
Mathematical Problems with SATisfying
Solutions

Curtis Bright
University of Windsor

One World Combinatorics on Words Seminar

June 3, 2025

1/31



SATisfiability

Formulae in Boolean logic consist of expressions formed with
true/false variables connected with logical operators such as

∧ (and), ∨ (or), ¬ (not), → (implies)

For example:
(x ∨ y) ∧ (x → ¬z)

SAT: Given a Boolean logic expression, can it can be made true?

The above example is satisfiable (take x = y = true, z = false).

2/31



SATisfiability

Formulae in Boolean logic consist of expressions formed with
true/false variables connected with logical operators such as

∧ (and), ∨ (or), ¬ (not), → (implies)

For example:
(x ∨ y) ∧ (x → ¬z)

SAT: Given a Boolean logic expression, can it can be made true?

The above example is satisfiable (take x = y = true, z = false).

2/31



SAT Solving

Donald Knuth’s The Art of Computer
Programming Vol. 4B (2022) is over 700
pages and half of it is devoted to the art of
solving the SAT problem.

Despite having no provably fast algorithms, “SAT solvers” can be
surprisingly effective and can be used solve a variety of problems
seemingly unrelated to Boolean logic, like Sudoku or graph
colouring.1

1Bright, Gerhard, Kotsireas, Ganesh. Effective Problem Solving Using SAT Solvers.
Maple Conference 2019.

3/31

https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://doi.org/10.1007/978-3-030-41258-6_15


A SAT Success Story 1/5: Kochen–Specker Systems

Conway and Kochen proved the Free Will Theorem, which says if
free will exists then quantum particles have free will. Their proof
uses a set of 31 vectors called a Kochen–Specker (KS) system.

In 2021, I started mentoring Brian Li (now a PhD student at
Georgia Tech). He used a SAT solver to show a KS system must
have ≥ 23 vectors and the work has been extended to ≥ 24
vectors.2,3

2Kirchweger, Peitl, Szeider. Co-Certifcate Learning with SAT Modulo Symmetries.
IJCAI 2023.

3Li, Bright, Ganesh. A SAT Solver + Computer Algebra Attack on the Minimum
Kochen–Specker Problem. IJCAI 2024.

4/31

https://doi.org/10.24963/ijcai.2023/216
https://doi.org/10.24963/ijcai.2024/210
https://doi.org/10.24963/ijcai.2024/210


A SAT Success Story 2/5: Ramsey Numbers

F. Ramsey proved that every red/blue edge colouring of a
sufficiently large complete graph Kn must contain either a red
clique of size s or a blue clique of size t (regardless of s and t).
The smallest n for which this is true is called the Ramsey number
R(s, t).

The K5 on the right has no blue triangles or red
triangles, showing that R(3, 3) > 5. Every
colouring of K6 has a red or blue triangle, so
R(3, 3) = 6.

With Conor Duggan and Brian Li (Waterloo Master’s students
co-supervised with Vijay Ganesh), we used a SAT solver and about
211 days of compute time to generate certificates proving
R(3, 8) = 28 and R(3, 9) = 36.4

4Li, Duggan, Bright, Ganesh. Verified Certificates via SAT and Computer Algebra
Systems for the Ramsey R(3, 8) and R(3, 9) Problems. IJCAI 2025.

5/31



A SAT Success Story 3/5: Integer Factorization

The integer factorization problem is to write an
integer as a product of primes. This problem can
be reduced to a SAT by converting a binary
multiplication circuit into Boolean logic, then
enforcing the output bits to be the binary
representation of the number to factor.

Unfortunately, SAT solvers perform poorly on factorization
instances. However, if leaked bits of the prime factors are known
SAT solvers can outperform algebraic methods, especially when
augmented with algebraic techniques like lattice reduction.5

5Ajani, Bright. SAT and Lattice Reduction for Integer Factorization. ISSAC 2024.
6/31

https://doi.org/10.1145/3666000.3669712


A SAT Success Story 4/5: Minimizing Finite Automata

The following DFAO seemingly computes the nth binary digit of
(
√
3− 1)/2 when given input 2n represented in the “Ostrowski√

3−1
2 -representation”.6

2

0
1

0 000 011 0202 110 1 0 00
201 011

10
00

0 1 2

1

0

The software Walnut finds a 12-state DFAO that provably works
for all n. A SAT solver quickly finds the above 11-state automaton
and shows it is minimal, assuming it works for all n (the SAT solver
only ensures that the automaton works for n up to a fixed bound).

