Formalizing a result on polygonal numbers in Lean
4—an experience report

(Joint work with Tomas McNamer)
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Polygonal numbers
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Figure 1: Image by CMC Lee:
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1,3,6,10, 15,...

1,4,9, 16, 25,...

1,5,12, 22, 35,...

1,6, 15, 28, 45,...

1,7,18, 34, 55,...

1, 8, 21, 40, 65,...
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Formulas

@ Let s be the number of sides in a polygon where s > 3.
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Formulas

@ Let s be the number of sides in a polygon where s > 3.
@ The formula for the kth s-gonal number, where k£ > 0, is

(s —2)k? — (s —4)k
2

(By this formula, 0 and 1 are the Oth and 1st s-gonal numbers, resp.)
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Formulas

@ Let s be the number of sides in a polygon where s > 3.
@ The formula for the kth s-gonal number, where k£ > 0, is

(s —2)k? — (s —4)k
2

(By this formula, 0 and 1 are the Oth and 1st s-gonal numbers, resp.)

o For a given s-gonal number x > 0, k is given by

V8(s—2)x+ (s —4)2 + (s — 4)
2(s—2) ’

For example, 10 is the 4th triangular number. The formula gives

V8B =2)10+ (3—4)2 + (3 —4)
2(3 - 2)

=4.
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Polygonal numbers of order m + 2.

@ In the literature, it is common to see polygonal numbers of order
m + 2 defined as the integers

pm(k) = % (k2 — k:) + k

fork=0,1,2,....
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Polygonal numbers of order m + 2.

@ In the literature, it is common to see polygonal numbers of order
m + 2 defined as the integers

M2
P(k) == 3 (k k:) +k
fork=0,1,2,....
@ Putting s = m + 2 in the earlier definition, we have

(s —2)k? — (s —4)k  mk?> — (m —2)k
2 2
m (k2 — k) + 2k
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Two classical theorems

Theorem (Cauchy). For every integer m > 1, every nonnegative integer is
the sum of m + 2 polygonal numbers of order m + 2,

Theorem (Legendre). Let m > 3.

o If m is odd, then every sufficiently large integer is the sum of four
polygonal numbers of order m + 2.

o If m is even, then every sufficiently large integer is the sum of five
polygonal numbers of order m + 2, one of which is either 0 or 1.
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Short proofs by Melvin B. Nathanson (1987)

Nathanson® gave a short proof of the following strengthened version of
Cauchy's theorem:

Theorem. Let m > 3 and n > 120m. Then n is the sum of m + 1
polygonal numbers of order m + 2, at most four of which are different from

Oorl.

A key lemma in the proof also leads to a short proof of Legendre's theorem.

!Nathanson, Melvyn B (1987), A short proof of Cauchy’s polygonal number theorem,
Proceedings of the American Mathematical Society, pp. 22-24.
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Revised statements and proofs (1996)

However, Nathanson gave the following versions in his book?:

Theorem. If m > 4 and n > 108m, then n can be written as the sum of
m + 1 polygonal numbers of order m + 2, at most four of which are
different from 0 or 1. If n > 324, then n can be written as the sum of five
pentagonal numbers, at least one of which is 0 or 1.

Theorem. Let m > 3 and n > 28m?2. If m is odd, then n is the sum of
four polygonal numbers of order m + 2. If m is even, then n is the sum of
five polygonal numbers of order m + 2, at least one of which is 0 or 1.

Since these versions have been formalized in Isabelle in 20233, we decided
to formalize in Lean 4 the version of the first theorem that appeared in the
1987 paper.

?Nathanson, Melvyn B (1996), Additive Number Theory, pp. 27-33.
3Kevin Lee, Zhengkun Ye, and Angeliki Koutsoukou-Argyraki (2023), Polygonal
Number Theorem, Archive of Formal Proofs.

Kevin Cheung e



Sum of four pentagonal numbers

Specializing the second theorem to m = 3 gives the following:

Theorem. If n > 756, then n is the sum of four pentagonal numbers.
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Discussion on StackExchange

What is the largest number that cannot be expressed
as the sum of four pentagonal numbers?

