd number 
k to its negative in the table, the generation index:         
          increases by 1 if  k = 1 (mod 4)                            
          decreases by 1 if k = 3 (mod 4)

k i k i k i k i

2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5

1 1 3 5 5 6 7 6

-1 3 -3 4 -5 7 -7 5

k i k i k i k i

8 4 10 7 12 7 14 7

-8 6 -10 8 -12 6 -14 6

9 7 11 9 13 7 15 7

-9 8 -11 8 -13 8 -15 6



  

● Theorem 6: When moving from a positive even 
number 2jm (where m ≥ 3, odd) to its negative in the 
table, the generation index:                                            
                increases by 1 if  m = 1 (mod 4)                     
                decreases by 1 if m = 3 (mod 4)

k i k i k i k i

2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5

1 1 3 5 5 6 7 6

-1 3 -3 4 -5 7 -7 5

k i k i k i k i

8 4 10 7 12 7 14 7

-8 6 -10 8 -12 6 -14 6

9 7 11 9 13 7 15 7

-9 8 -11 8 -13 8 -15 6

m=3

m=7m=3m=5



  

● Theorem 7: When moving from a postive power of 2 to 
its negative in the table, the generation index 
increases by 2.

k i k i k i k i

2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5

1 1 3 5 5 6 7 6

-1 3 -3 4 -5 7 -7 5

k i k i k i k i

8 4 10 7 12 7 14 7

-8 6 -10 8 -12 6 -14 6

9 7 11 9 13 7 15 7

-9 8 -11 8 -13 8 -15 6



  

                Part II: An Expression for the                
  Generation Index 



  

● We will redefine the generation index i as the 
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● So, integer k is found in generation       .
k    n f(n) k    n f(n) k    n f(n) k     n f(n)

2   3 2 4   7 3 6  11 6

0   0 0 -2   4 4 -4   8 5 -6  12 5

1   1 1 3   5 5 5   9 6 7  13 6

-1   2 3 -3   6 4 -5 10 7 -7  14 5



  

● We will redefine the generation index i as the 
sequence        for n ≥ 0.

● This means that 

             

● So, integer k is found in generation       .

● Example: k = -5 corresponds to n = 10 and is in 
generation                . 

k    n f(n) k    n f(n) k    n f(n) k     n f(n)

2   3 2 4   7 3 6  11 6

0   0 0 -2   4 4 -4   8 5 -6  12 5

1   1 1 3   5 5 5   9 6 7  13 6

-1   2 3 -3   6 4 -5 10 7 -7  14 5
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0 2 2 -1 2 1 -1 -1

1 1 1 1 1 1 1 1

2 -1 1 -1 1 -1 1 -1
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● Consider the difference sequence of        , which we 
will denote           for n ≥1 and define                 .

● This sequence is given in the table below, read 
column-wise:

● Neither sequence         nor           was found in OEIS. 
However.... similar sequences were!  

               . 

            

0 2 2 -1 2 1 -1 -1

1 1 1 1 1 1 1 1

2 -1 1 -1 1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1
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● Notice that                   for                     .  
● We will now modify the sequence by dividing out 2's, 

denoting this new sequence by                       and         
               : 

● This is OEIS sequence A034947 for n ≥1!

0 1 1 -1 1 1 -1 -1

1 1 1 1 1 1 1 1

1 -1 1 -1 1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1



  

● Sequence A034947 is the Jacobi symbol (-1/n), and is 
given by the recursion:



  

● Sequence A034947 is the Jacobi symbol (-1/n), and is 
given by the recursion:

● We can verify that            matches A034947 by using 
Theorems 3 – 7 to prove this recursion. 

(The sequence           also follows this recursion.)
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● So now what?
● We started with          and looked at the difference 

sequence         . 
● We then divided out the powers of 2 to get          .
● Let's now take the partial sums of the sequence          , 

and denote this sequence by          for n ≥ 1, and let      
                :

        : 0, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, ...

        : 0, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, ....

●         is OEIS sequence A005811! 