6Barnoff, Bright, Shallit. Using Finite Automata to Compute the Base-b
Representation of the Golden Ratio and Other Quadratic Irrationals. CIAA 2024.

7/31

http://doi.org/10.1007/978-3-031-71112-1_3
http://doi.org/10.1007/978-3-031-71112-1_3


A SAT Success Story 5/5: Rado Numbers

For a linear equation E , the 3-colour Rado number R3(E) is the
smallest integer n, if it exists, such that every 3-colouring of the
integers [1 .. n] contains a monochromatic solution to E .

For E : x + 3y = 3z , we have R3(E) = 27, since

00100100200100100200100100

provides a 3-colouring of [1 .. 26], but there is no way to colour
[1 .. 27] without introducing a monochromatic solution to E .

For E : 15x + 15y = 8z , a SAT solver finds R3(E) = 97875 in
about 2.5 days.7

7Ahmed, Zaman, Bright. Symbolic Sets for Proving Bounds on Rado Numbers.
2025.

8/31



Avoiding Collinear Points in North-East Lattice Paths

In 1971, Tom C. Brown of Simon Fraser University proposed and
solved the following problem on North-East (NE) lattice paths.8

Show a lattice path with steps in {(0, 1), (1, 0)} must pass through
k collinear points for every fixed k ≥ 1.

The path on the left must extend to a path with 3 collinear points.

8Brown. Collinear Points on a Monotonic Polygon. The American Mathematical
Monthly, 1972.

9/31



Gerver–Ramsey Theorem

In 1979, Joseph L. Gerver and L. Thomas Ramsey proved an
effective version of Brown’s result.9

Theorem
A North-East lattice path of length at least

22
13(k−1)4+log2(k−1)

must pass through k collinear points.

9Gerver, Ramsey. On Certain Sequences of Lattice Points. Pacific Journal of
Mathematics, 1979.

10/31



Looseness of the Gerver–Ramsey Bound

The effective bound by provided Gerver–Ramsey is
superexponential in k and extremely loose.

For example, their bound implies that any NE-path with at least
22

13 ≈ 102466 steps must contain at least k = 2 collinear points.

However, any NE-path with at least one step must have at least
two collinear points!

11/31



Avoiding 3 Collinear Points

If k = 3 then you cannot go in the same direction twice in a row
since that would produce 3 collinear points.

Thus, the longest path avoiding 3 collinear points alternates north
and east steps.

After 4 steps of this, three collinear points on the line y = x are
produced:

12/31



How Far Can You Avoid k Collinear Points?

13/31



The longest path avoiding k = 4 collinear points (until the final
step) has 9 steps. Here is one example:

14/31



The longest path avoiding k = 5 collinear points (until the final
step) has 29 steps. Here is one example:

15/31



The longest path avoiding k = 6 collinear points (until the final
step) has 97 steps. Here is one example:

16/31



Summary

Let Ak denote the smallest integer n such that every NE-path
with n steps is guaranteed to have k collinear points.

The following were computed by Jeff Shallit using APL:

k 2 3 4 5 6 7

Ak 1 4 9 29 97 ≥ 261

Can we find A7 or improve its lower bound using automated
reasoning tools like SAT solvers?

17/31



SAT Encoding

Fix k (the number of collinear points to avoid) and n (the number
of steps in the path). We will construct a SAT instance that is
satisfiable exactly when there exists a length-n NE-path avoiding k
collinear points.

