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SAT:
Boolean satisfiability problem

SAT solvers: Clever brute force
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Effectiveness of SAT solvers

Surprisingly, many problems that have nothing to do with logic can
be effectively solved by translating them into Boolean logic and
using a SAT solver.

Examples

I Discrete optimization
I Hardware and software verification
I Proving/disproving conjectures

(my specialty)
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Limitations of SAT solvers

SAT solvers lack mathematical understanding beyond the most
basic logical inferences and will fail on some trivial tiny problems.

Example

Have a SAT solver try to find a way to put 20 pigeons into 19
holes such that no hole contains more than one pigeon. . .
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Algorithmic mathematical computing
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Effectiveness of CAS

Computer algebra systems can perform calculations and
manipulate expressions from many branches of mathematics.

Example

What is the value of
∞∑
n=1

1
n2

?

Maple returns π2/6
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Effectiveness of CAS

Computer algebra systems can perform calculations and
manipulate expressions from many branches of mathematics.

Example

What is the value of
∞∑
n=1

1
n2

?

Maple returns π2/6 . . . not 1.64493406685.
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Limitations

CASs are not optimized to do large searches (in an
exponential-sized space).

Ian George Bolton 7/34



SAT + CAS

Search + Math
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MathCheck: A SAT+CAS system
MathCheck has found over 100,000 combinatorial matrices like this
{±1}-matrix of order 280 with pairwise orthogonal rows:
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MathCheck results (see uwaterloo.ca/mathcheck)

Discrete Geometry:
Fastest verification of cases in Lam’s problem (1800s).

Graph Theory:
Current best result in the Ruskey–Savage conjecture (1993).
Current best result in the Norin conjecture (2008).

Combinatorics:
Found the smallest counterexample of the Williamson conjecture (1944).
Found three new counterexamples of the good matrix conjecture (1971).
Current best result in the best matrix conjecture (2001).

Number Theory:
Verified a conjecture of Craigen, Holzmann, and Kharaghani (2002).
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Lam’s Problem
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History

Since 300 BC, mathematicians have tried to derive Euclid’s
“parallel postulate” from his first four postulates for geometry.

The existence of projective planes (1800s) shows this is impossible!
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Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.

13/34



Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.

p

q

unique line through p and q

13/34



Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.

A B

unique point on A and B

13/34



Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.

A B

unique point on A and B?

13/34



Projective planes

A projective plane is a collection of points and lines and a relation
between points and lines such that:
1. There is a unique line through any two points.
2. Any two lines intersect at a unique point.

unique point on A and B

A B

“line at infinity”
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Finite projective planes

Must a projective plane have an infinite number of points?

If not, it must have exactly n2 + n + 1 points for some integer n
(called the order of the plane).
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Projective plane of order 2

point 1

point 2

point 3

point 4

point 5

point 6

point 7

line 1

line 2

line 3

line 4

line 5

line 6

line 7
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Projective plane of order 3
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Projective planes of small orders

2 3 4 5 6 7 8 9 10
3 3 3 3 7 3 3 3 ?
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Projective planes of small orders

2 3 4 5 6 7 8 9 10
3 3 3 3 7 3 3 3 ?

Lam’s Problem
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Projective planes of small orders

2 3 4 5 6 7 8 9 10
3 3 3 3 7 3 3 3 7

Supercomputer Search
(1973–1989)
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Projective plane of order 2: Incidence matrix

1 1 0 1 0 0 00
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

Boolean matrix of size 7× 7 where (i , j)th entry is 1 exactly when
the ith line is incident with the jth point.

SAT encoding: false ≡ 0, true ≡ 1
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Lam’s problem: First case

The first case of Lam’s problem was solved in 1973 and has been
verified by at least four independent implementations on modern
desktops:

Authors Year Language Time
Roy 2005 C 78 min

Casiello, Indaco, and Nagy 2010 GAP 3.3 min
Clarkson and Whitesides 2014 C 27 sec

Perrott 2016 Mathematica 55 min

Bright et al. 2019 SAT 6.3 min
Bright et al. 2019 SAT+CAS 6.8 sec
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Lam’s problem: Second case

The second case was initiated in 1974 and not entirely searched
until 1986. I am only aware of a single verification on a modern
desktop prior to our work:

Authors Year Language Time
Roy 2011 C 16,000 hours

Bright et al. 2020 SAT+CAS 30 hours
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Learning method

SAT solver CAS

partial projective
plane P

The CAS computes a nontrivial symmetry ϕ of the plane. . .

. . . and a symmetry “blocking clause” is learned.
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partial projective
plane P

ϕ(P)

The CAS computes a nontrivial symmetry ϕ of the plane. . .

