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SAT:
Boolean satisfiability problem

SAT solvers: Clever brute force
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Effectiveness of SAT solvers

Surprisingly, many problems that have nothing to do with logic can
be effectively solved by translating them into Boolean logic and
using a SAT solver.

Examples

I Discrete optimization
I Hardware and software verification
I Proving/disproving conjectures

(my specialty)
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Limitations of SAT solvers

SAT solvers lack mathematical understanding beyond the most
basic logical inferences and will fail on some trivial tiny problems.

Example

Have a SAT solver to try to find a way to put 20 pigeons into 19
holes such that no hole contains more than one pigeon. . .
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Effectiveness of CAS

Computer algebra systems can perform calculations and
manipulate expressions from many branches of mathematics.

Example

What is the value of
∞∑
n=1

1
n2 ?

Maple returns π2/6
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Effectiveness of CAS

Computer algebra systems can perform calculations and
manipulate expressions from many branches of mathematics.

Example

What is the value of
∞∑
n=1

1
n2 ?

Maple returns π2/6 . . . not 1.64493406685.
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Limitations

CASs are not optimized to do large searches (in an
exponential-sized space).

Ian George Bolton 7/46



SAT + CAS

Search + Math
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MathCheck: A SAT+CAS system
MathCheck has found over 100,000 combinatorial matrices like this
{±1}-matrix of order 280 with pairwise orthogonal rows:
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MathCheck results (see uwaterloo.ca/mathcheck)

Graph Theory:
Current best result in the Ruskey–Savage conjecture (1993).
Current best result in the Norin conjecture (2008).

Discrete Geometry:
Fastest verification of cases in Lam’s problem (1800s).

Combinatorics:
Found the smallest counterexample of the Williamson conjecture (1944).
Found three new counterexamples of the good matrix conjecture (1971).
Current best result in the best matrix conjecture (2001).

Number Theory:
Verified a conjecture of Craigen, Holzmann, and Kharaghani (2002).
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Ruskey–Savage Conjecture
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Ruskey–Savage conjecture

Every matching of the hypercube graph of dimension at least two
extends to a Hamiltonian cycle of the graph.
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SAT encoding

We use a SAT solver to search for a counterexample.

First, we need a way of encoding the “matching” part.
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SAT variables
Define a Boolean variable for every edge of the hypercube graph.
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In this matching the variable x is true (in the matching) and u is
false (outside the matching).
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SAT constraints
For every vertex of the graph at most one edge incident to the
vertex can be in the matching.
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In Boolean logic: ¬x ∨ ¬y

, ¬x ∨ ¬z

, ¬y ∨ ¬z
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Counterexample search

To search for a counterexample we want a matching that does not
extend to a Hamiltonian cycle.

This is more difficult to encode in SAT, but given a matching a
CAS can easily check if it extends to a Hamiltonian cycle.
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SAT learning

SAT solver CAS

The CAS tries to extend the matching to a Hamiltonian cycle. . .

. . . if successful, a “conflict clause” is learned.
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Conflict clause

We can block all subsets of the found Hamiltonian cycle since all
trivially extend to a Hamiltonian cycle.

We do this by ensuring that one of the edges not in the
Hamiltonian cycle is in any future matching.

≡
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Symmetry learning

Applying any automorphism of the hypercube graph to a conflict
clause generates another conflict clause:
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Ruskey–Savage conjecture results

Previously it was known that the conjecture holds for the
dimensions up to d = 4.

MathCheck solved the d = 5 case by checking just 2441 matchings
(out of a possible ≈ 13 billion) in 65 minutes.
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Norin Conjecture
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Edge-antipodal colourings

A {red, blue}-colouring of a hypercube graph is edge-antipodal if
antipodal edges are coloured differently.
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Norin conjecture

In any edge-antipodal colouring of the hypercube graph of
dimension at least two there is a blue path joining antipodal
vertices.
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SAT variables

Define a Boolean variable for every edge of the hypercube graph.
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In this colouring x is true (red) and u is false (blue).
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SAT constraints
For antipodal edges of the graph, at least one must be coloured
red and at least one must be coloured blue.
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In Boolean logic: x ∨ u, ¬x ∨ ¬u
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SAT learning

SAT solver CAS

The CAS looks for a blue path between antipodes. . .

