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SAT:
Boolean satisfiability problem

SAT solvers: Glorified brute force
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Freakish effectiveness of SAT solvers

Many problems that have nothing to do with logic can be
effectively solved by reducing them to Boolean logic and using a
SAT solver.

Examples

I Scheduling
I Dependency resolution
I Microprocessor verification
I Solving puzzles like Sudoku
I Finding combinatorial objects
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Limitations of SAT solvers

Even though SAT solvers can solve some complicated problems
with millions of variables they fail on some trivial tiny problems.

Example

Have a SAT solver to try to find a way to put 20 pigeons into 19
holes such that no hole contains more than one pigeon. . .
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CAS:
Computer algebra system

Mathematical expression manipulators
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Effectiveness of CAS

Modern computer algebra systems contain a huge number of
functions from many domains of mathematics and can derive many
mathematical identities.

Example

Ask Maple to evaluate
∞∑
n=1

1
n2

and it returns π2/6
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Effectiveness of CAS

Modern computer algebra systems contain a huge number of
functions from many domains of mathematics and can derive many
mathematical identities.

Example

Ask Maple to evaluate
∞∑
n=1

1
n2

and it returns π2/6 (not 1.64493406685).
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Limitations of CAS

CASes do not typically contain optimized general-purpose
search algorithms.
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SAT + CAS

Brute force + Knowledge
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The research areas of SMT [SAT Modulo Theories]
solving and symbolic computation are quite disconnected.
[. . . ] More common projects would allow to join forces
and commonly develop improvements on both sides.

Dr. Erika Ábrahám
RWTH Aachen University
ISSAC 2015 Invited talk
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MathCheck I

I In 2015, a SAT+CAS system called MathCheck solved open
cases of two conjectures in graph theory.

I It was shown that any matching of a hypercube graph of order
n ≤ 5 can be extended to a Hamiltonian cycle.

E. Zulkoski, V. Ganesh, K. Czarnecki. MathCheck: A math assistant based on
a combination of computer algebra systems and SAT solvers.

International Conference on Automated Deduction, 2015.
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MathCheck II

I We have also applied the SAT+CAS method to combinatorial
design theory and number theory.

I In particular, we have found many new Hadamard matrices
and shown certain types of Hadamard matrices don’t exist.

E. Zulkoski, C. Bright, A. Heinle, I. Kotsireas, K. Czarnecki, V. Ganesh.
Combining SAT solvers with computer algebra systems to verify combinatorial

conjectures. Journal of Automated Reasoning, 2017.
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Hadamard matrices
I 125 years ago Jacques Hadamard defined what are now known

as Hadamard matrices.
I Square matrices with ±1 entries and pairwise orthogonal rows.

Jacques Hadamard. Résolution d’une question relative aux déterminants.
Bulletin des sciences mathématiques, 1893.
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The Hadamard conjecture

I The Hadamard conjecture says that Hadamard matrices exist
in order 4n for all n ≥ 1.

I Strongly expected to hold but still open after 125 years.

The Williamson conjecture

I In 1944, John Williamson discovered a way to construct
Hadamard matrices of order 4n via four symmetric matrices
A, B, C , D of order n with ±1 entries.

I The Williamson conjecture says that such matrices exist in all
orders n.
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Williamson matrices

Williamson matrices are circulant (each row a shift of the
previous row) and

A2 + B2 + C 2 + D2

is the scalar matrix 4nI .
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Williamson matrices in odd orders

In 1944, Williamson found twenty-three sets of Williamson ma-
trices in the orders 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 37,
and 43.

1944 2018
| |
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Williamson matrices in odd orders

In 1962, Baumert, Golomb, and Hall found one in order 23.

1944 1962 2018
| | |
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L. Baumert, S. Golomb, M. Hall. Discovery of an Hadamard matrix of
order 92. Bulletin of the American mathematical society, 1962.
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Williamson matrices in odd orders

In 1965, Baumert and Hall found seventeen sets of Williamson
matrices in the orders 15, 17, 19, 21, 25, and 27.

