A Computational Counterexample on Sets Containing Fibonacci Numbers

Karyn McLellan Mount Saint Vincent University, Halifax, NS (Joint work with Danielle Cox, MSVU)

CanaDAM 2025
Computer-Assisted Mathematics
May 20, 2025, University of Ottawa

Part I: The Problem & Patterns

Let S be the set generated by these rules:

Let $1 \in \mathcal{S}$ and if $x \in \mathcal{S}$ then

Let S be the set generated by these rules:

Let
$$1 \in \mathcal{S}$$
 and if $x \in \mathcal{S}$ then
$$2x \in \mathcal{S} \quad \text{and} \quad 1 - x \in \mathcal{S},$$

Let S be the set generated by these rules:

Let
$$1 \in \mathcal{S}$$
 and if $x \in \mathcal{S}$ then

$$2x \in \mathcal{S}$$
 and $1-x \in \mathcal{S}$,

so that S grows in generations:

$$G_1 = \{1\}, \quad G_2 = \{0, 2\}, \quad G_3 = \{-1, 4\}, \dots$$

Let S be the set generated by these rules:

Let
$$1 \in \mathcal{S}$$
 and if $x \in \mathcal{S}$ then $2x \in \mathcal{S}$ and $1-x \in \mathcal{S}$,

so that S grows in generations:

$$G_1 = \{1\}, \quad G_2 = \{0, 2\}, \quad G_3 = \{-1, 4\}, \dots$$

Prove or disprove that each generation contains at least one Fibonacci number or its negative.

Let S be the set generated by these rules:

Let
$$1\in\mathcal{S}$$
 and if $x\in\mathcal{S}$ then
$$2x\in\mathcal{S} \quad \text{and} \quad 1-x\in\mathcal{S},$$

so that S grows in generations:

$$G_1 = \{1\}, \quad G_2 = \{0, 2\}, \quad G_3 = \{-1, 4\}, \dots$$

Prove or disprove that each generation contains at least one Fibonacci number or its negative.

• We call G_i generation i and we call i the generation index.

Let S be the set generated by these rules:

Let
$$1\in\mathcal{S}$$
 and if $x\in\mathcal{S}$ then
$$2x\in\mathcal{S} \quad \text{and} \quad 1-x\in\mathcal{S},$$

so that S grows in generations:

$$G_1 = \{1\}, \quad G_2 = \{0, 2\}, \quad G_3 = \{-1, 4\}, \dots$$

Prove or disprove that each generation contains at least one Fibonacci number or its negative.

- We call G_i generation i and we call i the generation index.
- Note that the sets G_i are pairwise disjoint as they consist only of new elements added to S.

• We can in fact start with $G_0 = \{0\}$ and apply the rules of the problem.

- We can in fact start with $G_0 = \{0\}$ and apply the rules of the problem.
- The first several generations of S are:

- We can in fact start with $G_0 = \{0\}$ and apply the rules of the problem.
- The first several generations of S are:

```
G_0 = \{0\}

G_1 = \{1\}

G_2 = \{2\}

G_3 = \{-1, 4\}

G_4 = \{-3, -2, 8\}

G_5 = \{-7, -6, -4, 3, 16\}

G_6 = \{-15, -14, -12, -8, 5, 6, 7, 32\}

G_7 = \{-31, -30, -28, -24, -16, -5, 9, 10, 12, 13, 14, 15, 64\}
```

- We can in fact start with $G_0 = \{0\}$ and apply the rules of the problem.
- The first several generations of S are:

```
G_0 = \{0\}

G_1 = \{1\}

G_2 = \{2\}

G_3 = \{-1, 4\}

G_4 = \{-3, -2, 8\}

G_5 = \{-7, -6, -4, 3, 16\}

G_6 = \{-15, -14, -12, -8, 5, 6, 7, 32\}

G_7 = \{-31, -30, -28, -24, -16, -5, 9, 10, 12, 13, 14, 15, 64\}
```

 So far each generation contains at least one Fibonacci number or its negative! • We can easily visualize the growth of ${\mathcal S}$ using a binary tree:

• Corollary 1: The size of the set G_i is the Fibonacci number F_i for $i \ge 1$.

• Corollary 1: The size of the set G_i is the Fibonacci number F_i for i > 1.

