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PART I

Context and Motivation
Why should you care about SAT Solvers?
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Combinatorial Math and SAT/SMT Solvers
An Indispensable Tool for many Strategies

Formal 
Methods/
Software 
Engg.

Artificial
Intelligence

Physics Combinatorial
Math

SAT/SMT
Solvers
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• Solver-based programming languages
• Compiler optimizations using solvers
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bug-finding
• Solver-based synthesis

• Bounded MC
• Program Analysis
• AI

• Concolic Testing
• Program Analysis
• Equivalence Checking
• Auto Configuration

SAT/SMT Solver Research Story
A 1000x+ Improvement
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Solvers in Software Engineering and Security
Better Engineering, Usability, Novelty

Program Reasoning 
Tool

Program Specification

Program is correct?
or Generate Counterexamples (test cases)

SAT/SMT 
Solver

Logic Formulas

SAT/UNSAT
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Research Questions
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• How can we leverage the search capabilities of SAT solvers 
to counter-example math conjectures?

• Pros: Solvers can easily search very large combinatorial spaces
• Cons: Solvers lack domain-specific knowledge

• How do we compensate for the weaknesses of SAT?
• Computer Algebra Systems (CAS) are repositories of domain-specific 

knowledge about many areas of mathematics, but lack the search capabilities 
of SAT

• Answer: Combine SAT and CAS



PART II

SAT Solver Background
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• The Boolean SAT problem: Given Boolean formulas in Conjunctive Normal Form 
(CNF), decide whether they are satisfiable. A SAT solver is a program that takes as 
input CNF formulas, and decides whether they are satisfiable.

• The SAT problem is known to be NP-complete, believed to be intractable. 

• SAT solvers are required to produce proofs of unsatisfiability for UNSAT instances 
and satisfying assignments for SAT instances

The Boolean Satisfiability (SAT) Problem
Basic Definitions
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Modern Conflict-Driven Clause-Learning (CDCL) SAT Solver
Overview
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Input SAT Instance

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Propagate()
(BCP)

Conflict?

All Vars
Assigned?

Branch()

GRASP Solver: [MS96]
ZChaff Solver: [MMZZM01]



CDCL with Deductive Feedback Loop
Reinforcement Learning
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Decision Heuristic
(ML)

Clause Learning
(Proof System)

Partial Assignment

Learnt Clause

Agent Environment



PART III

SAT+CAS

11



SAT+CAS for Math
Search + Domain Knowledge

Booleanize

Conjecture
Domain 

Knowledge

Program is correct?
or Generate Counterexamples

SAT+CAS

Logic Formulas

SAT/UNSAT
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Modern Conflict-Driven Clause-Learning (CDCL) SAT Solver
Overview
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Input SAT Instance

Return
SAT

Return
UNSAT

Conflict
Analysis()

Top-level
Conflict?

Backjump()

Propagate()
(BCP + CAS)

Conflict?

All Vars
Assigned?

Branch()

GRASP Solver: [MS96]
ZChaff Solver: [MMZZM01]

CAS



SAT+CAS with Deductive Feedback Loop
Search + Domain Knowledge
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Decision Heuristic
and

BCP+CAS

Clause Learning
(Proof System)

+
CAS

Partial Assignment

Learnt Clause

Agent Environment

MathCheck: A Math Assistant based on a Combination of Computer Algebra Systems and SAT Solvers
Zulkoski, Czarnecki, and G.
International Conference on Automated Deduction (CADE 2015), Berlin, Germany, August 1-7, 2015



MathCheck: The first SAT+CAS system

We extended MathCheck in 2016 and used it to find (or prove the
nonexistence of) Williamson matrices in large orders.1

MathCheck has since won several awards including a 2020 best
paper award in Applicable Algebra in Engineering, Communication
and Computing for work on Lam’s problem in finite geometry.2

1C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki.
MathCheck2: A SAT+CAS verifier for combinatorial conjectures. CASC 2016.

2C. Bright et al. A Nonexistence Certificate for Projective Planes of Order Ten
with Weight 15 Codewords. AAECC 2020.
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Application I:
The Williamson Conjecture
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Hadamard matrices

Hadamard matrices are square matrices with ±1 entries whose
rows are mutually orthogonal.