1944 1965 2018
| | | |

17/35



Williamson matrices in odd orders

The next year Baumert found one in order 29.

1944 1966 2018
| | | | |
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Williamson matrices in odd orders

In 1972, Turyn found an infinite class of them, including one in
each order 27, 31, 37, 41, 45, 49, 51, 55, 57, 61, 63, and 69.

1944 1972 2018
| | | | | |

17/35



Williamson matrices in odd orders

In 1977, Sawade found four in order 25 and four in order 27 and
Yamada found one in order 37.

1944 1977 2018
| | | | | | |
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Williamson matrices in odd orders

In 1988, Koukouvinos and Kounias found four in order 33.

1944 1988 2018
| | | | | | | |
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Williamson matrices in odd orders

In 1992, Ðoković found one in order 31.

The next year he found one in order 33 and one in order 39.

Two years later he found two in order 25 and one in order 37.

1944 1992–1995 2018
| | | | | | | | | | |
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Williamson matrices in odd orders

In 2001, van Vliet found one in order 51.

1944 2001 2018
| | | | | | | | | | | |
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Williamson matrices in odd orders

In 2008, Holzmann, Kharaghani, and Tayfeh-Rezaie found one
in order 43.

1944 2008 2018
| | | | | | | | | | | | |
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Williamson matrices in odd orders

In 2018, Bright, Kotsireas, and Ganesh found one in order 63.

1944 2018
| | | | | | | | | | | | |
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A Hadamard matrix of order 4 · 63 = 252
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Status of the conjecture I

I The Williamson conjecture for odd orders is false.
I The counterexample 35 was found in 1993.

D. Ðoković. Williamson matrices of order 4n for n = 33, 35, 39.
Discrete mathematics, 1993.

I The counterexamples 47, 53, and 59 were found in 2008.
W.H. Holzmann, H. Kharaghani, B. Tayfeh-Rezaie. Williamson
matrices up to order 59. Designs, codes and cryptography, 2008.
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Status of the conjecture II

I The Williamson conjecture for even orders is open.
I We have constructed over 100,000 Williamson matrices in all

even orders n ≤ 70.

C. Bright, I. Kotsireas, V. Ganesh. A SAT+CAS method for
enumerating Williamson matrices of even order. AAAI 2018.

C. Bright, I. Kotsireas, V. Ganesh. The SAT+CAS paradigm and
the Williamson conjecture. ACM Communications in Computer
Algebra, 2018.
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System overview

Williamson
conjecture
in order n

Preprocessing SAT solver

Williamson
matrix

Counterexample

SAT instance

UNSATSAT
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conjecture
in order n

Preprocessing SAT solver

Williamson
matrix

Counterexample

SAT instance

UNSATSAT

This setup is simple but only works for small n.
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System overview

Williamson
conjecture
in order n

Preprocessing SAT solver

Williamson
matrices

Counterexample

SAT instances

UNSATSAT

Split up the search space during preprocessing:
Solvers perform better on smaller search spaces and the subspaces

are independent so can be solved in parallel.
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Splitting

The simplest thing would be to fix the first entries of A, but this
does not perform well.

Compression

I Instead, we fix the entries of the compression of A.
I Compression of a row of order n is defined as follows:

A = [a0, a1, a2, a3, a4, a5, a6, a7, a8]

A′ =
[
a0 + a3 + a6, a1 + a4 + a7, a2 + a5 + a8

]
.
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Uncompression

Let the Boolean variables a0, . . . , an−1 represent the entries
of A with true representing 1 and false representing −1.
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Encoding in SAT

I Say the kth entry in the 2-compression of A is 2, i.e.,

ak + ak+n/2 = 2.

I As Boolean variables both ak and ak+n/2 must be true.
I We encode this in Boolean logic as

ak ∧ ak+n/2.
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Encoding in SAT

I Say the kth entry in the 2-compression of A is −2, i.e.,

ak + ak+n/2 = −2.

