
Satisfiability Solving and Lattice Reduction
for Integer Factorization

Curtis Bright
curtisbright.com

University of Windsor

April 4, 2025

University of Windsor School of Computer Science Colloquium

1/27

https://www.curtisbright.com

SATisfiability

Formulae in Boolean logic consist of expressions formed with
true/false variables connected with logical operators such as

∧ (and), ∨ (or), ¬ (not), ⊕ (xor), ↔ (iff).

For example:
(x ∨ y) ∧ (¬x ↔ z)

SAT: Given a Boolean logic expression, can it can be made true?

The above example is satisfiable (take x = y = true, z = false).

2/27

SATisfiability

Formulae in Boolean logic consist of expressions formed with
true/false variables connected with logical operators such as

∧ (and), ∨ (or), ¬ (not), ⊕ (xor), ↔ (iff).

For example:
(x ∨ y) ∧ (¬x ↔ z)

SAT: Given a Boolean logic expression, can it can be made true?

The above example is satisfiable (take x = y = true, z = false).

2/27

SAT Solving

Donald Knuth’s The Art of Computer
Programming Vol. 4B (2022) is over 700
pages and half of it is devoted to the art of
solving the SAT problem.

Despite having no provably fast algorithms, “SAT solvers” can be
surprisingly effective and can be used solve a variety of problems
seemingly unrelated to Boolean logic, like Sudoku or graph
colouring.1

1Bright, Gerhard, Kotsireas, Ganesh. Effective Problem Solving Using SAT Solvers.
Maple Conference 2019.

3/27

https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://doi.org/10.1007/978-3-030-41258-6_15

A SAT Success Story 1/4

A longstanding problem was to find a single shape that tiles the
plane but only aperiodically. This was accomplished in 2022:2

the “hat”

A SAT solver was used to find hat tilings containing at least 16
“layers” around a central hat. The tilings generated by the SAT
solver helped produce a proof the hat tiles the plane.

2Smith, Myers, Kaplan, Goodman-Strauss. An aperiodic monotile. Combinatorial
theory 2024.

4/27

https://doi.org/10.5070/C64163843

A SAT Success Story 2/4

In a projective plane, every pair of lines meet at a unique point and
every pair of points define a unique line. In the finite case, when
every line has n points, the plane is said to have order n − 1.

order 1 order 2 order 3

Projective planes exist for every prime power order, and do not exist
in order 6. I used a SAT solver and 15,000 CPU hours to verify
“Lam’s problem” that there is no projective plane of order 10.3

3Bright et al. A SAT-based Resolution of Lam’s Problem. AAAI 2021.
5/27

https://doi.org/10.1609/aaai.v35i5.16483

A SAT Success Story 3/4

Erdős asked whether every sufficiently large set of points (no three
collinear) in R2 contains a k-hole: a k-sided convex polygon
without a point inside.

there is a 4-hole in every set of five points

Moreover, every set of ten points contain a 5-hole, but there are
arbitrarily large sets that do not contain a 7-hole.

A SAT solver and 17,000 CPU hours was used to show that every
set of 30 points has a 6-hole.4

4Heule, Scheucher. Happy Ending: An Empty Hexagon in Every Set of 30 Points.
TACAS 2024.

6/27

https://dl.acm.org/doi/10.1007/978-3-031-57246-3_5

A SAT Success Story 4/4

Conway and Kochen proved the Free Will Theorem—if humans have
have “free will” then so do quantum particles. Their proof uses a
set of 31 vectors called a Kochen–Specker (KS) system.

In 2021, I started mentoring Brian Zhengyu Li (Waterloo grad). He
used a SAT solver to show a KS system must have ≥ 23 vectors and
the work has been extended to ≥ 24 vectors.5,6

5Kirchweger, Peitl, Szeider. Co-Certifcate Learning with SAT Modulo Symmetries.
IJCAI 2023.

6Li, Bright, Ganesh. A SAT Solver + Computer Algebra Attack on the Minimum
Kochen–Specker Problem. IJCAI 2024.

7/27

https://doi.org/10.24963/ijcai.2023/216
https://doi.org/10.24963/ijcai.2024/210
https://doi.org/10.24963/ijcai.2024/210

. . . And Many More!

▶ Minimizing finite automata (Barnoff, Bright, Shallit).

▶ Dependency resolution when managing packages (Sakib,
Asaduzzaman, Bright).

▶ Finding collisions in step-reduced SHA-256 (Alamgir, Negati, Bright).

▶ Computing new Schur numbers (Zaman, Ahmed, Bright).

▶ Searching for Latin squares of certain forms (Bright, Keita, Stevens).

▶ Finding new algorithms for 3× 3 matrix multiplication (Heule,
Kauers, Seidl).

▶ Solving variants of the Collatz conjecture (Yocu, Aaronson, Heule).