. . . and a symmetry “blocking clause” is learned.
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Learning method: Hadamard matrices

SAT solver CAS
submatrix A

The CAS computes the largest magnitude in the discrete Fourier
transform of A. If it is too large. . .

. . . a “conflict clause” is learned.
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Learning method: Ruskey–Savage conjecture

SAT solver CAS
matching M

The CAS tries to extend the matching M to a Hamiltonian cycle. . .

. . . and if successful a conflict clause is learned.
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Lam’s problem: Third case

The final case was solved in 1989 by Lam et al. using 26 months
on a supermini computer and 3 months on a supercomputer.

It was verified by Roy in 2011 using 26 months on a desktop.

Ultimate goal: Complete a SAT+CAS verification of this case
and search for larger projective planes—little is known about
projective planes of orders 11 and 12.
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Verifiability

All previous searches were unverifiable. They require trusting:
I The hardware, compiler, and operating system used.
I The search code used.
I That the search was successfully run to completion.

This is a lot to trust. Our searches found bugs in prior searches.
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SAT certification

In contrast, SAT solvers provide unsatisfiability certificates.

Our searches reduce necessary trust to the SAT encoding, the
CAS-derived clauses, and a small trusted proof verifier.

Ultimate goal: Generate a complete nonexistence proof entirely
from the projective plane axioms.
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More SAT+CAS applications

New and emerging areas of application include circuit
minimization, verification, cryptography, and program synthesis.

I will outline just two promising applications:
I Mutually orthogonal Latin squares
I The Hadwiger–Nelson problem
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Latin squares

An n × n matrix whose entries contain n symbols is a Latin square
if each row and column contains exactly one of each symbol.

Two Latin squares of order four.

Applications to experimental design, statistics, codes, . . .
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Orthogonal Latin squares

Two Latin squares are orthogonal if all n2 pairs of entries appear in
their superposition.

Pair of orthogonal Latin squares of order four.
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Mutually orthogonal Latin squares

A famous open problem (1700s) is to determine how large a set of
mutually orthogonal Latin squares can be in order n.

Euler conjectured if n is of the form 4k + 2 then pairs of
orthogonal Latin squares do not exist.

Mourtos estimated solving the first open case (order ten) would
require 273 years using integer and constraint programming.
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A SAT approach to Latin squares

A SAT approach solves the order six case about 500 times faster
than Mourtos’ method and is able to find a pair of orthogonal
Latin squares of order ten about 20% faster:

Ultimate goal: Prove or disprove the conjecture that a triple of
mutually orthogonal Latin squares of order ten do not exist.
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Hadwiger–Nelson problem

How many colours are needed to colour the plane so that no two
points separated a distance of 1 are the same colour?

At most 7:

At least :
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Hadwiger–Nelson problem

How many colours are needed to colour the plane so that no two
points separated a distance of 1 are the same colour?

At most 7: At least 4:
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Hadwiger–Nelson problem

How many colours are needed to colour the plane so that no two
points separated a distance of 1 are the same colour?

At most 7: At least 5:

Ultimate goal: Improve these bounds and find the exact answer.
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Conclusion

The SAT+CAS paradigm is a new fast way of searching for
combinatorial objects—or disproving their existence.

Industry-backed: Maplesoft have already supported SAT+CAS
research and are interested in more applications.

Wide application: Many mathematical problems stand to benefit
from faster search tools.

Bang for your buck: Requires knowledge of SAT and CAS, but
generally simpler to write and verify than a special-purpose search.
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Thank you and I’m happy to answer any questions.

curtisbright.com

Selected References:

Bright, Cheung, Stevens, Roy, Kotsireas, Ganesh. A Nonexistence Certificate for
Projective Planes of Order Ten with Weight 15 Codewords. AAECC 2020.

Bright, Cheung, Stevens, Kotsireas, Ganesh. Nonexistence Certificates for Ovals in a
Projective Plane of Order Ten. IWOCA 2020.

Bright, Gerhard, Kotsireas, Ganesh. Effective Problem Solving Using SAT Solvers.
Maple in Mathematics Education and Research. MC 2019.

Bright, Ðoković, Kotsireas, Ganesh. A SAT+CAS Approach to Finding Good
Matrices: New Examples and Counterexamples. AAAI 2019.

Bright, Kotsireas, Ganesh. A SAT+CAS Method for Enumerating Williamson Matrices
of Even Order. AAAI 2018.

Bright, Kotsireas, Heinle, Ganesh. Enumeration of Complex Golay Pairs via
Programmatic SAT. ISSAC 2018.

34/34

http://www.curtisbright.com