   

 



  

● Sequence A005811 is the number of runs in the binary 
expansion of n for n ≥ 1. (Also, it is the number of 1s in 
the Gray code of n.)



  

● Sequence A005811 is the number of runs in the binary 
expansion of n for n ≥ 1. (Also, it is the number of 1s in 
the Gray code of n.)

● This is easily calculable (and non-recursive!) 
k n a(n) binary

0 0 0

1 1 1 1

-1 2 2 10

2 3 1 11

-2 4 2 100

3 5 3 101

-3 6 2 110

4 7 1 111

-4 8 2 1000

5 9 3 1001

-5 10 4 1010



  

● The sequence         almost gives us          . 
● We removed powers of 2 from            to get            so 

we must add them back in:
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● We removed powers of 2 from            to get            so 

we must add them back in:



  

● The sequence         almost gives us          . 
● We removed powers of 2 from            to get            so 

we must add them back in:

● Recall that this gives us the generation index for any 
integer k, where n ≥ 1,                and

 



  

● We can now easily calculate the generation at which 
any integer will appear in the binary tree! 

k n a(n) f(n)

0 0 0 0

1 1 1 0 1

-1 2 2 1 3

2 3 1 1 2

-2 4 2 2 4

3 5 3 2 5

-3 6 2 2 4

4 7 1 2 3

-4 8 2 3 5

5 9 3 3 6

-5 10 4 3 7



  

                 Part III: The Counterexample                
and Further Work
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● Recall: we are interested in which generations contain 
a Fibonacci number or its negative.

● We will restrict our values of k to these numbers only!
● The following table gives the generation indices for the 

first 64 Fibonacci numbers and their negatives:

k =    1,     -1,     1,     -1,      2,     -2,     3,     -3,      5,    -5,      8,     -8, ... 



  

● Now, are there any generations missing from the 
previous table?
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● Now, are there any generations missing from the 
previous table?

– Yes!     43, 47, 53, 61, 66, ....
● So it seems these generations may not contain a 

Fibonacci number or its negative!

– But can we be sure these numbers won't arise later 
in the table?



  

● The counterexample: Generation 43 does not contain 
a Fibonacci number or its negative.
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● Recall that:
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● The counterexample: Generation 43 does not contain 
a Fibonacci number or its negative.

● Recall that:

●         is positive and neither increasing nor decreasing.

●                is non-decreasing, so it provides a lower 
bound:  
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● This means that any Fibonacci number past the 64th 

must occur in generation 44 or higher.



  

● Let

Therefore

        and
● From the previous table, we saw that of the first 64 

Fibonacci numbers (and their negatives), none occur 
in generation 43. 

● Using our lower bound,                                    .
● This means that any Fibonacci number past the 64th 

must occur in generation 44 or higher.
● Therefore 43 will never appear in the table, and 

generation 43 does not contain a Fibonacci number or 
its negative! 



  

● Note: generation 43 contains                                          
integers, so finding this counterexample using brute 
force would have been computationally difficult. 



  

● Note: generation 43 contains                                          
integers, so finding this counterexample using brute 
force would have been computationally difficult. 

● Further,        can be expressed by the following 
recurrence, which would also have been cumbersome 
to use, as we are only interested in the Fibonacci 
cases: 



  

● How often do generations fail to contain a Fibonacci 
number or its negative?
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● How often do generations fail to contain a Fibonacci 
number or its negative?

● The first several such generations are: 43, 47, 53, 61, 
66, 67, 73, 82, 107, 108, 124, 143, 150, ...

● The first 5000 Fibonacci numbers occur within the first 
3741 generations.

– Of these, 509 generations, or 14.66% do not 
contain a Fibonacci number or its negative!

● 14.66% of the first 4161 generations do not. 
● 14.70% of the first 4865 generations do not.



  

● We also considered generalized Fibonacci sequences 
--  starting with terms        , where                             . 

● We found that between 13% and 15% of generations 
failed to contain a number in the sequence or its 
negative.



  

 Thank you!!
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