This follows from a simple induction because

$$|G_1| = |G_2| = 1$$
 and from Theorem 1,

$$|G_i| = |G_{i-1}| + |G_{i-2}|$$

• Corollary 1: The size of the set G_i is the Fibonacci number F_i for i > 1.

This follows from a simple induction because

$$|G_1| = |G_2| = 1$$
 and from Theorem 1,

$$|G_i| = |G_{i-1}| + |G_{i-2}|$$

- The number of terms in each row is growing exponentially, at rate approximately the golden ratio, φ = 1.618033...
- After a failed cursory search for a counterexample, we moved to other methods.

- The first questions we asked were:
 - What numbers do appear in S?
 - Where do they appear in the tree?

- The first questions we asked were:
 - What numbers do appear in S?
 - Where do they appear in the tree?
- Theorem 2: All integers belong to the set S.

- The first questions we asked were:
 - What numbers do appear in S?
 - Where do they appear in the tree?
- Theorem 2: All integers belong to the set $\mathcal S$.

Idea of proof: We can use a contradiction, assuming some integer k is not in S. We can then trace a decreasing sequence (in absolute value) of uniquely appearing integers from k back to the node of our tree using the two operations defined in Theorem 1

 The following table gives the generation index i for integers |k| ≤ 15:

k	i	k	i	k	i	k	i
		2	2	4	3	6	6
0	0	-2	4	-4	5	-6	5
1	1	3	5	5	6	7	6
-1	3	-3	4	-5	7	-7	5

k	i	k	i	k	i	k	i
8	4	10	7	12	7	14	7
-8	6	-10	8	-12	6	-14	6
9	7	11	9	13	7	15	7
-9	8	-11	8	-13	8	-15	6

 The following table gives the generation index i for integers |k| ≤ 15:

i	k	i	k	i	k	i	k
6	6	3	4	2	2		
5	-6	5	-4	4	-2	0	0
6	7	6	5	5	3	1	1
5	-7	7	-5	4	-3	3	-1
i	k	i	k	i	k	i	k
7	14	7	12	7	10	4	8
6	-14	6	-12	8	-10	6	-8
7	15	7	13	9	11	7	9
6	-15	8	-13	8	-11	8	-9

The sequence of indices was not in OEIS!

• We will now uncover patterns found in the table.

- We will now uncover patterns found in the table.
- Theorem 3: When moving from a negative odd number $(1-2\ell)$ to a positive even number (2ℓ) in the table, the generation index decreases by 1.
- Idea of Proof: Given a positive integer ℓ , its double 2ℓ appears in the next generation and $1-2\ell$ appears two generations later, by the operations defined in the problem.

k	i	k	i	k	i	k	i
		2	2	4	3	6	6
0	0	-2	4	-4	5	-6	5
1	1	3	5	5	6	7	6
-1	3	-3	4	-5	7	-7	5

k	i	k	i	k	i	k	i
8	4	10	√ 7	12	√ 7	14	√ 7
-8	6	-10	8	-12	6	-14	6
9	7	11	9	13	7	15	7
-9	8	-11	8	-13	8	-15	6

• Theorem 4: When moving from a negative even number to a positive odd number in the table, the generation index increases by 1.

k	i	k	i	k	i	k	i
		2	2	4	3	6	6
0	0	-2	4	-4	5	-6	5
1	1	3	5	5	6	7	6
-1	3	-3	4	-5	7	-7	5

k	i	k	i	k	i	k	i
8	4	10	7	12	7	14	7
-8	6	-10	8	-12	6	-14	6
9	7	11	9	13	7	15	7
-9	8	-11	8	-13	8	-15	6

Theorem 5: When moving from a positive odd number k to its negative in the table, the generation index: increases by 1 if k = 1 (mod 4) decreases by 1 if k = 3 (mod 4)

k	i	k	i	k	i	k	i
		2	2	4	3	6	6
0	0	-2	4	-4	5	-6	5
1	1	3	5	5	6	7	6
-1	3	-3	4	-5	7	-7	5

k	i	k	i	k	i	k	i
8	4	10	7	12	7	14	7
-8	6	-10	8	-12	6	-14	6
9	7	11	9	13	7	15	7
-9	8	-11	8	-13	8	-15	6

