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Polygonal numbers

Figure 1: Image by CMC Lee: Licensed under the CC-BY-SA 4.0 license
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Figurate numbers
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Formulas
Let s be the number of sides in a polygon where s ≥ 3.

The formula for the kth s-gonal number, where k ≥ 0, is

(s − 2)k2 − (s − 4)k
2

(By this formula, 0 and 1 are the 0th and 1st s-gonal numbers, resp.)

For a given s-gonal number x > 0, k is given by√
8(s − 2)x + (s − 4)2 + (s − 4)

2(s − 2) .

For example, 10 is the 4th triangular number. The formula gives√
8(3 − 2)10 + (3 − 4)2 + (3 − 4)

2(3 − 2) = 4.
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Polygonal numbers of order m + 2.

In the literature, it is common to see polygonal numbers of order
m + 2 defined as the integers

pm(k) := m

2
(
k2 − k

)
+ k

for k = 0, 1, 2, . . . .

Putting s = m + 2 in the earlier definition, we have

(s − 2)k2 − (s − 4)k
2 = mk2 − (m − 2)k

2

= m
(
k2 − k

)
+ 2k

2
= m

2
(
k2 − k

)
+ k
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Two classical theorems

Theorem (Cauchy). For every integer m ≥ 1, every nonnegative integer is
the sum of m + 2 polygonal numbers of order m + 2,

Theorem (Legendre). Let m ≥ 3.

If m is odd, then every sufficiently large integer is the sum of four
polygonal numbers of order m + 2.
If m is even, then every sufficiently large integer is the sum of five
polygonal numbers of order m + 2, one of which is either 0 or 1.
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Short proofs by Melvin B. Nathanson (1987)

Nathanson1 gave a short proof of the following strengthened version of
Cauchy’s theorem:

Theorem. Let m ≥ 3 and n ≥ 120m. Then n is the sum of m + 1
polygonal numbers of order m + 2, at most four of which are different from
0 or 1.

A key lemma in the proof also leads to a short proof of Legendre’s theorem.

1Nathanson, Melvyn B (1987), A short proof of Cauchy’s polygonal number theorem,
Proceedings of the American Mathematical Society, pp. 22–24.
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Revised statements and proofs (1996)

However, Nathanson gave the following versions in his book2:

Theorem. If m ≥ 4 and n ≥ 108m, then n can be written as the sum of
m + 1 polygonal numbers of order m + 2, at most four of which are
different from 0 or 1. If n ≥ 324, then n can be written as the sum of five
pentagonal numbers, at least one of which is 0 or 1.

Theorem. Let m ≥ 3 and n ≥ 28m3. If m is odd, then n is the sum of
four polygonal numbers of order m + 2. If m is even, then n is the sum of
five polygonal numbers of order m + 2, at least one of which is 0 or 1.

Since these versions have been formalized in Isabelle in 20233, we decided
to formalize in Lean 4 the version of the first theorem that appeared in the
1987 paper.

2Nathanson, Melvyn B (1996), Additive Number Theory, pp. 27–33.
3Kevin Lee, Zhengkun Ye, and Angeliki Koutsoukou-Argyraki (2023), Polygonal

Number Theorem, Archive of Formal Proofs.
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Sum of four pentagonal numbers

Specializing the second theorem to m = 3 gives the following:

Theorem. If n ≥ 756, then n is the sum of four pentagonal numbers.
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Discussion on StackExchange

Figure 2: https://math.stackexchange.com/q/4560516
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Sequence A133929 at OEIS website

Figure 3: https://oeis.org/A133929
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Unsolved Problems in Number Theory (2004)

The following appears in Richard K. Guy’s book4:
Richard Blecksmith & John Selfridge found six numbers among
the first million, namely 9, 21, 31, 43, 55 and 89, which require
five pentagonal numbers of positive rank, and two hundred and
four others, the largest of which is 33066, which require four. They
believe that they have found them all.

4Guy, Richard K. (1996), Unsolved Problems in Number Theory, p. 222.
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Known but not explicitly stated?

Theorem. Every positive integer n /∈ {9, 21, 31, 43, 55, 89} can be
expressed as the sum of at most four positive pentagonal numbers.

Kevin Cheung 13



Two strengthenings of Cauchy’s theorem

Recall the following:

Theorem (1987 paper). Let m ≥ 3 and n ≥ 120m. Then n is the sum of
m + 1 polygonal numbers of order m + 2, at most four of which are
different from 0 or 1.

Theorem (1996 book). If m ≥ 4 and n ≥ 108m, then n can be written
as the sum of m + 1 polygonal numbers of order m + 2, at most four of
which are different from 0 or 1. If n ≥ 324, then n can be written as the
sum of five pentagonal numbers, at least one of which is 0 or 1.
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Gap in the proof in the paper version

The proof of the theorem in the 1987 paper starts with the following:
Let b1 and b2 be consecutive odd integers. The set of numbers
of the form b + r, where b ∈ {b1, b2} and r ∈ {0, 1, . . . , m − 3},
contains a complete set of residue classes modulo m.

This argument is also in Figurate Numbers by Deza & Deza.

The statement fails for m = 3. To repair the argument, simply seek
three consecutive odd integers instead of two.

We believe that this gap was known to various individuals (including
Nathanson himself). However, in our literature search, we did not
come across any mention of this gap.
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Reanalysis and improved bounds

We performed a tighter analysis of a key lemma and obtained the following:

Theorem. Let n and m be positive integers. If either

m ≥ 4 and n ≥ 53m; or
m = 3 and n ≥ 159m,

then n is the sum of m + 1 polygonal numbers of order m + 2, at most four
of which are different from 0 or 1.
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Sum of four pentagonal numbers

Theorem (Nathanson 1996). If n ≥ 756, then n is the sum of four
pentagonal numbers.

Theorem (C. and McNamer 2025). If n ≥ 477, then n is the sum of
four pentagonal numbers.

The cases for n < 477 and n /∈ {9, 21, 31, 43, 55, 89} are verified
computationally and can also be checked by hand around an hour.
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Formalization in Lean 4

Our formalization work in Lean 4 consists of two parts.

The first is the formalization of

Theorem (C. and McNamer 2025). If n ≥ 477, then n is the sum
of four pentagonal numbers.

The second is defining the decidable instance IsnPolygonal m n
which facilitates determining if n is a polygonal number of order m by
using the decide tactic.

Around 2700 lines of Lean 4 code in total.

We discovered the gap when we tried to formalize the proof in the
1987 paper.

The major challenges in the formalization process were dealing with the
various types for numbers (Nat, Int, Rat, Real) and looking up
relevant results in Mathlib.
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Future work

Unlike the formalization in Isabelle, we assumed Gauss’ Eureka
Theorem5 without proof since it has not been formalized in Lean 4 as
far as we know.

We hope that efforts to formalize Gauss’ theorem in Lean 4 will be
undertaken in the near future.

5Also known as Gauss’ Triangular Number Theorem, it asserts that every positive
integer can be represented as the sum of at most three triangular numbers, which is
equivalent to that every positive integer congruent to 3 modulo 8 is the sum of three odd
squares.
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