
MathCheck2: A SAT+CAS Verifier for
Combinatorial Conjectures

Curtis Bright1, Vijay Ganesh1, Albert Heinle1,
Ilias Kotsireas2, Saeed Nejati1, Krzysztof Czarnecki1

1University of Waterloo, 2Wilfred Laurier University

December 7, 2016

Computer Algebra in Scientific Computing (2016)
Satisfiability Checking + Symbolic Computation (SC2) Track

1 / 26

Motivation

The research areas of SMT [SAT Modulo Theories]
solving and symbolic computation are quite
disconnected. On the one hand, SMT solving has its
strength in efficient techniques for exploring
Boolean structures, learning, combining solving
techniques, and developing dedicated heuristics, but
its current focus lies on easier theories and it makes
use of symbolic computation results only in a rather
naive way.

Erica Ábrahám1

1Building bridges between symbolic computation and satisfiability
checking. Proceedings of the 2015 International Symposium on Symbolic
and Algebraic Computation.

2 / 26

The MathCheck2 System

I Uses SAT and CAS functionality to finitely verify or
counterexample conjectures in mathematics.

I Used to study conjectures in combinatorial design theory
about the existence of Hadamard and Williamson matrices.

Generator

CAS

SAT Solver

CAS

Problem
Formula φB

SAT solver result
(Solution / UNSAT core)

SAT UNSAT

Domain-spec
ific constrai

nts

3 / 26

Experimental Results

MathCheck2 was able to show that. . .

I Williamson matrices of order 35 do not exist.
I First shown by Ðoković2, who requested an independent

verification.
I Williamson matrices exist for all orders n < 35.

I Even orders were mostly previously unstudied.
I Found over 500 Hadamard matrices which were not

previously in the library of the CAS Magma.
I Orders up to 168× 168.

2Williamson matrices of order 4n for n = 33, 35, 39. Discrete
Mathematics.

4 / 26

Hadamard matrices

I square matrix with ±1 entries
I any two distinct rows are orthogonal

Example

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


Conjecture
An n × n Hadamard matrix exists for any n a multiple of 4.

5 / 26

Hadamard matrices

I square matrix with ±1 entries
I any two distinct rows are orthogonal

Example

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


Conjecture
An n × n Hadamard matrix exists for any n a multiple of 4.

5 / 26

Naive Hadamard Encoding

Each entry of H will be represented using a Boolean variable
encoding with BV(1) = true and BV(−1) = false.

Multiplication becomes XNOR under this encoding, i.e.,

BV(x · y) = ¬(BV(x)⊕ BV(y)) for x , y ∈ {±1}.

6 / 26

Naive Hadamard Encoding

Arithmetic formula encoding

n−1∑
k=0

hik · hjk = 0 for all i 6= j .

Boolean variable encoding
Using ‘product’ variables pijk := BV(hik · hjk) this becomes the
cardinality constraints

n−1∑
k=0

pijk true

1 =
n
2

for all i 6= j .

7 / 26

Naive Hadamard Encoding

A binary adder consumes Boolean values and produces Boolean
values; when thought of as bits, the outputs contain the binary
representation of how many inputs were true.

a
b

s = a ⊕ b

c = a ∧ b

To encode the cardinality constraints we use a network of binary
adders with:

I n inputs (the variables
{
pijk
}n−1
k=0)

I blog2 nc+ 1 outputs (counting the number of input
variables which are true)

8 / 26

Williamson Matrices

I n × n matrices A, B , C , D
I entries ±1
I symmetric, circulant
I A2 +B2 +C 2 +D2 = 4nIn

9 / 26

Symmetric and Circulant Matrices

Such matrices are defined by their first
⌈n+1

2

⌉
entries so we may

refer to them as if they were sequences.