• Theorem 6: When moving from a positive even number $2^{j}m$ (where $m \geq 3$, odd) to its negative in the table, the generation index:

increases by 1 if $m = 1 \pmod{4}$ decreases by 1 if $m = 3 \pmod{4}$

k	i	k	i	k	i	k	i
		2	2	4	3	6	6
0	0	-2	4	-4	5	-6	5
1	1	3	5	5	6	7	6
-1	3	-3	4	-5	7	-7	5

m=3

k	i	k	i	k	i	k	i
8	4	10	7	12	7	14	7
-8	6	-10	8	-12	6	-14	6
9	7	11	9	13	7	15	7
-9	8	-11	8	-13	8	-15	6

m=5

m=3

m=7

• Theorem 7: When moving from a postive power of 2 to its negative in the table, the generation index increases by 2.

k	i	k	i	k	i	k	i
		2	2	4	3	6	6
0	0	-2	4	-4	5	-6	5
1	1	3	5	5	6	7	6
-1	3	-3	4	-5	7	-7	5

k	i	k	i	k	i	k	i
8	4	10	7	12	7	14	7
-8	6	-10	8	-12	6	-14	6
9	7	11	9	13	7	15	7
-9	8	-11	8	-13	8	-15	6

Part II: An Expression for the Generation Index

• We will redefine the generation index i as the sequence f(n) for $n \ge 0$.

- We will redefine the generation index i as the sequence f(n) for $n \ge 0$.
- This means that

$$n = \begin{cases} 2k - 1, & k > 0; \\ -2k, & k \le 0, \end{cases}$$

- We will redefine the generation index i as the sequence f(n) for $n \ge 0$.
- This means that

$$n = \begin{cases} 2k - 1, & k > 0; \\ -2k, & k \le 0, \end{cases}$$

• So, integer k is found in generation f(n).

- We will redefine the generation index i as the sequence f(n) for $n \ge 0$.
- This means that

$$n = \begin{cases} 2k - 1, & k > 0; \\ -2k, & k \le 0, \end{cases}$$

• So, integer k is found in generation f(n).

k	n	f(n)	k	n	f(n)	k	n	f(n)	k	n	f(n)
			2	3	2	4	7	3	6	11	6
0	0	0	-2	4	4	-4	8	5	-6	12	5
1	1	1	3	5	5	5	9	6	7	13	6
-1	2	3	-3	6	4	-5	10	7	-7	14	5

- We will redefine the generation index i as the sequence f(n) for $n \ge 0$.
- This means that

$$n = \begin{cases} 2k - 1, & k > 0; \\ -2k, & k \le 0, \end{cases}$$

• So, integer k is found in generation f(n).

k	n	f(n)	k	n	f(n)	k	n	f(n)	k	n	f(n)
			2	3	2	4	7	3	6	11	6
0	0	0	-2	4	4	-4	8	5	-6	12	5
1	1	1	3	5	5	5	9	6	7	13	6
-1	2	3	-3	6	4	-5	10	7	-7	14	5

• Example: k = -5 corresponds to n = 10 and is in generation f(10) = 7.

• Consider the difference sequence of f(n), which we will denote $f_d(n)$ for $n \ge 1$ and define $f_d(0) = 0$.

$$f_d(n) = f(n) - f(n-1)$$

• Consider the difference sequence of f(n), which we will denote $f_d(n)$ for $n \ge 1$ and define $f_d(0) = 0$.

$$f_d(n) = f(n) - f(n-1)$$

 This sequence is given in the table below, read column-wise:

0	2	2	-1	2	1	-1	-1
1	1	1	1	1	1	1	1
2	-1	1	-1	1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1

• Consider the difference sequence of f(n), which we will denote $f_d(n)$ for $n \ge 1$ and define $f_d(0) = 0$.

$$f_d(n) = f(n) - f(n-1)$$

 This sequence is given in the table below, read column-wise:

0	2	2	-1	2	1	-1	-1
1	1	1	1	1	1	1	1
2	-1	1	-1	1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1

• Neither sequence f(n) nor $f_d(n)$ was found in OEIS. However... similar sequences were!