. . . if successful, a conflict clause is learned.
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Conflict clause

We block all colourings containing the found blue path—at least
one of the edges on the blue path must be red.

≡
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Norin conjecture results

Previously it was known that the conjecture holds for the
dimensions up to five.

MathCheck solved the dimension 6 case by checking just 122
edge-antipodal colourings (out of a possible ≈ 7.9 · 1028) in 3
minutes.
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Lam’s Problem
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History

For over 2000 years, mathematicians tried to derive Euclid’s
“parallel postulate” from his first four postulates for geometry.

In the 1800s, the discovery of geometries like projective geometry
where the parallel postulate fails showed that this is impossible.
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Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.
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Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.

unique point on A and B

A B

“line at infinity”
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Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.

To eliminate trivial cases:
3. No line contains all (or all but one) of the points.
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Finite projective planes

Can a projective plane have a finite number of points?

If so, by a counting argument it must have n2 + n + 1 points for
some integer n (called the order of the plane).
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Projective plane of order 2
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Projective plane of order 3
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Projective planes of small orders

2 3 4 5 6 7 8 9 10
3 3 3 3 7 3 3 3 ?
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Projective planes of small orders

2 3 4 5 6 7 8 9 10
3 3 3 3 7 3 3 3 7

Supercomputer Search
(1973–1989)
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Projective plane of order 2: Incidence matrix

1 1 0 1 0 0 00
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

Boolean matrix of size 7× 7 where (i , j)th entry is 1 exactly when
the ith line is incident with the jth point.

SAT encoding: false ≡ 0, true ≡ 1
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Lam’s problem: First case

The first case of Lam’s problem was solved in 1973 has been
verified by at least four independent implementations on modern
desktops:

Authors Year Language Time
Roy 2005 C 78 min

Casiello, Indaco, and Nagy 2010 GAP 3.3 min
Clarkson and Whitesides 2014 C 27 sec

Perrott 2016 Mathematica 55 min

Bright et al. 2019 SAT 6.3 min
Bright et al. 2019 SAT+CAS 6.8 sec
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Lam’s problem: Second case

The second case was initiated in 1974 and not entirely searched
until 1986. I am only aware of a single verification on a modern
desktop prior to our work:

Authors Year Language Time
Roy 2011 C 16,000 hours

Bright et al. 2020 SAT+CAS 30 hours
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Learning method

SAT solver CAS

partial projective
plane P

The CAS computes a nontrivial symmetry ϕ of the plane. . .

. . . and a symmetry blocking clause is learned.
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Learning method

SAT solver CAS

partial projective
plane P

ϕ(P)

The CAS computes a nontrivial symmetry ϕ of the plane. . .
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Lam’s problem: Third case

The final case was solved in 1989 by Lam et al. using 26 months
on a supermini computer and 3 months on a supercomputer.

It was verified by Roy in 2011 using 26 months on a desktop. We
are currently working on this case.
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Hadwiger–Nelson Problem
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Hadwiger–Nelson problem

How many colours are needed to colour the plane so that no two
points separated a distance of 1 are the same colour?

At most seven:

42/46



Hadwiger–Nelson problem

How many colours are needed to colour the plane so that no two
points separated a distance of 1 are the same colour?

At most seven:

42/46



Hadwiger–Nelson problem results

Last year, Heule used a SAT+CAS method to find a unit distance
graph with 529 vertices that cannot be coloured with four colours.

Marijn Heule. Trimming graphs using clausal proof optimization. Principles
and Practice of Constraint Programming, 2019.
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Conclusion

The SAT+CAS paradigm is a new fast way of searching for
combinatorial objects—or disproving their existence.

Has wide application: Many mathematical problems stand to
benefit from faster search tools.

Bang for your buck: Requires knowledge of SAT and CAS, but
generally simpler to write and verify than a special-purpose search.
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Future work

I’m actively looking for a permanent place to continue this
research program—and to develop new applications.

For the next two years I’m holding an NSERC fellowship, working
with Kevin Cheung and Brett Stevens.

curtisbright.com
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