For this talk, I will focus on applying SAT to integer
factorization—work with Yameen Ajani (MSc graduate, 2024).7

7Ajani, Bright. SAT and Lattice Reduction for Integer Factorization. ISSAC 2024.
8/27

https://doi.org/10.1145/3666000.3669712

Rivest–Shamir–Adleman Cryptosystem

The cryptosystem RSA relies
on the difficulty of factoring
large integers into primes.

RSA encryption involves a semiprime N = p · q for two randomly
chosen primes p and q of the same bitlength (known only to the
recipient).

The best known general attack on RSA involves factoring N, but no
efficient integer factoring algorithms are known, unless you have a
quantum computer.

9/27

Reduction of Factoring to SAT

Multiplication circuits can be converted to SAT by operating
directly on the bit-representation of the integers.

Say (N3N2N1N0)2 is the binary representation of N. Use variables
p1, p0 and q1, q0 to denote the bits of the prime factors of N:

q1 q0
× p1 p0

a1 a0
b1 b0

c1 c0
N3N2N1N0

a0 = p0q0

a1 = p0q1

b0 = p1q0

b1 = p1q1

a0 = N0

a1 + b0 = N1 + 2c0

b1 + c0 = N2 + 2c1

c1 = N3

These equations can be broken into logical expressions, e.g.,
a0 ↔ (q0 ∧ p0), N1 ↔ (a1 ⊕ b0), and c0 ↔ (a1 ∧ b0), etc.

10/27

SAT vs. Algebraic Methods

It’s somewhat mind-boggling to realize that numbers can
be factored without using any number theory! No greatest
common divisors, no applications of Fermat’s theorems,
etc., are anywhere in sight. [. . .] Of course we can’t expect
this method to compete with the sophisticated factorization
algorithms. . .

Donald Knuth, TAOCP 4B

As might be expected, computer algebraic methods dramatically
outperform SAT.

The number field sieve can factor an n-bit integer heuristically in
time exp(O∼(n1/3)) (super-polynomial, but sub-exponential in n).

11/27

Side-channel Attacks

Cryptographic implementations have an Achilles heel—they are
implemented in the real world, not a platonic universe.

Side-channel attacks exploit the fact that cryptographic
implementations may leak information about the private key in
practice.

For example, timing how long a decryption takes might leak
information about p and q.

12/27

Motivating Example 1/2

Suppose you are using disk encryption with RSA. In order to read
from the disk, your private key, including the prime factors of N, is
kept in memory.

What if an attacker steals your screen-locked machine? Is there any
way they can extract your private key?

Experiments have shown that after an hour without power, 99.9%
of bits in DRAM modules remain readable—assuming the DRAM
was kept in liquid nitrogen.8

8Halderman et al. Lest We Remember: Cold-Boot Attacks on Encryption Keys.
Communications of the ACM, 2009.

13/27

https://doi.org/10.1145/1506409.1506429

Motivating Example 1/2

Suppose you are using disk encryption with RSA. In order to read
from the disk, your private key, including the prime factors of N, is
kept in memory.

What if an attacker steals your screen-locked machine? Is there any
way they can extract your private key?

Experiments have shown that after an hour without power, 99.9%
of bits in DRAM modules remain readable—assuming the DRAM
was kept in liquid nitrogen.8

8Halderman et al. Lest We Remember: Cold-Boot Attacks on Encryption Keys.
Communications of the ACM, 2009.

13/27

https://doi.org/10.1145/1506409.1506429

Motivating Example 2/2

When power is removed, bits in DRAM modules decay to a
predictable ground state (say 0).

Any bits that are 1 after the power is removed must originally
have been 1, while 0 bits may have been 0 or 1.

The result is that the attacker learns bits of the private key at bit
positions they don’t control (in practice, at essentially random
positions).

bits of p: known

unknown

14/27

Exploiting Leaked Bits

Algebraic methods like the number field sieve cannot seem to
exploit leaked bits.

With SAT, it is easy assign any leaked bits of the prime factors to
their correct value. This speeds up the solver—but SAT solvers are
slow for this problem, as they don’t exploit algebraic properties.

Question we address: Can we use algebraic methods to improve
SAT solvers on random leaked-bit factorization problems?

15/27

Coppersmith’s Method

Don Coppersmith showed that if the lowest or highest 50% of the
bits of a prime factor of N are leaked. . .

bits of p: knownunknown or known unknown

then N can be factored in polynomial time via the techniques of
polynomial root finding and lattice basis reduction.9

9Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring with
High Bits Known. EUROCRYPT, 1996.

16/27

https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16

Lattices
A lattice is a discrete subgroup of Rn. For example, the lattice in
R2 spanned by vectors [3, 5] and [6, 0] looks like:

Coppersmith uses a lattice generated by polynomials using a
correspondence like

a0 + a1x + a2x
2 + a3x

3 ↔ [a0, 10a1, 10
2a2, 10

3a3] ∈ R4.

17/27

Lattice Basis Reduction

Lattices have many applications in mathematics. Lattice basis
reduction is a method of finding a “reduced” basis—a basis having
short and relatively orthogonal vectors.