• Notice that $f_d(n) = 2$ for $n = 2^k, k \ge 1$

- Notice that $f_d(n) = 2$ for $n = 2^k, k \ge 1$
- We will now modify the sequence by dividing out 2's, denoting this new sequence by $a_d(n), n \geq 1$ and $a_d(0) = 0$:

- Notice that $f_d(n) = 2$ for $n = 2^k, k \ge 1$
- We will now modify the sequence by dividing out 2's, denoting this new sequence by $a_d(n), n \ge 1$ and $a_d(0) = 0$:

$$a_d(n) = \begin{cases} \frac{f_d(n)}{2}, & n = 2^k, k \ge 1\\ f_d(n), & n \ne 2^k, k \ge 1. \end{cases}$$

- Notice that $f_d(n) = 2$ for $n = 2^k, k \ge 1$
- We will now modify the sequence by dividing out 2's, denoting this new sequence by $a_d(n), n \ge 1$ and $a_d(0) = 0$:

$$a_d(n) = \begin{cases} \frac{f_d(n)}{2}, & n = 2^k, k \ge 1\\ f_d(n), & n \ne 2^k, k \ge 1. \end{cases}$$

0	1	1	-1	1	1	-1	-1
							1
							-1
-1	-1	-1	-1	-1	-1	-1	-1

- Notice that $f_d(n) = 2$ for $n = 2^k, k \ge 1$
- We will now modify the sequence by dividing out 2's, denoting this new sequence by $a_d(n), n \geq 1$ and $a_d(0) = 0$:

$$a_d(n) = \begin{cases} \frac{f_d(n)}{2}, & n = 2^k, k \ge 1\\ f_d(n), & n \ne 2^k, k \ge 1. \end{cases}$$

0	1	1	-1	1	1	-1	-1
	1						
1	-1	1	-1	1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1

• This is OEIS sequence A034947 for *n* ≥1!

• Sequence A034947 is the Jacobi symbol (-1/n), and is given by the recursion:

$$\alpha(4n+3) = -1, \qquad n \ge 0;$$

$$\alpha(4n+1) = 1, \qquad n \ge 0;$$

$$\alpha(2n) = \alpha(n), \qquad n \ge 1.$$

 Sequence A034947 is the Jacobi symbol (-1/n), and is given by the recursion:

$$\alpha(4n+3) = -1,$$
 $n \ge 0;$
 $\alpha(4n+1) = 1,$ $n \ge 0;$
 $\alpha(2n) = \alpha(n),$ $n \ge 1.$

• We can verify that $a_d(n)$ matches A034947 by using Theorems 3 – 7 to prove this recursion.

(The sequence $f_d(n)$ also follows this recursion.)

• Interestingly, if we replace -1 by 0 in $a_d(n)$ we obtain OEIS sequence A014577 for $n \ge 1$, which is the

• Interestingly, if we replace -1 by 0 in $a_d(n)$ we obtain OEIS sequence A014577 for $n \ge 1$, which is the

regular paper-folding sequence, also known as the dragon curve sequence!

• 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, ...

• Interestingly, if we replace -1 by 0 in $a_d(n)$ we obtain OEIS sequence A014577 for $n \ge 1$, which is the

regular paper-folding sequence, also known as the dragon curve sequence!

• 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, ...

- So now what?
- We started with f(n) and looked at the difference sequence $f_d(n)$.

- So now what?
- We started with f(n) and looked at the difference sequence $f_d(n)$.
- We then divided out the powers of 2 to get $a_d(n)$.

- So now what?
- We started with f(n) and looked at the difference sequence $f_d(n)$.
- We then divided out the powers of 2 to get $a_d(n)$.
- Let's now take the partial sums of the sequence $a_d(n)$, and denote this sequence by a(n) for $n \ge 1$, and let

$$a(0) = 0$$
:
 $a_d(n) = a(n) - a(n-1)$

- So now what?
- We started with f(n) and looked at the difference sequence $f_d(n)$.
- We then divided out the powers of 2 to get $a_d(n)$.
- Let's now take the partial sums of the sequence $a_d(n)$, and denote this sequence by a(n) for $n \ge 1$, and let

$$a(0) = 0$$
:
 $a_d(n) = a(n) - a(n-1)$

- So now what?
- We started with f(n) and looked at the difference sequence $f_d(n)$.
- We then divided out the powers of 2 to get $a_d(n)$.
- Let's now take the partial sums of the sequence $a_d(n)$, and denote this sequence by a(n) for $n \ge 1$, and let

$$a(0) = 0$$
:
 $a_d(n) = a(n) - a(n-1)$

• a(n) is OEIS sequence A005811!