Asked 2 years, 6 months ago Modified 2 years, 6 months ago Viewed 75 times

By Fermat's polygonal number theorem, every number can be written as the sum of five pentagonal
numbers. The largest integer I've been able to find that can't be represented as the sum of four pentagonal
1 numbers was 21 (searched up to 21)(I am not good enough at coding to code this up). What is the largest
such number?

number-theory

Share Cite Follow edited Oct 24, 2022 at 15:52 asked Oct 24, 2022 at 15:50

-

;ﬁ, mathlander
<W 4,077 ©2 1114 A43

2 89. See this. Note: I am not confident that this has been proven, just that it has been conjectured and backed
up numerically. Similarly, it is conjectured that there are only 210 natural numbers that need more than 3.
See this. And this for a general discussion. — lulu Oct 24, 2022 at 15:52

Figure 2: https://math.stackexchange.com/q/4560516


https://math.stackexchange.com/q/4560516

Sequence A133929 at OEIS website

A133929 Positive integers that cannot be expressed using four pentagonal numbers. 2
9, 21, 31, 43, 55, 89

OFFSET 1,1

COMMENTS  Equivalently, integers m such that the smallest number of pentagonal numbers
(A@00326) which sum to m is exactly five, that is, Al00878(a(n)) = 5.
Richard Blecksmith & John Selfridge found these six integers among the
first million, they believe that they have found them all (Richard K. Guy
reference). - Bernard Schott, Jul 22 2022

REFERENCES Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer,
2004, Section D3, Figurate numbers, pp. 222-228.

LINKS Table of n, a(n) for n=1..6.
Eric Weisstein's World of Mathematics, Pentagonal Number
EXAMPLE 9= 5+ 1+1+1+1.
21= 5+ 5+5+5+1.
31 =12 + 12 +5 + 1 + 1.
43 =35+ 5+1+1+1.
55 =51+ 1+1+1+1.
80 =70 +12+5+ 1+ 1.

CROSSREFS  Cf. A@00326, A007527, A100878.
Equals A003679 \ A355660.
Sequence in context: A173460 A110701 A243703 * A325573 A@86470 A176256
Adjacent sequences: A133926 A133927 A133928 * A133930 A133931 A133932

Figure 3: https://oeis.org/A133929
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https://oeis.org/A133929

Unsolved Problems in Number Theory (2004)

The following appears in Richard K. Guy's book*:

Richard Blecksmith & John Selfridge found six numbers among
the first million, namely 9, 21, 31, 43, 55 and 89, which require
five pentagonal numbers of positive rank, and two hundred and
four others, the largest of which is 33066, which require four. They
believe that they have found them all.

*Guy, Richard K. (1996), Unsolved Problems in Number Theory, p. 222.



Known but not explicitly stated?

Theorem. Every positive integer n ¢ {9,21,31,43, 55,89} can be
expressed as the sum of at most four positive pentagonal numbers.
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Two strengthenings of Cauchy's theorem

Recall the following:

Theorem (1987 paper). Let m > 3 and n > 120m. Then n is the sum of
m + 1 polygonal numbers of order m + 2, at most four of which are
different from 0 or 1.

Theorem (1996 book). If m > 4 and n > 108m, then n can be written
as the sum of m + 1 polygonal numbers of order m + 2, at most four of
which are different from 0 or 1. If n > 324, then n can be written as the
sum of five pentagonal numbers, at least one of which is 0 or 1.
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Gap in the proof in the paper version

The proof of the theorem in the 1987 paper starts with the following:

Let by and by be consecutive odd integers. The set of numbers
of the form b+ r, where b € {b1,b2} and r € {0,1,...,m — 3},
contains a complete set of residue classes modulo m.

@ This argument is also in Figurate Numbers by Deza & Deza.
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Gap in the proof in the paper version

The proof of the theorem in the 1987 paper starts with the following:

Let by and by be consecutive odd integers. The set of numbers
of the form b+ r, where b € {b1,b2} and r € {0,1,...,m — 3},
contains a complete set of residue classes modulo m.

@ This argument is also in Figurate Numbers by Deza & Deza.

