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* The following problem was posed at the Sixteenth
Fibonaccci Conference in 2014 by Clark Kimberling:

Let S be the set generated by these rules:
Llet 1€ S andif z €S5S then
20 S and 1—zxz €S,
so that & grows in generations:
G, =11}, G2 ={0,2}, G3={—-1,4},..

Prove or disprove that each generation contains at
least one Fibonacci number or its negative.

* We call G; generation / and we call / the generation
index.

* Note that the sets G; are pairwise disjoint as they
consist only of new elements added to S.
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« We can in fact start with Go = {0} and apply the rules
of the problem.

* The first several generations of S are:

Gp = {0}

G = {1}

Gy = {2}

Ga = 1{-1, ‘r

Gy =1{-3, - }

Gy = { -7, -6, -4, 3, 15}

Gg = {-15 14 12 8, 5, 6,7, 32)

Gr = {- 1 -30, -28, -24, -16, -5, 9, 10, 12, 13, 14, 15, 64}

e So far each generation contains at least one Fibonacci
number or its negative!



* We can easily visualize the growth of S using a binary
tree:
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* Structure in the tree:

Theorem 1: For 1 >3 the even elements of ;

(right children) come from doubling all terms of G;_ 1 ,
and the odd elements of G; (left children) come from
subtracting the double of all terms of G;—2 from 1.
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* Structure in the tree:

Theorem 1: For 1 >3 the even elements of ;

(right children) come from doubling all terms of GG;_1 ,
and the odd elements of G; (left children) come from
subtracting the double of all terms of G;—2from 1.

Note that we do not
apply the 1-x operation
to odd numbers in the
tree, as that brings us
back to the parent!
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* Corollary 1: The size of the set GG; is the Fibonacci
number F; fori > 1.
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* Corollary 1: The size of the set &; is the Fibonacci
number F; fori > 1.

This follows from a simple induction because
G1|=1|G2| =1 and from Theorem 1,
Gi| = |Gi-1] + |Gi—2]

* The number of terms in each row is growing
exponentially, at rate approximately the golden ratio,
¢ =1.618033...

» After a failed cursory search for a counterexample, we
moved to other methods.
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* The first questions we asked were:

- What numbers do appearin S§?
- Where do they appear in the tree?
* Theorem 2: All integers belong to the set S .

|dea of proof: We can use a contradiction, assuming
some integer kis notin §. We can then trace a
decreasing sequence (in absolute value) of uniquely
appearing integers from k back to the node of our tree
using the two operations defined in Theorem 1



* The following table gives the generation index i for
integers |k| < 15:
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integers |k| < 15:

K i K | K i K |

2 2 4 3 6 6
0 0 -2 4 -4 5 -6 5
1 1 3 5 5 6 I 6
-1 3 -3 4 -5 7 -7 5
K | K | K i K i
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9 7 11 9 13 7 15 7
-9 8 -1 8 -13 8 -15 6

* The sequence of indices was not in OEIS!
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* Theorem 3: When moving from a negative odd
number (1-2¢) to a positive even number (2¢) in the
table, the generation index decreases by 1.

 |dea of Proof: Given a positive integer ¢, its double 2¢

appears in the next generation and 1-2¢ appears two

generations later, by the operations defined in the
problem.






* Theorem 4: When moving from a negative even
number to a positive odd number in the table, the

generation index increases by 1.

k | k | k | k |

2 2 4 3 6 6
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* Theorem 5: When moving from a positive odd number
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* Theorem 6: When moving from a positive even
number 2Zm (where m = 3, odd) to its negative in the
table, the generation index:

iIncreases by 1if m=1 (mod 4)
decreases by 1 if m=3 (mod 4)

K i K | K i K |
2 2 4 3 6 6 m=3
0 0 -2 4 -4 5 -6 5
1 1 3 5 5 6 / 6
-1 3 -3 4 -5 7 -7 5
K | Kk | K | Kk |
8 4 10 7 12 7 14 7
-8 6 -10 8 -12 6 -14 6
9 7 11 9 13 7 15 7
-9 8 -11 8 -13 8 -15 6




* Theorem 7: When moving from a postive power of 2 to
its negative in the table, the generation index
Increases by 2.

K i K | K i K |

2 2 4 3 6 6
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K | K | K | K |
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Part II: An Expression for the
Generation Index
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* This means that

9k —1, k>0;
= 4
—2k, k<0,
* S0, integer k is found in generation f(n).
k n fn) Kk n f(n) k n f(n) k n f(n)
2 3 2 4 7 3 6 11 6
0 0 0 -2 4 4 4 8 5 612 5
1 1 1 3 5 5 59 6 713 6
1 2 3 36 4 -510 7 714 5




We will redefine the generation index i as the
sequence f(n) for n = 0.

This means that
k-1, k>0

n= 4
—2k, k<0,

S0, integer k is found in generation f(n).

k n fn) Kk n f(n) k n f(n) k n f(n)

2 3 2 4 7 3 6 11 6
0 0 0 -2 4 4 4 8 5 -6 12 5
1 1 1 3 5 5 5 9 6 7 13 6
-1 2 3 -3 6 4 -510 7 -7 14 5

Example: k = -5 corresponds to n =10 and is in
generation f(10)=7.
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» Consider the difference sequence of f(n), which we
will denote f;(n) for n 21 and define f4(0) = 0.

fan) = f(n) = f(n —1)

* This sequence is given in the table below, read
column-wise:

2 2 2
1 1 1
1 1 1
1 1 1

1

N N —_\ ()
1 1 1
—_\ —_\ —\ —_\
1 1

—\ -\ —\ —\
—_\ —_\ LN LN
1 1 1

—_\ -\ —\ —\

» Neither sequence f(n) nor fi(n) was found in OEIS.
However.... similar sequences were!
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* We will now modify the sequence by dividing out 2's,
denoting this new sequence by ag4(n),n > 1 and
ad(()) =0

( fa(n)

agn)=<¢ 2

fa(n), n#2% k>1.
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* This is OEIS sequence A034947 for n 21!
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* Sequence A034947 is the Jacobi symbol (-1/n), and is
given by the recursion:

afdn +3) = -1, n =0
aldn+1) =1, n = 0
a(2n) = a(n). n=l.