Examples (n = 5 and 6)


a0 a1 a2 a2 a1

a1 a0 a1 a2 a2

a2 a1 a0 a1 a2

a2 a2 a1 a0 a1

a1 a2 a2 a1 a0





a0 a1 a2 a3 a2 a1

a1 a0 a1 a2 a3 a2

a2 a1 a0 a1 a2 a3

a3 a2 a1 a0 a1 a2

a2 a3 a2 a1 a0 a1

a1 a2 a3 a2 a1 a0


symmetric conditions circulant conditions

10 / 26

Symmetric and Circulant Matrices

Such matrices are defined by their first
⌈n+1

2

⌉
entries so we may

refer to them as if they were sequences.

Examples (n = 5 and 6)


a0 a1 a2 a2 a1

a1 a0 a1 a2 a2

a2 a1 a0 a1 a2

a2 a2 a1 a0 a1

a1 a2 a2 a1 a0





a0 a1 a2 a3 a2 a1

a1 a0 a1 a2 a3 a2

a2 a1 a0 a1 a2 a3

a3 a2 a1 a0 a1 a2

a2 a3 a2 a1 a0 a1

a1 a2 a3 a2 a1 a0


symmetric conditions circulant conditions

10 / 26

Williamson Matrices Sequences

I sequences A, B , C , D of length
⌈n+1

2

⌉
I entries ±1
I PAFA(s) + PAFB (s) + PAFC (s) + PAFD(s) = 0 for

s = 1, . . . , dn−1
2 e.

The PAF3 here is defined

PAFA(s) :=
n−1∑
k=0

aka(k+s) mod n .

3Periodic Autocorrelation Function
11 / 26

Compression

The m-compression of a sequence A = [a0, . . . , an−1] of length
n = dm is a new sequence of length d whose j th entry is the
sum of aj+kd for k = 0, . . . , m − 1.

Example
The sequence A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9] has the
5-compression

A(2) =
[
a0 + a2 + a4 + a6 + a8, a1 + a3 + a5 + a7 + a9

]
.

12 / 26

Compression

The m-compression of a sequence A = [a0, . . . , an−1] of length
n = dm is a new sequence of length d whose j th entry is the
sum of aj+kd for k = 0, . . . , m − 1.

Example
The sequence A = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9] has the
2-compression

A(5) =
[
a0 + a5, a1 + a6, a2 + a7, a3 + a8, a4 + a9

]
.

12 / 26

Useful Properties of Compressed Sequences

Lemma 1
The entries of an m-compression of a ±1-sequence of length dm :

I have absolute value at most m
I have the same parity as m

Lemma 2
The compression of a symmetric sequence is also symmetric.

13 / 26

Technique 1: Sum-of-squares Decomposition

Ðoković–Kotsireas4 theorem
Williamson sequences satisfy

PAFA(0) + PAFB (0) + PAFC (0) + PAFD(0) = 4n

and this still holds even if A, B , C , D are compressed.

With maximal compression, this becomes

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2 = 4n .

4Compression of periodic complementary sequences and applications.
Designs, Codes and Cryptography

14 / 26

Technique 1: Sum-of-squares Decomposition

Why is this useful?
CAS functionality can determine all possible solutions of

w2 + x 2 + y2 + z 2 = 4n w , x , y , z ≡ n (mod 2).

This tells us all possible rowsums for Williamson sequences.

We can encode this information as constraints and pass it to the
SAT solver.

15 / 26

Technique 1: Sum-of-squares Decomposition

Why is this useful?
CAS functionality can determine all possible solutions of

w2 + x 2 + y2 + z 2 = 4n w , x , y , z ≡ n (mod 2).

This tells us all possible rowsums for Williamson sequences.

We can encode this information as constraints and pass it to the
SAT solver.

15 / 26

Technique 1: Sum-of-squares Decomposition

Example
When n = 35, there are exactly three ways to write 4n as a sum
of four positive odd squares in ascending order:

12 + 32 + 32 + 112 = 4 · 35
12 + 32 + 72 + 92 = 4 · 35
32 + 52 + 52 + 92 = 4 · 35

16 / 26

Williamson Equivalences

Williamson sequences A, B , C , D can be re-ordered and negated
without affecting the Williamson conditions.

Given this, we may enforce the constraint

0 6 rowsum(A) 6 rowsum(B) 6 rowsum(C) 6 rowsum(D).