@ The statement fails for m = 3. To repair the argument, simply seek
three consecutive odd integers instead of two.
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Gap in the proof in the paper version

The proof of the theorem in the 1987 paper starts with the following:

Let by and by be consecutive odd integers. The set of numbers
of the form b+ r, where b € {b1,b2} and r € {0,1,...,m — 3},
contains a complete set of residue classes modulo m.

@ This argument is also in Figurate Numbers by Deza & Deza.

@ The statement fails for m = 3. To repair the argument, simply seek
three consecutive odd integers instead of two.

@ We believe that this gap was known to various individuals (including
Nathanson himself). However, in our literature search, we did not
come across any mention of this gap.
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Reanalysis and improved bounds

We performed a tighter analysis of a key lemma and obtained the following:
Theorem. Let n and m be positive integers. If either

e m>4and n > 53m; or
e m=3and n > 159m,

then n is the sum of m + 1 polygonal numbers of order m + 2, at most four
of which are different from 0 or 1.

Kevin Cheung



Sum of four pentagonal numbers

Theorem (Nathanson 1996). If n > 756, then n is the sum of four
pentagonal numbers.

Theorem (C. and McNamer 2025). If n > 477, then n is the sum of
four pentagonal numbers.

The cases for n < 477 and n ¢ {9,21, 31, 43,55,89} are verified
computationally and can also be checked by hand around an hour.
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Formalization in Lean 4

@ Our formalization work in Lean 4 consists of two parts.
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Formalization in Lean 4

@ Our formalization work in Lean 4 consists of two parts.
@ The first is the formalization of

Theorem (C. and McNamer 2025). If n > 477, then n is the sum
of four pentagonal numbers.
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Formalization in Lean 4

@ Our formalization work in Lean 4 consists of two parts.
@ The first is the formalization of

Theorem (C. and McNamer 2025). If n > 477, then n is the sum
of four pentagonal numbers.

@ The second is defining the decidable instance IsnPolygonal m n
which facilitates determining if n is a polygonal number of order m by
using the decide tactic.
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Formalization in Lean 4

@ Our formalization work in Lean 4 consists of two parts.
@ The first is the formalization of

Theorem (C. and McNamer 2025). If n > 477, then n is the sum
of four pentagonal numbers.

@ The second is defining the decidable instance IsnPolygonal m n
which facilitates determining if n is a polygonal number of order m by
using the decide tactic.

@ Around 2700 lines of Lean 4 code in total.
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Formalization in Lean 4
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using the decide tactic.

@ Around 2700 lines of Lean 4 code in total.

o We discovered the gap when we tried to formalize the proof in the
1987 paper.

Kevin Cheung



Formalization in Lean 4

@ Our formalization work in Lean 4 consists of two parts.
@ The first is the formalization of

Theorem (C. and McNamer 2025). If n > 477, then n is the sum
of four pentagonal numbers.

@ The second is defining the decidable instance IsnPolygonal m n
which facilitates determining if n is a polygonal number of order m by
using the decide tactic.

@ Around 2700 lines of Lean 4 code in total.

o We discovered the gap when we tried to formalize the proof in the
1987 paper.

@ The major challenges in the formalization process were dealing with the
various types for numbers (Nat, Int, Rat, Real) and looking up
relevant results in Mathlib.
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@ Unlike the formalization in Isabelle, we assumed Gauss’ Eureka
Theorem® without proof since it has not been formalized in Lean 4 as
far as we know.

®Also known as Gauss' Triangular Number Theorem, it asserts that every positive
integer can be represented as the sum of at most three triangular numbers, which is
equivalent to that every positive integer congruent to 3 modulo 8 is the sum of three odd
squares.
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@ Unlike the formalization in Isabelle, we assumed Gauss’ Eureka
Theorem® without proof since it has not been formalized in Lean 4 as
far as we know.

@ We hope that efforts to formalize Gauss’ theorem in Lean 4 will be
undertaken in the near future.

®Also known as Gauss' Triangular Number Theorem, it asserts that every positive
integer can be represented as the sum of at most three triangular numbers, which is
equivalent to that every positive integer congruent to 3 modulo 8 is the sum of three odd
squares.
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