Let vx ,y be a Boolean variable corresponding to the point (x , y).
The variable will be true when the path we are constructing
includes (x , y) and false otherwise.

v4,0
v3,0 v3,1
v2,0 v2,1 v2,2
v1,0 v1,1 v1,2 v1,3
v0,0 v0,1 v0,2 v0,3 v0,4

18/31



One Small Step

We want to encode that if (x , y) is a point in the middle of the
path then you must move up or right (but not both).

vx ,y→vx+1,y

↑
vx ,y+1

vx ,y → (vx+1,y ∨ vx ,y+1)

vx+1,y

vx ,y+1

¬(vx+1,y ∧ vx ,y+1)

vx ,y→vx−1,y

↑
vx ,y−1

vx ,y → (vx−1,y ∨ vx ,y−1)

19/31



Step Constraints

The step constraints can be expressed as the following clauses
(disjunction of variables or negated variables).

¬vx ,y ∨ vx+1,y ∨ vx ,y+1

¬vx+1,y ∨ ¬vx ,y+1

¬vx ,y ∨ vx−1,y ∨ vx ,y−1

We use these for all points (x , y) ∈ N2 in the acceptable range
(e.g., x + y < n). The variable v0,0 is set true to start the path.

20/31



Preventing k Vertical Points

Preventing k vertical points is easy; if (x , y) is on the path then
(x , y + k − 1) cannot be on the path.

Thus, k vertical points are prevented by

vx ,y → ¬vx ,y+k−1

over all valid points (x , y) in the instance.

21/31



Preventing k Collinear Points

Consider the vx ,y as {0, 1}-variables. We would like to encode

n−1∑
x=0

vx ,mx+b < k where mx + b ∈ N

and m and b are constants defining a line.

Problem: Modern SAT solvers typically require their input to be
given as clauses, but a constraint like

∑n
i=1 xi < k is not a clause.

22/31



Encoding Cardinality Constraints

The cardinality constraint
∑n

i=1 xi < k can be efficiently encoded
into clauses by introducing new variables.10

Let sk,n denote that at least k of L := [x1, . . . , xn] are true. Note
sk,n can be defined in terms of L′ := [x1, . . . , xn−1]:

▶ s0,j is true for j ≥ 0;

▶ si ,0 is false for i > 0;

▶ if at least k of L′ are true then sk,n is true;

▶ if xn is true and at least k − 1 of L′ are true, then sk,n is true.

These can be encoded via
∧n

j=0 s0,j ,
∧k

i=1 ¬si ,0, sk,n−1 → sk,n and
(xn ∧ sk−1,n−1) → sk,n. Finally,

∑n
i=1 xi < k is enforced by ¬sk,n.

10Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. CP
2005.

23/31

https://doi.org/10.1007/11564751_73


Symmetry Removal

Without loss of generality we can suppose the first step is upwards.

This can simply be encoded by setting v0,1 true (which implies v1,0
is false).

v0,0 ¬v1,0
↑
v0,1

24/31



Reachability of Points for k = 4

For fixed k, a SAT instance was generated using this encoding by
setting vx ,y true for every possible n-step finishing point (x , y) for
n = 1, 2, 3, . . . in sequence.

The SAT solver is able to determine the reachability of every point
here instantly.

25/31



Reachability of Points for k = 5

The SAT solver is able to determine the reachability of every point
here in under a second in total.

26/31



Reachability of Points for k = 6

The SAT solver is able to determine the reachability of every point
here in about 1.5 total hours.

27/31



Results for k = 7

28/31



Result for k = 7

The lower and upper reachability bounds from the previous figure
were computed by the SAT solver using about 195 days of
compute time.

The instance asserting the existence of a 310-point NE-path
avoiding 7 collinear points was partitioned into 131 subinstances by
iteratively fixing a “splitting variable” to true and then false.

Each of the 131 instances were run for 2 days. The solver found a
single 310-point path (one could be extended by 6 steps) and the
other 130 instances timed out.

29/31



Lines with 6 collinear points on the 316-point path

30/31



Conclusion

SAT solvers are useful in searching for many interesting things in
combinatorics—such as paths avoiding collinear points.

A SAT solver improved the lower bound on A7 from 261 to 317.

k 2 3 4 5 6 7

Ak 1 4 9 29 97 ≥ 317

A Master’s student I am supervising (Aaron Barnoff) is currently
working on improving this bound.

31/31