17 / 26

Technique 2: Divide-and-conquer

For efficiency reasons, we want to partition the search space into
subspaces. An effective way to do this is to have each subspace
contain one possibility for the compressions of A, B , C , D .

I Determine all possible compressions with Lemmas 1 and 2.
I Use the ÐK theorem to remove possibilities which are

necessarily invalid (for example, because their power
spectral density is too large).

18 / 26

Power Spectral Density

The power spectral density of a sequence A is

PSDA(s) := |DFTA(s)|
2

where DFTA is the discrete Fourier transform of A.

Example
The power spectral density of A = [1, 1,−1,−1, 1] is given by:

PSDA(0) = 12 = 1

PSDA(1) ≈ 3.2362 = 10.472

PSDA(2) ≈ (−1.236)2 = 1.528

PSDA(3) ≈ (−1.236)2 = 1.528

PSDA(4) ≈ 3.2362 = 10.472

19 / 26

Ðoković–Kotsireas Theorem

For all s ∈ Z, Williamson sequences satisfy

PSDA(s) + PSDB (s) + PSDC (s) + PSDD(s) = 4n

and these still hold if A, B , C , D are compressed.

Corollary
If PSDX (s) > 4n then X is not a Williamson sequence or the
compression of a Williamson sequence.

20 / 26

Technique 2: Divide-and-conquer

For n = 35 with 7-compression, the following is one of 119
compressions which satisfy the ÐK conditions:

A(5) = [5, 1,−3,−3, 1]

B(5) = [−3, 3,−3,−3, 3]

C (5) = [−3, 1,−1,−1, 1]

D(5) = [1,−3,−3,−3,−3]

21 / 26

Technique 2: Divide-and-conquer

If n has more than one nontrivial factor it is possible to perform
compression by both factors.

Example
Using 5 and 7-compression on n = 35 lead to the following
number of instances for each decomposition type:

Instance type # instances

12 + 32 + 32 + 112 6960
12 + 32 + 72 + 92 8424
32 + 52 + 52 + 92 6290

22 / 26

Technique 3: UNSAT Core

The instances generated are very similar and a short reason why
one instance is unsatisfiable may apply to other instances.

Example
The n = 35 instances contained 3376 variables but only 168 were
set differently between instances.

23 / 26

Experimental Results

Timings5 for Williamson orders 25 6 n 6 35 are below. The
number of SAT calls which successfully returned a result is in
parenthesis. A hyphen denotes a timeout after 24h.

Order Base Sum-of-squares Divide-and-conquer UNSAT Core
25 317s (1) 1702s (4) 408s (179) 408s (179)
26 865s (1) 3818s (3) 61s (3136) 34s (1592)
27 5340s (1) 8593s (3) 1518s (14994) 1439s (689)
28 7674s (1) 2104s (2) 234s (13360) 158s (439)
29 - 21304s (1) N/A N/A
30 1684s (1) 36804s (1) 139s (370) 139s (370)
31 - 83010s (1) N/A N/A
32 - - 96011s (13824) 95891s (348)
33 - - 693s (8724) 683s (7603)
34 - - 854s (732) 854s (732)
35 - - 31816s (21674) 31792s (19356)

5on 64-bit AMD Opteron processors running at 2.2 GHz
24 / 26

Average Timings (in Seconds)

Order CAS Preprocessor
CAS Preprocessor +

CDCL(CAS)
24 0.01 0.01
26 0.09 0.08
28 0.06 0.05
30 0.48 0.28
32 0.04 0.05
34 2.69 1.51
36 0.83 0.75
38 10.62 6.08
40 1.02 1.08
42 112.51 42.21

25 / 26

Conclusions

I We have demonstrated the power of the SAT+CAS
combination by

I performing a requested verification of a nonexistence result
I generating new matrices for Magma’s Hadamard database.

I We are working on extending the system; it is free software
and available at

sites.google.com/site/uwmathcheck

26 / 26

sites.google.com/site/uwmathcheck

