
✬

✫

✩

✪

Vector Rational Number Reconstruction
Version 2

Curtis Bright

August 28, 2009

1

✬

✫

✩

✪

Rational Number Reconstruction

• Given an integer residue a ∈ ZM and a size bound N , the

rational number reconstruction problem is to solve

da ≡ n (mod M), d, n ≤ N

for d, n ∈ Z.

2

✬

✫

✩

✪

• If M > 2N2 then there is at most one rational number n/d

solution.

• For example, consider a = 25 ∈ Z97 and N = 6.

> iratrecon(25, 97);

3/4

• Lo and behold, 4 · 25 ≡ 3 (mod 97).

3

✬

✫

✩

✪

Vector Rational Number Reconstruction

• Given an integer residue vector a ∈ Zn
M and a size bound N ,

the vector rational number reconstruction problem is to solve

da ≡ n (mod M), ‖[d | n]‖ ≤ N

for d ∈ Z and n ∈ Zn.

• For example, consider

a = [−23677 −49539 74089 −21989 63531] ∈ Z5
195967

and N = 104.

4

✬

✫

✩

✪

• This has the unique nonzero solution

d = 3137 and n = [−3256 −2012 331 891 −1692] ,

i.e.,

a ≡ [−3256 −2012 331 891 −1692] / 3137 (mod 195967).

• Even though the solution is unique, Maple can’t find it because

M isn’t sufficiently larger than N to ensure entrywise

uniqueness.

5

✬

✫

✩

✪

> a := [-23677, -49539, 74089, -21989, 63531]:

> map(iratrecon, a, 195967);

-235 211

[FAIL, ----, FAIL, ---, FAIL]

269 303

> map(iratrecon, a, 195967, 3256, 3137);

2527 -2245 -957

[----, -2189/4, -----, -1934/9, ----]

33 37 37

• Finding a common denominator, we see that

a ≡ [−53814 16340 90815 −13080 12962] / 14652 (mod 195967),

but this solution vector has norm greater than 105, and we

wanted one less than 104.

6

✬

✫

✩

✪

Lattices

• Given a set of vectors, the lattice generated by them is the set

of all integer linear combinations of those vectors:

b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

• A set of linearly independent vectors which generate the same

lattice is known a basis of the lattice.

7

✬

✫

✩

✪

Lattice Bases

• Not all bases are created equal, some have needlessly long

vectors:

b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

b b b b b b b b b b b

b b b b b b b b b b

8

✬

✫

✩

✪

• Many problems, including rational reconstruction, can be

posed in the form, ‘given this lattice basis with long vectors,

find a short nonzero vector in the lattice’.

• The LLL Algorithm finds a vector within a factor of 2d of the

shortest nonzero vector in a d-dimensional lattice, and it runs

in polynomial time in d.

9

✬

✫

✩

✪

LLL Algorithm

• LLL is based around the concept of size reduction of a vector

bi against a set of vectors b1, b2, . . . , bi−1.

• To do the size reduction against bj , we replace bi with

b
′
i := bi − rbj

for the r ∈ Z which minimizes ‖projb∗

j
(b′i)‖.

b1

b2 b
′
2

b b b b b b b b

b b b b b b b

b b b b b b b b

10

✬

✫

✩

✪

• We want short vectors in the set we are size reducing against.

If we had instead. . .

b2

b1

b b b b b b b b

b b b b b b b

b b b b b b b b

we can’t size reduce b2 against b1.

• In a case like this we would want to swap b1 and b2, and then

size-reduce.

• Roughly, the Lovász condition is satisfied when bi and bi−1

aren’t in a case like this.

11

✬

✫

✩

✪

LLL Pseudocode

for i := 2 to n do

size reduce bi against b1, b2, . . . , bi−1

if Lovász condition not satisfied then

swap bi−1 and bi

i := max(i− 2, 1)

• At the conclusion of the loop, the first i vectors are LLL

reduced.

12

✬

✫

✩

✪

Rational Reconstruction: Lattice Reformulation

• Consider the lattice generated by the rows of the following

(n+ 1)× (n+ 1) integer matrix:






M

..
.

M
M

M
1 a1 a2 a3 ··· an







• For all d ∈ Z, the vector

[d da1 da2 da3 ··· dan]

is in this lattice. Because of the first n rows,

[d remM (da1) remM (da2) remM (da3) ··· remM (dan)]

is also in this lattice.

13

✬

✫

✩

✪

• Recall we want to solve

da ≡ n (mod M), ‖[d | n]‖ ≤ N

for d and n. Equivalently, we can solve

‖[d | remM (da)]‖ ≤ N

for d.

• As noted, vectors of this form are in the lattice just considered.

• Therefore, the problem is equivalent to finding vectors shorter

than N in the specific lattice we just saw.

14

✬

✫

✩

✪

Applying LLL Straightforwardly

• The problem instance we saw previously gives raise to the basis

matrix




195967
195967

195967
195967

195967
1 −23677 −49539 74089 −21989 63531



 .

• Running LLL on this lattice gives the new basis matrix




−3137 3256 2012 −331 −891 1692
−3600 −8445 10430 −9313 −10268 −18111
−4047 −7044 10092 −8673 20465 −1253
241 −23114 15088 22452 −8240 25545

28082 18517 15535 −14341 −3081 −6026
−11836 8162 10340 34921 17628 −27537



 ,

from which the first vector gives a solution to our problem.

• In fact, it is not hard to show that the other vectors do not

contribute to a vector shorter than N , using the Gram-Schmidt

orthogonalization.

15

✬

✫

✩

✪

Problems with LLL

• Too expensive; running LLL on the previous lattice requires

O(n6 log3M) bit operations.

• LLL approximation factor is 2n, much too large for large n.

16

✬

✫

✩

✪

Iterative Reduction

• However, the structure of the lattice permits a kind of iterative

reduction.

• For example, consider only reducing the lower-left 2× 2

submatrix:
[

0 195967
1 −23677

] LLL
====⇒

[

−389 −96
−149 467

]

• We can use this to help us reduce the lower-left 3× 3

submatrix.

17

✬

✫

✩

✪

• We can tell what the third column would have been, had we

kept it around. Note the third column starts out as −49539

times the first column:

[

195967
1 −23677

∣

∣

−49539

]

and this is always preserved by size reduction and swaps.

• It follows that we have a basis for the lattice generated by the

lower-left 3× 3 matrix:
[

195967
195967

1 −23677 −49539

]

same lattice
⇐======⇒

[

195967
−389 −96 19270671
−149 467 7381311

]

18

✬

✫

✩

✪

• We can now run LLL again:
[

195967
−389 −96 19270671
−149 467 7381311

]

LLL
====⇒

[

−538 371 470
91 1030 −808

27089 13738 20045

]

• The last vector can now be thrown away, because the last GSO

vector has norm larger than N .

19

✬

✫

✩

✪

Main Contributions

• If M > 2(c+1)/2N1+1/c, for c ∈ Z>0 a small constant which can

be chosen, then continuing in this way the row dimension of

the matrices will be bounded by c+ 1.

• For c = O(1) the bit complexity is O(n2 log3M).

• The column dimension of the matrices are bounded by n, but

in fact we can get away with only storing the first column. This

improves the bit complexity to O(n log3M).

20

✬

✫

✩

✪

• The last step of Dixon’s algorithm for linear system solving is

to reconstruct a rational vector x ∈ Qn from its modular image

remM (x) when M = pi.

• Usual elementwise reconstruction requires i ≈ 2 logN .

• This lattice technique requires i ≈ (1 + 1
c) logN .

21