* We can verify that @4 (n) matches A034947 by using
Theorems 3 — 7 to prove this recursion.

(The sequence fa(n) also follows this recursion.)
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sequence fq(n).
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Let's now take the partial sums of the sequence ad(n),
and denote this sequence by a(n) for n =1, and let
a(0) =0 :

aq(n) =a(n) —a(n—1)

aqg(n):0,1,1,-1,1,1,-1,-1,1,1,1,-1,-1, 1, ...
a(n) :0,1,2,1,2,3,2,1.2,3.4,3.2,3, ...



e So now what?

» We started with f(n) and looked at the difference
sequence fq(n).

» We then divided out the powers of 2 to get aq(n).

* Let's now take the partial sums of the sequence ad(n),
and denote this sequence by a(n) for n =1, and let
a(0) =0 :

aq(n) =a(n) —a(n—1)
ag(n):0,1,1,-1,1,1,-1,-1,1,1,1,-1, -1, 1, ...
a(n) :0,1,2,1,2,3,2,1,2,3,4,3,2,3, ...

. a(n) is OEIS sequence A005811!
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expansion of n for n = 1. (Also, it is the number of 1s in
the Gray code of n.)



* Sequence A005811 is the number of runs in the binary
expansion of n for n = 1. (Also, it is the number of 1s in
the Gray code of n.)

* This is easily calculable (and non-recursive!)

Kk n a(n) binary
0 0 0

1 1 1 1

-1 2 2 10

2 3 1 11

-2 4 2 100
3 3 3 101
-3 6 2 110
4 14 1 111
-4 8 2 1000
3) 9 3 1001
-5 10 4 1010
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« The sequence a(n) almost gives us f(n).

* \WWe removed powers of 2 from fa(n) to get ad(n) SO
we must add them back in:

f(n) =a(n) + [logy(n),

* Recall that this gives us the generation index for any
integer k, where n=1, f(0) =0 and

Ok—1. k>0
9k k<O

n = <




* We can now easily calculate the generation at which
any integer will appear in the binary tree!
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Part III: The Counterexample
and Further Work
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* Recall: we are interested in which generations contain
a Fibonacci number or its negative.

* We will restrict our values of k to these numbers only!

* The following table gives the generation indices for the
first 64 Fibonacci numbers and their negatives:

k=1, 1, 1, 1, 2, -2, 3, -3, 5 -5, 8, -8,..
1 3 1 3 2 4 5 4 6 T 4 6
(& 10 11 9 10 11 10 12 13 11 12

13 14 14 15 15 16 17V 16 16 17V 19 18

22 23 22 23 23 24 26 25 20 21 25 26

28 29 26 27 25 206 32 31 30 31 31 32

36 37 33 34 31 32 36 3b 37 38 35 M4

36 37 41 42 39 40 42 41 45 46 35 34

48 49 49 50 44 45 50 49 49 50 48 49

48 49 51 52 54 55 52 51 55 H6 H8 59

57 H8 63 64 64 65 65 64 5H9 60 62 63

69 Y0 63 64 62 63 68 69
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* Now, are there any generations missing from the
previous table?

- Yes! 43,47, 53, 61, 60, ....

* So it seems these generations may not contain a
Fibonacci number or its negative!

- But can we be sure these numbers won't arise later
in the table?
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* The counterexample: Generation 43 does not contain
a Fibonacci number or its negative.

* Recallthat:  f(n) = a(n) + |loga(n)|
- a(n) is positive and neither increasing nor decreasing.

* |log2(n)] is non-decreasing, so it provides a lower
bouna: f(n) = [logz(n)]
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Let k= Fgy = 10,610,209, 857,723
Therefore n =2k —1=21,220,419, 715, 445
and [log,(n)| = 44

From the previous table, we saw that of the first 64
Fibonacci numbers (and their negatives), none occur
In generation 43.

Using our lower bound, f(n) > |logy(n)]| =44,

This means that any Fibonacci number past the 64th
must occur in generation 44 or higher.

Therefore 43 will never appear in the table, and
generation 43 does not contain a Fibonacci number or
its negative!



* Note: generation 43 contains Fj3 = 433,494, 437
integers, so finding this counterexample using brute

force would have been computationally difficult.



 Note: generation 43 contains Fy3 = 433,494, 437
integers, so finding this counterexample using brute

force would have been computationally difficult.

* Further, f(n) can be expressed by the following
recurrence, which would also have been cumbersome
to use, as we are only interested in the Fibonacci
cases:

i

1. n evemn:

2. n odd.

',
'3

f(2n) = f(n) + 1

1. n odd:

2. T even.

',

f(2n+1)= f(n)+ 4
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How often do generations fail to contain a Fibonacci
number or its negative?

The first several such generations are: 43, 47, 53, 61,
66, 67, 73, 82, 107, 108, 124, 143, 150, ...

The first 5000 Fibonacci numbers occur within the first
3741 generations.

- Of these, 509 generations, or 14.66% do not
contain a Fibonacci number or its negative!

14.66% of the first 4161 generations do not.
14.70% of the first 4865 generations do not.



* We also considered generalized Fibonacci sequences
-- starting with terms 1, a , where a € 7,1 < a < 12.

* We found that between 13% and 15% of generations
failed to contain a number in the sequence or its
negative.



Thank you!!
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