• Sequence A005811 is the number of runs in the binary expansion of n for $n \ge 1$. (Also, it is the number of 1s in the Gray code of n.)

- Sequence A005811 is the number of runs in the binary expansion of n for $n \ge 1$. (Also, it is the number of 1s in the Gray code of n.)
- This is easily calculable (and non-recursive!)

k	n	a(n)	binary
0	0	0	
1	1	1	1
-1	2	2	10
2	3	1	11
-2	4	2	100
3	5	3	101
-3	6	2	110
4	7	1	111
-4	8	2	1000
5	9	3	1001
-5	10	4	1010

- The sequence a(n) almost gives us f(n).
- We removed powers of 2 from $f_d(n)$ to get $a_d(n)$ so we must add them back in:

- The sequence a(n) almost gives us f(n).
- We removed powers of 2 from $f_d(n)$ to get $a_d(n)$ so we must add them back in:

$$f(n) = a(n) + \lfloor \log_2(n) \rfloor$$

- The sequence a(n) almost gives us f(n).
- We removed powers of 2 from $f_d(n)$ to get $a_d(n)$ so we must add them back in:

$$f(n) = a(n) + \lfloor \log_2(n) \rfloor$$

• Recall that this gives us the generation index for any integer k, where $n \ge 1$, f(0) = 0 and

$$n = \begin{cases} 2k - 1, & k > 0; \\ -2k, & k \le 0, \end{cases}$$

 We can now easily calculate the generation at which any integer will appear in the binary tree!

k	n	a(n)	$\lfloor log_2(n) \rfloor$	f(n)
0	0	0		0
1	1	1	0	1
-1	2	2	1	3
2	3	1	1	2
-2	4	2	2	4
3	5	3	2	5
-3	6	2	2	4
4	7	1	2	3
-4	8	2	3	5
5	9	3	3	6
-5	10	4	3	7

Part III: The Counterexample and Further Work

- Recall: we are interested in which generations contain a Fibonacci number or its negative.
- We will restrict our values of k to these numbers only!

- Recall: we are interested in which generations contain a Fibonacci number or its negative.
- We will restrict our values of k to these numbers only!
- The following table gives the generation indices for the first 64 Fibonacci numbers and their negatives:

- Recall: we are interested in which generations contain a Fibonacci number or its negative.
- We will restrict our values of k to these numbers only!
- The following table gives the generation indices for the first 64 Fibonacci numbers and their negatives:

k =	1,	-1,	1,	-1,	2,	-2,	3,	-3,	5,	-5,	8,	-8,
	1	3	1	3	2	4	5	4	6	7	4	6
	7	8	10	11	9	10	11	10	12	13	11	12
	13	14	14	15	15	16	17	16	16	17	19	18
	22	23	22	23	23	24	26	25	20	21	25	26
	28	29	26	27	25	26	32	31	30	31	31	32
	36	37	33	34	31	32	36	35	37	38	35	34
	36	37	41	42	39	40	42	41	45	46	35	34
	48	49	49	50	44	45	50	49	49	50	48	49
	48	49	51	52	54	55	52	51	55	56	58	59
	57	58	63	64	64	65	65	64	59	60	62	63
	69	70	63	64	62	63	68	69				

 Now, are there any generations missing from the previous table? Now, are there any generations missing from the previous table?

- Yes! 43, 47, 53, 61, 66,

- Now, are there any generations missing from the previous table?
 - Yes! 43, 47, 53, 61, 66,
- So it seems these generations may not contain a Fibonacci number or its negative!

- Now, are there any generations missing from the previous table?
 - Yes! 43, 47, 53, 61, 66,
- So it seems these generations may not contain a Fibonacci number or its negative!
 - But can we be sure these numbers won't arise later in the table?

• The counterexample: Generation 43 does not contain a Fibonacci number or its negative.

- The counterexample: Generation 43 does not contain a Fibonacci number or its negative.
- Recall that: $f(n) = a(n) + \lfloor log_2(n) \rfloor$

- The counterexample: Generation 43 does not contain a Fibonacci number or its negative.
- Recall that: $f(n) = a(n) + \lfloor log_2(n) \rfloor$
- a(n) is positive and neither increasing nor decreasing.