The LLL algorithm can reduce a lattice basis and find an
approximation of the shortest nonzero lattice vector.

bad basis

reduced basis

18/27

Intuition Behind Coppersmith’s Method

Coppersmith’s method can find mod-p roots of a polynomial f ,
where p is an unknown divisor of a known integer N.

If p were known, finding roots of f mod p would be easy—but we
don’t know p.

Coppersmith finds another polynomial having the same roots as
f mod p, except with the roots over the reals, and root finding
over the reals can be done efficiently.

19/27

Factoring with Leaked Bits

Write p = p̂ + p̌, where p̂ encodes the leaked high bits of p, and p̌
encodes the unknown low bits.

For example, p = p̂ + p̌ = 7580 + 3 = (1110110011100)2 + (11)2.

With enough leaked bits, p̌ is a small mod-p root of

f (x) := p̂ + x ,

as f (p̌) = p ≡ 0 (mod p).

20/27

Coppersmith Example 1/2

Say N = 58,563,509 and p̂ = 7580, so f (x) := 7580 + x .

Every vector in the lattice generated by

f (x) [7580, 10, 0, 0]

xf (x) [0, 75800, 100, 0]

x2f (x) [0, 0, 758000, 1000]

N [58563509, 0, 0, 0]

corresponds to a polynomial with p̌ as a mod-p root.

If the vector is also short, p̌ will in addition be a real root.

21/27

Coppersmith Example 2/2

Apply LLL to the lattice basis: 7580 10
75800 100

758000 1000
58563509

 LLL−−→

 429 −1460 100 0
−9 −540 1600 1000
15 −530 2200 −2000

7151 1470 −100 0

The first vector of the reduced basis corresponds to
429− 146x + x2 which has the integer roots 3 and 143.

The root p̌ = 3 gives f (p̌) = 7583, the unknown factor of N.

22/27

Limitations of Coppersmith

Coppersmith can be generalized to work when the leaked bits of p
are in multiple “chunks”. However, the method is exponential in the
number of chunks.10

Key point: Coppersmith is not effective if the leaked bits are
randomly distributed.

However, our SAT-based approach will use Coppersmith’s method
as a subroutine.

10Herrmann and May. Solving Linear Equations Modulo Divisors: On Factoring Given
Any Bits. ASIACRYPT 2008.

23/27

https://doi.org/10.1007/978-3-540-89255-7_25
https://doi.org/10.1007/978-3-540-89255-7_25

SAT + Coppersmith

As SAT solvers search for solutions, they find “partial” solutions
(where some variables will be unassigned).

Say that a partial solution has assigned values to all of the
bottom-half of the bits of p:

SAT solver Coppersmith

p = (??????11000101)2

If Coppersmith’s method succeeds, N is factored. If not, tell the
solver that at least one of the low bits of p must change.

24/27

SAT + Coppersmith

As SAT solvers search for solutions, they find “partial” solutions
(where some variables will be unassigned).

Say that a partial solution has assigned values to all of the
bottom-half of the bits of p:

SAT solver Coppersmith

p = (??????11000101)2

low-bits(p) ̸= 11000101

(Coppersmith failure)

p is found

success

If Coppersmith’s method succeeds, N is factored. If not, tell the
solver that at least one of the low bits of p must change.

24/27

Results 1/2

128 320 512 704 896 1088 1280 1472 1664
Bitlength of N

100

101

102

103

104

105

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

Factoring Times with 50% Leaked Bits of p and q

SAT+Coppersmith (Median)
SAT (Median)

Fifteen random instances were run for 3 days for varying bitlengths.
For comparison, the number field sieve on 512-bit N uses around
2770 CPU hours.11

11Valenta et al. Factoring as a Service. Financial Cryptography and Data Security,
2016.

25/27

https://doi.org/10.1007/978-3-662-54970-4_19

Results 2/2

90 85 80 75 70 65 60 55 50 45 40 35
% Leaked Bits of p and q

10 1

100

101

102

103

104

105

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

Factoring Times with 256-bit N

SAT+Coppersmith (Median)
SAT (Median)

Fifteen random instances were run for 3 days for varying leaked
percentages. For comparison, an algebraic “branch and prune”
technique12 with 40% leaked bits used around 2000 seconds and
90 GiB; our approach used at most 0.5 GiB.

12Heninger and Shacham. Reconstructing RSA Private Keys from Random Key Bits.
CRYPTO 2009.

26/27

https://doi.org/10.1007/978-3-642-03356-8_1

Final Thoughts

I’ve been working on combining SAT with computer algebra systems
(CAS) for 10 years. In many problems SAT+CAS solvers provide
exponential speedups over other approaches.

The approach works well for problems requiring both search and
advanced mathematics.

Communications of the ACM, 2022

27/27

https://doi.org/10.1145/3500921
https://doi.org/10.1145/3500921