I As Boolean variables both ak and ak+n/2 must be false.
I We encode this in Boolean logic as

¬ak ∧ ¬ak+n/2.
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Encoding in SAT

I Say the kth entry in the 2-compression of A is 0, i.e.,

ak + ak+n/2 = 0.

I As Boolean variables exactly one of ak and ak+n/2 is true.
I We encode this in Boolean logic as

(¬ak ∨ ak+n/2) ∧ (ak ∨ ¬ak+n/2).
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System overview

Williamson
conjecture
in order n

Preprocessing SAT solver

Williamson
matrices

Counterexample

SAT instances

UNSATSAT

This works better but does not exploit theorems about Williamson
matrices that cannot easily be encoded in Boolean logic.

27/35



System overview

Williamson
conjecture
in order n

Preprocessing SAT solver

CAS

Williamson
matrices

Counterexample

SAT instances

UNSATSAT

Assignment Clause

Encode some knowledge programmatically:
Allows encoding much more expressive constraints.
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Discrete Fourier transform

I The discrete Fourier transform DFTA of A = [a0, . . . , an−1] is
the sequence whose kth entry is

n−1∑
j=0

aj exp(2πijk/n).

I Can be computed very efficiently by CAS functions.

Power spectral density

The PSD values PSDA are the squared absolute values of DFTA.
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PSD theorem

If A, B , C , D are the initial rows of Williamson matrices then
each entry of

PSDA +PSDB +PSDC +PSDD

is the constant 4n. (!)

D. Ðoković, I. Kotsireas. Compression of periodic complementary sequences
and applications. Designs, codes and cryptography, 2015.
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PSD criterion

Since PSD values are nonnegative it follows that the PSD values of
Williamson matrices are at most 4n.

PSD filtering

If a sequence has a PSD value larger than 4n then it cannot be a
row of a Williamson matrix.
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Example

I Say the SAT solver assigns all entries of A to true.
I In this case the first entry of PSDA will be n2 which is larger

than 4n for n larger than 4.

Consequence

A cannot be a row of a Williamson matrix, so learn the clause

¬a0 ∨ ¬a1 ∨ · · · ∨ ¬an−1.
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Enumeration results

I Without the programmatic approach we were able to solve
orders up to around 35.

I With the programmatic approach we found over 100,000 new
Williamson matrices in all even orders up to 70 and one new
set of Williamson matrices in order 63.

I Available on the MathCheck website:
curtisbright.com/mathcheck
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Other results I

I Verified that 35 is the smallest counterexample of the
Williamson conjecture.
C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati, K. Czarnecki.
MathCheck2: A SAT+CAS verifier for combinatorial conjectures. CASC
2016.

I Enumerated all complex Golay pairs in all orders up to 25 and
verified the conjecture that they don’t exist in order 23.
C. Bright, I. Kotsireas, A. Heinle, V. Ganesh. Enumeration of complex
Golay pairs via programmatic SAT. ISSAC 2018.
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Other results II

I Found 8-Williamson matrices in all odd orders up to 35.
C. Bright, I. Kotsireas, V. Ganesh. Applying computer algebra systems
and SAT solvers to the Williamson conjecture. In submission, 2018.

I Found new examples of good matrices in the orders 27 and 57
and new counterexamples in the orders 51, 63, and 69.
C. Bright, D. Ðoković, I. Kotsireas, V. Ganesh. A SAT+CAS approach to
finding good matrices: New examples and counterexamples. In
submission, 2018.
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Conclusion

I The SAT+CAS paradigm is very general and can be applied
to problems in many domains, especially “needle-in-haystack”
problems that require rich mathematics.

I Make use of the immense amount of engineering effort that
has gone into CAS and SAT solvers.

I Can be difficult to split up the problem in a way that takes
advantage of this.

I am currently based in Ottawa and welcome
collaboration extending this and related work!
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