1 1 1 1

−1 1 −1 1

−1 1 1 −1

−1 −1 1 1

In 1893, Jacques Hadamard studied these matrices. They have
applications in error-correcting codes and many other areas.
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Order 92 example
In 1961, scientists from NASA searched for Hadamard matrices
while developing codes for communicating with spacecraft and
they found the first known Hadamard matrix of order 92.3

3L. Baumert, S. Golomb, M. Hall. Discovery of an Hadamard matrix of order 92.
Bulletin of the American Mathematical Society, 1962.
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Williamson’s construction

In 1944, John Williamson discovered a method of constructing
Hadamard matrices in many orders like this order 8 example:

1 1 1 1 1 −1 1 −1

1 1 1 1 −1 1 −1 1

−1 −1 1 1 −1 1 1 −1

−1 −1 1 1 1 −1 −1 1

−1 1 1 −1 1 1 −1 −1

1 −1 −1 1 1 1 −1 −1

−1 1 −1 1 1 1 1 1

1 −1 1 −1 1 1 1 1

5/29



Williamson matrices

Williamson’s construction relies on finding a quadruple
(A,B,C ,D) of {±1}-matrices for which all of the off-diagonal
entries of A2 + B2 + C 2 + D2 are zero.

The matrices are said to be Williamson matrices if they are
symmetric and each row is a cyclic shift of the previous row.

Williamson matrices of order 5.
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The Williamson conjecture

Many researchers expected Williamson matrices to exist in all
orders and this became known as the Williamson conjecture.

Williamson himself found examples in orders n = 2k for k ≤ 5 and
he expressed interest in if this could be continued:
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Williamson matrices of order 2k for 2 ≤ k ≤ 5
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Williamson matrices of order 2k

The question of if Williamson matrices exist in all orders 2k was
open for 75 years.

In 2019, we ran exhaustive searches for Williamson matrices in all
even orders n ≤ 70 and discovered a large number of Williamson
matrices in order 64.4

The patterns uncovered by these searches show that Williamson’s
method works for all orders that are powers of two.5

4C. Bright, I. Kotsireas, V. Ganesh. Applying computer algebra systems with SAT
solvers to the Williamson conjecture. Journal of Symbolic Computation, 2020.

5——. New Infinite Families of Perfect Quaternion Sequences and Williamson
Sequences. IEEE Transactions on Information Theory, 2020.
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Previous searches

In 2006, a computer algebra approach found Williamson matrices
in all even orders n ≤ 22.6

In 2016, a satisfiability approach found Williamson matrices in all
even orders n ≤ 30.7

The search space for order n = 70 is twenty-five orders of
magnitude larger than the search space for order n = 30—yet it is
possible to search exhaustively with a hybrid approach.

6I. Kotsireas, C. Koukouvinos. Constructions for Hadamard matrices of Williamson
type. Journal of Combinatorial Mathematics and Combinatorial Computing, 2006.

7C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki.
MathCheck2: A SAT+CAS verifier for combinatorial conjectures. CASC 2016.
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SAT encoding

Let the Boolean variable ai represent the ith entry in the initial
row of the matrix A contains a 1.

a0
true

a1
true

a2
false

a3
false

a4
true

Using similar variables for B, C , and D, one can express that the
off-diagonal entries of A2+B2+C 2+D2 are zero using arithmetic
circuits (which can be converted into conjunctive normal form).
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Simple setup

Encoding that Williamson
matrices of order n exist

SAT solver

Williamson matrices
or counterexample

However, this does not perform well, since a SAT solver will not
exploit mathematical facts about Williamson matrices.
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Power spectral density (PSD) filtering

If A is a Williamson matrix with first row [a0, . . . , an−1] then

PSDA ≤ 4n

where PSDA is the maximum squared magnitude of the Fourier
transform of [a0, . . . , an−1].

Precisely,
∣∣∑n−1

j=0 ajω
j
∣∣2 ≤ 4n where ω is any nth root of unity.
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Search with PSD filtering

To exploit PSD filtering we need
(1) an efficient method of computing the PSD values; and
(2) an efficient method of searching while avoiding matrices that

fail the filtering criteria.

­ CASs excel at (1) and SAT solvers excel at (2).
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SAT+CAS learning for Williamson matrices

The CAS computes the PSD of a matrix provided by the SAT
solver. . .

SAT solver CAS

. . . if it is too large, the matrix is blocked from the search.
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Encoding comparison

The SAT+CAS method was significantly faster than the simple
SAT encoding and the speedup improved as the order increased:
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Results

With our SAT+CAS system MathCheck we found over 100,000
new sets of Williamson matrices—even though fewer than 200 had
previously been found by computers.