- The counterexample: Generation 43 does not contain a Fibonacci number or its negative.
- Recall that: $f(n) = a(n) + \lfloor log_2(n) \rfloor$
- a(n) is positive and neither increasing nor decreasing.

• $\lfloor log_2(n) \rfloor$ is non-decreasing, so it provides a lower bound: $f(n) \geq \lfloor log_2(n) \rfloor$

• Let $k=F_{64}=10,610,209,857,723$ Therefore n=2k-1=21,220,419,715,445

• Let $k=F_{64}=10,610,209,857,723$ Therefore n=2k-1=21,220,419,715,445 and $\left|\log_2(n)\right|=44$

• Let $k=F_{64}=10,610,209,857,723$ Therefore n=2k-1=21,220,419,715,445and $|\log_2(n)|=44$

• From the previous table, we saw that of the first 64 Fibonacci numbers (and their negatives), none occur in generation 43.

- Let $k=F_{64}=10,610,209,857,723$ Therefore n=2k-1=21,220,419,715,445and $|\log_2(n)|=44$
- From the previous table, we saw that of the first 64 Fibonacci numbers (and their negatives), none occur in generation 43.
- Using our lower bound, $f(n) \ge \lfloor \log_2(n) \rfloor = 44$.

- Let $k=F_{64}=10,610,209,857,723$ Therefore n=2k-1=21,220,419,715,445and $|\log_2(n)|=44$
- From the previous table, we saw that of the first 64
 Fibonacci numbers (and their negatives), none occur
 in generation 43.
- Using our lower bound, $f(n) \ge \lfloor \log_2(n) \rfloor = 44$.
- This means that any Fibonacci number past the 64th must occur in generation 44 or higher.

- Let $k=F_{64}=10,610,209,857,723$ Therefore n=2k-1=21,220,419,715,445and $|\log_2(n)|=44$
- From the previous table, we saw that of the first 64
 Fibonacci numbers (and their negatives), none occur
 in generation 43.
- Using our lower bound, $f(n) \ge \lfloor \log_2(n) \rfloor = 44$.
- This means that any Fibonacci number past the 64th must occur in generation 44 or higher.
- Therefore 43 will never appear in the table, and generation 43 does not contain a Fibonacci number or its negative!

• Note: generation 43 contains $F_{43} = 433, 494, 437$ integers, so finding this counterexample using brute force would have been computationally difficult.

- Note: generation 43 contains $F_{43} = 433, 494, 437$ integers, so finding this counterexample using brute force would have been computationally difficult.
- Further, f(n) can be expressed by the following recurrence, which would also have been cumbersome to use, as we are only interested in the Fibonacci cases:

$$f(2n) = f(n) + \begin{cases} 1, & n \text{ even;} \\ 2, & n \text{ odd.} \end{cases}$$

$$f(2n+1) = f(n) + \begin{cases} 1, & n \text{ odd;} \\ 2, & n \text{ even.} \end{cases}$$

 How often do generations fail to contain a Fibonacci number or its negative?

- How often do generations fail to contain a Fibonacci number or its negative?
- The first several such generations are: 43, 47, 53, 61, 66, 67, 73, 82, 107, 108, 124, 143, 150, ...

- How often do generations fail to contain a Fibonacci number or its negative?
- The first several such generations are: 43, 47, 53, 61, 66, 67, 73, 82, 107, 108, 124, 143, 150, ...
- The first 5000 Fibonacci numbers occur within the first 3741 generations.
 - Of these, 509 generations, or 14.66% do not contain a Fibonacci number or its negative!

- How often do generations fail to contain a Fibonacci number or its negative?
- The first several such generations are: 43, 47, 53, 61, 66, 67, 73, 82, 107, 108, 124, 143, 150, ...
- The first 5000 Fibonacci numbers occur within the first 3741 generations.
 - Of these, 509 generations, or 14.66% do not contain a Fibonacci number or its negative!
- 14.66% of the first 4161 generations do not.
- 14.70% of the first 4865 generations do not.

- We also considered generalized Fibonacci sequences -- starting with terms 1, a, where $a \in \mathbb{Z}, 1 \le a \le 12$.
- We found that between 13% and 15% of generations failed to contain a number in the sequence or its negative.

Thank you!!