MathCheck also showed that n = 35 is the smallest
counterexample of the Williamson conjecture (though the
nonexistence of solutions in order 35 was previously known.8)

These results lead us to propose the conjecture that Williamson
matrices exist in all even orders n.

8D. Ðoković. Williamson matrices of order 4n for n = 33, 35, 39. Discrete
Mathematics, 1993.
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Application II:
Lam’s Problem
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History

Since 300 BC, mathematicians tried to derive Euclid’s “parallel
postulate” from his other axioms for geometry.

The discovery of alternative geometries
in the 1800s showed this is impossible!
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Finite projective planes

Finite projective planes satisfy the following axioms:
I Every pair of points define a unique line.
I Every pair of lines meet at a unique point.
I Every line contains n + 1 points for some order n.

order 1 order 2 order 3
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Projective planes of small orders

1 2 3 4 5 6 7 8 9 10
3 3 3 3 3 7 3 3 3 7

Lam’s problem
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Resolution of Lam’s problem

Lam et al.9 used custom-written software to show that a projective
plane of order ten does not exist.

We must trust the searches ran to completion—the authors were
upfront that mistakes were a real possibility.

Using MathCheck, we generated the first certifiable resolution of
Lam’s problem.10

9C. Lam, L. Thiel, S. Swiercz. The Nonexistence of Finite Projective Planes of
Order 10. Canadian Journal of Mathematics, 1989.

10C. Bright, K. Cheung, B. Stevens, I. Kotsireas, V. Ganesh. A SAT-based
Resolution of Lam’s Problem. AAAI 2021.
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SAT encoding

A projective plane of order n is equivalent to a quad-free
(0, 1)-matrix with n + 1 ones in each row and column. A quad-free
matrix contains no rectangle with 1s in the corners.

1 1 0
1 0 1
0 1 1

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

1 0 0 0 1 0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1
1 1 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1

order 1 order 2 order 3

These constraints can be encoded in Boolean logic, but this is not
sufficient to solve Lam’s problem—it does not exploit the theorems
that make an exhaustive search feasible.
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SAT+CAS learning for Lam’s problem

The SAT solver finds partial solutions and sends them to a CAS. . .

SAT solver CAS

. . . and the CAS finds a nontrival isomorphism and blocks it.
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Results

The search for a projective plane of order 10 can be split into three
main cases. The search times compared with previous searches:

Case SAT-based CAS-based SAT+CAS
1 5 minutes 3–78 minutes 0.1 minutes
2 − 16,000 hours 30 hours
3 − 20,000 hours 16,000 hours

The SAT+CAS approach was much faster in the first two cases
and decently faster in the third case (a case where most of the
search space was not very symmetric).
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Discrepancies

The lack of verifiable certificates has real
consequences. We found discrepancies with
the intermediate results of both Lam’s search
and an independent verification from 2011.

On the right is a 51-column partial projective
plane of order ten said to not exist in
2011—but we found with MathCheck.
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Other results

We have successfully used MathCheck in many other problems:

Problem Main Result CAS Functionality
Williamson Found smallest counterexample Fourier transform

Even Williamson First verification in orders n ≤ 70 Fourier transform
Lam’s Problem First certifiable solution Graph isomorphism
Good Matrix Found 3 new counterexamples Fourier transform
Best Matrix First solution in order 57 Fourier transform

Complex Golay Verified lengths up to 28 Nonlinear optimizer
Ruskey–Savage First verification in order 5 Travelling salesman solver

Norine First verification in order 6 Shortest path solver

uwaterloo.ca/mathcheck
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Conclusion

Many mathematical problems stand to benefit from fast, verifiable,
and expressive search tools.

Don’t reinvent the wheel!
I It’s hard to beat a SAT solver at search.
I It’s hard to beat CASs for mathematical computations.

Adding CAS functionality to a SAT solver significantly increases its
expressiveness and facilitates applying SAT to more problems.
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Future work

SAT+CAS methods are poised to forever change what is
considered feasible in mathematical search—and there are many
promising areas where they have yet to be used.

For example, SAT+CAS methods have been used to find small
circuits for matrix multiplication11 and we are using SAT+CAS
methods to look for small Kochen–Specker systems.12

curtisbright.com
ece.uwaterloo.ca/~vganesh

11M. Heule, M. Kauers, M. Seidl. New ways to multiply 3× 3-matrices. Journal of
Symbolic Computation, 2021.

12J. Conway, S. Kochen. The Free Will Theorem. Foundations of Physics, 2006.
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